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Abstract
Detailed structure calculations in 12

Ξ−Be, 5
Ξ−H, 9

Ξ−Li, 7
Ξ−H and 10

Ξ−Li are performed within the
framework of the microscopic two-, three- and four-body cluster models using the Gaussian Ex-
pansion Method. We adopted effective ΞN interactions derived from the Nijmegen interaction
models, which give rise to substantially attractive Ξ-nucleus potentials in accordance with the ex-
perimental indications. 7

Ξ−H and 10
Ξ−Li are predicted to have bound states. We propose to observe

the bound states in future (K−,K+) experiments using 7Li and 10B targets in addition to the
standard 12C target. The experimental confirmation of these states will provide information on
the spin- and isospin-averaged ΞN interaction.
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I. INTRODUCTION

In studies of nuclear interactions, two-body scattering data are the primary input for
characterizing interaction models. However, S = −1 hyperon (Y)-nucleon (N) scattering
data are very limited because of experimental issues. For S = −2 interactions such as ΛΛ and
ΞN , there are currently no scattering data. Therefore, the existing Y N and Y Y interaction
models have a substantial degree of ambiguity. Some Y N scattering experiments will be
performed at the Japan Proton Accelerator Research Complex (J-PARC) in the near future.
Even at this facility, however, the possibility of performing ΞN or ΛΛ scattering experiments
is very limited or practically impossible. Hence, in order to obtain useful information on
S = −2 interactions, studies of many-body, hypernuclear structure are indispensable.

Our intention in this work is to investigate the possible existence of Ξ hypernuclei and
to explore the properties of the underlying ΞN interactions. Identification of Ξ hypernuclei
in coming experiments at J-PARC will contribute significantly to understanding nuclear
structure and interactions in S = −2 systems, which can lead to an entrance into the
world of multi-strangeness. In order to encourage new experiments seeking Ξ hypernuclei,
it is essential to make a detailed theoretical investigation of the possible existence of bound
states, despite some uncertainty in contemporary ΞN interaction models.

We investigate here the binding energies and structure of Ξ hypernuclei produced by
(K−, K+) reactions on light targets on the basis of microscopic cluster models. One of the
primary issues is how to choose the ΞN interaction. Although there are no definitive data for
any Ξ hypernucleus at present, a few experimental data indicate that Ξ-nucleus interactions
are attractive. One example is the observed spectrum of the (K−, K+) reaction on a 12C
target, where the cross sections for Ξ− production in the threshold region can be interpreted
by assuming a Ξ-nucleus Wood-Saxon (WS) potential with a depth of ∼ 14 MeV [1]. Other
indications of attractive Ξ-nucleus interactions are given by certain emulsion data, the events
for twin-Λ hypernuclei, where the initial Ξ− energies were determined by the identification
of all fragments after the Ξ−p-ΛΛ conversion in nuclei. The inferred Ξ− binding energies
are substantially larger than those obtained using only the Coulomb interaction [2]. When
these Ξ− states are assumed to be 1p states, the WS potentials obtained from the binding
energies are similar to the one above. These data suggest that the average ΞN interaction
should be attractive, which we utilize to select the appropriate interaction models. In this
work we adopt two types of ΞN interactions, the Nijmegen Hard-Core model D (ND) [3]
and the Extended Soft-Core model (ESC04) [4, 5].

The structure of light p-shell nuclei can be reasonably described in terms of cluster models
composed of two- or three-body subunits. Here, we model the possible Ξ− hypernuclei pro-
duced by (K−, K+) reactions on available light p-shell targets as four-body cluster structures:
The possible targets 12C, 11B, 10B, 9Be and 7Li naturally lead to such cluster configurations
as ααtΞ−( 12

Ξ−Be), αα2nΞ−( 11
Ξ−Li), ααnΞ−( 10

Ξ−Li), αtnΞ−( 9
Ξ−He) and αnnΞ−( 7

Ξ−H), respec-
tively, by conversion of a proton into a Ξ−. (In our model calculations, the αΞ− potential is
generated from a G-matrix ΞN interaction via a folding procedure.) Here, among the above
Ξ− hypernuclei, 7

Ξ−H(αnnΞ−) is the lightest Ξ− bound system, as shown in the following
section. In the case of lighter targets, 6Li, 4He, 3He and d, the Ξ−-hypernuclear states are
composed of αnΞ−, pnnΞ− (tΞ−), pnΞ− and nΞ− configurations, respectively. However,
these systems are not expected to support bound states, considering the weakly attractive
nature of the ΞN interactions suggested so far, except for Coulomb-bound (atomic) states.
Thus, possible Ξ− hypernuclear states to be investigated lie in the light p-shell region and
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may be considered to have basically a four-body cluster structure.
This paper is organized as follows: In Sec.II, we describe the basic properties of the ΞN

interaction models and make clear what is relevant in the present four-body calculations. In
Sec.III, we perform the calculation of 12

Ξ−Be(ααtΞ−) with some approximations, in order to
fix the ΞN interaction strengths to be consistent with the (K−, K+) data. The four-body
cluster models, based on the Gaussian Expansion Method (GEM), have been developed
in a series of works for Λ and double-Λ hypernuclei [6–12]. In this work, similar cluster
models are applied to 12

Ξ−Be(ααtΞ−), 7
Ξ−H(αnnΞ−) and 10

Ξ−Li(ααnΞ−). In Sec.IV, first we
show the calculated behavior of the 5

Ξ−H(αΞ−) and 9
Ξ−Li(ααΞ−) systems, as a function of

the kF parameter in the ΞN G-matrix interaction, to confirm the binding mechanism before
adding neutron(s). Then, in Sec.V we discuss the calculated results for 7

Ξ−H(αnnΞ−) and
10
Ξ−Li(ααnΞ−).

II. ΞN INTERACTIONS

As stated above, the experimental information on ΞN interactions is quite uncertain.
It should be complemented by theoretical considerations. Various SU3-based interaction
models have been proposed so far. In the construction of these models, the scarce Y N scat-
tering data are supplemented by the rich NN scattering data through use of SU3 relations
among the meson-baryon coupling constants. Though these models are more or less similar
in S = −1 systems, their S = −2 ΞN predictions differ dramatically from one another; most
are repulsive on average. In order to generate an attractive ΞN interaction on the basis of
OBE modeling, it seems to be necessary that specific features are imposed. In the past, the
ND model has been popular for S = −2 interactions, because this model is compatible with
the strong ΛΛ attraction indicated by the older data on double Λ hypernuclei, and also it
yields attractive Ξ-nucleus interactions. These aspects of ND are the result of its specific
feature that the unitary-singlet scalar meson is included without any scalar-octet mesons. In
this case, the strong ΞN attraction originates from this scalar-singlet meson which gives the
same contributions in all Y N and Y Y channels. In the case of other Nijmegen OBE models,
the attractive contributions of the scalar-singlet mesons are substantially cancelled by those
of the scalar-octet mesons, and their ΞN sectors are repulsive on average. A different OBE
modeling for attractive ΞN interactions has been adopted in the Ehime model [14], where the
insufficient ΞN attraction given by scalar-nonet mesons is supplemented by adding another
scalar-singlet meson σ and the coupling constant gΞΞσ is adjusted so as to give reasonable
ΞN attraction, independent of the SU3-relations among coupling constants. The two mod-
els, ND and Ehime, are essentially similar, in that substantial parts of the ΞN attraction
result from the scalar-singlet mesons.

More recently, new interaction models ESC04 (a,b,c,d) have been introduced, models in
which two-meson and meson-pair exchanges are taken into account, and in principle no ad
hoc effective boson-exchange potentials are included [4, 5]. The features of the ESC04 models
differ significantly from those of the OBE models, especially in the S = −2 channels. Among
the ESC04 models, ESC04d is distinguished, because the resulting Ξ-nucleus interaction
gives attraction suggested by the above experimental situation. This is mainly due to the
following mechanism: A remarkably strong attraction appears in the T = 0 triplet-even
(13S1) state, because the strongly repulsive contribution of vector mesons is cancelled by
the attractive contributions from axial-vector mesons. In fact, the attraction in this state is
so strong that peculiar Ξ bound states are produced in few-body systems [13], though such
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considerations lie outside the scope of the work presented in this paper. In later calculations,
the important points are the spin- and isospin-averaged even-state interactions, which are
strongly attractive owing to the significant 13S1-state attraction. Another important feature
of ESC04d in the S = −2 channel is that the meson-pair exchange terms give rise to
strong ΛΛ-ΞN -ΣΣ and ΞN -ΛΣ-ΣΣ coupling interactions. This feature of ESC04d makes
the conversion widths of Ξ-hypernuclear states far larger than those for ND.

TABLE I: Partial wave contributions to UΞ(ρ0). In the case of ESC04d, the medium-induced
repulsion is included by taking αV = 0.18. In the case of ND, the hard-core radii are taken as
rc = 0.52 and 0.45 fm in the 11S0 and the other states, respectively.

model T 1S0
3S1

1P1
3P0

3P1
3P2 UΞ ΓΞ

ESC04d 0 6.3 –18.4 1.2 1.5 –1.3 –1.9
1 7.2 –1.7 –0.8 –0.5 –1.2 –2.5 –12.1 12.7

ND 0 –3.0 –0.5 –2.1 –0.2 –0.7 –1.9
1 –4.1 –4.2 –3.0 –0.0 –3.1 –6.5 –29.5 0.8

Our cluster models are composed of cluster units (α and t), n and Ξ−, where the α(t)Ξ−

interactions are obtained by folding the ΞN G-matrix interactions into the density of α(t).
According to the method described in Refs. [4, 5], the ΞN G-matrix interactions are derived
from ESC04d and ND in nuclear matter, where the imaginary parts arise from the energy-
conserving transitions from ΞN to ΛΛ channels in the nuclear medium. The resulting
complex G-matrix interactions are represented as kF -dependent local potentials

G
(±)
TS (r, kF ) =

3∑
i=1

(ai + bikF + cik
2
F ) exp (−r2/β2

i ) , (1)

where kF is the Fermi momentum of nuclear matter. The suffixes (+) and (−) specify even
and odd, respectively. In our applications to finite Ξ systems, it is plausible to obtain the kF

values from the average density in the respective systems. In a similar G-matrix approach to
Λ hypernuclei, for instance, the ΛN G-matrix interactions can be adopted to reproduce the
observed Λ binding energy (BΛ) by choosing appropriate kF values. Such a procedure cannot
be applied strictly in the case of Ξ hypernuclei, because there exist no definitive experimental
data. In this work, we are obliged to choose the kF values rather arbitrarily but within a
reasonable range (0.8 ∼ 1.2 fm−1 in light p-shell systems). Here, the experimental indication
for the existence of 12

Ξ−Be is used to adopt the ΞN G-matrix interactions, although it is not so
definite because an experimental Ξ binding energy (BΞ) could not be extracted. As shown
later, the adjustable parts included in ND and ESC04d are determined so that the Ξ s-state
energy in our model of 12

Ξ−Be has the value −2.2 MeV for an adequate value of kF, being
obtained from the Ξ-nucleus WS potential with the depth −14 MeV [1] where the Coulomb
interaction is switched off. In the case of ND, this constraint can be realized by choosing the
hard-core radius rc: We take rc = 0.52 and 0.45 fm in the 11S0 state and the other states,
respectively. The former choice is made so that the derived 11S0 ΛΛ G-matrix interaction
reproduces the ΛΛ bond energy observed in the double-Λ hypernucleus. On the other hand,
the constraint in the case of ESC04d is enforced by changing the parameter αV controlling
the medium-induced repulsion [4]: We take αV = 0.18. Hereafter, ESC04d with αV = 0.18
is denoted as ESC for simplicity.
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FIG. 1: The volume integrals of Ḡ(+) = (G(+)
00 +3G

(+)
01 +3G

(+)
10 +9G

(+)
11 )/16 are drawn as a function

of kF by solid curves in (a) for ESC and in (b) for ND. Here, T = 0 (dashed) and T = 1 (dotted)
parts show the volume integrals of (G(+)

00 + 3G
(+)
01 )/4 and (G(+)

10 + 3G
(+)
11 )/4, respectively. In (c),

the volume integrals of 33S1 and 31S0 components for ESC are drawn by solid and dashed curves,
respectively. The corresponding ones for ND are in (d).

In the Table I, we show the partial-wave contributions of the resulting Ξ potential depth
UΞ in nuclear matter at normal density ρ0 (kF = 1.35 fm−1). The UΞ values are found to
be very different for ESC and ND, because the odd-state contributions in the former are
far more attractive than those in the latter. It is noted, however, the odd-state interactions
play minor roles in light systems considered in this work. More important is that the spin-
and isospin-dependence differs significantly between ESC and ND.

The interaction parameters (ai, bi and ci) in our G-matrix interactions (1) are tabulated
in Tables II and III for ESC and ND, respectively. Hereafter, G-matrix interactions derived
from ESC and ND are denoted as GESC and GND, respectively.

The features of our G-matrix interactions can be demonstrated clearly by the volume
integrals of the G-matrix interaction: JV (kF ) =

∫∞
0
G(r, kF )r2dr. Here, we define the spin-

and isospin-averaged interactions as Ḡ(±) = (G
(±)
00 +3G

(±)
01 +3G

(±)
10 +9G

(±)
11 )/16. The volume

integrals of Ḡ(+)(r, kF ) are drawn as a function of kF in Fig. 1, where (a) and (b) are for
ESC and ND, respectively. It should be noted here that the even-state interaction of ESC is
more attractive than that of ND. In the cases of our cluster systems, Ξ-states are determined
dominantly by α Ξ folding interactions derived from Ḡ(±)(r, kF ). The Ḡ(−) for ND is far
more attractive than that for ESC, though their contributions in s-shell systems are very
small. Similarly, (c) and (d) in Fig. 1 show the volume integrals of the triplet- and singlet-
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even state interactions in the T = 1 state for ESC and ND, respectively. Here, the 33S1

and 31S0 interactions in ESC are found to be attractive and repulsive, respectively. On
the other hand, both of 33S1 and 31S0 interactions are attractive in ND, and the latter is
more attractive than the former. Namely, the T = 1 spin-spin interaction in ND (ESC) is
repulsive (attractive). This difference of the T = 1 spin-spin interactions for ESC and ND
is reflected in the level structures of 7

Ξ−H and 10
Ξ−Li, as shown later.

Another important difference between ESC and ND is that the ΛΛ-ΞN -ΣΣ coupling
interaction in the former is far stronger than that in the latter. This is reflected by the fact
that the calculated value of the conversion width ΓΞ for ESC is far larger than that for ND,
as exhibited in Table I.

TABLE II: The parameters in the G-matrix interaction G
(±)
TS (r, kF ) given by (1) for ESC. Entries

are given in units of a [MeV], b [MeV·fm] and c [MeV·fm2]

βi (fm) 0.50 0.90 2.00
a 0.0 −690.8−309.0i −2.759

G
(+)
00 b 0.0 1263.+252.4i 0.0

c 0.0 −451.7−111.0i 0.0
a −6959. 756.5 −1.317

G
(+)
01 b 11280. −1567. 0.0

c −4371. 627.2 0.0
a −1634. 257.8 −1.528

G
(−)
00 b 3426. −137.4 0.0

c −965.8 60.78 0.0
a −5692. 175.0−15.50i −1.411

G
(−)
01 b 7697. −583.9+24.31i 0.0

c −2667. 303.8−13.91i 0.0

a −216.4 48.96 −1.838
G

(+)
10 b 676.0 −83.76 0.0

c −198.1 43.36 0.0
a 527.9 −121.8 −1.787

G
(+)
11 b 85.16 −10.83 0.0

c 13.25 9.351 0.0
a −2671. 36.08 −1.043

G
(−)
10 b 3343. −116.6 0.0

c −1034. 53.97 0.0
a 1435. −166.3 −1.168

G
(−)
11 b 451.1 −24.19 0.0

c −131.2 18.44 0.0

Our cluster models for A = 7 and 10 systems are composed of αnnΞ− and ααnΞ− ,
respectively, where the ΞN G-matrix interactions are used to obtain αΞ− folding potentials
based on the (0s1/2)

4 configuration with bN = 1.358 fm. It is problematic, on the other hand,
to use the G-matrix interactions for the Ξn parts. The reason is as follows: Correlations
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TABLE III: The parameters in the G-matrix interaction G
(±)
TS (r, kF ) given by (1) for ND. Entries

are given in units of a [MeV], b [MeV·fm] and c [MeV·fm2]

βi (fm) 0.50 0.90 2.00
a −8769. 456.1−102.1i −2.505

G
(+)
00 b 15530. −1082.+91.45i 0.0

c −6383. 473.2−18.03i 0.0
a 452.4 −105.8 −.6861

G
(+)
01 b −25.82 10.75 0.0

c 67.40 10.22 0.0
a −7382. −168.9 −3.141

G
(−)
00 b 8672. −140.1 0.0

c −3145. 69.22 0.0
a −569.3 −231.1−7.788i .0300

G
(−)
01 b 2072. −32.47+6.124i 0.0

c −696.8 22.21−.5631i 0.0

a 356.9 −138.5 −.3949
G

(+)
10 b 110.3 13.97 0.0

c −1.818 7.792 0.0
a 436.0 −108.4 −1.334

G
(+)
11 b 6.513 10.11 0.0

c 46.10 10.88 0.0
a 75.12 −254.3 .1086

G
(−)
10 b 939.6 −.0260 0.0

c −269.5 7.792 0.0
a −281.0 −218.5 −1.003

G
(−)
11 b 1227. −5.773 0.0

c −422.7 11.82 0.0

of Ξn pairs are treated exactly in our model space spanned by Gaussian functions, which
means some double counting for Ξn short-range correlations that has been already included
in the G-matrix interactions. Though a reasonable way out of this problem is to use directly
the bare potentials (ESC and ND), there appear some difficulties in such treatments: In the
case of ESC, the ΞN -ΛΣ and ΞN -ΛΣ-ΣΣ coupling potentials in the T = 1 channels make
our treatment extremely complicated. In the case of ND, although these coupling potentials
are not taken into account, the hard-core singularities cannot be treated in our Gaussian
model space. Thus, we adopt here simple three-range Gaussian substitutes simulating the
bare potentials. They are fitted so that the G-matrices derived from them simulate the
original T = 1 G-matrices at kF = 1.0 fm−1. Here, the ΞN -ΛΣ and ΞN -ΛΣ-ΣΣ couplings
in the ESC case are effectively renormalized into the ΞN single-channel potentials. The
determined interaction parameters are given in Table IV for ESC and ND.
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TABLE IV: Parameters of the three-range Gaussian interactions simulating (a) ESC and (b) ND
in the T = 1 Ξn states.

(a) ESC
βi (fm) 0.40 0.80 1.50

31E 519.5 66.27 −7.230
33E 217.4 −170.0 −7.058
31O 0.0 −39.56 −5.178
33O 0.0 −55.40 −6.936

(b) ND
βi (fm) 0.50 0.90 2.00

31E 1076. −159.6 −5.432
33E 1331. −134.0 −7.610
31O 0.0 −32.30 −5.432
33O 0.0 18.16 −7.610

III. 12
Ξ−Be(ααtΞ−) SYSTEM

Let us start from the analysis for the 12
Ξ− Be (11B + Ξ−) hypernucleus produced by the

12C(K−, K+) reaction, adopting the ααtΞ− four-body model. In this case, the (T, Jπ) =
(1, 1−) states are produced, because the Tz component is transformed by ∆Tz = 1 on the
T = 0 target. This system is important in a double sense. One is that in BNL-E885 a fairly
deep 11B-Ξ− potential was indicated as mentioned in the previous section. The other is that
this reaction is planned as the Day-1 experiment at J-PARC.

The above-mentioned G-matrix interactions GESC and GND are adjusted so as to be
consistent with the Woods-Saxon potential depth of BNL-E885 within the framework of the
ααtΞ− four-body model.

A. Model and Interaction

α1 Ξ−

α2 t

α1
Ξ−

α2 t

C=2

r1

R1

ρ1

r2

R2 ρ2

C=1

FIG. 2: Jacobian coordinates for the ααtΞ−( 12
Ξ−Be) four-body system. The two α clusters are to

be symmetrized.
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In the case of an ααtΞ− four-body model, we take two sets of Jacobian coordinates as
shown in Fig. 2, since we get sufficiently converged energies using only those two sets of
Jacobian coordinates. The total Hamiltonian and the Schrödinger equation are given by

(H − E) ΨJM( 12
Ξ−Be) = 0 , (2)

H = T +
∑

a,b

Vab + VPauli , (3)

where T is the kinetic-energy operator and Vab is the interaction between constituent particles
a and b. The OCM projection operator VPauli will be given below. The total wavefunction
is described as a sum of amplitudes of the rearrangement channels (c = 1 and 2) of Fig. 2
in the LS coupling scheme:

ΨJM, TTz ( 12
Ξ−Be) =

2∑
c=1

∑
n,N,ν

∑

l,L,λ

∑
S,I,K

C
(c)
nlNLνλSIK

× Sα

[
Φ(α1)Φ(α2)

[
Φ 1

2
(t)χ 1

2
(Ξ−)

]
S

× [[
φ

(c)
nl (rc)ψ

(c)
NL(Rc)

]
I
ξ

(c)
νλ (ρc)

]
K

]
JM

× [
η 1

2
(t)η 1

2
(Ξ−)

]
T,Tz

. (4)

Here the operator Sα stands for the symmetrization operator for exchange of two α clusters.
χ 1

2
(Ξ−)is the spin function of the Ξ− particle and η 1

2
(Ξ−) is the isospin function of the Ξ−

particle. Following the Gaussian Expansion Method (GEM) [15–17], we take the functional

form of φnlm(r), ψNLM(R) and ξ
(c)
νλµ(ρc) as

φnlm(r) = rl e−(r/rn)2Ylm(r̂) ,

ψNLM(R) = RL e−(R/RN )2YLM(R̂) ,

ξνλµ(ρ) = ρλ e−(ρ/ρν)2Yλµ(ρ̂) , (5)

where the Gaussian range parameters are chosen according to geometrical progressions:

rn = r1a
n−1 (n = 1− nmax) ,

RN = R1A
N−1 (N= 1−Nmax) ,

ρν = ρ1α
ν−1 (ν= 1− νmax) . (6)

The eigenenergy E in Eq.(2) and the coefficients C in Eq.((4)) are to be determined by the
Rayleigh-Ritz variational method.

As for the αα and αt interactions, we employ the potentials which have been used often
in the OCM-based cluster-model study of light nuclei: Our potentials Vαα [18] and Vαt[19]
reproduce reasonably well the low-lying bound states and low-energy scattering phase shifts
of the αα and αt systems, respectively. The Coulomb potentials are constructed by folding
the p−p Coulomb force into the proton densities of all the participating clusters.

The Pauli principle between nucleons belonging to α and x(= α, t) clusters is taken into
account by the orthogonality condition model (OCM) [20]. The OCM projection operator
VPauli appearing in Eq. (3) is represented by

VPauli = lim
γ→∞

γ
∑

f

|φf (rαx)〉〈φf (r
′
αx)| , (7)
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which rules out the amplitude of the Pauli-forbidden α− x relative states φf (rαx) from the
four-body total wavefunction [21]. The forbidden states are f = 0S, 1S, 0P, 0D for x = t
and f = 0S, 1S, 0D for x = α. The Gaussian range parameter b of the single-particle 0s
orbit in the α particle (0s)4 is taken to be b = 1.358 fm so as to reproduce the size of the
α particle. For simplicity the same size is assumed for the t cluster in treating the Pauli
principle. In the actual calculations, the strength γ for VPauli is taken to be 104 MeV, which
is large enough to push the unphysical forbidden state to the very high energy region, while
keeping the physical states unchanged.

Using the Vαα and Vαt potentials, we perform the three-body calculation for the 11B(ααt)
system. The calculated values of the ground (3/2−1 ) and the first excited (1/2−1 ) states in 11B
are overbound in comparison with the experimental values. In order to put the subsequent
four-body calculations for 12

Ξ−Be(ααtΞ−) on a sound basis, we introduce a phenomenological
ααt three-body force of the following form:

Vααt = v0exp[−(rα1t/β)2 − (rα2t/β)2] . (8)

Here we adopt v0 = +95MeV and β = 2.26 fm in order to reproduce the 11B(3/2−1 ) ground
state energy. For the excitation energy of the 11B(1/2−1 ) state, we stick to the exact experi-
mental value instead of the calculated value, when we perform the hypernuclear four-body
calculations.

B. Results for 12
Ξ−Be and the appropriate kF parameter

As mentioned before, our ΞN interactions are adjusted so as to give the Ξ− s-state energy
−2.2 MeV in the 12

Ξ−Be system. This value is consistent with the observed spectrum of the
12C(K−, K+) reaction which suggests the WS potential depth of 14 MeV [1]. If we assume
spin-nonflip dominance for the 12C(K−, K+) reaction, the [p−1

3/2 s
Ξ−
1/2]J=1− state is naturally

excited. Therefore, within the framework of the ααtΞ− four-body model, the kF parameters
in the αΞ− and tΞ− potentials, without Coulomb interaction, are tuned so that the 1−1 state
energies agree with −2.2 MeV. We listed in Table V, the calculated Ξ−-binding energies

TABLE V: The calculated BΞ−(MeV) of the 1−1 and 2−1 states using ESC and ND potentials for
12
Ξ−Be. In order to reproduce the ’observed’ BΞ− , we tuned kF = 1.055(fm−1) and 1.025(fm−1) for
the ESC and ND potentials, respectively. The energies using the ESC and ND potentials without
and with Coulomb potentials between α and Ξ− and between triton and Ξ−, are listed respectively.

ESC ND

(without Coulomb) (with Coulomb) (without Coulomb) (with Coulomb)
1− BΞ−(MeV) 2.24 4.98 2.23 4.82

Γ (MeV) 3.95 4.64 1.38 1.66
2− BΞ− (MeV) 3.18 6.08 1.56 4.06

Γ (MeV) 4.24 4.80 0.93 1.18

(BΞ−) of the 1−1 and 2−1 states. In the case of GESC , the 2−1 state is obtained at a lower
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energy than the 1−1 state. On the other hand, the use of GND leads to the opposite order.
In our model, this is because 33S1 interaction for ESC(ND) is more(less) attractive than the
31S0 interaction as shown in Fig.1(c) and (d). The contribution of the Ξ−α and Ξ−t Coulomb
forces amounts to about 1.5 MeV. The conversion widths obtained from the imaginary part
of GESC is far larger than that for GND. This is because the 1S0 ΛΛ-ΞN -ΣΣ coupling
interaction in ESC is far stronger than that in ND.

We found the appropriate kF parameter values of the effective ΞN interactions to be kF =
1.055 fm−1 (ESC) and kF = 1.025 fm−1(ND), which are consistent with the experimental
indication in 12

Ξ−Be. These interactions provide our basis to investigate the A = 7 and 10 Ξ−

hypernuclei.

IV. RESULTS FOR TYPICAL SYSTEMS COMPOSED OF αΞ−( 5
Ξ−H) AND

ααΞ−( 9
Ξ−Li)

Let us study the αΞ− and ααΞ− systems in order to demonstrate the basic features of the
αΞ− interactions. In the cases of 7

Ξ−H(αnnΞ−) and 10
Ξ−Li(ααnΞ−), the dominant parts of the

Ξ− binding energies are given by the αΞ− interactions because of the weak binding of the
additional neutrons. The αΞ− interaction is derived by folding the ΞN G-matrix interaction
into the wave function of the α. The spin- and isospin-dependent parts, being remarkably
different between ESC and ND, vanish in a folding procedure involving a spin- and isospin-
saturated system such as the α. Thus, the αΞ− interaction is determined only by the spin-
and isospin-averaged ΞN interaction Ḡ(±)(r; kF ), where the contribution of odd-state part
Ḡ(−) is quite small in the two-body αΞ− system. It should be stressed that α-cluster systems
such as αΞ− and ααΞ− give the most basic information on the spin- and isospin-averaged
parts of ΞN interactions. These parts correspond to so-called spin-independent parts in
interactions represented by the (σσ), (ττ) and (σσ)(ττ) operators.

Here, it is of vital importance how one chooses the kF parameters in our G-matrix in-
teractions. The parameter kF specifies the nuclear matter density in which the G-matrix
interactions are constructed. It is most plausible that a corresponding value in a finite sys-
tem is obtained from an average density. Our basic interactions (ESC and ND) are adjusted
so that the derived G-matrix interactions give rise to reasonable Ξ− binding in an A ∼ 12
system for kF = 1.0 ∼ 1.1 fm−1 adequately chosen. Considering that the suitable values
kF = 1.055 fm−1(ESC) and 1.025 fm−1(ND) for 12

Ξ−Be, it is a modest change to take kF = 0.9
fm−1 in the A = 4 ∼ 6 systems. In fact, we have had successful prior experience. In Ref.[7],
we studied the structure of 5

ΛHe, 9
ΛBe and 13

Λ C using the ΛN G-matrix interactions, where
consistent results were obtained by choosing the kF parameters to be around 0.9 fm −1 for
5
ΛHe and 9

ΛBe and to be around 1.1 fm−1 for 13
Λ C. Here, we take three values of kF parameters

for our ΞN G-matrix interactions in order to study A = 7 and A = 10 systems: kF=0.9,
1.055 and 1.3 fm−1 for ESC, and kF=0.9, 1.025 and 1.3 fm−1 for ND. So, the kF values for
A = 10 system are considered to be kF ∼ 1.0 fm−1, while those for A = 6 near kF = 0.9
fm−1. The unreasonably large value of kF = 1.3 fm−1, as a trial, is used only to demonstrate
the kF dependences of the results.

In Table VI, we show the calculated energies and r.m.s radii for the αΞ− system for three
kF values of the ΞN G-matrix interactions. Of course, Coulomb bound (Ξ−-atomic) states
are obtained, even if the strong interactions are switched off. If a bound state is obtained
without the Coulomb interaction, this state is called a nuclear-bound state. When a nuclear-
unbound state becomes bound with help of the the attractive Coulomb interaction, such a
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TABLE VI: The calculated energies of the 1/2+ state, E, and r.m.s radii, rα−Ξ− , in the αΞ−( 5
Ξ−H)

system for several values of kF. The values in parentheses are energies when the imaginary part of
the αΞ− interactions are switched off. The energies are measured from the α + Ξ− threshold.

(a) αΞ−(ESC)

with kF(fm−1) 0.9 1.055 1.3
Coulomb E (MeV) −1.36 −0.26 −0.14

(−1.71) (−0.57) (−0.19)
Γ(MeV) 2.64 0.86 0.15

rα−Ξ−(fm) 3.89 6.83 13.6
without E (MeV) unbound unbound unbound
Coulomb (−0.64)

Γ(MeV) - - -

(b) αΞ−(ND)

with kF(fm−1) 0.9 1.025 1.3
Coulomb E (MeV) −0.57 −0.32 −0.15

(−0.57) (−0.32) (−0.16)
Γ(MeV) 0.16 0.06 0.004

rα−Ξ−(fm) 6.87 9.82 15.65
without E (MeV) unbound unbound unbound
Coulomb Γ(MeV) - - -

state is called a Coulomb-assisted bound state. Table VI summarizes our results that in each
case the lowest state is found to be a Coulomb-assisted bound state, namely there appears
no nuclear-bound state. It is noted, in this Table, that a nuclear-bound state is obtained
in the case of GESC(kF = 0.9) if its imaginary part is switched off: Though the real part
of the αΞ− interaction for GESC(kF = 0.9) is attractive enough to give a nuclear-bound
state, the strong imaginary part makes the resulting state nuclear-unbound. In any case,
the spin- and isospin-averaged even-state part Ḡ(+) for GESC is far more attractive than the
corresponding part of GND.

In Table VII, we list the calculated results for the ααΞ− system. It should be noted,
here, that nuclear-bound states are obtained in both cases of GESC and GND unless an
unreasonably large value of kF is chosen. The calculated energies for GESC are naturally
larger than those for GND. In the ααΞ− system, however, Ḡ(−) contributes significantly. It
is remarked that the odd-state interaction in GND is far more attractive than that in GESC ,
which works to reduce the difference between both potentials in the ααΞ− system.

One notices in the Tables, that the decay widths for GESC are much larger than those
for GND, when they are calculated for the same value of kF . This is because the imaginary
part of GESC is stronger than that of GND. The difference of the imaginary parts originates
mainly from the different strengths of 11S0 ΛΛ-ΞN − ΣΣ coupling interactions in ESC and
ND.
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TABLE VII: The calculated energies of the 1/2+ state, E, in the ααΞ−( 9
Ξ−Li) system for several

values of kF. The values in parentheses are energies when the imaginary part of the αΞ− interaction
are switched off. The energies are measured from the ααΞ− three-body breakup threshold.

(a) ααΞ− (ESC)

with kF(fm−1) 0.9 1.055 1.3
Coulomb E (MeV) −4.81 −2.23 −0.83

(−5.17) (−2.57) (−1.04)
Γ(MeV) 5.01 2.89 1.18

without E (MeV) −2.54 −0.41 unbound
Coulomb (−2.94) (−0.77)

Γ(MeV) 4.48 2.18 -

(b) ααΞ− (ND)

with kF(fm−1) 0.9 1.025 1.3
Coulomb E (MeV) −2.87 −1.82 −0.79

(−2.89) (−1.83) (−0.79)
Γ(MeV) 0.58 0.3 0.06

without E (MeV) −1.02 −0.25 unbound
Coulomb (−1.03) (−0.26)

Γ(MeV) 0.45 0.20 -

As mentioned before, noting that the choice of the kF value ∼ 0.9 fm−1(αΞ−) and ∼ 1.0
fm−1 (ααΞ−), are reasonable, respectively, we can expect the existence of nuclear-bound
states, especially, in the latter case. Thus, we can say that observations of αΞ− and ααΞ−

systems certainly provide information about spin-independent parts of the ΞN interactions.
In reality, however, there are no corresponding nuclear targets to produce the above systems
by the (K−, K+) reaction. As their actual substitutes, in the following, we investigate the
structures of 7

Ξ−H(αnnΞ−) and 10
Ξ−Li(ααnΞ−) having additional neutron(s), and propose to

perform the 7Li(K−, K+) and 10B(K−, K+) reaction experiments with available targets.

V. A = 7 AND A = 10 Ξ− HYPERNUCLEI

Here, we study 7
Ξ−H and 10

Ξ−Li on the basis of αnnΞ− and ααnΞ− four-body cluster models,
respectively. In cluster-model studies, it is essential that interactions among cluster subunits
be given consistently with respect to the corresponding threshold energies. Namely, low-
energy bound-state energies and scattering phase shifts of αn, αα, ,αnn, and ααn subsystems
should be reproduced reasonably by the corresponding interactions. We emphasize that these
severe constraints are correctly satisfied in the present models, as mentioned below.

13



A. Model and Interactions
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FIG. 3: Jacobian coordinates for all the rearrangement channels (c = 1 ∼ 9) of the ααnΞ−( 10
Ξ−Li)

four-body system. Two α clusters are to be symmetrized. In the case of the αnnΞ−( 7
Ξ−H) four-

body system, the two α clusters are replaced by two neutrons, and the neutron is replaced by an
α cluster.

For 7
Ξ−H and 10

Ξ−Li, all nine sets of the Jacobian coordinate of the four-body systems are
shown in Fig. 3, respectively. The total Hamiltonian and the Schrödinger equation are given
by

(H − E) ΨJM( 7
Ξ−H, 10

Ξ−Li) = 0 , (9)

H = T +
∑

a,b

Vab + VPauli , (10)

where T is the kinetic-energy operator, Vab is the interaction between the constituent par-
ticle a and b, and the VPauli is the Pauli projection operator given by Eq(7). The total
wavefunction is described as a sum of amplitudes of the rearrangement channels (c = 1 ∼ 9)
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FIG. 4: (a)Calculated energy levels of 7
Ξ−H for three kF values using ESC. (b) Calculated energy

levels of 7
Ξ−H for for three kF values using ND. The energies are shown when the imaginary part of

the αΞ− interaction is switched off. The energies are measured from the α + n + n + Ξ− breakup
threshold. The dashed lines are threshold.

of Fig. 3 in the LS coupling scheme:

ΨJM ,TTz ( 7
Ξ−H) =

9∑
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∑
n,N,ν
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ΨJM, TTz ( 10
Ξ−Li) =
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Here the operator AN stands for antisymmetrization between the two neutrons. Sα, χ 1
2
(Ξ−)

and η 1
2
(Ξ−) are defined already in Sec.III.

The Pauli principle involving nucleons belonging to α and x(= n, α) is taken into account
by the orthogonality condition model (OCM) [20]. The forbidden states in Eq.(7) are f = 0S
for n and f = 0S, 1S, 0D for x = α.

We employ the VαN potential given in Ref.[22] and the AV8 potential [23] for the two-
neutron parts. The αnn (ααn) binding energy derived from these potentials is less(over)
bound by about 0.3 MeV (1 MeV) in comparison with the observed value. Then, in cal-
culations of the αnnΞ− and ααnΞ− four-body model, the central part of Vαn is adjusted
so as to reproduce the observed ground state of 6He and 9Be. The Vαα and VαΞ− are the
same as those in ααtΞ− four-body calculations. As for the Ξ−n parts, we employ the simple
three-range Gaussian potentials derived from ESC and ND. The details of these potentials
were already mentioned in Sec.II. Thus, in our treatments of αnnΞ− and ααnΞ− four-body
systems, ground-state energies of all subsystems of αnn and ααn are reproduced well.

B. Results for 7
Ξ H (αnnΞ−)

Here we describe the results of the four-body calculations for 7
Ξ−H(αnnΞ−) with (T, Jπ) =

(3/2, 1/2+). The basic question is whether this state is bound or not: The 6He core is
composed of an α and two weakly-bound (’halo’) neutrons. Due to the weakness of the Ξ−n
interaction, the binding between 6He and Ξ− is to a large extent determined by the αΞ−

interaction.
The calculated energies in the 1/2+ ground state are demonstrated in Fig. 4 as a function

of kF, for the two ΞN potential models without the imaginary part of the αΞ− interaction.
These 1/2+ states are composed of the ground-state 0+ configuration of 6He coupled with the
0s-state Ξ− particle. The Coulomb interactions between α and Ξ− are taken into account. In
the figure, the dashed lines show the positions of threshold energies of α+n+n+Ξ−, 6He+Ξ−

and 5
Ξ−H(αΞ−)cal + n+ n, respectively. One should be aware that the 5

Ξ−H(αΞ−)cal + n+ n
threshold energy depends on the kF value of the adopted ΞN interactions. This situation is
unavoidable, because the calculated energies for 5

Ξ−H have to be used instead of the unknown
experimental value. We see that in the case (i) kF = 0.9 fm−1 with ESC the lowest threshold
is 5

Ξ−H(αΞ−)cal + n + n, and in the other cases the 6He + Ξ− threshold is lower than the
5

Ξ−H(αΞ−)cal + n + n threshold. On the other hand, in all kF cases with ND the lowest
threshold is 6He + Ξ−. The order of the 5

Ξ−H(αΞ−)cal + n + n and 6He + Ξ− threshold is
determined by the competition between α-Ξ− correlation and the α -(nn) correlation.

More detailed results are given in Table VIII, where the calculated values of the conversion
widths Γ and the αΞ− and αn r.m.s. radii are also listed.

Now, let us compare the results for ESC and ND in the cases in which the imaginary
part of the αΞ− interaction is switched off. As found in Table VI (values in parentheses),
the obtained αΞ− states for ESC are more bound than those for ND (−1.71 MeV vs. −0.57
MeV for kF = 0.9 fm−1). In the αnnΞ− system, however, the energy difference between ESC
and ND becomes small in comparison with that in the αΞ− system (−3.06 MeV vs. −2.52
MeV for kF = 0.9 fm−1), as shown in Fig. 4 and Table VIII (values in parentheses). This is
because the 31S0 and 33S1 nΞ− interactions of ND are more attractive than those of ESC,
as shown in Fig. 1. The stronger nΞ− attraction in ND has the effect of a larger reduction
of the value of r̄α−Ξ− when one goes from the αΞ− system to the αnnΞ− system.
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FIG. 5: (a)Calculated density distribution of α, Ξ− and a valence neutron for three kF values using
ESC. (b)Calculated density distribution of α, Ξ− and a valence neutron for three kF values using
ND. The wavefunctions of αΞ− without the imaginary part of the αΞ− interaction are used.

Let us discuss the structure of 7
Ξ−H. In the case of kF = 0.9 fm−1 for ESC, the lowest

threshold is 5
Ξ−H(αΞ−)cal + n + n. Then, the Ξ− particle is bound to the α particle mostly

in the 0s orbit, and the two valence neutrons are coupled to the αΞ− subsystem. In fact,
as shown in Table VIII, r̄α−Ξ− is shorter than r̄α−n in this case. In other cases, the two
valence neutrons are bound to the α core, and the Ξ− particle is coupled to the αnn(6He)
subsystem, corresponding to where the r̄α−Ξ− values are larger than the r̄α−n values.

In order to see the structure of the 7
Ξ−H system visually, we draw the density distributions

of Ξ− (solid curves) and valence neutrons (dashed curves) in Fig. 5(a) and (b) for ESC and
ND, respectively. For comparison, also a single-nucleon density in the α core is shown by a
dotted curve in each case. It turns out, here, that as the binding energies of 7

Ξ−H become
smaller, the Ξ− density distribution has a longer tail. As is well known, 6He is a neutron-
halo nucleus. It is interesting here to see the overlapping of the Ξ− distribution with the
halo-neutron distribution. In the case of kF = 0.9 fm−1 for ESC, since the lowest threshold
is 5

Ξ−H(αΞ−)cal + n+ n, the density of the Ξ− particle has a shorter-ranged tail than that of
the two valence neutrons, but is extended significantly away form the α core. This situation

17



can be visualized as three layers of matter distribution, the α core, a Ξ− skin, and neutron
halo. When the lowest breakup threshold is 6He + Ξ−, the Ξ− density is longer-ranged
than that of the valence neutrons due to the weaker binding of the Ξ− particle. Then, the
density distribution of 7

Ξ−H shows the three layers of the α core, neutron halo, and Ξ− halo.
Namely, a double-halo structure of neutrons and Ξ− exists, in which the attractive Coulomb
interaction plays an essential role. These features can be considered as new forms in baryon
many-body systems.

TABLE VIII: The calculated binding energies of 1/2+, E and r.m.s radii, r̄α−Ξ− and r̄α−n , in
the 7

Ξ−H(αnnΞ−) system for several values of kF. The values in parentheses are energies when
the imaginary part of the αΞ− interactions are switched off. The energies are measured from the
α + α + n + Ξ− threshold.

(a) 7
Ξ−H(ESC)

with kF(fm−1) 0.9 1.055 1.3
Coulomb E (MeV) −2.76 −1.63 −1.22

(−3.06) (−1.83) (−1.29)
Γ(MeV) 2.64 1.15 0.31

r̄α−Ξ−(fm) 3.68 5.58 9.92
r̄α−n(fm) 4.04 4.11 4.19

without E (MeV) −1.68 unbound unbound
Coulomb (−1.96) (−1.09) (unbound)

Γ(MeV) 2.09 - -

(b) 7
Ξ−H(ND)

with kF(fm−1) 0.9 1.025 1.3
Coulomb E (MeV) −2.51 −2.01 −1.50

(−2.52) (−2.02) (−1.50)
Γ(MeV) 0.27 0.15 0.032

r̄α−Ξ−(fm) 4.48 5.35 7.55
r̄α−n(fm) 3.92 3.99 4.11

without E (MeV) −1.62 −1.26 unbound
Coulomb (−1.63) (−1.26) (unbound)

Γ(MeV) 0.22 0.10 -

Table VIII lists the binding energies of the 7
Ξ−H system calculated with and without the

Coulomb interaction for each kF value. For ESC (kF = 0.9 fm−1) and ND (kF = 0.9 and 1.025
fm−1) the ground states of 7

Ξ−H are found to be weakly bound states, when the Coulomb
interactions are switched off. Therefore, the 7

Ξ−H systems are seen to have nuclear-bound
states, if we take reasonable values kF < 1 fm−1. This means that an experimental finding
of a 7

Ξ−H bound state indicates the existence of an αΞ− bound state in which the even-state
spin-independent part of the ΞN interaction is substantially attractive. This statement is
almost independent of the interaction model.
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FIG. 6: (a)Calculated energy levels of 10
Ξ−Li for three kF values using ESC. (b)Calculated energy

levels of 10
Ξ−Li for three kF values using ND. The energies are shown when the imaginary part of

the αΞ− interaction is switched off. The energies are measured from the α+α+n+Ξ− threshold.
The dashed lines indicate thresholds.

C. Results for 10
Ξ Li(ααnΞ−)

The calculated results for 10
Ξ−Li(ααnΞ−) within the four-body model are displayed in

Fig. 6 for the lowest T = 1 doublet state energies (Jπ = 2−, 1−). The 3/2− ground state of
the core nucleus 9Be is bound by about 1.57 MeV with respect to the α + α + n threshold.
We emphasize that, if the ααΞ− system is bound as shown in Sec.IV, then the 10

Ξ−Li(ααnΞ−)
system is surely expected to be bound because the interaction between the Ξ− and a p-orbit
neutron is weakly attractive.

Although the binding energies of 10
Ξ−Li (Jπ = 2−, 1−) are found to be fairly sensitive to

the choice of the kF values, especially, in the case of ESC, we think the results with kF ∼ 1.0
fm−1 are most acceptable. It is interesting to note that the 9

Ξ−Li(ααΞ−)cal + n threshold
comes below the 9Be+Ξ− threshold in most cases. It is reasonable that the lowest breakup
threshold is 9

Ξ−Li(ααΞ−)cal+n, because the value of kF in the A = 10 system has to be ∼ 1.0
fm−1, similar to the 12

Ξ−Be system. It is notable that the binding energies of 10
Ξ−Li measured

from the 9
Ξ−Li(ααΞ−)cal + n thresholds are similar to each other in both cases of ESC(2.6

MeV) and ND (2.7 MeV).
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TABLE IX: The calculated binding energies, E of the 1−1 and 2−1 states in the 10
Ξ−Li(ααnΞ−) system

for several values of kF. The values in parentheses are energies when the imaginary part of the
αΞ− interactions are switched off. The energies are measured from the α + α + n + Ξ− threshold.
The calculated r.m.s. radii, r̄α−Ξ− , r̄α−n and r̄α−α of 2− state using ESC and ND.

(a) 10
Ξ−Li(ESC)

with Coulomb kF(fm−1) 0.9 1.055 1.30
2− E (MeV) −7.99 −4.83 −2.87

(−8.35) (−5.16) (−3.13)
Γ(MeV) 5.87 3.63 1.71

r̄α−Ξ−(fm) 3.05 3.72 5.03
r̄α−n(fm) 3.55 3.70 3.83
r̄α−α(fm) 3.25 3.41 3.54

1− E (MeV) −7.48 −4.42 −2.64
(−7.84) (−4.77) (−2.89)

Γ(MeV) 5.72 3.44 1.50
without Coulomb E (MeV) −5.54 −2.76 −1.41

2− (−5.93) (−3.14) (−1.63)
Γ(MeV) 5.39 3.00 1.10

(b) 10
Ξ−Li(ND)

with Coulomb kF(fm−1) 0.9 1.025 1.3
2− E (MeV) −5.83 −4.42 −2.92

(−5.85) (−4.43) (−2.92)
Γ(MeV) 0.75 0.42 0.10

r̄α−Ξ−(fm) 3.55 4.10 5.40
r̄α−n(fm) 3.64 3.72 3.83
r̄α−α(fm) 3.35 3.44 3.54

1− E (MeV) −5.98 −4.53 −2.97
(−5.99) (−4.53) (−2.97)

Γ(MeV) 0.77 0.43 0.10
without Coulomb E (MeV) −3.75 −2.60 −1.54

2− (−3.76) (−2.61) (−1.54)
Γ(MeV) 0.62 0.32 0.005

We expect such structure, a valence neutron coupled to 9
Ξ−Li hypernucleus, since the

lowest threshold is 9
Ξ−Li(ααΞ−)cal + n. While, if the kF value becomes by chance much

larger, then the Ξ− particle is coupled to the ground state of 9Be. Because the lowest
threshold is 9Be + Ξ− [See case (iii) in Fig. 6].

The 2− (1−) state is dominated by the 33S1 (31S0) component of the two-body nΞ−

interaction. As demonstrated in Fig. 1, the 33S1 interaction for ESC (ND) is more (less)
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attractive than the 31S0 interaction. Therefore, the 2− (1−) state of 10
Ξ−Li becomes the ground

state in the case of ESC (ND), as shown in Fig. 6.
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FIG. 7: (a)Calculated density distribution of α, Ξ−, and a valence neutron for three kF values
using ESC. (b)Calculated density distribution of α, Ξ−, and a valence neutron for three kF values
using ND. The wavefunctions of αΞ− without the imaginary part of the αΞ− interaction are used.

More detailed results are given in Table IX, which lists also the calculated values of the
conversion widths Γ and the r.m.s. radii, r̄α−Ξ− and r̄α−n. We show here the results with
and without the αΞ− Coulomb interaction.

As seen in Table IX, the decay widths Γ calculated with ESC are much larger than those
for ND, mainly because the 11S0 ΞN -ΛΛ coupling interaction in ESC is far stronger than
that in ND.

The r.m.s. distance, r̄α−Ξ− , both for ESC and ND, are comparable to the r̄α−n values in
the cases of choosing plausible kF values. In order to illustrate this situation visually, we
show the density distributions of Ξ− (solid curves) and a valence neutron (dashed curves) in
Fig. 7 (a) and (b), where a single-nucleon density in the α core is indicated by dotted curves.
The upper part (a) and the lower part (b) in the figure are for ESC and ND, respectively.
In the (K−, K+) reaction, if the spin-nonflip transition dominates, the 2− state of 10

Ξ−Li is
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selectively excited. Then, we show the density distributions of 2− states. The densities of
the Ξ− and a valence neutron are extended significantly away from the α core.

Let us see the effect of the Coulomb interaction between the α and Ξ−. In Table IX, we
list the binding energy of the 2− state in 10

Ξ−Li with and without the Coulomb interaction.
The most important result is that the states obtained for 10

Ξ−Li are bound without Coulomb
interactions, namely as nuclear-bound states, for all kF values for both ESC and ND.

According to the above calculations, we can surely expect the existence of the nuclear
bound state with the predicted Ξ− binding energies of BΞ− = 3.26 MeV (ESC, kF = 1.055
fm−1) and 2.85 MeV (ND, kF = 1.025fm−1), when the imarginary part of αΞ− interaction
is taken account of. These BΞ− values seem to be a little smaller in comparison with
the empirical value ∼ 4.5 MeV suggested in the 12C(K−, K+) 12

Ξ−Be reaction. However, to
produce 10

Ξ−Li, we propose to perform the 10B(K−, K+) reaction experiment at J-PARC in
addition to that with a 12C target.

We say that the ααnΞ−( 10
Ξ−Li) system produced by the (K−, K+) reaction on 10B is

suitable to investigate αΞ− interactions, namely the spin-independent terms of even and
odd-state ΞN interactions.

VI. SUMMARY AND OUTLOOK

In anticipation of priority experiments to be done at the J-PARC facility, we have car-
ried out detailed structure calculations for several light p-shell Ξ-hypernuclei, 12

Ξ−Be, 5
Ξ−H,

9
Ξ−Li, 7

Ξ−H and 10
Ξ−Li, in order to investigate whether we can expect the existence of bound

states of the Ξ− hyperon. The calculational framework is microscopic three- and four-body
cluster models using the Gaussian Expansion Method which has been proved to work quite
successfully in obtaining reliable numerical solutions.

One of the essential issues in preparing such detailed calculations is what kind of ΞN
interactions one should use, because there are no definitive experimental data for any Ξ-
hypernucleus, and also because there are large uncertainties in the spin and isospin depen-
dence in the existing ΞN interaction models. The only existing experimental indication,
from the 12C(K−, K+) 12

Ξ−Be reaction spectrum, is that the 11B-Ξ− interaction is substan-
tially attractive. However this constraint is helpful in excluding most of the SU3-invariant
BB interaction models which lead to repulsive Ξ-nucleus potentials. In this work, we used
two ΞN potential models, ND and ESC, which give rise to substantially attractive Ξ-nucleus
potentials in accordance with the experimental information. Although the spin- and isospin-
components of these two models are very different from each other due to the different meson
contributions, we can reliably speak about the spin- and isospin-averaged properties such

as Ḡ(±) = (G
(±)
00 + 3G

(±)
01 + 3G

(±)
10 + 9G

(±)
11 )/16. This is why we have focused our attention

on the α-cluster based systems and started with an investigation of the nuclear spin- and
isospin-saturated systems such as αΞ−( 5

Ξ−H) and ααΞ−( 9
Ξ−Li), so as to get a firm basis of

our analyses.
However, the pure α-cluster systems such as αΞ− and ααΞ− cannot be produced directly,

because there are no available nuclear targets for the (K−, K+) reaction. Thus, in order
to explore realistic experimental possibilities, we have extended the calculation to the four-
body Ξ−-systems having one or two additional neutrons. This explains why we took the

7
Ξ−H(αnnΞ−) and 10

Ξ−Li(ααnΞ−) hypernuclei as the typical Ξ−-systems in this paper.
The major conclusions are summarized as follows:
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(1) In order to be consistent with the existing experimental indication that the Ξ-nucleus
interaction is attractive, the fine tuning of the ND and ESC potential models has been made
for applications to Ξ-hypernuclei by adjusting the hard-core radius rc in ND and the αV

parameter for the medium-induced effect in ESC, respectively. Then the ΞN G-matrices
were derived and represented in terms of three-range Gaussians with the kF parameter
expressing its density-dependence within the nucleus. The ΛΛ−ΞN −ΣΣ coupling term in
the bare interaction is renormalized into the imaginary part in the G-matrix interactions

(2) First we performed the ααtΞ− four-body calculation of 12
Ξ−Be and found that kF =

1.055fm−1 for GESC and 1.025 fm−1 for GND are most appropriate to produce the BCAL
Ξ− (J =

1−) = 2.2 MeV (without Coulomb interaction) which is that suggested empirically. These
values around kF ∼ 1.0 fm−1 are reasonable, because they agree roughly with the values
estimated from the average density in a A ∼= 12 nucleus. Then, we naturally allow smaller
kF values for smaller mass numbers.

(3) In the basic structure calculations for αΞ−( 5
Ξ−H) and ααΞ−( 9

Ξ−Li) systems, we have
tested three values of kF parameters, kF = 0.9, 1.055 and 1.3 for ESC and kF = 0.9, 1.025
and 1.3 for ND, respectively. In the αΞ− system, for which kF ' 0.9 fm−1 is considered to
be reasonable, we obtained only Coulomb-assisted bound states with small binding energies,
since they disappear without the Coulomb interaction. In the ααΞ− system, on the other
hand, nuclear bound states are obtained for the acceptable range of kF between 0.9 fm−1

and 1.05 fm−1. The calculated binding energies of ESC are larger than those of ND, and
also the kF-dependence is more sensitive in ESC. If these predictions are confirmed, directly
or indirectly, in future experiments, then it will provide a good check for the spin- and
isospin-averaged ΞN interaction strengths.

(4) For the lightest realistic example, 7
Ξ−H(αnnΞ−), the four-body calculation predicts

the existence of nuclear bound states in both cases of ESC and ND at reasonable kF values of
around 0.9 fm−1. It is interesting to note that the addition of two neutrons to the αΞ− system
gives rise to about 1.3 (2.0) MeV more binding for the ESC (ND) cases, respectively. If the
experiment is carried out to observe the 7

Ξ−H bound states, it is useful to extract information
about the even-state spin- and isospin-averaged part of the ΞN interaction acting between
the α and Ξ−.

(5) For the second realistic example, the 10
Ξ−Li(ααnΞ−) hypernuclus, we have obtained the

nuclear Ξ− bound states as a result of careful four-body calculations with kF ∼ 1.0 fm−1.
This result is essentially based on the averaged attractive nature of the ΞN interactions
acting in the three-body subsystem of ααΞ−. It is remarkable to have similar binding
energies of the J = 2− state for both the ESC and ND interactions (−4.8 MeV vs. −4.4
MeV with respect to the α + α + n + Ξ− threshold). The order of the doublet states
(J = 1−, 2−) is calculated to be opposite for ESC and ND as a result of the difference in the
31S1 and 33S0 components of ESC and ND acting between the Ξ− and a neutron.

In conclusion, it will be quite interesting to observe the newly predicted bound states
in future (K−, K+) experiments using the 7Li and 10B targets in addition to the standard
12C target. Experimental confirmation of these states will surely provide us with definite
information on the spin- and isospin-averaged ΞN interactions; note the information on its
even-state part from αΞ− and ααΞ− and its odd-state part from ααΞ−. Such a plan is a
challenging project in the study of Ξ-hypernuclei that have yet to be explored. In order
to convert the present predictions into concrete experimental proposals at J-PARC, the
reaction cross sections should be estimated for the 7Li(K−, K+) 7

Ξ−H, 10Li(K−, K+) 10
Ξ−Li and

12C(K−, K+) 12
Ξ−Be reactions.
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