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Abstract

An improved Coulomb potential is presented for use in the relativistic
Schrödinger equation. This potential takes into account contributions of all
two-photon exchange diagrams and gives the lowest-order relativistic correc-
tions to the static Coulomb potential for arbitrary masses of the two particles.
The cases spin 0-spin 0, spin 0-spin 1

2 , and spin 1
2 -spin 1

2 are considered. When
the mass of one of the particles goes to infinity, then the well-known correc-
tions to the binding energy and to the phase shifts as obtained with either
the Klein-Gordon or the Dirac equation are reproduced.
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The electromagnetic interaction between two charged point particles is for many purposes
not accurately enough describd by the 1/r Coulomb potential inserted in the nonrelativistic
Schrödinger equation. Often one needs relativistic corrections. Some of such corrections can
be obtained when one uses the Klein-Gordon (KG) or the Dirac equation. These equations
suffer from the disadvantage that they are essentially one-particle equations and not very
well suited for a two-body problem. For example, recoil corrections are not easily obtained.
Another way to improve the nonrelativistic descirption is to go to the Breit equation.[1]
When used in coordinate representationthis equation suffers from the difficulty that it is
really a fourth-order differential equation because of the correction term −p4/8m3 to the
kinetic energy.

In this Letter we present an improved Coulomb potential which gives correctly the
lowest-order relativistic and recoil corrections to the scattering amplitude, phase shifts,
and bound-state energies, when this potential is inserted in the “relativistic” Schrödinger
equation. We do this for the following cases: spin 0-spin 0, spin 1

2
-spin 0, and spin 1

2
-spin 1

2
.

This improved potential takes into account contributions of the planar- and crossed-box
two-photon-exchange diagrams, and in the case of spin 0 also of the seagull graphs. This
relativistic Schrödinger equation is the coordinate-space version of the Blankenbecler-Sugar-
Logunov-Tavkhelidze (BSLT) equation.[2, 3, 4, 5] The (nonrelativistic as well as relativistic)
Schrödinger equation in the coordinate representation is

(∆ + p2)ψ(~r) = 2mV ψ(~r)

where m = m1m2/(m1 +m2) for a two-body system with masses m1 and m2. The difference
between the nonrelativistic and relativistic Schrödinger equation is the relation between the
center of mass (c.m.) relative momentum p and the c.m. energy E. In the nonrelativistic case
E = p2/2m and relativistically E = (p2 +m1

2)1/2 + (p+m2
2)1/2−m1−m2. This improved

Coulomb potential has been constructed[6, 7] in order to give an accurate description of
the low-energy proton-proton scattering experiments. In that case the vacuum polarization
potential[8] has to be added and one must also include form factors to describe the extended
electric and magnetic charge distributions of the protons.[9] However, we can think of several
other cases where this potential could be very useful.

The derivation[7] of this improves Coulomb potential will be published elsewhere, but
let us indicate how it was obtained. We follow the well-known road[4, 5] from the Bethe-
Salpeter equation[10] for the relativistic scattering amplitude via the BSLT equation to a
potential V for the relativistic Schrödinger equation. This potential is constructed in a way
that it reproduces the relativistic scattering amplitude (its pole positions are the bound-
state energies) as well as possible. When one wants to obtain in a consistent way relativistic
corrections to the Coulomb potential one must calculate in addition to the one-photon-
exchange diagrams also the two-photon-exchange diagrams. The pseudopotential W for the
BSLT equation is to order e4 given by[11]

W = M1 +MV + (MX +MV +MII −M1gM1). (1)

The contributions to this potential W come from one-photon exchange M1 (where we can
include the vacuum polarization MVP) and from two-photon exchange like planar-box MII,
crossed-box MX, and in the case of spin 0 also the seagull graphs MV. When one computes
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these different contributions then one notices first of all a large cancellation between MII and
the twice-iterated one-photon exchange M1gM1, and also a sizable cancellation[12] between
MX and the rest ofMII. Next we use the freedom[13] still existing in the choice of the off-shell
behavior of the BSLT propagator g. We choose this propagator in such a way that we obtain
in the low-energy region another cancellation between the sums of all two-photon-exchange
contributions MII+MX+MV and the twice-iterated one-photon-exchange contribution to W
[the term in parentheses in Eq. 1] vanishes in the order of accuracy of our calculation. Then
our pseudopotential W ≈ M1 + MVP does not contain two-photon-exchange contributions
anymore. However, this statement is not true for our improved Coulomb potential V for
the relativistic Schrödinger equation. The off-shell behavior of this potential [the term
proportional to b in Eq. 3] is such that by iteration it will give the main contribution of the
two-photon-exchange diagrams.

The off-shell matrix elements of the improved Coulomb potential (neglecting the vacuum
polarization) for two spin-0 particles with point charges Z1e and Z2e are

(~pf |V |~pi) = (Z1Z2e
2/k2)(a+X0/4m

2), (2)

with

X0 = b(q2 + 1
4
k2 − p2) + c0k

2 + 4d(~q · ~k/k)2. (3)

We have introduced the vectors

~q = (~pf + ~pi)/2, ~k = ~pf + ~pi, ~n = ~pi × ~pf = ~q× ~k.
The coefficients a to d are

a = (E1E2 + p2)/m(E1 + E2) ≈ 1 + p2(1−m/M)/2m2,

b = 1− λ,

c0 = −m/M,

d = λ, (4)

where M = m1 +m2 and E1 = (m1
2 +p2)1/2. Equations 2 and 3 indicate the approximations

made. We include in V all corrections to the static Coulomb potential VC which are of order
[(momentum)2/m2]VC. The improved Coulomb potential depends on the gauge in which we
perform the calculations and on the definition of the relative four-momentum.[5] This can be
expressed by only one arbitrary parameter λ in the potential. Our lowest-order corrections
to measurable quantities (like binding energies and cross sections) are independent of λ.

When particle 1 has spin 1
2

instead of spin 0 and a magnetic moment ~µ1 = (1 +
κ1)(Z1e/m1)~s1, with ~s1 = 1

2
~σ1 the spin, then we must add to X0 of Eq. 3 the term

X1 = c1k
2 + e1i~s1 · ~n, (5)

where

c1 = −1
2
(1 + 2κ1)(m/m1)

2, (6a)

e1 = −2(1 + 2κ1)(m/m1)
2 − 4(1 + κ1)m/M. (6b)
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Here e1 gives the spin-orbit interaction and c1 the corresponding Darwin term of particle 1.
When also particle 2 has spin 1

2
instead of spin 0, then we must add to X moreover the

terms

X2 = c2k
2 + e2i~s2 · ~n,

X12 = f [(~σ1 · ~k)(~σ2 · ~k)− k2~σ1 · ~σ2],

with f = (1 + κ1)(1 + κ2)m/M and c2 and e2 given by Eq. 6. Here X2 gives the spin-orbit
interaction and the Darwin term of particle 2 and X12 the tensor and spin-spin interaction
between the two spin-1

2
particles.

The improved Coulomb potential in the coordinate representation is

V = V1 + V2 = Z1Z2α
′/r + (Z1Z2α/4m

2)φ, (7)

with

φ = −bp2/r − 1
2
b[∆(1/r) + (1/r)∆]

+(c+ d− 2
3
f~σ1 · ~σ2)4πδ

3(~r)

+(2dL2 + e1~L ·~s1 + e2~L ·~s2 − fS12)/r
3. (8)

Here α = e2/(4π), α′ = αa, c = c0 + c1 + c2, ∆ is the Laplacian, ~L the orbital angular
momentum, and S12 = (~σ1 ·~r)(~σ2 ·~r)/r2 − ~σ1 · ~σ2/3.

The bound-state energies E(n, l, j) for a hydrogenlike atom (Z1Z2 = −Z) can easily be
calculated by use of the potential ad given in Eqs. 7 and 8. In order to demonstrate the
accuracy of this improved potential we will give these bound-state energies in an expansion
in α. When particle 1 has either spin 0 or spin 1

2
and particle 2 has spin 0, then up to α4

we get

E(n, l, j) = −(m/2)(Zα/n)2[1 + (Zα/n)2A], (9)

with

A = −3

4
+

m

4M
+

2n

2l + 1
(b+ d+

1

2
e1)− n

2j + 1
e1 + (c0 + c1 − 1

4
e1)2nδ(l, 0). (10)

We observe using Eqs. 4 and 6 that A is independent of λ, i.e., “gauge” inependent. For teo
spin-0 particles Eq. 10 becomes

A =
2n

2l + 1
− 3

4
+

m

4M
− δ(l, 0)2n

m

M
.

The first two terms represent the standard KG result[15] and the last two terms are correc-
tions to this. For a system with spin 1

2
and spin 0 we get

A =
2n

2j + 1
− 3

4
+

m

4M
+

4n(l − j)

(2j + 1)(2l + 1)

[
2κ1

(
1− m1

M

)
−

(
m1

M

)2
]

+ 2κ1n
m

M
δ(l, 0).

This expression is valid for all values ofm1 andm2. However, we have grouped the terms such
that for the case m1 ¿ m2 (like the H atom) the result can be compared with well-known
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results. The first two terms give the standard result as obtained with the Dirac equation.
The third term is a well-known recoil correction.[16] The last two terms represent another
recoil correction and the contribution to the Lamb shift due to the anomalous magnetic
moment.

Not included in the binding energy is the contribution due to the vacuum polarization
potential which is of order α(Zα)4m3/[me(ZαM +me)

3]1/2, where me is the electron mass.
However, this potential can easily be included. In that case the most important term not
obtained with this potential is due to the mass renormalization. Its contribution to the
binding energy is of the order α(Zα)4 ln(Zα).

The phase shifts due to this improved Coulomb potential can easily be calculated. To
illustrate once more the accuracy of this improved potential we calculate in distorted-wave
Born approximation explicitly the lowest order corrections to the nonrelativistic Coulomb
phase shift σl(0)(η) = arg Γ(l + 1 + iη). Here η = Z1Z2αm/p = Z1Z2α/v with v the
nonrelativistic velocity in the c.m. system. The Schrödinger equation with the potential
v1 = Z1Z2α

′/r can easily be solved. It leads to a phase shift σ
(0)
l (η′), where we have defined

the modified Coulomb parameter[17]

η′ = Z1Z2α
′m/p = Z1Z2α/vlab. (11)

The total phase shift due to our improved Coulomb potential V we write as σl = σ
(0)
l (η′)+ρl.

The correction ρl can easily be calculated in distorted-wave Born approximation from the
potential V2 = V − V1. Then

tan ρ1 = −2m

p

∫ ∞

0
drFl(η

′, pr)V2Fl(η
′, pr),

where Fl(η
′, pr) is the regular Coulomb wave function.

In the case of scattering two spin-0 particles we find

ρl = −Zαp
2m

λ+
ZαZα′

2l + 1


π

2
− ∂σ

(0)
l (η′)
∂l


 +

Zαp

2M
C2

0(η′)δ(l, 0). (12)

The first term in Eq. 12 is due to the (~q ·~k/k)2 part of the potential. This gauge-dependent
part of the phase shift is independent of l and is thus unobservable. The second term in
Eq. 12 is in the limit m2 → ∞ exactly equal to the term that would be obtained when
one solves the KG equation to the same order of accuracy.[15] The last term is an extra
correction for s waves only.

It is also easy to calculate ρl in the case of spin 1
2
-spin 0 scattering. In order to compare

with the exact solution of the Dirac equation we take κ1 = 0 and in the limit m2 →∞; then
we get

ρ(l, j) = −Zαp
2m

λ+
(Zα)2

2j + 1


π

2
− ∂σ

(0)
l

∂l
+
j − l

η


 . (13)

We see here again a gauge-dependent but unobservable part and a second part that agrees
with the exact solution[15] of the Dirac equation expanded to the same order of accuracy.
When κ1 6= 0 and/or m2 6= ∞ we find some corrections to Eq. 13.
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The difference between the nonrelativistic Coulomb phase shift σ
(0)
l (η) and the modified

Coulomb phase σl is twofold. Firstly we have the replacement of η by η′ in σ(0)
l and secondly

we have the extra phase ρl.
What are the advantages of our potential? (i) The potential is for use in the very familiar

Schrödinger equation. (ii) Relativistic as well as recoil corrections are included. Because
the potential has a clear field-theoretic derivation one knows explicitly the approximations
made. (iii) Extensions to higher spin particles can easily be postulated: Add the Darwin
terms, the electric and magnetic multipole interactions, and the terms due to the Thomas
presession, as is done in Eqs. 5 and 6 for the magnetic dipole. (iv) When one or both
of the particles have extended charge distributions then the form factors can be included
exactly.[9] By exactly we mean that the same type of cancellations as discussed here for
the two-photon-exchange contributions to the potential V will also happen in that case. (v)
Strong-interaction potentials can be added easily. Corrections to additivity can be calculated
in principle. (vi) An improved Coulomb and vacuum polarization modified effecttive range
expansion has been derived.[7]
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