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Abstract

The partial wave projection of the Nijmegen soft-core potential model in
momentum space is presented. The given formulas are quite general and ap-
ply to NN and YN as well. Moreover, as an important future application,
the Nijmegen phase shift analysis can be made available to momentum space
computations through the momentum space transcription of a Reid-like po-
tential based on soft-core potential functions. Results are shown grafically in
three-dimensional plots for various partial waves in the case of NN.
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I. INTRODUCTION

For nucleon-nucleon [I] and hyperon-nucleon [2] scattering we have shown that a soft-
core One-Boson-Exchange (OBE) model, based on Regge-pole theory, gives an excellent
description of the NN and YN data. These so-called soft-core models were evaluated in
configuration space through a fit to the data. In order to make the soft-core models also
available in momentum space we present in this paper the explicit formulas for that purpose
on the LSJ-partial wave basis. Perhaps an even more important motivation for this partial
wave analysis is to make the Nijmegen phase shift analyses [3] directly applicable in momen-
tum space as well as in configuration space calculations. For the latter there will be available
soon a Reid-like potential [1] based on the Nijmegen soft-core nucleon-nucleon potential [5].
With the results of this paper the momentum space counterpart can be constructed readily.

The contents of this paper are as follows. In section II we review the definition of the
OBE-potentials in the context of the Lippmann-Schwingerequation. We introduce the usual
potential forms in Pauli spinor space, where we include the central (C'), the spin-spin (o), the
tensor (77), the spin-orbit (SO), the quadratic spin-orbit (Q)12), and the antisymmetric spin-
orbit (ASO) potentials. To make this paper self-contained we give in section III the OBE-
potentials in momentum space for pseudo-scalar, vector, scalar, and diffractive exchanges.
In section IV we perform the basic partial wave projections, in particular those for the
spinor invariants. The partial wave basis is chosen according to the SYM-convention [6]. In
sections V-VIII we give the explicit momentum space partial wave potentials for respectively
the pseudo-scalar-, the vector-, the scalar-, and the so-called diffractive-exchanges. In the
latter we include the pomeron- (or multi-gluon-) exchange as well as the J = 0-components
of the tensor-meson exchange. In section IX the exact relation between the configuration
space and momentum space potentials in the case of the quadratic spin-orbit operator ()12
is discussed for the Nijmegen soft-core models [I, 2]. Here the explicit corrections due to
the difference between the Ps = (o1 - n)(o3 - n)- operator and the Fourier transform of Q12
are given. Finally in section X we discuss the tests performed on the formulas of this paper
and give the results for the lowest nucleon-nucleon partial waves.

Appendix A contains sets of expansion coefficients in z = cos 6 for the potentials of the
different exchanges. Appendix B contains partial wave matrix elements of several important
operators. In appendix C the details are given of the Fourier transformation of the ()qo-
potentials. Finally, in appendix D coefficients are given for the partial wave projection of
the quadratic spin-orbit operator. The latter are introduced to make the expressions for the
potentials less cumbersome.



II. POTENTIALS FOR THE Lippmann-SchwingerEQUATION

We consider the nucleon-nucleon or hyperon-nucleon reactions
B(p1,s1) + N(p2, 52) — B'(py, s1) + N'(ph, 85) - (1)

where B is either N or Y. Like in [7], whose conventions we will follow in this paper, we
will refer to B and B’ as particles 1 and 3 and to N and N’ as particles 2 and 4. The four
momentum of particle i is p; = (E;, p;) where E; = /p? + M? and M; is the mass. The
transition amplitude matrix M is related to the S-matrix via

(fISl) = (fli) — i(2m)*6* (P — P){fIM]i) , (2)

where P, = p; +py and Py = p} + p), represent the total four momentum for the initial state
i) and the final state |f). The latter refer to the two-particle states, which we normalize in
the following way

(P}, PoIp1. Po) = (2m)°2E(p,)6° (D) — py) - (27)*2E(py)8* (P, — py) - (3)

Three-dimensional integral equations for the amplitudes (f|M]i) can be derived in vari-
ous ways. See for example references [7]-[10]. In [¢] the derivation is based entirely on
two-particle unitarity and the analyticity properties of the amplitudes, using the N/D-
formalism. In the latter approach the in essence Regge pole nature of meson-exchange can
be apprehended most easily. The equation obtained with this method is

Mfi(quy% ) = Wfi<qf7qi;8) +

+Z/ an qukn;S)GO(kn75)an(kn7qu) ) (4)

where q; and q; denote the initial and final state momenta, and

1 Ey(k) + Ey(k) [ — (Ey(K) + E»(k))* + is]_l : (5)

Golks s) = 3 By (k) Es (k)

with s = (Ei(p) + E2(p))?. This follows from equation (4.27) in [$]. The same equation
has been derived, for example, by Gersten, Verhoeven, and de Swart [9] in the context of
the conventional approach which uses the Bethe-Salpeter equation. Also in [3] it is shown
in detail that in the Regge pole approximation the pseudopotential (f|W]i) corresponds
to OBE-exchange amplitudes with form factors at the BBM-vertices. Beyond this, one
may consider the OBE-approximation more generally as an effective way to represent the
exchange amplitudes for all allowed quantum numbers. In order to arrive at a Lippmann-
Schwingerequation, one chooses a new Green-function g(k;s) which satisfies a dispersion

relation in p?(s) rather than in s [7]. Then one obtains
o6si5) = 5 (K = g i) (©
SR AR R



where q,, is the on-energy-shell momentum. This Green-function is eventually used in the
integral equation (4) instead of Gy(ky;s). So the corrections to (f|W|i) due to the transfor-
mation of the Green-functions are neglected. They are of higher order in the couplings and
are usually discarded in an OBE-approach. With the substitution of g for G, (5) becomes
identical to equation (2.19) of [7]. From now on we follow section II of [7] in detail. The
transformation to the non-relativistic normalization of the two-particle states leads to states
with

(P1, 81 Py, $5[P1, 515 Do, 52) = (27m)°0° (P — P1)0° (P — P2)ds 1051 - (7)
For these states we define the T-matrix by
(FIT}i) = {4praa(Es + Ea)} 3 (f1Mi) {4pma(Ey + E2)} 2 (8)

where j115 and pgy are the reduced masses for respectively the initial and final state. Then
we get from (4) the Lippmann-Schwingerequation

(3,41T11,2) = (3,4V|1,2) +

3k, 2liny no
2/ 341V I, o) 5~ malTL2) (9)

where analogously to (8), the potential V' is defined as
(FIVIE) = {4psa(Bs + E0)} 2 (FIW i) {dpa( By + E2)} 2 (10)

Using rotational invariance and parity conservation we expand the T-matrix, which is a
4 x 4-matrix in Pauli-spinor space, into a complete set of Pauli-spinor invariants (see for
example [2, 11])

8
Z qf)qqu qf) P (11>
a=1
Introducing
1
qzi(qu‘f‘qz‘)y k=q;—q;, n=gq;,xq;=qxk, (12)

we choose for the operators P, in spin-space

P =1 P,=01-02
= (01 -k)(o2-k) — (01 02)k> Py=i(o1+03)n
= (o1 -n)(o2 - n) Ps=%(04—02) m (13)
= (01-q)(02-k) + (01 -k)(02-q)
= (01-q)(02-k) — (01 k)(02-q)
Here we follow [2], where in contrast to [1], we have chosen P; to be a purely ‘tensor-force’

operator.



In the OBEP-approximation only second-order irreducible diagrams contributing to the
kernel i.e. W = M"™® are included. Similarly to (11) we expand the potentials V. Again
following [2], we neglect the potential forms P; and P, and also the dependence of the
potentials on k - q . Then, the expansion (11) reads for the potentials as follows

V= 26: Va(k* q?) P, . (14)

a=1



III. ONE-BOSON-EXCHANGE POTENTIALS IN MOMENTUM SPACE
For completeness we will present the NN- and YN-potentials as derived in [1] and [2].

The local interaction Hamilton densities for the different couplings are
a) Pseudoscalar-meson exchange

ey = 22 finsvloner (15)

b) Vector-meson exchange
Hy = gv i)l + 11 [owv](0°0) — 0°6F) . (16)

¢) Scalar-meson exchange
Hs = gs[Vv]os . (17)

where 0, = [y,,7]/2i and mg and M are scaling masses. In [I] and [2] the latter were
chosen to be the charged pion mass and the proton mass, respectively. The vertices for
‘diffractive’-exchange have the same Lorentz structure as those for scalar-meson-exchange.
Including form factors f(x’ — x), the interaction densities are modified to

Hy(x) = / &P f(x' — x)Hx(x') | (18)

where X = PV, VS, or D. Because of this ‘convolutive’ form, the potentials in momentum
space are the same as for point interactions, except that the coupling constants are multiplied
by the Fourier transform of the form factors.

The OBE-potentials were obtained in the standard way (see e.g. [1] and [2]) by evaluating
the NN-interaction in Born-approximation. We write the potentials V,, of (14) in the form

Vo(k%q?) =Y 0K, q%) - AN (K2, m? A?) | (19)
X

where X = P, V, S, and D (P = pseudo-scalar, V' = vector, S = scalar, and D =
diffractive). Furthermore

1 2
AP (K2 m?2, A2) = e ek /a2 (20)
for X =P, V, S, and
1 2
AN (AP, m2, A2) = We_k /(am) (21)
for X = D In (21) M is a universal scaling mass, which is in principle different from the one
introduced in (16). In the YN-model [2] M was taken to be the proton mass [12]. The mass

parameter mp controls the k*-dependence of the pomeron-, and the J = 0-components of
the f-, f’-, and As-potentials.



In [1] and [2] the following contributions to the different Q%) were derived:
a) pseudo-scalar-meson exchange:

2 2
(P)__fPka __PP( k )
= 592 — — Y139 Tons s
13243771% 13524

12M13 Moy
1 1
Q(P):_PP :_PP< ) 29
3 f13f24m%’ 913924 44M13M24 ( )

We have also included here the expressions for the PS-coupling for completeness.
b) vector-meson exchange:

k? 3q°
V) — { vy, (1 — +
! J1a%24 S8MisMoy  2Mi3 Moy

K2 2 'S
vy K Ly y XK vey >
913f244MM24 13924 AMDMs + fia /2 16M2M13M24}

2

M k
ng) = {(9}/3, + fﬁﬁ) (924 + f24 M > Mg SM?2 } /(4013 M)

v M3 Moy
Qé(l ) = {12913924 + 8(913f24 + f13924)T
v 3K

—f13f24M2 /(8 M3 May4)
% M3 Moy
Qé ) = — {9¥3924 + 4(913f24 + f13924)T

M13M24
8f13f24 /(16M123M224)

2 2 2
V) _ vV Vv vy K (M24—M13)
Qg ' =— { <913924 + fi3.f21 4./\/12) AM 3 Mo

M3 M.
_(gxafm f13g24> W}/(MISM%) (23)

¢) scalar-meson exchange:

O — g8 48 (1 n Kk? - q’ )
18724 8M13M24 2—]\413J\4'24

s 1
Qﬁ(l ) = _9539234 <2M13M24>

7



g 1
Qé ) = 91S39§4 (16]\4123]\/@1

2 2
s M2, — M
Qé ) - _953954 ( 427‘4{123 A [22i3> (24)

d) ‘diffractive-exchange’:
The QP are the same as for scalar-meson-exchange (24), but with g5,
replaced by Fglgd).

In the expressions for QF QY and Q° given above, M;3 and M, denote the average
baryon masses, respectively My3 = (M + M3)/2 and My, = (My + My)/2, and m denotes
the mass of the exchanged meson. In deriving these formulae for the (’s there is used
1/M3% + 1/M% ~ 2/My, M3, which holds to a very good approximation for NN and YN
scattering.

In case of the strangeness carrying exchanges (K, K*, k, K**) the rules for the modifi-
cation of (22 - 24) have been given in [2, 7]. In these cases one must make in (22-24) the
substitutions My, My — (My M N)l/ 2 and because of the exchange character add an over-
all minus sign. In the case of the K* one has furthermore to add the contribution of the
second term of the vector-meson propagator, see [2], equation (26).

From the €0,’s and writing

1
K =q+a = 2002 o = (¢ +a +20s0:2) (25)

where z = cosf, one sees that the potentials can be written in the form
VoK, @) = (Xo + 2V + 222, ) - AMV (K2 m?, A?) . (26)

This holds, obviously, for the contributions of each of the different types of exchange sep-
arately. In the following we will work out the latter explicitly. For each type of exchange,
the coefficients X, Y,, and Z, can readily be read off from the ,’s. The results for
X =P, V, S, and D are listed in appendix A.



IV. PARTIAL WAVE ANALYSIS

The basic partial wave projections needed are

UL(F,x) = ;/_:1 dzw ,

Ru(F) — ; / :1 d=Py(2)F(2) |
SL(F) = ; iz 2 PU)F(2) (27)

where the form factor F'(z) and x are

Gt +m

F(z) =exp (—kg/A2> , 244

(28)

with m the mass of the exchanged boson. For A — oo, i.e. F'(z) — 1, the projections (27)
become

1
Un(l,2) =Qr(x) , Ry(l)=0dr0 , Si(l)= §5L1 : (29)
Writing
6
V(qf7 qz) = Z Va(Qf> qz) (qf‘POl‘qz) ’ (30)
a=1
the partial wave expansion of the V,-functions reads
Valay, q;) = Z (2L +1 VLa (x) Pp(cos®) . (31)

Using (20) and (26) the partial waves VL(O‘) (x) for X = P, V, S become

Vi (z) = (Xa +aVa + 2% Za) Uy — (Yo + 2Za) Ry, — ZaSy (32)

2qiq5
and for X = D

Vi (z) = (Xo Ry +Y.5;] . (33)

1
M2
In the last expression we have used the fact that in this case there does not appear a z?-term
in the potentials.

Distinguishing between the partial waves with parity P = (=)’ and P = —(—)’, we
write the potential matrix elements on the LSJ-basis in the following way (see e.g. [11],
section VII):

(i) P= ()"
(Qf;L/S/J,M,| V |q1,LSJM) =A4r VJ’+(S/,S)(5J/J 6M’M 6L’L . (34)

9



(qp; L'S'TM'| V |qs; LSTM) = 47 8315 Spprar 0505 V'~ (L, L) (35)

For notational convenience we will use as an index the parity factor n, which is defined by
writing P = n(—)7. The P = (—)’-states contain the spin singlet and triplet-uncoupled
states(n = +), and the P = —(—)”-states contain the spin triplet-coupled states (n = —).
In the soft-core model [1] the spin singlet-triplet transitions are neglected. This because
in NN the mass differences are small and g{3f), — flags, = 0, one can neglect Vi and hence
the spin singlet-triplet transitions. However, for the hyperon-nucleon and cascade-nucleon
channels this is not the case and these transitions can be significant, especially in hypernuclei
[13]. Therefore we include the corresponding potentials in this work. Below we list the partial
wave matrix elements for n = + for the different V* P,, (o = 1,....,6). Here we restrict
ourselves to the matrix elements # 0.
1. central P, = 1:

(qr; L'S' T M|V Py |qi; LSTM) = 47 605 Spprns YL S L S) (36)
with  F(L S L S) =61 055 ViV (2)
2. spin-spin Py, = o1 - 03:
(qp; L'S' T M|V Py|qi; LSTM) = 47 805 Spprns Fy"(L' S, L S) (37)
with  Fy"(L' 8',L S) = 61095 [25(S + 1) — 3] VP (z)

3. tensor Py = (o1 - k)(02 - k) — (01 - 02)k™:

8
(q7; L'S" T M'|V® Ps|q;; LSTM) = ?ﬂ(quv +2) 805 Oarns F5(i 5) (38)

where i = S" and j = S for n = +, respectively i = L' and j = L for n = —.
(i) triplet uncoupled: L=L"=J, S=5" =1

(39)

1 2 3 2J —1
) = [V = Deinag (200 4 20 vin)

2J+1 771 2 +1

(ii) triplet coupled: L=J+1, L'=J+1, §=5 =1
J-1
2] +1

20J =3 3 2J4+1. 4
% {QJ— 1VJ( '+ V"()QH

Fy(J—1,J-1)

1
{—v}?”l + 5 sin 2y

J(J+1)

Fl=(J -1 1) =—
3 (J=LJ+1) s 2J + 1

[— sin 21 VJ(S)+
+ ((3052 wVJ(i)l + sin? wVJ(i)lﬂ

10



J(J+1)
2J+1
(sm2 @/}VJ |+ cos? J(i)l)}

J+2 @ , 1.
2T+ 1 {—VJH + 58111277/1-

2J +5 (3) 2J +1 (3)}
% v
X{2J+3 ARy ELE

F(J+1,J-1)=— [~ sin2y VP+

Fm(J+1,J+1)=

where we introduced

siny = a1

VG @

cosy =

\/qf +q
4. spin-orbit Py = (01 + 03) - n:
(g5; L'S' T M|V Py|qs; LSTM) = 47 qrqid gy s Fi (3, )
(i) triplet uncoupled: L=L" =J, S=5"=1
Fi(1,1) = - (VJ(4—)1 - VJ(fli-)1> /(2] +1)

(ii) triplet coupled: L=J+1, '=J4+1, S=5"=

_ J—1
Fl=(J=1,J-1)= ((2J_1)) (Vi = v

- J+2
F{(J 41,0 +1) = ((2 T 3)) (V)" = Vi)

5. quadratic-spin-orbit Ps = (o1 - n)(o2 - n):
(a5 L'S"J M|V P|gis LSIM) = dmqia; 80505 (i 5)
(i) singlet: L=L'=J, S=5=0
F™(0,0) = ((J5o+) 2, + f(5+ 3 +9(()0 Vﬁé
(ii) triplet uncoupled: L=L"=J, S =5 =1
F(1,1) = §51+ Vi, + f(5+ ¥+ 91 i VJ+2
(iv) triplet coupled:
Fr-10-1)=eP), v 400 v 4 g0 vE
5 ; J-1,0-1 V-3 J1J1 J-1 1,J-1 J+1
B, 0F1) =157 Vit - v
5,
ST+ LT+ = €EI+1 i Vi + fJ+1 1 Vi + 9J+1 1 Vids

11
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5

. 5
where the coefficients e S/’;) and e(L,” L)

etc. are given in appendix C.
6. antisymmetric spin-orbit Pg = %(0'1 —03) n:

(qp; L'S'J' M'|V'© Py|qi; LSTM) = 47 q7qi6 oy Spprns FoS"(S', S) (49)
(i) singlet-triplet uncoupled: L =L =J, S=0, §' =1

J(J+1)

F{™(1,0) = F™(0,1) = ECYEE

(Vi% —vih) - (50)
With the matrix elements of this section, the partial waves for the potentials can be readily
derived. This will be done in the next sections for the pseudo-scalar, the vector, the scalar,
and the diffractive potentials. Henceforth, we will use the following shorthand notation [5]
for the potentials:

(i) P = ()"

Vo = V770,00, Vih=V"%0,1)
Vi =VIH(L0) . Vi =V (51)
(i) P = ~(=)’
V=V -17-1) , Vy=V'(J-1J+1)
Vii=ViT(J+1,J-1) , Viy=ViT(J+1,J+1) (52)

where it is always understood that the final and initial state momenta are respectively ¢
and ¢;. So Vd,]o = %{0((]}% q;) ete. Since

Violar, @) = Violai,ar) » Vih(ar @) = Vils(ai ar) (53)

we will give in case of the off-diagonal terms only the explicit expressions for %{2(qf, ¢;) and
‘/lJ3 (qf7 QZ) .

12



V. PSEUDO-SCALAR-MESON POTENTIALS

With the coefficients X(") and Y,() of appendix A, the basic partial wave projections
are

1
V@) - X (P) y(P) Fx)—Y® F
L (SL’) 2Qfo [( o +x o ) UL( ,I) o RL( )}
1
Vi @) = g0 X1 Uu(Fa) (54)

The momentum space partial wave potentials are

Vil (P) = =127V

- 2
Vé,]z(P) = dm [VJ( )+ g(qJQf +q7) {VJ(T)_

| 27 +3 27 — 1
—sinw( oy V}?l) H

2 20J+1 77V 2741
o 2 J_ ]_
V(P = 4n VIO + 2@+ ) o -V

1 . 2J —3 (T) 2J+1 (T))}
~ sin2 v
Ty w(2J—1 IRV

J(J+1
2J + 1

+ (0082 (0 VJ(T)l + sin’ ¢ VJ(J:C)lﬂ

V%, (P) = =87 (% + 2) [~ sin2y Vi"4

o 2 J+2
V}+)1+§(q}2c+q?) 571

2J+5 (T) 2J+1 (T)> }}
v v 55
><(2J+3 RIS Y A (5)

1
‘/:;{3(P> = dm {—V}JTr)l + 3 sin 21)-

13



VI. VECTOR-MESON POTENTIALS

With the coefficients X(V), V() and Z(") of appendix A, the basic partial wave projec-
tions are
1

Vi) = v (X7 + 2 + 2228 UL(F o) — (Y +225)) -

xR (F) — 25 81(F))|

, 1
Vi) = Gy (X 4+ 2¥¥) + 2?20 U (F, ) — (V) + 22()) -
xRy (F) — Z{"8y(F))

1

V@) = g (7 4+ o) Uu(Fia) - Yr O Ru(F)]

VEOw) = 5 (X85 + YA ) UulFo) = Vi Ru()

Vi) = gq, X8 UutF

Vi () = 2;% (X560 + 2YA5)) UL(F,x) = Yigh R (F)] (56)

The momentum space partial wave potentials are

Vio(V) = 4 [(VJ(C) - 3VJ(U)> +4}q; (eo 0 Vg + fo5 v+ 9(()50Jr V}%ﬂ

J(J+ 1) ASO ASO)
Via(V) = dmapaiy o (VA7 = Vi)
o2
Vih(V) = dn {(VJ(C) + V) + 3la;+ q)-
T 1 . 2<]+ 3 T 2J -1 T
8 {VJ( = gsin2y (2J+ ARy 1‘/}*)1)}

SO SO
—gpa (V20 = VD) /(27 + 1)

(5, (5, 5,
+quz( ") VJ 2+f11+) VJ +9§ 1+ VJ+2)}

C o 2 J—l
VAWV = |(VIQ+ VD) + 2+ a) 5 {-ViD+
1. 2J —3 (T) 2J+1 (T))}
~ §in?2
tgsm ¢(2J—1VJ T 1V

14



+apai (= 1) (V2D = vi¥) J(2g - 1)

+q;4; (efl 1,7-1 ViS4 127 1J LV + 68 1,J-1 VJ+1)}

J(J+1

. T
26 +47) oy {-sin 2y

Vis(V) = —4r

(cos (0 VJ + sin® ¢ VJ+1>}

+@¢ £ (VIS -vi9)]

2 J+2
Vi3 (V) = 4m {(VJ(JC:% + VJ+1> 3((]]20 +4q7) 27 11

1. 2J+5_ 1 2J+1 (T)>}
L sin2 v v
tosm ¢<2J+3 Y A

—qpq; (J+2) (V;° = Vi) /(27 + 3)

{-vio+

Q 5
+ajq; <€S+1 i Vi + fJ+1 1 Visd +9(J+1 J+1 VJ+3>]

15
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VII. SCALAR-MESON POTENTIALS

With the coefficients X*) and Y, of appendix A, the basic partial wave projections are

c 1 S s S
Vi) = Y (X&) + aYE) UL(F,2) = Y5 Ry(F)]
1
Vi) = XS Up(F
L (95) 24ias SO L( ,x)
1
7 () 2q;q; o UL, z)
1
VA5 (1) = X UL(F, x) (58)
2q;q;

The momentum space partial wave potentials are

Vio(S) = 4 {V( )+quz <€oo+) 125 2+f(5 V94 00 VJ+2>}

J(J+1)
Vih(8) = dmqsqit———— (Vi) = Vi)

2J+1
Vih(8) = am [VI9 = qpq: (V7 vﬁ@) /(2] 4+ 1)
+quz (@11 VJ 5+ fl ( )+91 1+) VJ+2)}

VA(S) = 4 (VIS + qras (7 = 1) (V}ED) = Vi) J(20 - 1)

+a7q; (e(Js 1,J-1 Vi + 1 1J L VIS g 1.J-1 VJ(+1”
‘/1{3(5) = _47quQz fJ+1J 1 (VJ(—% VJ(?D
Vi (S) = 4 [VI9) — qpas (7 +2) (Vi°9 = VIED)) f(27 + 3)

+qja; (65+1 i VI + fJ+1 1 VIS + gfﬂrl J+1 VJ+3>} (59)
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VIII. DIFFRACTIVE POTENTIALS

With the coefficients X(*) and Y, of appendix A, the basic partial wave projections are

Vi) = o X RE) + Y Sy(F)]

V) = o XD Ru(F)

Vi) = o X Ru(F)

VIS ) = o X RulF) (60)

The momentum space partial wave potentials are
VE){O(D) = 4w [V(C) + 9]20%'2 (6(()5,)6 v + fo (Q) + 9% 0+) VJ—i—%)}
Viy(D) = dmqpq; (V(ASO) ij_lfo ) /(2] +1)
Vily(D) = dm [V = qpq; (Vi2D = Vi*) /(20 = 1)
+quz ( ?H VJ 5+ It Y VJ +9§51+ VJ+2)}
V(D) = 4r Vi + qrqi (J = 1) (V25 = V%)
+4}q; (651 1J-1 V9 + 157 1,J-1 V9 + g7 1,J-1 VJ—H)}
V(D) = —drgiq? 177 (Vi - Vi)
Vis(D) = dr [Vi% = qa (7 +2) (Vi™ = ViEY) /(2] +3)

Q) 5
+Q?‘Qi <GS+1 J+1 VJ + fJ+1 J+1 VJ(—H + 9§+1 J+1 VJ+3)} (61)
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IX. QUADRATIC SPIN-ORBIT POTENTIALS

In [1] and [2] the potential in configuration space has for the quadratic-spin-orbit the
(Q12-operator. In going from momentum space to configuration space by the Fourier trans-
formation, several non-local terms were neglected at this point. In order to reproduce the
results of [1] and [2] exactly in momentum space, we must evaluate the inverse Fourier
transformation for the )1s-operator. This inverse Fourier transformation is carried through
explicitly in appendix D. There it appears that upon Fourier transforming the soft-core
potentials V(r) Q12 for the different exchanges one gets the result that

Vo(k,q) = Vs(k*) Ps + AVp(k,q)

AVg(k,q) = — {2(S- q)(S - a) —i(ay x q;) - S} §(k*)
+{o1-02+1} (q;-q;) §(k*) (62)
From appendix C it appears that the relation between §(k*) and Vs(k?) is given by

1 1
dg(i) /i = 3 V(%) = 5 3 QFV AN, m? A%) (63)

X

since Q5 does not depend on k2. In order to obtain the exact momentum space potentials
corresponding to the soft-core ones, we must include in addition to those given in the fore-
going sections, also the contributions due to AVQ(k, q). With the results of appendix B and
C, the partial wave projection of AVg(k, q) can be written down straightforwardly. We find
(i) vector-meson:

AV(V) = —47 qpq; X (7357 + (T + 1>gf¥+>1)} (F.z)

—

_ 2J2 - J+1
991)2 + v

1
AV = am gpq X§ {o (<380 + 300 | (R
{2J—1 27 —1)(27 + D }(F’I)

AV (V) = dm g X§) V2

2J24+5J+4) oy J+2 v
AVE(V) = dr g XV ( V) v | @
3,3( ) T qrqi Ag (2J+1)(2J+3)9J 2J+39J+2 (F,x)

(64)

(ii) scalar-meson:

S ~(S ~(S
AV(S) = —47 apas X5 {5 (7352 + (T + 1) } (P
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s 1 s
AVh(8) = arqga X§ {5 (<38 + 3) | (P
J—1 2J2 —J+1
AVY(S) = 47 qra X3 35 g (F,
2./J(J+1)
J _ () (5)
AVM(S)— AT qrq; XQ 27+ 1 J (F> )

(2J2 +5J + 4) ~(s) J+2 ~(S)
F
e Targatie( (Ba)

AVIL(S) = 47 qrq; X5 {<

(65)
(iil) diffractive:
2
AVgo(D) = —4m q54; XégD) {2J+ 1 (JQJ L+ (J+ )gﬁr)l)} (F, )
1
AVY,(D) = 47 gpg; X {2 1 (9% +gff+))1)} (F,)
ol J—1_p 2J2—J+1) _op
AVED) = am aga XS i | ()
2. /J(J+1)
AV4(D) = 4w gsq; Xé?D)TH gy (F, x)
2J2 +5J +4) J+2
AV(D) = ar g x| 55" St (F
(66)

The connection between g; and the VJ(Q) is rather simple as can be seen from appendix C.
In fact for J # 0 one has

41(w) = 575 [ (@) = Ry ()] (67

where h J+1 is given in (C8). Using this relation it is straightforward to check that the
contributions from the quadratic spin-orbit operators to the sum Vi/(X)+AVZ (X) vanishes.
This is in accordance with the fact that the ()12-operator has no off-diagonal matrix elements
in configuration space.
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X. CONCLUSION AND RESULTS.

The formulas given in this paper have been checked numerically in two steps. First
we have constructed a momentum space program for plane waves using the formulas of
section III. Doing the Fourier transformation to configuration space numerically we recovered
the potentials of [I]. Then, we have computed the amplitudes Mgg, M/, of [6] by the
summation of the partial waves using the formulas of sections IV-IX. These checked with
the same amplitudes as computed by the above mentioned plane wave momentum space
program. Apart from this, Gibson and Stadler [1] have solved the partial wave Lippmann-
Schwinger equation, using our computer code based on this paper, and reproduced the phase
shifts of [1].

In Fig’s (1-11) we show in 3-dimensional plots and in the corresponding altitude charts
the lowest partial wave nucleon-nucleon potentials in momentum space. Horizontally, ¢; and
qs are plotted logarithmically in MeV from 0 to 10°. The potentials are plotted on the
vertical axis in units fm?. These partial waves are the exact momentum space counterparts
of the soft-core Nijmegen model [1].

Finally, we mention that computer programs are available on request.
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APPENDIX A:

(i) Pseudo-scalar-meson exchange:

q;+q 2q7q;
—f13f24<fm ) ) YU(P) = f13f24< ! )

S S

. 1
) = — [isfa1 <mg>
s

(ii) Vector-meson exchange:

2 4 2 2 4 2
I+ 4 Moy \ (45 + 4
X(V) — 1 fUE ) ( V.V > fr i
913924( + AM 3 Mo, 13f24 /\/l +f13 924 M AM 3 Moy

ey (47 +a})*
13724 16 M2 M3 Moy

; v M M. qrq;
vV _ Vv ( qr4i ) < 13 vV 24) ( 14 )
c 913924 Mys Moy 13f24 M J13924 M M3 Mo

1324 AM? \ MysMyy,

2 92
— vy qrq;
324 e N LM,

M v M. G+ q
X:(FV) _ {(QY;), + fl‘gj\/lf) (924 + o j\/214> fisfa gMQ }/(4M13M24)

(V) _ V eV drd;
Yp ' = f13fz4m

vy M3 Moy VCIf q2
Xso = 12913924 + 8(913f24 + f13924) Mz 3f13f24 M2 /(8 M3 Ma4)

1% qrdqi
Yio) = —3f¥3fﬁm

V M13M24

M
\% 13
Xc(,g — {9}/3924 + 4(913f24 + f13924)T + 8f1‘§,f2‘2 M2

} J(16M2M2)

2 2 2 2
” q ‘|‘ (.ZZ M — M
X,(45)O = — { <913924 + f13f2‘fl £M2 > < 45\4/[13]\/[213)

M3 M-
- (9%]024 f13924) jf/lQ = } [ (Mi3Mo4)
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. M2 _ M2
y V) v 74 24 13
ASO +f13 24 2M2 4M123M224

)

The spin-spin coefficients are given in terms of the X}V etc. as follows

2 4 2
vy _ _“ (.2 2\ (V) vy _ F_ o ox(V)_ 2 (2 2\ (V)
Xoh =3 (qf+qi)XT o Yo = swa Xy — g (qf+ql-)YT
4
ZLS—V) — gqqu YJEV)
(iii) Scalar-meson exchange:
X© 8,8 v _ SS(qui>
c 913924 » fo 913924 O M3 Moy
1 1
X(S):_ss< > X©) _ 8,8
S0 913924 9 Moz Moy y AQ 913924 16M123M224
M2, — M?
x) 8,8 (224 — M3
ASO 913924 AMZME,
(iv) Diffractive exchange:
xP _ DD ’ (D):_DD<qui>
c 913924 c 913924 O M3 Moy
1 1
X _ DD< > x® _ _,p,D
sSo 913924 2 M3 Moy o) 913924 16 M2 M2,
M2, — M?
D
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APPENDIX B:

The spherical wave functions in momentum space with quantum numbers J, L, S, are
in the SYM-convention [(]

b JLS yLey
where x is the two-nucleon spin wave function [15]. Then
i L SJ
(S D) Vihs(p) = —VBi () 1\ | 1 10| ()

L-151J

L SJ

L+1 A
L+1SJ

(B2)

where the 9j-symbols differ from [16], formula (6.4.4), in the replacement of the 3j-symbols
by the Clebsch-Gordan coefficients and by leaving out the mgs-summation (see [17]). Work-
ing this out explicitly, we find

(S-p) y%—u(ls) =—tay y%1(15)
(S : f)) y%—‘rll(f)) = 1by y%l(f)) (B3)
(S-p) y%} (D)= iay y%—n(f)) —iby y%+11(f)) )

where

J+1 A
27 +1 ’ TV 2u+1

ay = — (B4)

Ordering the states accordingto L =J —1, L =J, L = J+ 1, we can write in matrix form

L =J-1 L =J-1 0 da; O
J+1 J+1 0 —wy; 0

Similarly, using for —i(q; x ;) - S for sperical components the formula

e 4 .
il X @) = 5 V2 Ol Vi (@)Y (@) | (B6)

one can work out the partial wave matrix elements involving this operator.
From the results above one can derive the following useful partial wave projections for the
spin triplet states:
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atViy 0 —azb;Viy
(L'1J|V(K*) (S-q,)° |L1J) = 4x 0 V; 0
—asb; Vi 0 b3V
a?Viy 0 —azb;Vig
(L'1J[(S - a;)°V(K*)|L1J) = 4n 0 Vy 0
—asb;Viy 0 B3V

CLQJVJ 0 —ayb;V;
(L'1J[(S - a,)V(K*)(S - q,;)|L1J]) = 4n 0 a2V +03Vi, 0
—CL]bJV] 0 bng

and

(J=1) (Ve =Vy) , L=L=J-1

N N 47
(Lllj‘ - Z(qf X ql) . SV(kQ)‘Llj) = m - (Vj_l - Vj+1) s L= L/ =J
—(J+2)(V; = Vi), L=L=J+1
(B7)
Using the identity
(o1 -a)(oy-a) =2(S-a)? —a?, (B8)
the tensor and the quadratic spin-orbit operators can be written as
. 1 1 2 ~ 2 ~
(l)Pg = (O']_ . k)(az . k) — 5(0'1 . 0'2) = g |:qZ SlQ(ql) + qf SlQ(qf)i|
. 4
~4(S-a) (S-a,) +2i (a5 x q;) S+g (a - a,) * (B9)
2
(ii)Ps = [o1 -k x q] [o2 - k x q] = (28 = 1) (q; x q;)
+2 [(S : qf) (S-q;)—i (qf X qi) -S] (qf : qi)
A 2 A
—2¢%q; [(S cdp) (S a)?] (B10)
where the momentum-space tensor-operator S is defined as
S12(p) =3(01-p)(o2-P) — (01 02) . (B11)

For the evaluation partial wave projection of the Ps-operator we need in addition the matrix
element
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L’+L—1

1rQl 7/ A2 k2 — 4 2 2 / / ’
(L'S"J'|a*V(k*)|[LSJT) = 4mwqsq; 05,501 105" s 2(2L "L+ 3)VL+
 L(L-1) (DL +2)
QL-1)(2L+1) " @L+1)2L+3) “*
(B12)
where
2

a’ = (q; x ;) = q}g (1-2%) (B13)

From the formulas given in this appendix the partial wave projections of the several potential
forms, as given in sections V-VIII can be derived in a straightforward manner. In case of an
extra factor (qf . qi>, as occurs for example in the second line of (B10), we simply use the
expansion

o0

<qf : Cli) V(K?*) = qq; Z(QL + 1)V () Pp(cosf) (B14)
where
Vo= o (L4 Vi + LYo (B15)
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APPENDIX C:

In this appendix we derive the inverse Fourier transformation for the ()1o-operator. Start-
ing from

VQ(k, q> _ /dgrl/d?’?“ €ip/'r/V(I‘/,I‘)Q 6fip-r ’ (Cl)
with the local configuration space potential

Vo(r',r) = 53(1', —1) f(r) Qu2

Q12:;<0'1'L0'2'L+0'2'L0'1'L), (CQ)
and using
d
B0 ==Sia) o nsf) = |95 (1) ), (©3

one finds upon carrying through the Fourier transformation (C1)

Vol a) = o1 ax o -a x K i2) — { (K~ @) (01 02) +

+01- @) (02-a) = § (01 K) (021} 5002
= E(kZ)Pg, + AVQ(k, q) y (04)

where h(k?) and §(k?) are the Fourier transforms of respectively h(r) and g(r). Basically,
i.e. apart from coupling constants etc.,

hor) = [db)] . atr) = (1j> ™ 0)

: (C5)

In that case we have
h(k?) = AN (K2 m? A?) (C6)

where X = P, V, or S. The function A®) is given in (20). From (C5) one can derive that
dj(k?)/dk* = (1/2) h(k?), which leads to the Fourier transforms

[ e/ B [ty (X =PV, 9
g(k%) =

—(2mp/ M?) exp(—k* /4m}) , (X =D),

(C7)

where F) is the exponential integral [18]. The partial wave projection of h(k?) is

;LJ(JC) = { (C8)
(1/M*)R;(Fp) , (X=D).
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The partial wave projection of §(k*) can be shown to be

3:(w) = 5705 [hra(@) = hya(@)] + (a2 = ~1)dn (C9)

where for J = 0 it is understood that h_; = h. .
To facilitate the partial wave projection, we rewrite AVy(k, q) in terms of the total spin
operator S. After a little algebra we get

AVg(k,q) = —{2(S- q;)(S-q,) —i(qs x q;) - S} §(k)
(C10)
+{o1-02+1} (q;-q;) (k%) .

Using now the results of appendix B, the partial wave projection of AVy(k,q) can readily
be obtained.
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APPENDIX D:

Here we give the coefficients for the partial wave projection of the quadratic-spin-orbit

operator.
(i) singlet and triplet uncoupled:

5,
F5H<070> = eg 0+ VJ(i)2 + f(5+ R (()0 VJ(i)z

F5L+<1a1) _eg5l+ V(5) +f1 VJ(5 +g 11 VJ+27

where
Gy TV w21 (42)
0.0 (27 —1) (2] + 1)’ (27 —1) (27 +1)
G4 _ 2(J2 +J - 1) f(5’+) _ Q(J - 1) (J+ 2)
00 (2J —1) (2J+3)" (27 -1) (27 +3)
6, J+D(J+2) 4 (-1 (J+2)
Yoo = oryn @i T Rir) 27 13)

(ii) triplet coupled:
B (J-1,0-1) =€} l)J VI 1 1J L VI ) 1,J-1 VJ+1
B0 1) = £ Vit - v
F5J’7(J +1,J+1) = €S5+1)J+1 VJ(E)l + fﬁi)ﬁrl VJ(i)l + gﬁ?ﬂl Vf?s

where

(5.-) (/-1 (J-2) (5.-) J 2P+ TI+7)

LI T T T Ty 27 —3) YN T TR 12 (24 3)

6o (2P2=3J+2(J+1) 5o (J+2) (J+3)
ngl,Jfl - (2] - 1) (2J + 1)2 7gJ+1 J+1 — (2J+ 3) <2J + 5) )
o) (273 — 3J% — 2T +2)

T T ST A1) (27 —3)

J(J+1)
fJ+1J 1= m )

166 @ +9J7+10 +1)
JELIHEL T (27 4 1)2 (20 +5)

28

(D1)

(D5)



REFERENCES

[1] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D17, 768 (1978).

2] P.M.M. Maessen, T.A. Rijken, and J.J. de Swart, Phys. Rev. D40, 2226 (1989).

[3] J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp, J.-L. de Kok, T.A. Rijken, V.G.J.

Stoks, and J.J. de Swart, Phys. Rev. C41, 1435 (1990);

R.A.M. Klomp et al, ‘Phase shift analysis of all pp and np scattering data below Ti, = 350

MeV’, in preparation.

4] R.V. Reid, Jr., Ann. Phys. (N.Y.) 50, 411 (1968).

5] R.A.M. Klomp et al, in preparation.

6] H.P. Stapp, T. Ypsilantis, and M. Metropolis, Phys. Rev. 105, 311 (1957).

7] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D15, 2547 (1977).

8] T.A. Rijken, Ann. Phys. (NY) 164, 1 and 23 (1985).

9] A. Gersten, P.A. Verhoeven, and J.J. de Swart, Nuovo Cimento A26, 375 (1975); P.A.

Verhoeven, Ph.D. Thesis, University of Nijmegen (1976, unpublished).

[10] A.A. Logunov and A.N. Tavkhelidze, Nuovo Cimento 29, 380 (1963);

R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966);

R.H. Thompson, Phys. Rev. D1, 110 (1970);

M.H. Partovi and E.L. Lomon, Phys. Rev. D2, 1999 (1970).

[11] J.J. de Swart, M.M. Nagels, T.A. Rijken, and P.A. Verhoeven, Springer tracts in Modern

Physics, Vol. 60, 137 (1971).

[12] In the NN-model [!] a small symmetry breaking was introduced by using 1/M;3May

instead of 1/M? in AP(k* m?, A?). More recently however, it appeared that a large sym-

metry breaking is not likely at this point, see: P. Povh and J. Hufner, Phys. Rev. Lett. 58,

1612 (1987).

[13] C.B. Dover and A. Gal, in Progress in Particle and Nuclear Physics, edited by D.

Wilkinson (Pergamon, New York, 1984), Vol. 12, p. 171.

[14] B.F. Gibson and A. Stadler, private communication, 1991.

[15] In the SYM-convention [6] the configuration space basic JLS-states are Y1 (f) =
JMLmSMYn%(f')Xﬁ . Transformation to momentum space gives (B1). See e.g. J.R. Taylor,

Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (John Wiley & Sons,

Inc., New York (1972)).

[16] A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University

Press, Princeton (1957)).

[17] The explicit relation between our 9j-symbols and those of [16] eq. (6.4.4) is

[
[
[
[
[
[

Jit Jiz Jis
Jor Jar Jaz | = (=) (25,5 4 1) (231 + 1)(2jas + 1)(253 + 1))
J31 Js2 Js3
Jit Jiz Ji3
X< J21 J22 J23

j31 j32 j33

29



[18] M. Abramowitz and I.A. Stegun, editors, Handbook of Mathematical Functions (Dover
Publications Inc., New York (1970)).

30



FIGURES

FIG. 1. 'S, partial wave.

FIG. 2. 3P, partial wave.

FIG. 3. 3P, partial wave.

FIG. 4. 3P, partial wave.

FIG.5. 3P, — 3F, partial wave.

FIG. 6. 3F, — 3P, partial wave.

FIG. 7. 38; partial wave.

FIG. 8. 38; — 3D, partial wave.

FIG.9. ®D; — 38, partial wave.

FIG. 10. 3D, partial wave.

FIG. 11. P, partial wave.

31



	Introduction
	Potentials for the LS Equation
	One-Boson-Exchange Potentials in Momentum Space
	Partial Wave Analysis
	Pseudo-scalar-meson potentials
	Vector-meson potentials
	Scalar-meson potentials
	Diffractive potentials
	Quadratic spin-orbit potentials
	Conclusion and Results.

