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I. INTRODUCTION

For nucleon-nucleon (NN) scattering it is shown in [1] that a soft-core one-boson-exchange
(OBE) model can describe the wealthy and precise NN-data very well. Only 13 parameters
were used. Most of these parameters are coupling constants, mixing angles or F/(F+D)-
ratio’s. These physical parameters can be checked in principle with results found for other
reactions. The model was partly based on regge-pole theory [2], therefore the proper the-
oretical framework for it is the analytic S-matrix theory. Recently [3] within this context
the full details on the derivation of the Lippmann-Schwinger equation have been worked out
for unequal mass scattering. This enables us to extend the model of [1] to baryon-baryon
scattering.

We treat here the reactions: (i) the coupled channels Λp → Λp, Σ+n, Σ0p; (ii) the
coupled channels Σ−p → Σ−p, Σ0n, Λp; and (iii) the single channel Σ+p → Σ+p. For these
channels there are experimental data at low energies (see e.g. [4]). The YN- interaction is
described by momentum-dependent potentials and the multichannel Schrödinger equation
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is solved numerically employing the Green transformation [1]. In this equation Mred is the
reduced mass-matrix, M the rest mass-matrix, V the potential matrix in channel space, and
Ψ the wave function vector in channel space.

The YN-potentials are given by the following exchanges: (i) the pseudoscalar meson
nonet π, η, η′, K; (ii) the vector meson nonet ρ, ϕ, K?, ω; and (iii) the scalar meson
nonet δ, S?, κ, ε; (iv) The ‘diffractive’ contribution from P, f, f ′, A2, and K??. The
pomeron couplings are taken to be universal, i.e. independent of the baryon masses. We
note that the ‘diffractive’ exchanges give gaussian and dominantly repulsive contributions
to the potentials in all channels and justify in part the use of hard-cores in the earlier work
of the Nijmegen group. In a QCD-picture the pomeron can be viewed as a substitute for
two- and multi-gluon exchange [5].

The basis of our potentials in momentum space is described in detail in [6], section II.
In this work we follow this reference for the definition of our potentials. In [3] it is shown
that these potentials also can be derived in the context of the analytic S-matrix approach
for unequal mass scattering. The configuration space potentials are obtained via Fourier
transformation, which is described in detail in [1]. The YN-potentials are of the form

V = {VC(r) + Vσ(r) ~σ1 · ~σ2 + VT (r)S12 + VSO(r) ~L · ~S +

+ VASO(r)
1
2

(~σ1 − ~σ2) · ~L + VQ12(r)Q12} · P (2)

where the operators S12 and Q12 are the tensor and quadratic spin-orbit operators (see e.g.
[1] for the definition). The exchange operator P = 1 for hypercharge Y = 0 exchange and
P = −PxPσ for Y 6= 0 exchange (K, K?, κ, K??) where Px and Pσ are the space and spin
exchange operators [6].

The potentials VC etc. are derived from the evaluation of the OBE-contributions in
momentum space [1, 3, 6, 7]. Then, the Fourier transformation can be carried through
analytically.

2



Like in previous works [6, 8] on YN we use SU(3)-symmetry for the coupling constants.
SU(3)-breaking is introduced by allowing mixing for mesons belonging to different SU(3)-
irreps (η−η′, ω−ϕ, ε−S?, P −f) and charge-symmetry-breaking (csb) due to ΛΣ-mixing
which introduces a π−, ρ−, δ−, and A2-potential in the ΛN channel. Further breaking is
introduced by using the physical masses of the baryons and mesons in the potentials (see
[6, 8]).

Finally we add that the calculations of the YN-channels with the present model w.r.t.
coulomb, two-particle kinematics etc. have been performed treating the details exactly the
same way as was done for model D and F [6, 8]. For the masses of the baryons and mesons
we have used the same values.

II. FORM FACTORS, CHANNELS, STATES, AND SU(3)

The form factors at the baryon-baryonmeson vertices are, according to regge-pole theory
[2, 3], of the exponential type i.e. F (~k2) = exp(−~k2/Λ2). These form factors guarantee a
soft behavior of the potentials in configuration space at small distances.

In model F [8] the SU(3)-irreps in the BB-channels are the basis for the scheme of the
short range parameters the ‘hard cores’. We follow the same scheme here except that the
role of the ‘hard cores’ is taken over by the form factors. In these form factors the behavior
is controlled by the cut-off mass Λ. For a review of the SU(3) content of the states involved
see [8]. The cut-off mass in the {27} is fixed in the NN-fit. In summary, we have in YN
three free cut-off parameters: the {8s}−, {8a}−, and the {10}− cut-off mass. Here {8s}
and {8a} refer respectively to the cut-off’s in the {27}+ {8s}− and {10?}+ {8a}− states.

Although from the different weigths of the {27} and the {8s} irreps in the ΛΛ and the
ΣΣ channel it could be justified to use different cut-off masses, it turned out that this was
unnecessary. An excellent fit could be obtained with only one form factor for both channels.
It also turned out that for a fit to the Σ+p data we can use the same cut-off mass for the
{27} as obtained in the NN-analysis [1].

In Table I we summarize the form factor prescription and the values of the form factor
masses which have emerged from the YN-fit.

III. COUPLING CONSTANTS

The values of the nucleon-nucleon coupling constants have been discussed in [1]. The
handling of SU(3) for the pseudoscalar and vector mesons has been amply discussed in [6, 8].
Here we discuss briefly the treatment of the scalar mesons and the ‘diffractive’ exchange.

In the scalar meson nonet the physical ε- and S?-meson are described in terms of the
SU(3)-singlet ε0 and -octet state S?

0 using a single mixing angle θS

|ε〉 = cos θS |S?
0〉 − sin θS |ε0〉

|S?
0〉 = sin θS |S?

0〉+ cos θS |ε0〉 (3)

Note that with this convention, the ideal mixing angle in the q2q̄2-picture of the scalar
mesons is θS = 35.3o [9]. Using these expressions the couplings can readily be expressed
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I Channels States SU(3) irreps Parameter

1 1S0,3P,1D2, ... {27} Λ27 = 964.52 MeV
NN

0 3S1,1P1,3D, ... {10?} Λ10? = 964.52 MeV

1S0,3P,1D2, ... {27}+ {8s} Λ8s = 775.00 MeV
1
2 ΛN, ΣN

3S1,1P1,3D, ... {10?}+ {8a} Λ8a =1248.00 MeV

1S0,3P,1D2, ... {27} Λ27 = 964.52 MeV
3
2 ΣN

3S1,1P1,3D, ... {10} Λ10 =1210.00 MeV

TABLE I. Form factors for the different waves in Y = 1 and Y = 2 baryon-baryon scattering
and the cut-off masses of the YN-fit
.

in terms of the singlet coupling g1, the octet coupling g8, the F/(F+D)-ratio αS, and the
mixing angle θS.

For the ‘diffractive’ exchanges we take the ‘bare’ pomeron as a SU(3)-singlet. The tensor
nonet contains the f0 and the f ′0 which are respectively the SU(3)-singlet and octet state.
Exact SU(3) and unitarity cause a strong mixing between the ‘bare’ pomeron and f0. We
describe this system by P0, which is obviously an SU(3)-singlet. Medium strong breaking
then gives mixing of P0 and f ′0, leading to the physical pomeron P and f . In the NN-analysis
the combination

g2
P = g2

PNN + g2
fNN = g2

1 +
1
3

(4αD − 1)2 g2
8 (4)

has been fixed. There also g8 = gA2NN is fitted. From the expression for g2
P one sees that g1

and αD can be written in terms of gP , gA2NN and an angle that we call ψD. One has

g1 = cos (ψD) gP , (4αD − 1)/
√

3 = sin (ψD) gP /gA2NN (5)

So, in the YN-analysis we have for the diffractive contributions one extra free parameter,
the angle ψD. Another possible relevant free parameter would be θD. Since we have used
the same mass mP for all diffractive exchanges, the results are independent of θD.

IV. RESULTS

1. Parameters. The NN-analysis of [1] is the basis for the OBE-coupling constants we
used. In the calculations reported here, SU(3)-relations are assumed for the pseudo-vector
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mesons {1} {8} F/(F+D) angles

pseudoscalar f 0.18455 0.27204 αPV = 0.355?) θPS = −23.00o

vector g 2.52934 0.89147 αe
V = 1.0 θV = 37.50o

f 0.97982 3.76255 αm
V = 0.275?)

scalar g 3.77486 1.27734 αS = 1.27741 θS = 41.26o ?)

diffractive g 2.85507 0.44372 αD = 1.02267 ψD = 15.50o ?)

TABLE II. Coupling constants, F/(F+D)-ratio’s, mixing angles etc. The values with ?)
have been determined in the fit to the YN-data. The other parameters are theoretical input or
determined by the fitted parameters and the constraint from the NN-analysis.

couplings of the pseudo-scalar mesons, for the Pauli couplings of the vector mesons, for the
coupling of the scalar mesons, and for the pomeron and tensor meson contributions. We
have analysed the low energy YN-data (see e.g. [4, 6, 8] for a description) for all YN-channels
simultaneously: Λp-, Σ−p-, and Σ+p-data. An excellent solution was found which appears
qualitatively even better than the Nijmegen hard-core potentials [6, 8].

The value found for αPV agrees very well with the determination in weak interactions
[10] and that for αm

V is in full accordance with relativistic SU(6) [11]. Note here that αe
V

has not been fitted, but is theoretical input. Another important free parameter is the scalar
mixing angle θS. The fit appears to be very sensitive to this parameter. We obtained
θS = 41.26o. This is rather close to the ideal mixing for scalar mesons, mentioned above.
In the region where the data can be fitted successfully the Σ−p elastic and inelastic cross
sections dependance on θS is rather steep. For the angle ψD we found 15.5o.

In Table II we have listed the information on the coupling constants. Here all couplings
refer to rationalized couplings i.e. they should be understood to be g/

√
4π.

2. Λp-Scattering. The low energy Λp scattering data can be fitted excellently by various
sets of s-wave singlet and triplet scattering lengths. We found a significant influence from the
coupled ΣN -channels, even on the scattering lengths. The fit to the Λp-data is displayed in
Figure 1. We find a total χ2 = 3.6 for the 12 Λp-cross-sections. The fit has for the Rehovoth-
Heidelberg data [12] χ2 = 1.1 and for the Maryland data [13] χ2 = 2.5. The p-waves have
been included in the fit, but are rather unimportant. In our solution the 3S1 (Λp)-phase
shift does not resonate below the Σ0n-threshold: the 3S1-eigenphase shift reaches 64o at
threshold. The scattering lengths a(Λp) and effective ranges r(Λp) are

1S0 : as(Λp) = −2.696fm , rs(Λp) = 2.951fm
3S1 : at(Λp) = −1.507fm , rt(Λp) = 3.039fm
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FIG. 1. Λp cross-sections and experimental data

Note that the difference between the singlet and the triplet scattering lengths is larger
than in our former analyses using the Nijmegen hard-core models D and F . The effects of
the charge-symmetry breaking seem rather small.

FIG. 2. Σ−p elastic and inelastic cross-sections and experimental data

3. Σ−p-Scattering. The fit to the Σ−p-cross sections is given in fig. 2. For 18 cross section
data [14, 15] we have χ2 = 12.8, where the Σ0n-cross section at plab= 110 MeV contributes
6.1. At the same time the capture ratio at rest has the value rR = 0.4676, which is almost
equal to the average experimental value rR = 0.468± 0.010 [4].

4. Σ+p-Scattering. The form factor needed for 1S0 (Σ+p) could be taken equal to the
1S0 (pp) form factor. Despite this imposed equality, we obtain a perfect match to the
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Σ+p-cross section data [15]: χ2 = 0.1. The scattering lengths and effective ranges are

1S0 : as(Σ+p) = −3.713fm , rs(Σ+p) = 3.255fm
3S1 : at(Σ+p) = 0.299fm , rt(Σ+p) = −20.58fm

All the p-wave phase shifts are rather small, in contrast to the D and F model, which have
large 1P1-phases around plab= 420 MeV.
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