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Abstract
A new method is developed for treating the effect of the neutron-proton mass difference in isospin-

violating nuclear forces. Previous treatments utilized an awkward subtraction scheme to generate
these forces. A field redefinition is used to remove that mass difference from the Lagrangian (and
hence from asymptotic nucleon states) and replace its effect by effective interactions. Previous cal-
culations of static Class II charge-independence-breaking and Class III charge-symmetry-breaking
potentials are verified using the new scheme, which is also used to calculate Class IV nuclear
forces. Two-body forces of the latter type are found to be identical to previously obtained results.
A novel three-body force is also found. Problems involving Galilean invariance with Class IV
one-pion-exchange forces are identified and resolved.
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I. INTRODUCTION

Although isospin violation in nuclear physics is a rather mature topic[1, 2], it has re-
cently undergone a renaissance because of Chiral Perturbation Theory (χPT)[3, 4]. Many
of the phenomenology-based mechanisms that underlie the traditional approach to isospin
violation in nuclear forces have been rederived in χPT[5–12]. Most of the results of this
reanalysis are the same as that of the traditional approach, which should be no surprise.
There have nevertheless been several mechanisms that had been incompletely calculated
using older techniques and have been recently completed in χPT, such as the static π–γ
exchange force[7], the two-pion-exchange charge-independence-breaking (CIB) potential[8],
and the two-pion-exchange charge-symmetry-breaking (CSB) potential[12]. The primary
innovation of χPT, however, is the use of power counting to order the sizes of interactions
and (Lagrangian) building blocks in a well-defined way[3, 13] so that it is apparent which
interactions and mechanisms are dominant. In some cases this leads to the identification
of important contributions that had not been considered before, which in turn give results
that are significantly different from traditional approaches. An example is charge-symmetry
breaking in pn → dπ0, where previously-ignored contributions required by chiral symmetry
change the sign of the predicted front-back asymmetry[14], in agreement with subsequent
data[15].

The most important attribute of effective field theories is the underlying power counting
that allows a systematic organization of calculations. In the case of χPT, which is the low-
energy effective field theory based on the symmetries and scales of QCD[3], the relevant
scales for constructing nuclear potentials (using Weinberg power counting[3, 5]) include the
pion decay constant, fπ ∼ 93 MeV, which sets the scale for pion emission or absorption,
the pion mass, mπ, which sets the scale for chiral-symmetry breaking, the typical nucleon
momentum, Q ∼ mπ, which is an inverse correlation length in nuclei, and the characteristic
QCD scale, Λ ∼ mρ, which is the scale of QCD bound states appropriate for heavy mesons,
nucleon resonances, etc. The latter are frozen out and do not explicitly appear, although
their effect is present in the counter terms of the effective interactions. The resulting field
theory is a power series in Q/Λ, and the number of powers of 1/Λ (e.g., n) is used to label
individual terms in the Lagrangian (viz., L(n)). In this way higher powers denote smaller
terms, and this is an integral part of the organizing principle of χPT.

Chiral Perturbation Theory was originally applied[3, 5, 16] to ordinary strong forces
(Class I in the terminology of Ref.[1]) and, for the two-nucleon potential, these calcula-
tions have now been completed at the two-loop level[17]. A major success of the program
has been the numerical determination of the coefficients of several counter terms in the
χPT Lagrangian whose role had previously been restricted to pion-nucleon scattering. This
determination used partial-wave analysis of nucleon-nucleon scattering data to isolate the
contributions proportional to those counter terms[18].

The χPT formalism was extended in Ref.[5] to incorporate isospin violation in nuclear
forces. The extended theory has now been applied to charge-independence-breaking forces[6–
10] (Class II forces) and ordinary charge-symmetry-breaking forces[6, 9–12] (Class III forces).
The latter are determined by differences between “mirror” forces in a given multiplet, such as
the difference between pp (T3 = +1) and nn (T3 = −1) forces within the T = 1 isomultiplet
(for later notational consistency we will uniformly use “3” rather than “z” to refer to the
third component of an isospin vector). In this work we will complete the list by treating
Class IV charge-symmetry-breaking two-nucleon forces[1], which lead to transitions (only)
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between the T = 0 to T = 1 isomultiplets in the np system. We also note that the scales
of isospin violation in χPT were used in the past[5] to prove that these forces satisfy (in
magnitude) Class I > Class II > Class III > Class IV.

While electromagnetic interactions break charge independence in general, the up-down
quark-mass difference breaks charge symmetry specifically. CSB observables can, therefore,
be linearly sensitive to the up-down quark-mass difference, while CIB observables that are
charge symmetric at best depend quadratically on the quark-mass difference. Since the
quark-mass difference is small on a typical hadronic scale, CIB is for all practical purposes
dominated by electromagnetism. Interest in quark masses takes us to CSB.

At low energies, CSB originates from a variety of sources, but the terms favored by power
counting are associated with the nucleon mass difference. In general, in order to understand
CSB at low energies we need to include the effects of the nucleon mass difference. In Sect.
II we invent a field redefinition that removes the nucleon-mass-difference term from the low-
energy effective Lagrangian at the expense of new interactions. In Sect. III we show that
the previous calculations of Class II and III forces are very easily reproduced in the new
field basis. The implications for Class IV forces in χPT are discussed in Sects. IV and V.

II. THE NUCLEON-MASS DIFFERENCE

The mass difference between the proton and neutron, δMN = mp−mn, plays an important
role in charge-symmetry breaking. This mass difference arises from two separate physical
mechanisms. One of these is the up-down quark-mass difference, which dominates and makes
the neutron heavier than the proton. The other mechanism is hard electromagnetic (EM)
interactions at the quark level, which tends to make the proton heavier than the neutron. The
dimensionless parameter associated with up-down quark-mass-difference isospin violation is
εm2

π/Λ2 ∼ 1%, where ε = md−mu

md+mu
∼ 0.3 and we have chosen Λ to be the mass of the ρ

meson. The parameter associated with hard EM interactions is α/π ∼ 1
4
%, where α is the

fine-structure constant. In addition to these mechanisms, which have an origin in short-
distance physics, there are also important soft-photon contributions (such as the Coulomb
interaction between protons) that dominate isospin violation in nuclei. All three of these
mechanisms contribute to Class IV forces.

Because asymptotic nuclear states individually reflect the appropriate nucleon masses,
previous work on Class III forces noted that only those nuclear intermediate states where
Z−N changes will contribute to isospin violation. An example would be pp scattering with
the emission of two π+ mesons (creating an nn intermediate nucleon configuration with a
different mass) and subsequent reabsorption of the pions. In Ref.[12] we adopted a sub-
traction procedure that accomplished the necessary bookkeeping, although it was somewhat
awkward and would have been difficult to generalize to more complicated operators (such
as three-body forces). In what follows below we will use a field redefinition procedure that
simply removes the n− p mass difference from the asymptotic states (in favor of an average
nucleon mass, MN = 1

2
(Mn + Mp)) and compensates for this by introducing new effective

interactions determined by δMN that must be treated in perturbation theory.
We illustrate the method in the lowest chiral orders, in which case only the lowest orders

in δMN appear. In addition, for the sake of simplicity, we display in the equations below
only those few terms of most interest for the nuclear potential. It should of course be kept
in mind that the χPT Lagrangian includes all terms allowed by QCD symmetries, and that
at each chiral order all powers of pion fields are required by chiral symmetry.
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The leading-order Lagrangian in χPT is

L(0) =
1

2
[π̇2− (~∇π)2−m2

ππ2]+N †[i∂0− 1

4f 2
π

τ · (π× π̇)]N +
gA

2fπ

N †~σ · ~∇(τ ·π)N + . . . , (1)

while the sub-leading-order Lagrangian is given by

L(1) =
gA

4fπ MN

N †{~σ · ~p , τ · π̇}N +
c̃2

f 2
π

N †N π̇2 + . . . . (2)

In these equations gA = O(1) (gA ' 1.26) and c̃2 = O(1/Λ) (c̃2 ∼ −2 GeV−1) are parameters
not determined by chiral symmetry, and “. . .” denote terms that we do not require[19]. There
are three L(2) terms with one pion interacting with a single nucleon; we will comment further
on them below.

In addition to these Class I interactions we have isospin-violating interactions, a com-
prehensive list of which can be found in Ref.[5]. We are here particularly interested
in the interactions generated by the quark-mass (δMqm

N = O(εm2
π/Λ)) and hard-photon

(δM em
N = O(αΛ/π)) contributions to the nucleon mass (δMN = δMqm

N + δM em
N ),

Liv = −δMN

2
N †τ3N +

δMqm
N

4f 2
π

N †τ · ππ3N +
δM em

N

4f 2
π

N †(τ3π
2 − τ · ππ3)N

−1

2
δm2

π

(
π2 − π2

3

)
+

β̄1

4f 2
π

(
π2 − π2

3

)
N †N +

β̄2

4f 2
π

(π × π̇)3 N †N + . . . . (3)

For reasons that will soon become obvious we have also shown explicitly the pion-mass-
splitting term and two pion-nucleon seagulls. The pion-mass-splitting term is dominated by
the electromagnetic contribution, δm2

π ' (δm2
π)em = O(αΛ2/π) (δm2

π ' (38 MeV)2), since
the contribution from the quark masses is small, (δm2

π)qm = O(ε2m4
π/Λ2). Because of the

quark-mass contribution, δMN counts formally as chiral order n = 1. (See, however, the
discussion in Sect. V.) Noting that α/π is numerically comparable to εm3

π/Λ3 and adjusting
our power counting of EM terms accordingly, the pion-mass splitting term then counts as
n = 1, and all other isospin-violating interactions are of higher order[5]. (For example, β̄1 is
O(αΛ/π) and n = 2, while β̄2 is O(α/π) and n = 3.)

The average nucleon mass MN has already been removed from consideration by means of
the time-dependent transformation N = e−iMNtN ′, which uses the fact that only the second
term in Eqn. (1) contains a time derivative of a nucleon field, while the exponential multi-
plying N ′ commutes with everything else. That procedure will not work straightforwardly
for the δMN term because δMN τ3 does not commute with other nucleon isospin operators
in L(n). One can eliminate the first term in Eqn. (3) by an appropriate redefinition of the
nucleon field,

N → e−i
1
2
δMN t τ3 N ≡ cos (1

2
δMN t)− iτ3 sin (1

2
δMN t) . (4)

In the process, however, we create interactions that are explicitly dependent on the time t,
unless we also redefine the pion fields. Using Eqn. (4) we find

ei
1
2
δMN t τ3 τi e−i

1
2
δMN t τ3 = A(δMN t) τi + B(δMN t) εij3τj + C(δMN t) δi3τ3 , (5)

where

A(z) = cos(z)

B(z) = − sin(z)

C(z) = 1− cos(z) . (6)
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The transformations for the Cartesian components of τi show that they are identical to
those of a coordinate rotation about the z-axis in isospin space by an angle −δMNt. This
immediately suggests the corresponding form for the pion transformation:

πi → A(δMN t) πi + B(δMN t) εij3πj + C(δMN t) δi3π3 . (7)

To leading order in δMN t this pair of transformations is nothing more than the usual
SU(2)V generators for (electric) charge conservation. Application of these transformations
demonstrates that π2, π3, τ · π, and τ3 are invariant, as one expects. Only terms that
involve a time derivative in the Lagrangian are not invariant, and these will generate new
Lagrangian terms[20] that compensate for the rotating isospin coordinate system, each of
them modifying the isospin-violating Lagrangian. Each time derivative can introduce one
power of δMN into the final result in Eqn. (8). Because δMN is order n = 1, a new term
generated by an isospin-symmetric term of order n will have order n + 1 or higher. Note
that terms with an even number of time derivatives can generate new interactions with
even powers of δMN. Although the original nucleon-mass-difference term in Eqn. (3) is
charge-symmetry breaking, some of the new interactions will be charge symmetric.

Since the maximum number of derivatives at order n is n−f/2+2, where f is the number
of fermion fields, the above field redefinition generates a finite number of new terms at each
chiral order. Four new terms arise from transforming L(0). One of them comes from the
nucleon kinetic term, and is equal in magnitude and opposite in sign to the first term in
Liv. Another new term comes from the Weinberg-Tomozawa interaction (the chiral partner
of the nucleon kinetic term), and has the form of the third term in Liv (the chiral partner
of the nucleon EM mass-difference term). The third and fourth terms come from the pion
kinetic term. In addition, two new terms are generated by L(1), and so on.

The sum of the new isospin-violating contributions to our Lagrangian together with the
surviving terms from Eqn. (3) is:

L′iv = δMN (π × π̇)3 +
δMqm

N

4f 2
π

N † [τ · ππ3 + ((τ × π) × π)3] N

−1
2
(δm2

π − δM2
N) (π2 − π2

3)− gA

4fπ

δMN

MN
N †{~σ · ~p , (τ × π)3}N

+
1

4f 2
π

(
β̄2 + 8 c̃2 δMN

)
(π × π̇)3 N †N +

1

4f 2
π

(
β̄1 + 4 c̃2 δM2

N

)
(π2 − π2

3) N †N

+ . . . . (8)

Because the quark-mass difference part of δMN counts like two derivatives[12], the first and
second terms in Eqn. (8) are of order n = 1, the second part of the third, the fourth, and
the second part of the fifth term are of order n = 2, while the second part of the sixth
term is of order n = 3. The L(2) interactions generate one single-nucleon contribution
proportional to δMN π̇/M2

N, which has n = 3 (plus another of order δM2
N with n = 4).

Note, however, that in the nuclear potential the energy transferred by pions is O(Q2/MN),
and a time derivative produces contributions that are effectively the size of contributions
with two space derivatives. Thus the OPEP (one-pion-exchange potential) derived from this
interaction effectively contributes at order n = 4. The fifth and sixth terms in Eqn. (8) and
terms stemming from L(n≥2) produce a higher-order potential than we wish to consider.

Our new Lagrangian is L(0)+L(1)+L′iv+. . .. The nucleon-mass difference has been entirely
removed from the asymptotic states and now resides only in the new effective interactions
(see, however, the discussion below Eqn. (22)). Among the latter we find novel two-pion
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seagull terms. The field redefinition presented here is thus particularly suited to the study
of nuclear processes.

III. CLASS II AND III FORCES

Like any other field redefinition, Eqns. (4) and (7) do not introduce any new physics;
they only produce a new —in this case, useful— bookkeeping of various contributions. We
can check this result by repeating previous calculations of isospin-violating forces. Three
vertices corresponding to the various terms in Eqn. (8) are illustrated in Figs. (1a), (1b),
and (1c). Figure (1d) depicts the usual isospin-conserving OPEP (which is Class I), while
(1e) is generated by vertex (1b) (and corresponds to Class IV) and (1f) is generated by
vertex (1a). The latter includes a term that is proportional to the energy transfer (q0, or the
time component of the four-momentum transfer, qµ) between the two nucleons and hence
vanishes in the center-of-mass (CM) frame. It has a Class IV type of isospin structure, and
we will treat both OPEP graphs (i.e., Figs. (1e) and (1f)) in the next section.

Fig. (1a) also contains the pion-mass splitting and generates well-known, relatively-large
Class II forces. The new δM2

N term in the pion-mass splitting results in small Class II forces.
For example, it generates a small Class II OPEP that has been obtained before[5]. However,
the field redefinition above makes it obvious that the contribution of this δM2

N term to
higher-order Class II forces can also be obtained from the corresponding δm2

π contribution
by the straightforward substitution δm2

π → δm2
π − δM2

N . In particular, this remark holds
for the two-pion-exchange potential of Ref.[8]. These new terms are all expected to be
small because formally δM2

N is the size of the expected small quark-mass contribution to
δm2

π, O(ε2m4
π/Λ2). In addition, the discussion in Sect. V suggests that δM2

N in pion-mass
splitting should be treated as if it were n = 4, rather than n = 2, since it is approximately
1
8
% of the usual pion-mass difference.

We can also reproduce the calculation of static Class III two-pion-exchange potentials
that was performed in Ref.[12]. The remaining graphs to consider are two-pion-exchange
graphs such as those in Fig. (2), which must be modified by introducing Fig. (1a) into pion
propagators, Fig. (1b) into single-pion vertices, or Fig. (1c) into two-pion seagull vertices.
We will ignore the modifications from Fig. (1b) because they are non-static, and for this
reason are higher order in power counting than was calculated in Ref.[12]. Likewise, the c̃2

interaction in Fig. (1c) contributes to the potential at higher order.
The remaining terms in the seagull, Fig. (1c), consist of the original seagull (that in

Eqn. (3)) plus the δMN modification induced by the transformations (4) and (7). Like
the original seagull, the seagull modification vanishes in Fig. (2d) to order δMN because of
isospin symmetry. The seagull terms in Fig. (2c) give Eqns. (9b) and (9c) of Ref.[12]; the
original seagull gave Eqn. (9c), while the seagull modification reproduces Eqn. (9b). If one
ignores the energy transfer between nucleons and other nuclear-energy dependence (which
is a higher-order correction), the graphs that result from pion-propagator modification by
Fig. (1a) are greatly simplified by a symmetry that develops. The integral over the loop
four-momentum (kν) then has a simplified time component (i.e., the integral over the loop
energy, k0), which can be classified according to the parity (k0 → −k0) of the k0-factors.
The π̇ factors are odd, since each generates one factor of k0. Each inverse pion propagator
becomes proportional to (k0)2 and is therefore even under a sign change, while each nucleon
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x

x

(a) (b) (c)

(d) (e) (f)

FIG. 1: Vertices created by removal of the nucleon-mass difference from the basis states of our
Hilbert space are shown in (a), (b), and (c), while the usual one-pion-exchange graph is shown in
(d) and additional graphs generated by the interactions (a) and (b) are illustrated in (f) and (e).
Pions are depicted as dashed lines and nucleons as solid lines.

propagator becomes
1

±k0 + i ε
= ±P 1

k0
− i π δ(k0) , (9)

where P denotes a principal-value integral (odd in k0), while the δ-function part (δ(k0)) is
an even function of k0. All modifications of Fig. (2) produced by inserting Fig. (1a) only
once are found to contain an odd number of k0-factors, and have at most one surviving
nucleon propagator. Thus if we use Eqn. (9) the k0-factors all vanish upon (symmetric) k0

integration except for the δ-function part. In this way only the modification of the crossed-
box graph in Fig. (2b) contributes (the remaining graphs vanish, as they did in Ref.[12]).
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(a) (b) (c) (d)

FIG. 2: Two-pion-exchange graphs that contribute to isospin-conserving nucleon-nucleon scatter-
ing.

Performing the trivial integral over the δ-function leads directly to Eqn. (9a) of Ref.[12].
Therefore, the formalism for treating isospin violation from δMN using Eqn. (8) repro-

duces previous results but is much more direct and transparent. Although we have not
calculated the corresponding three-nucleon isospin-violating forces, it should prove much
easier with the new approach. We turn now to the remaining component (Class IV) of the
two-nucleon potential.

IV. CLASS IV FORCES

Two-body Class IV forces have traditionally been classified into two types with the generic
forms in the CM frame

V IV
a (~r) = (τ 1 × τ 2)3 (~σ1 × ~σ2) · ~Lwa(r) (10)

and
V IV

b (~r) = (τ1 − τ2)3 (~σ1 − ~σ2) · ~Lwb(r) (11)

(where ~r = ~r1 − ~r2). These forms have been simplified by ignoring possible factors of ~p 2,
the square of the common CM nucleon momentum, ~p, and thus correspond only to the
lowest order in power counting. Given an isospin operator that is antisymmetric under
the interchange of the two nucleons, parity conservation (requiring symmetric radial forms)
then dictates an antisymmetric combination for the spin vector. We note, however, that
since antisymmetric isospin vectors can only induce transitions between T = 0 and T = 1
(two-nucleon) states, the two forms in Eqns. (10) and (11) are proportional and effectively
equivalent, as are the two spin-vector forms. Thus in an operational sense there is only
a single Class IV type, either (10) or (11), even though the two isospin (spin) forms have
different time-reversal properties.

The dominant Class IV force (n = 2) is generated by one-pion exchange using the fourth
term in Eqn. (8) in Fig. (1e). A simple calculation in configuration space leads to

V IV
π;1e = −δMN g2

A

8f 2
π MN

∑

i6=j

(τ i × τ j)3 {~σi · ~pi , ~σj · ~∇ij h0(rij)} , (12)

where

h0(z) =
1

4πz
e−mπz. (13)
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We have chosen to write the complete frame-dependent form of V IV
π;1e for reasons that will

become obvious. If one now writes the mass of the ith nucleon in isospin notation (which is
implicit in Eqn. (3)) as

Mi = MN + 1
2
τ 3
i δMN , (14)

which expresses the total mass in terms of the 3-component of the total isospin

Mt =
A∑

i=1

Mi = AMN + 1
2
δMNτ3 , (15)

we can separate each nucleon’s momentum into a CM part ( ~P ) and an internal part ( ~K)
using the usual relations

~pi = ~Ki +
Mi

Mt

~P . (16)

Using Eqns. (14)—(16) we decompose V IV
π;1e into the form (10) for the internal part,

wa(r) =
δMN g2

A

4f 2
π MN

h′0(r)
r

, (17)

plus a frame-dependent part

V IV
π;1e(~P ) = −δMN g2

A

4f 2
π MN

∑

i6=j

(τ i × τ j)3 ~σi · ~P ~σj · ~∇ij h0(rij) . (18)

Although this form resembles frame-dependent relativistic corrections to nuclear potentials,
which were exhaustively treated in the past[21], it has too few powers of 1/MN to be a
relativistic correction to OPEP.

To clarify the role this term plays it is necessary to determine the contribution of Fig. (1f),
which also has n = 2 but vanishes in the two-nucleon CM frame (and hence is usually
ignored). That contribution is

V IV
π;1f =

δMN g2
A

32f 2
π MN

∑

i6=j

(τ i × τ j)3 ~σi · ~∇ij ~σj · ~∇ij {~pi + ~pj , ·~rij h0(rij)} . (19)

The decomposition of this potential into internal and CM parts leads to

V IV
π;1f (~P ) =

δMN g2
A

8f 2
π MN

∑

i 6=j

(τ i×τ j)3 (2~σi · ~P ~σj · ~∇ij h0(rij) + ~P ·~rij ~σi · ~∇ij ~σj · ~∇ij h0(rij)), (20)

for the CM part, while the internal part is obtained by replacing ~pi and ~pj by ~Ki and ~Kj,

respectively. Since the sum of all ~Ki in any system vanishes, this force vanishes in a two-
body system. In a three-body system, however, ~Ki + ~Kj = − ~Kk (i, j, k all different), and
this force does not vanish. The OPEP from Fig. (1f) is therefore a peculiar three-body force
that violates isospin conservation. Although it has Class IV isospin dependence, this force
does not mix spin representations in the manner of two-body Class IV forces. Note that
this effect is present in any three-or-more-body system where momentum is transferred to
the two-nucleon system.
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Adding the ~P -dependent terms in Eqns. (20) and (18) together we arrive at a relatively
simple form

V IV
π (~P ) =

δMN

2MN

∑

i6=j

(τ i × τ j)3
~P · ~rij vij

π , (21)

whereas the usual (Class I) OPEP is given by

Vπ =
1

2

∑

i6=j

τ i · τ j vij
π . (22)

The origin of this unusual force can be understood in simple terms. Consider a neutron and
a proton placed some distance apart, and place the origin of coordinates on the neutron
(for simplicity). The center-of-mass of the system is slightly closer to the neutron than the
proton because the neutron is heavier. The exchange of a charged pion interchanges the
neutron and the proton, which causes the CM to move (slightly) further from the origin.
Thus with differing neutron and proton masses the usual CM does not move in a straight
line in the absence of an external force. This problem is Galilean in origin (see Refs. [22]) and
is unrelated to the specific problems that arise from special relativity (such as the Thomas
precession and Lorentz contraction).

Forming the usual CM coordinate vector

~RCM =
A∑

i=1

Mi ~ri

Mt

=
AMN

Mt

~R0 +
δMN

2Mt

A∑

i=1

τ 3
i ~ri , (23)

with ~R0 =
∑A

i=1 ~ri/A, it then follows that

i ~P · [~RCM, Vπ ] = V IV
π (~P ) , (24)

where the latter quantity (V IV
π (~P )) was derived in Eqn. (21) and therefore reflects the fact

that OPEP and the usual non-relativistic CM coordinate do not commute. Note that Mt

commutes with Vπ, and the non-vanishing commutator is generated by the δMN term in
Eqn. (23).

The presence of the term V IV
π (~P ) in the potential is required in order to preserve the

Galilean invariance of the matrix element of the Hamiltonian, H. Galilean invariance re-
quires that in an arbitrary frame of reference we have

〈~P |H(~P )|~P 〉 =
~P 2

2 Mt

+ E , (25)

where the constant E is the useful part of the matrix element (nuclear binding energy, for

example). The presence of V IV
π (~P ) in H(~P ) would ordinarily spoil Eqn. (25), but the wave

function |~P 〉 is defined as |~P 〉 = exp (i ~P · ~RCM)|0〉, and we recall that ~RCM does not commute
with Vπ. Expanding the plane wave to first order in δMN we find

〈~P |Vπ + V IV
π (~P )|~P 〉 ∼= 〈~P ′|Vπ + V IV

π (~P )− i ~P · [~RCM, Vπ(~P ) ]|~P ′〉 ≡ 〈~P ′|Vπ|~P ′〉 , (26)

where |~P ′〉 = exp (i ~P · ~R0)|0〉. This cancellation of terms proportional to δMN therefore
preserves the Galilean structure of the matrix element of the Hamiltonian. In other words
the formalism we have developed remembers that we have removed δMN from asymptotic
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states, and corrects for this change by introducing V IV
π (~P ). The corresponding Lorentz

case (treating relativity properly in the matrix element in Eqn. (26)) is considerably more
complicated.

What other Class IV forces are expected to be significant? Other forces arise from short-
range CSB mechanisms in higher orders. We note that there are no n = 3 terms. The
leading-order short-range interaction is of order n = 4 and has the form

LIV =
iδ1

2f 2
π

(N †σiταN)∇l
(
N †σjτβ(

←
∇ − →

∇)mN
)

εαβ3 εijkεklm , (27)

with δ1 = O(εm2
π/Λ4). All other possibilities can be manipulated into this form. The

origin of this interaction cannot be asserted from the symmetries of QCD, and therefore
depends on the details of the QCD short-range dynamics. In the existing literature, this
interaction has been modeled by various mechanisms involving meson exchange. When the
mesons are frozen out, Eqn. (27) results. An example of this type of interaction is provided
by ρ − ω mixing, which is usually constructed by imitating one-photon exchange[23]. As
demonstrated in Ref.[6] the usual form of the Class III ρ–ω-mixing force has “natural” size.
We will comment below on the corresponding Class IV form. Note that in addition to this
short-range interaction, at n = 4 there exist also loop diagrams that give rise to Class IV
forces. For example, we have one-loop graphs involving the fourth term in Eqn.(8); however,
because they should be suppressed by ∼ m2

π/(4πfπ)2 with respect to the OPEP term above,
the discussion in the next Section suggests that these graphs might contribute little. It is
likely that the most important loop diagrams involve the fifth term in Eqn.(8), since c̃2 is
relatively large due to contributions from the delta-isobar.

In addition to these short-range CSB mechanisms, there exist Class IV forces from photon
exchange. The dominant soft EM interaction is the Breit interaction produced by one-photon
exchange. Since the only two-nucleon system with a Class IV interaction is the np system,
only the spin-orbit and spin-other-orbit[24] parts of the Breit interaction are of this type,
and they correspond to the magnetic moment of the neutron interacting with the charge of
the proton. This produces a Class IV interaction of the type (11) with

wγ
b (r) =

ακn

4 M2
N r3

, (28)

where κn = O(1) (κn ' −1.91) is the neutron anomalous magnetic moment. This interaction
is O(Q2/M2

N) smaller than Coulomb exchange. If one takes α/π as εm3
π/Λ3, this interaction

counts as n = 3.

V. COMMENTS AND CONCLUSIONS

Much of the recent interest in Class IV CSB forces has centered around two sets of
very different experiments. The first set of three experiments measured the difference in
neutron and proton analyzing powers in elastic np scattering at 183 MeV[25], 347 MeV[26],
and 477 MeV[27] neutron (lab) energies. Some recent reviews of CSB that discuss these
measurements are listed in Ref.[28]. Agreement between theory and experiment is quite
good. Three dominant mechanisms contribute to the theoretical description: (a) the EM
Breit interaction between the neutron magnetic moment and the proton charge (given by
Eqn. (28)); (b) the Class IV OPEP given by Eqn. (17); (c) the short-range ρ–ω-mixing force.
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Additional small contributions from ρ-exchange and 2π-exchange are sometimes included.
Our χPT derivation agrees with the previously obtained results for these forces.

The Breit-interaction Class IV force was first mentioned in the context of Class IV ex-
perimental tests by Refs.[1, 29]. It is an important contribution and is included in all
comprehensive calculations.

The importance of the nucleon-mass difference in the presence of one-pion exchange in
a relativistic model was emphasized by Gersten[30], who did not calculate a potential. A
potential was calculated in Ref.[31], which verified that both pseudovector and pseudoscalar
(relativistic) coupling of a pion to a nucleon gave identical results for the Class IV OPEP,
presumably because the overall momentum dependence of the force is determined by Galilean
invariance. We note, however, that other terms would not be the same; pseudoscalar coupling
is very dangerous to use if one wishes to preserve chiral symmetry, and for this reason can
lead to anomalous results. The Class IV OPEP corresponds to n = 2 in power counting.

Calculations also include short-range forces from ρ–ω mixing. Although the ρ–ω-mixing
force is part of the short-range χPT counter term (and hence of undetermined size) in
Eqn. (27), its coefficient in the traditional approach is fixed by ρ−ω-mixing experiments[28].
Thus there are no adjustable constants in the dominant contributions to the traditional
theory of Class IV forces, and this leads to impressive agreement with experiment.

Other ingredients have been used in calculations, including two-pion exchange forces[32]
and heavy-meson exchange modified by δMN[33]. Reference [33] has a particularly useful
catalog of forces based on the exchange of different types of particles. These mechanisms are
smaller than the ones given above. In χPT two-pion exchange can be calculated explicitly
at n = 4, and all heavy-meson-exchange contributions are subsumed in contact interactions
to be fitted to experiment.

Recent calculations typically combine the dominant forces with a subset of the smaller
ones[32–38]. These recent numerical calculations point out a potentially serious problem
with the power counting. The three dominant mechanisms (Breit interaction, OPEP, and
meson mixing) are all approximately the same size. The power counting would suggest
that the OPEP should dominate the meson-mixing potential by a factor of roughly 30. To
understand this discrepancy it is useful to substitute the estimate of Q ∼ mπ for |~q| and |~p|
in the momentum-space expressions for these three forces, while ignoring the spin and isospin
factors. Doing this reveals that all three forces are within a factor of two of each other in size.
The contradiction with naive power counting arises from the smaller than normal OPEP
(by a factor of more than 5) and the larger than normal meson-mixing force (by a factor of
about 3). The reason for the former is that the OPEP isospin violation is proportional to
δMN ' −1.3 MeV, while the dimensional estimate for the quark-mass component of this is
εm2

π/Λ ∼ 7.6 MeV. The physical mass difference is the result of cancellation between the
quark-mass-difference effect and the EM contribution (of opposite sign), and is fine tuned to
the correct physical value. Its size is therefore anomalously small and more typical of n = 3
terms in the power counting.

The large Class IV meson-mixing force is primarily the result of the large ρ−nucleon
tensor coupling (∼ fρ) that has been used historically, although this coupling plays only
a minor role in Class III forces. To see this we strip the dimensional factors from the
ρ− ω-mixing force in momentum space and compare the result to Eqn. (27):

δρω
1 = f 2

πgρκρgω〈ρ|H|ω〉/m4
vM

2
N, (29)

where gρ and gω are the usual ρ- and ω-nucleon coupling constants, κρ ≡ fρ/gρ determines the
strength of the ρ-nucleon tensor-coupling term, 〈ρ|H|ω〉 is the ρ−ω-mixing matrix element,
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and mv is the common value chosen for the mass of these two mesons. On the basis of
arguments given in Ref.[6] we expect that cv = fπgv/mv is the natural dimensionless coupling
strength of any vector meson to the nucleon. We similarly expect that 〈ρ|H|ω〉 = −cρω εm2

π,
where cρω should be natural. This leads to δρω

1 = cρcωκρcρω[−εm2
π/m2

vm
2
N]. Using a typical

set of values for the coupling constants used in Class IV calculations (see Table I of Ref. [33])
we find cρ = 0.42, cω = 1.9, cρω = 0.6, and κρ = 6.1, and the product of these factors is 2.9,
which is large but natural. Using the vector-dominance value for κρ (i.e., 3.7) would lead
to a smaller value, as would a smaller cω[39]. Even larger values of these coupling constants
have been occasionally used in Class IV calculations.

The fact that ρ− ω mixing seems to provide the necessary additional ingredient for con-
ventional calculations to agree with experiment suggests that a χPT calculation at n = 4
will also be successful. At this order, χPT includes a contact interaction of the appropri-
ate form, and the previous discussion implies that a relatively large, but not unnatural,
coefficient would suffice.

Note that this argument does not rely on ρ−ω mixing providing the correct short-range
force. For example, an alternative short-range force from isospin violation in the coupling
constants of vector mesons has been proposed by Ref.[40]. That result is compatible in sign
and magnitude with the ρ − ω-mixing force. The sum of the two mechanisms is too large
to reproduce the experimental data, if the above values for ρ and ω parameters are used.
In fact, these two mechanisms cannot be distinguished at low energies: only their sum,
together with an infinite number of other CSB short-range interactions, can be determined.
All short-range mechanisms are subsumed in δ1, and a δ1 of about 3 times its natural size
seems to be appropriate. How much each short-range mechanism contributes to δ1 can only
be decided at higher energies than those accessible to χPT.

Of course, the above arguments are purely suggestive. A consistent, model-independent
calculation is required before more definitive statements can be made. A framework for
such a calculation is provided by the Nijmegen partial-wave analysis (PWA)[18, 41]. In this
PWA long-range forces, including Eqns. (12) and (28), are used as input, and a general
boundary condition at a certain radius, which represents short-range forces, is adjusted
until it reproduces data. The IUCF and TRIUMF data have not been analyzed in detail
yet. It will be very interesting to see to what extent a short-range parameter equivalent to a
natural-sized δ1 can reproduce the available data, in particular their energy dependence[42].
Preliminary estimates suggest that the long-range parts of the OPEP and Breit interactions
alone account for about half of the experimental values at all three energies.

Finally we recall that the original version of the proof[5] that isospin-dependent forces
satisfy (in magnitude) Class I > Class II > Class III > Class IV took into account explicitly
the structure of Class IV short-range forces, but not the corresponding OPEP. (The latter
is momentum dependent and suppressed by one power of MN . In Ref.[5], a power counting
was used in which Q/MN was counted as (Q/Λ)2, rendering this force n = 3.) Although
the size of the latter estimated from the present power counting (n = 2) is nominally the
same as that of Class III forces, its suppression due to cancellations and fine tuning (to
reproduce the physical nucleon mass) makes the Class IV OPEP more typical of n = 3 size,
and therefore the results of the proof are not altered.

The second set of two CSB experiments measured π0 production: n+ p → d+π0[15] and
d + d → 4He + π0[43]. The front-back asymmetry is the CSB signal in the first reaction,
while the cross-section of the second reaction vanishes in the absence of isospin mixing. The
effect of the second and third terms in Eqn. (3) on the n+p → d+π0 front-back asymmetry
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was calculated in Ref.[14]. It was found to be relatively large, and of opposite sign to other
mechanisms. This prediction is in good agreement with the experimental result[15]. The
situation is considerably more complicated for d + d → 4He + π0. A preliminary, simplified
calculation[44] suggests that various mechanisms contribute significantly. Both reactions
should be further studied. The field redefinitions that were invented in Eqns. (4) and (7)
and lead to Eqn. (8) could prove useful in this regard.

In summary, in this paper we have presented a convenient framework in which to analyze
nuclear effects of the nucleon-mass difference. We examined in some detail the Class IV force
in the context of χPT, stressing its similarities and differences with respect to conventional
approaches.

Acknowledgments

We are grateful to the Department of Physics and the Institute for Nuclear Theory at
the University of Washington for their hospitality during the period when this work was
initiated. The work of JLF was performed under the auspices of the U. S. Dept. of Energy.
The work of UvK was supported in part by the DOE and the Alfred P. Sloan Foundation.

14



[1] E. M. Henley, in Isospin in Nuclear Physics, D. H. Wilkinson, ed. (North-Holland, Amsterdam,
1969), p.15; E. M. Henley and G. A. Miller, in Mesons and Nuclei, M. Rho and G. E. Brown,
eds. (North-Holland, Amsterdam, 1979), Vol. I, p. 405.
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