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Abstract
In these notes we use the construction of a field theory for the spin-2 fields, using an extended

auxiliary-field formalism. In order to impose sufficient constraints on the hµν-fields one vector

auxiliary field ηµ(x), and a scalar field ǫ(x) was needed. Here, we solve the field equation for the

one-particle states, i.e. we solve the inhomogeneous Klein-Gordon equation for hµν(x) and study

the massles limit for its solutions. Using these solutions, we derive again the one-particle propaga-

tor, both for the massive and the massless case.

We found that by choosing the constants suitably, and performing a couple of gauge transforma-

tions, we can eliminate the unwanted helicity components in the massless limit. Thereby we arrive

at a satisfactorily massless spin-2 theory.

Typeset by REVTEX 1



I. INTRODUCTION

In these notes we use the construction of a field theory for the spin-2 fields, using an
extended auxiliary-field formalism [1, 2]. In order to impose sufficient constraints on the
hµν-fields one vector auxiliary field ηµ(x), and a scalar field ǫ(x) was needed. Here, we solve
the field equation for the one-particle states, i.e. we solve the inhomogeneous Klein-Gordon
equation for hµν(x) and study the massles limit for its solutions. Using these solutions, we
derive again the one-particle propagator, both for the massive and the massless case.
The result is that we can indeed eliminate the helicities λ = 0,±1 from the tensor-field hµν ,
in the massless limit.

In our work on the quantization of the spin-2 fields [2], we used the symmetric hµν-tensor
field, and the two auxiliary fields ηµ(x) and ǫ(x), with the Lagrangian

Lηǫ = L2 + M2∂µh
µνην + M2

2 Hµ
µǫ +

1

2
bM2

2 ηµηµ , (1.1)

with

L2 =
1

4
∂αhµν∂αhµν −

1

2
∂µhµν∂αhαν −

1

4
∂νh

β
β∂νhα

α +
1

2
∂αhαβ∂βhν

ν

−1

4
M2

2 hµνhµν +
1

4
M2

2 hµ
µh

ν
ν . (1.2)

In the following, we denote the mass by M2 ≡ M .
For the normalization of our solutions, the commutation relations of the field operators are
important. Using the Dirac quantization method, and using a vector and a scalar auxiliary
field, the obtained field commutators read

[ǫ(x), ǫ(y)] = −3

8

b(1 − b)2

(3 + b)3
i∆(x − y; M2

ǫ ) , (1.3a)

[ηµ(x), ǫ(y)(y)] = −3

4

(1 − b)

(3 + b)2

1

M
∂µi∆(x − y; M2

ǫ ) , (1.3b)

[ηµ(x), ην(y)] =
1

2

[
gµν − ∂µ∂ν

bM2

]
i∆(x − y; M2

η )

+
3

2b(3 + b)

∂µ∂ν

M2
i∆(x − y; M2

ǫ ) , (1.3c)

[
hµν(x), hαβ(y)

]
=

[
1

2

(
gµαgνβ + gµβgνα

)
− 1

3
gµνgαβ + . . .

]
i∆(x − y; M2) , (1.3d)

−
[
1

6

b

3 + b
gµνgαβ + . . .

]
i∆(x − y; M2

ǫ ) , (1.3e)

and commutators between hµν and ǫ(y), ηµ(y). The dots in the square brackets above denote
terms with ∂µ, ...., ∂β. These are unimportant since we couple the spin-2 field to a conserved
energy-momentum tensor T µν . The masses Mη and Mǫ are given in [2] in terms of M2 and
the b-parameter, see furtheron in this paper.
It is one of the aims of this investigation to find a theory which allows (i) a smooth massless
limit, and (ii) a perturbation expansion in the small mass M. For the latter to be mean-
ingful, it is necessary that the theory satisfies the following requirements: (i) no-ghosts, (ii)
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unitarity, and (iii) a correct massless limit. This would open the possibility of giving a small
mass to the graviton without destroying e.g. the correct prediction for the perihelium of
Mercury.

The contents of this paper is as follows. In section II we give the coupled Klein-Gordon
equations for the spin-2, the spin-1, and spin-0 one-particle wave-functions. We give the
explicit form of the helicity wave-functions in momentum-space in terms of the helicity
polarization tensor for spin-2 and vector for spin-1. In section III the spin-2 polarization
vectors are studied, in particularly the the massless limits of these helicity polarizations is
described. In section IV the massless limit of the wave-functions studied. Analyzed are
the conditions on the parameters for the vanishing or decoupling of the ”wrong” helicity
components. Section V is devoted to the question whether representation for the spin-2
propagator etc. can be found that allows a smooth massless limit, such that M 6= 0 the
theory contains besides the spin-2 propagator also a physical acceptable spin-0 propagator.
Finally, we finish this paper by some conclusions in section VI. Appendix A contains some
miscelaneous note, and in appendix B we analyse the use of gauge symmetry for the removal
of dipole-ghost terms.

II. ONE-PARTICLE SOLUTION

The one-particle wave-functions, corresponding to the hµν-, ηµ-, and ǫ-fields satisfy the
following Klein-Gordon equations 1:

(
� + M2

)
hµν(x) = −M(1 + b) (∂µην − ∂νηµ) + 2M2 1 + b

1 − b
gµν ǫ(x) , (2.1a)

(
� − bM2

)
ηµ(x) = −2M1 + b

1 − b
∂µǫ(x) , (2.1b)

(
� − 2b

3 + b
M2

)
ǫ(x) = 0 . (2.1c)

with the constraint

∂ · η(x) =
4

1 − b
M ǫ(x) . (2.2)

For the following, we introduce the short-hand notations

M2
η = −bM2 , M2

ǫ = − 2b

3 + b
M2 . (2.3)

Working in Fourier space, and using the spectral representations for the vector and scalar
fields,

hµν(x) =
∑

λ

∑

i

∫
d4p

(2π)4
h̃µν

i (p, λ) δ
(
p2 − M2

i

)
e−ip·x , (2.4a)

ηµ(x) =
∑

λ

∑

i

∫
d4p

(2π)4
η̃µ

i (p, λ) δ
(
p2 − M2

i

)
e−ip·x , (2.4b)

ǫ(x) =

∫
d4p

(2π)4
ǫ̃(p) δ

(
p2 − M2

ǫ

)
e−ip·x , (2.4c)

1 An alternative is to use a parameter β ≡ 1/b. So, later the point b = ±∞ ↔ β = 0.
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Then, we obtain the following solutions for the vector and scalar one particle solutions, i.e.
plane wave solutions,

ǫ̃(p) = aǫ δ
(
p2 − M2

ǫ

)
, (2.5a)

η̃µ(p, λ) = aη εµ(p, λ)δ
(
p2 − M2

η

)

−2iaǫ

1 + b

1 − b

Mpµ

M2
ǫ − M2

η

δ
(
p2 − M2

ǫ

)
. (2.5b)

Here, εµ(p, λ) are the spin-1 polarization vectors. In the following we consider momenta
pµ = (Ep, 0, 0, p) with p2 = M2 and the standard corresponding spin-1 polarization vectors
as

ǫµ(±1) =
1√
2

(0,∓1,−i, 0) , ǫµ(0) =
1

M
(p, 0, 0, Ep) , (2.6)

and it is obvious that p · ǫ(p, λ) = 0.

Now we check that these special solutions satisfy the constraints (2.2). We find that

−ip · η = −2aǫ

1 + b

1 − b

M2
ǫ

M2
ǫ + bM2

Mδ(p2 − M2
ǫ )

= −2aǫ

1 + b

1 − b

[
1 − b

3 + b

2b

]
Mδ(p2 − M2

ǫ )

= +4aǫ

1

1 − b
Mδ(p2 − M2

ǫ ) =
4

1 − b
M ǫ̃(p) (Q.E.D.)

Then, the special solutions for the hµν(x) satisfy

(
−p2 + M2

)
h̃µν(p, λ) = +iaη(1 + b)M

(
pµεν + pνεµ

)
δ
(
p2 − M2

η

)

+4aǫ

(1 + b)2

1 − b
M2 pµpν

M2
ǫ − M2

η

δ
(
p2 − M2

ǫ

)

+2aǫ

1 + b

1 − b
gµν M2δ

(
p2 − M2

ǫ

)

= +iaη(1 + b)M
(

pµεν(p, λ) + pνεµ(p, λ)

)
δ
(
p2 − M2

η

)

+2aǫ

1 + b

1 − b

{
gµν + 2

3 + b

b

pµpν

M2

}
M2δ

(
p2 − M2

ǫ

)
. (2.7)

So, for the special solution we get

h̃µν(p, λ) = +iaη

M
M2

(
pµεν(p, λ) + pνεµ(p, λ)

)
δ
(
p2 − M2

η

)

+
2

3
aǫ

3 + b

1 − b

{
gµν + 2

3 + b

b

pµpν

M2

}
M2

M2
δ
(
p2 − M2

ǫ

)
. (2.8)
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III. SPIN-2 POLARIZATION VECTORS

We work with the 4-momenta of the form pµ = (p0, 0, 0, p), for which we choose the spin-1
polarization vectors in the standard form:

ǫµ(±1) =
1√
2

(0,∓1,−i, 0) , ǫµ(0) =
1

M
(p, 0, 0, Ep) , (3.1)

Then, the spin-2 polarization vectors are, up to a gauge transformation,

εµν(p, λ = +2) = εµ(p, +1) εν(p, +1) , (3.2a)

εµν(p, λ = +1) =
1√
2

(
εµ(p, +1) εν(p, 0) + εµ(p, 0) εν(p, +1)

)
, (3.2b)

εµν(p, λ = 0) =
1√
6

(
2εµ(p, 0) εν(p, 0) + εµ(p, +1) εν(p,−1) + εµ(p,−1) εν(p, +1)

)
,(3.2c)

and similarly for λ = −1,−2.

The massless limit polarization vectors: We first note that

εµ(p, λ = 0) =
pµ

M
+

(
−M

2p
, 0, 0,

M

2p

)
+ O(M3) (3.3)

Then, we have that

εµν(p, λ = +1) ∼ 1√
2M

(
εµ(p, +1) pν + pµ(p, 0) εν(p, +1)

)
, (3.4)

εµν(p, λ = 0) ∼
√

2

3

pµpν

M2
+

1√
6

(
gµν − pµp̃ν + p̃µpν

2p · p̃

)
, (3.5)

where we introduced p̃µ = (p0,−p), and used the identity

εµ(p, +1) εν(p,−1) + εµ(p,−1) εν(p, +1) = gµν − pµp̃ν + p̃µpν

2p · p̃ . (3.6)

IV. THE MASSLESS LIMITS

We first add to the special solution for hµν(x) the solution of the homogeneous equation:

h̃µν(p, λ) ⇒ εµν(p, λ) δ
(
p2 − M2

)
+

+iaη

M
M2

(
pµεν(p, λ) + pνεµ(p, λ)

)
δ
(
p2 − M2

η

)

+
2

3
aǫ

3 + b

1 − b

{
gµν + 2

3 + b

b

pµpν

M2

}
M2

M2
δ
(
p2 − M2

ǫ

)
. (4.1)

Now, we want to analyze under what conditions on the parameters and gauges the

components of h̃µν(p, λ) vanish for the helicities λ = 0,±1 in the limit M → 0.

5



(i) In order to fix the scale mass M the commutator [ηµ(x), ην(y)] in equation (1.3e) gives

a2
η = −1/2 → (M/M)2 = 1 , (4.2)

from which we choose M = M .

(ii) λ = +1: In this case we have that

h̃µν(p, +1) =

[
εµν(p, +1) + iaη

M
M2

(pµεν(p, +1) + pνεµ(p, +1))

]
δ(p2)

→ 1√
2M

(
pµεν(p, +1) + pνεµ(p, +1)

)
+ iaη

M
M2

(
pµεν(p, +1) + pνεµ(p, +1)

)
⇒ 0 ,(4.3)

and we find , for M = M , the condition

aη =
i√
2

M

M . (4.4)

(iii) λ = +0: Similarly, in this case we have that

h̃µν(p, 0) →
√

2

3

pµpν

M2
+

1√
6

(
gµν − pµp̃ν + p̃µpν

2p · p̃

)

+iaη

M
M

pµpν

M2
+

2

3
aǫ

3 + b

1 − b

{
gµν + 2

3 + b

b

pµpν

M2

}
M2

M2
⇒ 0 . (4.5)

Now, since we couple the hµν(x)-field always to a conserved energy-momentum tensor T µν ,
with ∂µT

µν = 0 and T µν = T νµ, the terms proportional to the four-momentum pµ are not
important. In appendix B paragraph we will demonstrate moreover that these terms can
be ’gauged away’. However, in order to arrive at a decent massless spin-2 theory we must
cancel the gµν-terms. This leads to the condition, taking again M = M ,

1√
6

+
2

3

3 + b

1 − b

M2

M2
aǫ = 0 . (4.6)

A solution for this is b = ±∞ and aǫ =
√

3/8 · M2/M2.

(iv) Now, in order to exclude other solutions we look at the commutator for the scalar
ǫ(x)-field. This reads

[ǫ(x), ǫ(y)] = −3

8

b(1 − b)2

(3 + b)3
i∆(x − y; M2

ǫ ) ∼ −a2
ǫ i∆(x − y; M2

ǫ ) . (4.7)

Since M2
ǫ < 0 the scalar field is ghost-like, so that there is a (−)-sign in the commutator for

the annihilation and creation operators. This justifies the last relation in (4.7). Comparing
(4.7) with the solution from (4.6) one obtains the relation

a2
ǫ =

3

8

(1 − b)2

(3 + b)2

M4

M4
=

3

8

b(1 − b)2

(3 + b)3
⇒ b

b + 3
= 1 , (4.8)

and therefore b = ±∞ (Q.E.D.).

We close this section by noting that indeed for b = ±∞ the commutator in (1.3e) for hµν in
essence becomes properly that for a massless spin-2 theory if we take M,Mǫ → 0.
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V. SMOOTH LIMIT AND THE BRANS-DICKE THEORY

In the previous section we studied the double limit: M → 0; b → ∞. It is the purpose
of this section to find a representation of the propagator for the hµν-field which allows
a smooth massless limit and such that for M 6= 0 the theory contains besides a spin-2
propagator, also a physically acceptable spin-0 propagator. In other words a so-called
Brans-Dicke type of theory.

From the commutators in (1.3e) we obtain the propagator by the replacement

∆(x − y; M2) → ∆F (x − y; M2) . (5.1)

Then, we have apart from irrelevant terms for the hµν-field the Feynman propagator

Dµν,αβ
F (x − y) =

[
1

2

(
gµαgνβ + gµβgνα

)
− 1

3
gµνgαβ

]
∆F (x − y; M2)

−1

6

b

3 + b
gµνgαβ ∆F (x − y;− 2b

3 + b
M2) . (5.2)

We note that in this propagator for the range −3 < b < 0 the first term describes a
physical massive spin-2 particle, and the second term describes a physical massive
spin-0 particle. Rewriting this propagator as

Dµν,αβ
F (x − y) =

[
1

2

(
gµαgνβ + gµβgνα

)
− 1

3
gµνgαβ

]
∆F (x − y; M2)

+

[
−1

6
+

1

2

1

3 + b

]
gµνgαβ ∆F (x − y;− 2b

3 + b
M2) , (5.3)

and keeping b in the above range, we find in the massless limit that the propagator
describes a massless spin-2 and a massless spin-0, giving a Brans-Dicke type of
theory.

It is one of the aims of this investigation to find a theory which allows (i) a smooth
massless limit, and (ii) a perturbation expansion in the small mass M. For the latter to be
meaningful, it is necessary that the theory satisfies the following requirements:
1. No-ghost: M2

ǫ > 0 → b/(3 + b) < 0,
2. Unitarity: b/(3 + b) < 0,
3. Correct massless limit: b/(3 + b) → +1 − ∆, ∆ > 0 .
Clearly, requirement 3) is in conflict with 1) and 2) if ∆ = 0, i.e. for a pure
spin-2 theory in the massless limit. So, at best we could end up with is a
satisfactory Brans-Dicke theory!

Next we introduce the following parametrization and definition

b = α + β
Λ2

M2
, κ(β,M2/Λ2) ≡ b

3 + b
=

β + αµ2

β + (3 + α)µ2
, (5.4)

where we introduced µ2 = M2/Λ2, and which means that Mη → −βΛ2 in the limit M → 0,

7



which is well defined. Then, we can write

Dµν,αβ
F (x − y) =

[
1

2

(
gµαgνβ + gµβgνα

)
− 1

2
gµνgαβ

]
∆F (x − y; M2) +

1

6
gµνgαβ

[
∆F (x − y; M2) − κ ∆F (x − y;−2κ M2)

]

≡ D̄µν,αβ
F (x − y,M2) + ∆Dµν,αβ

F (x − y; κ,M2) (5.5)

In passing, we notice that κ → 1 in the limit M → 0, independently of the value of the
parameter β. Therefore, in the limit M → 0 the extra piece ∆Dµν;αβ

F → 0, and we get the
proper massless spin-2 propagator, independent of β. In momentum space we have

∆F̃ µν;αβ
F (p) =

i

6
gµνgαβ

[
1

p2 − M2 + iδ
− κ

p2 + 2κM2 + iδ

]

=
1

6
(1 − κ)gµνgαβ p2 + 3κM2/(1 − κ)

p2 + 2κM2 + iδ
· 1

p2 − M2 + iδ
. (5.6)

We note that

1 − κ = 1 − b

b + 3
=

3M2/Λ2

β + (3 + α)M2/Λ2
→ 0 in the limit M → 0 . (5.7)

Therefore, in the limit M → 0 we obtain the proper propagator for the massless
spin-2 theory, independent of the parameter β!

For M 6= 0, taking α = 0, and having β in the ’physical domain’: −3M2/Λ2 < β < 0,

the extra p2-dependent factor has a pole at p2 = −2κM2 > 0. So, ∆F̃ µν;αβ
F (p) presents an

acceptable singularity structure, i.e. a non-tachyon like, for representing a physical spin-0
propagator.
However, we can not take the massless limit keeping β fixed in the ’physical domain’! In

doing this the spin-0 becomes tachyonic before reaching the massless limit. Therefore, the
massive and massless theories are not connected in a satisfactory way, such that we can
compute small mass corrections!!

VI. CONCLUSIONS

We found that by choosing the constants suitably, and performing a couple of gauge
transformations, we can eliminate the unwanted helicity components in the massless limit.
Thereby we arrive at a satisfactorily massless spin-2 theory. This in accordance with the
Dirac quantization method for spin-2 fields using auxiliary vector and scalar fields.
However, we did not succeed giving a small mass to the graviton without destroying the
correct prediction for the perihelium of Mercury. Therefore, so far in our treatment of the
spin-2 field with the Dirac quantization method a discontineous change in the predictions
persists, as claimed by Van Dam and Veltman [3, 4].
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APPENDIX A: MISCELANEOUS NOTES

The hµν-propagator Dµν;αβ contains, apart from irrelevant terms proportional to the pµ-
vector, three terms. The first and the second term with respectively gµαgνβ and gµβgνα

have coefficients C1 = C2 = 1/2, apart from a factor 1/(p2 − M2 + iδ). The third, i.e. the
gµνgαβ-term, in the hµν-propagator has in momentum space the coefficient C3 with

C3 = −
[
1

3

1

p2 − M2 + iδ
+

1

6

b

b + 3

1

p2 − M2
ǫ + iδ

]

= −1

6

(
2 +

b

b + 3

)
1

p2 − M2 + iδ
− 1

6

b

b + 3

M2
ǫ − M2

(p2 − M2 + iδ)(p2 − M2
ǫ + iδ)

= −1

6

(
2 +

b

b + 3

)
1

p2 − M2 + iδ
+

b(b + 1)

2(b + 3)2

M2

(p2 − M2 + iδ)(p2 − M2
ǫ + iδ)

M→0
=⇒ −1

6

(
2 +

b

b + 3

)
1

p2 + iδ
, (A1)

and the coefficient in parentheses (. . .) tends to the correct value −1/2 for b → ∞.

APPENDIX B: GAUGE-SYMMETRY AND THE DIPOLE-GHOST TERM

The gauge transformations are of the form

hµν(x) → hµν(x) + Xµ,ν + Xν,µ . (B1)

1. We construct now a gauge transformation such that in momentum space

h̃µν(p) → h̃µν(p) + a

(
p̃µpν + pµp̃ν

)
/p̃ · p . (B2)

The function X(x) which corresponds to (B2) is given by

Xµ(x) = ia

∫
d4p

(2π)4

p̃µ

p̃ · p δ
(
p2 − M2

)
e−ip·x , (B3)

which is easily seen to give the transformation (B2). For M2 = 0, the function Xµ(x)
satisfies the equation �Xµ(x) = 0.

2. The gauge transformation that gives in momentum space

h̃µν(p) → h̃µν(p) + b
pµpν

M2
, (B4)

is materialized by choosing

Xµ(x) = i
b

2

∫
d4p

(2π)4

pµ

M2
δ
(
p2 − M2

)
e−ip·x , (B5)

which shows that indeed the terms proportional to pµ in the fields h̃µν(p, λ) can be ”gauged”
away for M = 0.
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