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Abstract

A partial-wave analysis of all pp scattering data below 925 MeV/c antiproton
laboratory momentum is presented. The method used is adapted from the
Nijmegen phase-shift analyses of pp and np scattering data. We solve the
Schrödinger equation for the coupled pp and nn channels where the long- and
intermediate-range interactions are described by a theoretically well-founded
potential. This gives the rapid variations of the scattering amplitudes with en-
ergy. This potential consists of the Coulomb potential with the main relativis-
tic correction, the magnetic-moment interaction, the one-pion–exchange po-
tential, and the heavy-boson exchanges of the Nijmegen one-boson–exchange
potential. Slow variations of the amplitudes due to short-range interactions,
including the coupling to mesonic annihilation channels, are parametrized by
an energy-dependent, complex boundary condition, specified at a radius of
r = 1.3 fm. The Nijmegen 1993 pp database, consisting of 3646 pp scatter-
ing data, is presented and discussed. The best fit to this database results
in χ2

min/Ndata = 1.043. This good fit to the data shows that the Nijmegen
long- and intermediate-range potential is essentially correct. The pseudovec-
tor coupling constant of the charged pion to nucleons is determined to be f2

c
= 0.0732(11) at the pion pole, where the error is statistical.
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I. INTRODUCTION

A partial-wave analysis (PWA) of all antiproton-proton (pp) scattering data below an-
tiproton laboratory momentum plab = 925 MeV/c is presented. In the field of nucleon-
nucleon (NN) scattering, phase-shift analyses (more properly called partial-wave analyses,
PWAs) have a long history and at present the multienergy or energy-dependent partial-
wave analyses of NN scattering data have reached a stage of considerable sophistica-
tion [1, 2, 3, 4, 5, 6, 7]. Due to the poor quality of low-energy antiproton beams and
the resulting absence of accurate experimental data, analogous model-independent studies
of the much more complex pp system have in the past always been impossible.

In recent years, however, experimental progress has been very significant, in particular
due to the advent in 1983 of the LEAR facility at CERN. In the momentum region that we
consider in the analysis presented in this paper, the situation between 400 and 925 MeV/c is
quite good: a variety of observables have been measured with impressive accuracy. However,
the practical difficulties involved in constructing a high-quality antiproton beam of even lower
momentum are large. As a result, the pp database below about 400 MeV/c is still by far
not as good as one would like [8, 9, 10], in contrast to the case of NN scattering, where for
instance very accurate proton-proton differential cross sections have been taken at energies
as low as Tlab = 0.35 MeV (plab = 25.6 MeV/c).

During the last 10 years a new method has been developed by the Nijmegen group to
perform partial-wave analyses of the NN (proton-proton and neutron-proton) scattering
data below laboratory kinetic energy Tlab = 350 MeV (plab = 883 MeV/c). The hallmark
of this method is that the theoretical knowledge of the NN interaction is exploited as much
as possible in the description of the energy dependence of the partial-wave scattering am-
plitudes. This is done by solving the relativistic Schrödinger equation for each partial wave
and at each energy with the theoretically well-known long-range NN interaction represented
by the potential for r > b = 1.4 fm. This long-range interaction is responsible for the
fast variation with energy of the scattering amplitudes. The much slower energy variations
of the amplitudes due to the short-range interactions are parametrized phenomenologically
by the energy dependence of a boundary condition at r = b. In this way one also avoids
the complications due to the lack of knowledge of this short-range interaction. In order
to achieve a good fit to the NN data one has to include in the long-range interaction the
complete electromagnetic interaction (including relativistic and some two-photon–exchange
effects, the magnetic-moment interactions, and the vacuum-polarization potential), the one-
pion–exchange potential, and also the intermediate-range forces (due to two-pion exchange
and/or heavier-meson exchange) of some realistic NN potential model.

The dominant feature of pp scattering at low energies is the annihilation into mesons,
a process that has no counterpart in NN scattering. Annihilation is, in principle, a very
complicated spin-, isospin-, and energy-dependent multiparticle process. At rest, where
kinematically the production of 13 neutral pions is allowed, 5 pions are produced on the
average [11], and of the order of 100 two-meson channels contribute significantly [12, 13]. In
recent years some progress has been made in understanding specific annihilation processes in
terms of quark-gluon degrees of freedom. However, for the description of elastic pp → pp and
charge-exchange pp → nn scattering, only a phenomenological approach to annihilation is
feasible at present. In potential models for antinucleon-nucleon (NN) scattering one usually
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simplifies things drastically by taking the annihilation potential to be completely indepen-
dent of spin, angular momentum, isospin, and energy. This assumption is implemented
either by applying a simple absorptive boundary condition [14, 15, 16, 17], or by using a
state-independent two- or three-parameter optical potential [18, 19, 20, 21, 22, 23]. How-
ever, when one is interested in describing the data quantitatively, including spin-dependent
observables, a less naive approach is called for. For instance, in the Paris NN model [24, 25]
a spin-, isospin-, and energy-dependent optical potential is employed, and in the Nijmegen
coupled-channels model [26] each NN channel is coupled to two effective two-body mesonic
channels (for the coupled-channels approach see also Ref. [27]). In both cases of the order of
15 parameters were needed to obtain a more-or-less satisfactory fit to the pre-LEAR data,
the bulk of which consisted of elastic differential cross sections. At that time charge-exchange
data and spin-dependent observables were practically absent. Because the NN system is so
much more complicated than the already quite complex NN system it was then believed
that it would be impossible to perform a PWA of the pp scattering data.

The complexity of the pp system when compared to the NN system (below the pion-
production threshold) is reflected in the following manner in a PWA. In proton-proton (pp)
scattering (isospin I = 1) one has to specify at each energy 2 phase shifts (1S0 and 3P0)
for J = 0 and on the average 2.5 phase parameters for each value of the total angular
momentum J 6= 0. As an example: for J = 1 one needs only one phase shift (3P1), while for
J = 2 one needs 4 phase parameters (the 1D2, 3P2, and 3F2 phase shifts and the ε2 mixing
parameter). In a PWA of the neutron-proton (np) scattering data (both isospin I = 0 and
I = 1) again 2 phase shifts are required for J = 0, but now 5 phase parameters are required
for each value of J 6= 0. Due to the lack of sufficient high-quality np data it has been
impossible to do a good PWA of the np data alone. One needs to take the I = 1 phases
(with the exception of the 1S0 phase shift) from the PWA of the pp data and correct them
for electromagnetic and mass-difference effects (Mp versus Mn and mπ0 versus mπ±). In the
case of pp scattering the Pauli principle is not operative. Apart from this, the possibility for
the pp system to annihilate into mesons complicates things even further. This means that
one has to determine no less than four times as many phase parameters compared to the
case of np scattering, so 8 phase parameters are required for J = 0 and 20 phase parameters
for each value of J 6= 0. In view of this, the situation with regards to a pp PWA indeed
seemed quite hopeless.

Using essentially the same strategy as in the Nijmegen multienergy partial-wave analyses
of NN scattering data, and with the available recent high-quality data from LEAR and KEK,
we have nevertheless been able to perform a PWA of pp scattering data below 925 MeV/c.
This work was started in 1987 [28] and a preliminary report of this analysis has already been
given [29]. The Schrödinger equation for the coupled antiproton-proton and antineutron-
neutron (nn) channels is solved. The short-range interaction, including the coupling to the
mesonic annihilation channels, is parametrized by way of a complex boundary condition
specified at r = b = 1.3 fm. The long-range interaction consists of the Coulomb potential,
the magnetic-moment interaction, and the one-pion–exchange potential. The tail of the
heavy-boson–exchange part of the Nijmegen potential [30] is used as intermediate-range
interaction. A lot of time and effort has gone into collecting, scrutinizing, and cleaning
up the world set of pp scattering data, which contains quite some flaws and contradictory
data. Exactly the same arguments were used in this process as were used in the set-up
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of the Nijmegen NN database [5, 6, 7]. The resulting Nijmegen 1993 pp database in the
momentum interval 119–923 MeV/c consists of Ndata = 3646 pp data, which can be fitted
with χ2

min/Ndata = 1.043. In view of the excellent quality of this fit one can be confident that
most of the amplitudes are quite well described. The same methods have also been applied
by us to the strangeness-exchange reaction pp → ΛΛ, which is an even more complicated
process [31, 32].

This paper is organized as follows. In Sec. II we present the details of the method of
analysis. In Sec. III the treatment of the short-range interaction by parametrizing an energy-
dependent boundary condition is discussed. In Sec. IV the long-range electromagnetic and
pion-exchange potential are presented and we specify the heavy-meson exchanges used as
intermediate-range interaction. In Sec. V we discuss the non-trivial problem how to extract
the nuclear scattering amplitude in the presence of electromagnetic effects. The definition
of the phase-shift and mixing parameters for antinucleon-nucleon scattering can be found
in Sec. VI. The statistical tools used in the analysis are briefly reviewed in Sec. VII. In
Sec. VIII the Nijmegen 1993 antiproton-proton database is extensively discussed. Next,
in Sec. IX we present the results of the analysis, including the determination of the pion-
nucleon coupling constant. The most important results and conclusions are summarized in
Sec. X. The algorithm to extract the phase parameters from the S matrix is reviewed in the
Appendix.

II. THE METHOD OF ANALYSIS

The two-body scattering process is described with the coupled-channels relativistic
Schrödinger equation

[∆ + p2 − 2mV ] ψ(r) = 0 . (1)

This is a matrix equation in channel space. We use the physical particle basis pp, nn in order
to treat electromagnetic effects properly and to account for the threshold of charge-exchange
scattering pp → nn at plab = 99.1 MeV/c (Tlab = 5.2 MeV). The connection between the
channel momentum p and the total energy

√
s in the center-of-mass system is given by the

relativistic expression p2 = 1
4s−m2 (for equal masses). The relativistic Schrödinger equation

Eqn. (1) is a differential form of the relativistic Lippmann-Schwinger integral equation [33,
34]. The difference between the relativistic and the ordinary non-relativistic Lippmann-
Schwinger equation [35] is the relation used between energy and momentum. The relativistic
Lippmann-Schwinger equation is in turn equivalent to three-dimensional relativistic integral
equations like the Blankenbecler-Sugar equation [36, 37, 38, 39]. For a discussion about the
derivation of potentials for use in the relativistic Schrödinger equation, starting from the
field-theoretical Bethe-Salpeter equation [40, 41], see for instance Refs. [42, 43].

The interaction in the region r > b is described by a theoretically well-founded
antinucleon-nucleon potential. This potential is given by

V = VC + VMM + VN , (2)

where VC and VMM are the relativistic Coulomb and magnetic-moment interaction respec-
tively. VN is the NN meson-exchange potential. The precise forms of these potentials are
discussed in Section IV. After making the partial-wave projection by writing
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ψ(r) =
∑

`sJm

Φm
`sJ(r)/r Ym

`sJ(θ) , (3)

where

Ym
`sJ(θ) =

∑

m`ms

C`
m`

s
ms

J
m Y `

m`
(θ) ξs

m , (4)

we obtain the radial Schödinger equation, which for partial waves with total angular mo-
mentum J reads

[

d2

dr2 − L2

r2 + p2 − 2mV J

]

ΦJ(r) = 0 . (5)

V J is now a matrix with elements 〈`′s′a′|V J(r)|` s a〉, where a is an index used to distinguish
the different channels. For partial waves with ` = J , s = 0, 1 all matrices are 2× 2, and for
waves with ` = J ± 1, coupled by the tensor force, they are 4× 4. The Schrödinger equation
is solved numerically [44] starting with the boundary condition at r = b and ending at a
value r∞ beyond the range of the nuclear potential. At this point the S matrix is obtained
by matching this numerical solution Φ to the required asymptotic form

Φas(r)
r→∞∼

√

m
p

[

H2(pr) + H1(pr)SJ
]

, (6)

Since the Coulomb potential has infinite range one has to match to Coulomb wave functions,
so H1 and H2 are diagonal matrices with entries H(1)

` (ηa, par) and H(2)
` (ηa, par), the Coulomb

analogues of the spherical Hankel functions. ηa is the relativistic Coulomb parameter

ηa = α/vlab = α′ ma/pa . (7)

Written in terms of the standard regular and irregular Coulomb wave functions, F`(η, pr)
and G`(η, pr), these Hankel functions are defined as

H(1)
` (ηa, par) = F`(ηa, par)− iG`(ηa, par) , H(2)

` (ηa, par) = F`(ηa, par) + iG`(ηa, par) . (8)

These Coulomb wave functions read asymptotically

F`(ηa, par)
r→∞∼ sin

[

par − `
π
2

+ σ`,a − ηa ln(2par)
]

, (9)

G`(ηa, par)
r→∞∼ cos

[

par − `
π
2

+ σ`,a − ηa ln(2par)
]

, (10)

where the Coulomb phase shifts σ`,a are given by

σ`,a = arg Γ(` + 1 + iηa) . (11)

In case the Coulomb interaction is absent in a channel (like nn), one can simply put ηa = 0.
Then the Coulomb wave functions become

F`(0, ρ) = ρj`(ρ) , G`(0, ρ) = −ρn`(ρ) ,

H(1)
` (0, ρ) = ρh(1)

` (ρ) , H(2)
` (0, ρ) = ρh(2)

` (ρ) , (12)
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in terms of ordinary spherical Bessel, Neumann, and Hankel functions. The matching pro-
cedure at r∞ works as follows. The multichannel Wronskian is defined by

W (Φ1, Φ2) = ΦT
1

1
m

Φ′
2 − Φ′ T

1
1
m

Φ2 , (13)

where the prime denotes differentiation with respect to r and the “T” denotes transposition
in channel space. The Wronskian of two arbitrary solutions Φ1 and Φ2 is independent of r
and equal to 0 because of the boundary condition Φ(0) = 0. Demanding that

W (Φ(r∞), Φas(r∞)) ≡ 0 , (14)

we obtain for the partial-wave S matrix

SJ = −
[

Φ′T 1
√

mp
H1 − ΦT

√ p
m

H ′
1

]−1 [

Φ′T 1
√

mp
H2 − ΦT

√ p
m

H ′
2

]

, (15)

where the prime on the Hankel functions denotes differentiation with respect to the argument
pr. Since the matching is to Coulomb wave functions, what is actually obtained in this man-
ner is the partial-wave S matrix with respect to the Coulomb force, denoted by SC

C+MM+N .
How to calculate the scattering amplitude is explained in Section V. The final step, the cal-
culation of all the observables from the scattering amplitude, is standard [45, 46, 47, 48, 49].
See in particular Ref. [50] for the case of antinucleon-nucleon scattering.

III. THE SHORT-RANGE INTERACTION

The short-range dynamics is treated with the help of a boundary condition applied at a
distance r = b. This boundary condition, called the P matrix, is the logarithmic derivative
of the solution matrix Φ(r) at a distance r = b from the origin

P = b
(

dΦ
dr

Φ−1

)

r=b

. (16)

The factor b is included in this definition in order to make the P matrix dimensionless. The
boundary-condition approach to strong interactions goes back to the work of Feshbach and
Lomon [51] and earlier. The term P matrix was introduced by Jaffe and Low [52, 53] for
use with the bag model where at the energies of the eigenstates of the confined quark and
gluon degrees of freedom the P matrix exhibits poles that are not necessarily also present
in the S matrix. (For a review, see Ref. [54].) At this stage, we will not attempt to make
any connection with multiquark states. In general, this boundary relates the inner- to
the outer-region physics. In NN and NN scattering the short-range interaction is essentially
unknown and has to be treated phenomenologically. The long-range physics one understands
theoretically much better. The P -matrix formalism provides a useful separation between
these two regions and has become a powerful tool in analyzing scattering data. In the
Nijmegen partial-wave analyses of NN scattering data [5, 6, 7] the P -matrix method has
already proven its power [55].
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For the parametrization of the partial-wave P matrix, it is convenient to use a very simple
model for the short-range dynamics. We assume that the interaction in each partial wave
can be described by a spherical well, a potential which may depend on spin, isospin, and
energy, but which is constant as a function of distance. The P matrix for such a potential
can be evaluated analytically. For a single-channel spherical-well problem in a partial wave
with orbital angular momentum ` it is given by

P` = p′b J ′`(p
′b)/J`(p′b) , (17)

where J`(ρ) = ρj`(ρ) with j`(ρ) the spherical Bessel function and p′2 = p2 − 2mV , V being
the depth of the spherical-well potential. The prime on the Bessel function denotes differenti-
ation with respect to the argument. In the case of NN scattering we take these short-range
potentials to be complex in order to account for the annihilation into mesonic channels.
The short-range interaction is in this manner described by a simple state-dependent optical
potential [56]. It turns out that we can take the short-range spherical-well potential inde-
pendent of the energy and still fit the data properly. This was not possible in the Nijmegen
partial-wave analyses of the NN data: there we had to make the short-range potential energy
dependent. That this is not necessary for NN scattering is probably because of the absence
of high-quality data at low energies such as present in NN scattering. It is, however, crucial
that we take the real parts to be dependent on spin and isospin. It also turned out that the
imaginary parts of these short-range potentials could be taken independent of isospin. Each
partial wave is thus parametrized by a maximum of 3 parameters, a complex spherical well
for both isospin 0 and 1, where the imaginary parts are equal for both isospins. How many
and which parameters are actually needed in each individual partial wave is discussed below
in Section IX.

In the Nijmegen analyses of NN scattering data, a value of b = 1.4 fm for the boundary
radius was found to be suitable. In the NN case, the results are rather sensitive on the
choice of the value of b. The best results are obtained with b = 1.3 fm. Since we use in the
outer region a real potential consisting of an electromagnetic and a meson-exchange part,
the coupling to the mesonic channels is completely absorbed in the boundary condition. The
radius b is therefore a clear measure for the range of the annihilation potential. The fact
that the results are quite sensitive on b shows that this range is in fact approximately 1.3
fm. So we find definite indication that annihilation in pp scattering is a rather long-range
process.

It remains to discuss the parametrization of the P matrix for the states with ` = J ± 1
coupled by the tensor force. In these cases it is convenient to use the method also employed
in the NN case. For a certain value of the isospin, we start with a diagonal 2× 2 P matrix
and use additional parameters to describe the short-range mixing between the two coupled
partial waves, as follows

P =
(

cos θ sin θ
− sin θ cos θ

) (

P1 0
0 P2

) (

cos θ − sin θ
sin θ cos θ

)

. (18)

The mixing angle θ can, if necessary, be parametrized as a function of energy, but again in
our analysis we can take it in all cases independent of the energy. We need these mixing
angles only for the isospin I = 0 states, for the I = 1 states they can be set to zero.
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Time-reversal invariance allows us to choose the phases of the physical states in such
a way that the potential matrix is symmetric. The full S matrix, including all mesonic
channels, is then also symmetric and of course unitary. When we restrict ourselves to the
NN channels, then this sub-block of the S matrix is of course still symmetric, but no longer
unitary. This reflects the disappearance of probability (flux) into the mesonic channels.
Correspondingly, the P matrix in our case is still symmetric, but not hermitian, as in NN
scattering (below the pion-production threshold).

Why is the P -matrix approach to partial-wave analyses so convenient and powerful? One
of the main reasons is that it allows an easy parametrization of the energy dependence of
the scattering amplitudes. This can be seen as follows. The long-range interactions lead
to rapid variations with energy of the amplitudes. These variations are much easier to
parametrize when one uses the P matrix than the S matrix (or K matrix). For instance,
in the presence of the Coulomb interaction, the S matrix has an essential singularity and a
branchpoint at zero energy. However, if the Coulomb potential is included in the potential
tail, these singularities and the corresponding left-hand cut are absent from the P matrix.
Similarly, the left-hand cuts due to all meson exchanges included in the potential tail are
absent from the P matrix. All these cuts, however, are present in the S matrix, in addition
to the kinematical unitarity cut. The point is that the slow variations with energy of the
amplitudes due to short-range interactions are easy to parametrize, once the rapid variations
have been taken care of by explicitly including the corresponding long-range potentials in
the Schrödinger equation. Of course, some left-hand cuts remain, such as the cut due to
uncorrelated two-pion exchange, as well as right-hand cuts due to the coupling to inelastic
channels. These, however, lead to much slower energy variations of the amplitudes than the
long-range electromagnetic interactions and one-pion exchange.

IV. THE POTENTIAL TAIL

In order to obtain a good description of the data, the long-range interaction between the
particles, consisting of the electromagnetic interaction and the one-pion–exchange potential,
must be included properly. These interactions are model independent in the sense that they
are (or at least should be) the same in all models of the (anti)nucleon-nucleon force. The fit
to the data is improved when realistic meson-exchange forces are used as intermediate-range
potential.

The long-range electromagnetic potential is included to order α = e2/4π, the fine-
structure constant. The one-photon–exchange potential is derived from the phenomeno-
logical electromagnetic Lagrangian

Lγ = e Q [iψγµψ] Aµ + e
κ

4M
[ψσµνψ] (∂µAν − ∂νAµ) , (19)

where Q is the nucleon charge in units of e > 0 and κ is the anomalous magnetic moment,
for proton and neutron µp = 1 + κp = 2.793, and µn = κn = −1.913, respectively. ψ is the
proton or neutron field and Aµ the photon field. If the spatial extension of the nucleons
is taken into account, the charge and magnetic moments are in momentum space replaced
by the Dirac form factor F1(t) and the Pauli form factor F2(t), which are functions of the
four-momentum transfer t. The static limits t = 0 are
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F p
1 (0) = 1 , F n

1 (0) = 0 , F p
2 (0) =

κp

2Mp
, F n

2 (0) =
κn

2Mn
. (20)

In the point-particle approximation the momentum dependence of these form factors, re-
flecting the inner structure of the nucleons, is neglected. In this approximation we end up
with the spin-dependent one-photon–exchange potentials for r > b

Vγ(r) = −α′

r
+

µ2
p

4M2
p

α
r3 S12 +

8µp − 2
4M2

p

α
r3 L · S for pp → pp , (21)

and

Vγ(r) =
µ2

n

4M2
n

α
r3 S12 for nn → nn . (22)

These potentials are obtained by calculating the one-photon–exchange diagrams in momen-
tum space and applying a Fourier transformation to configuration space. The momentum
dependence of the form factors can be taken into account. This leads to short-range mod-
ifications of the one-photon–exchange potential. Since we use only the potential outside
r = b = 1.3 fm, we did not include these effects. The use of α′ in the central potential for
pp → pp takes care of the main relativistic corrections to the Coulomb potential [57, 58]. It
is given by

α′ = α 2p/(Mvlab) , (23)

where vlab is the velocity of the antiproton in the laboratory system. In order to appreciate
the order of magnitude of this factor, at 600 MeV/c for instance, where vlab = 0.54, one has
α′ = 1.135 α. The spin-orbit potential comes from the interaction of the magnetic moment
of one particle with the Coulomb field of the other particle (and is consequently absent in
nn → nn). It includes a relativistic correction due to the Thomas precession. The tensor
potential comes from the interaction of the two magnetic moments. In our energy range the
Coulomb and the magnetic-moment interaction are the dominant electromagnetic effects.
The vacuum-polarization potential [59], which is important [5] in low-energy pp scattering
(below Tlab = 30 MeV), has a negligible influence here. Two-photon–exchange effects [58]
are neglected as well.

The following simple one-pion–exchange potential without a form factor is used

Vπ(r) = f2
NNπ

M√
p2 + M2

m2

m2
π±

1
3

[

σ1 · σ2 + S12

(

1 +
3

(mr)
+

3
(mr)2

)]

e−mr

r
. (24)

The mass difference between the neutral π0 and charged π± pion is included, so we take
m = mπ0 for the elastic reactions pp → pp and nn → nn, and m = mπ± for the off-diagonal
charge-exchange transitions pp ↔ nn. In principle, the pion-nucleon coupling constant is
charge dependent due to the mass difference between the up and down quarks and due to
the electromagnetic corrections. We introduce here the relevant coupling constants f2

NNπ at
the different vertices

f 2
p ≡ f2

ppπ0 , f 2
n ≡ f 2

nnπ0 , 2f 2
c ≡ fpnπ+fnpπ− , (25)
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for the reactions pp → pp, nn → nn, and pp ↔ nn respectively. In the PWA a charge-
independent pion-nucleon coupling constant is used, where f 2

p = f2
n = f2

c = 0.0745, taken
from the most recent Nijmegen pp PWA [60]. In Sect. IX, however, this assumption is
relaxed when we determine the charged-pion coupling constant from the charge-exchange
data by adding f2

c as a free parameter.
To improve the description of the data, some sort of heavy-meson–exchange potential

has to be added to one-pion exchange in the outer region. Since the tails of realistic NN
potentials are remarkably similar, it probably does not matter very much which potential
one picks, provided it gives a good description of the NN scattering data. We have opted
for the charge-conjugation–transformed version of the Nijmegen one-boson–exchange soft-
core NN potential [30], which is one of the best NN potentials available. (The use of C
conjugation rather than G conjugation is more natural when one works on the physical
particle basis.) The tail of this potential has already been used in the Nijmegen pp and np
partial-wave analyses, and the tail of the corresponding Nijmegen soft-core hyperon-nucleon
potential [61, 62] has been used by us in our PWA of the reaction pp → ΛΛ [31, 32]. The
following heavy-boson–exchange potentials are included.

• Pseudoscalar-meson exchange. Included are η(549) and η′(958) exchange. For the
pseudoscalars, including the pion, we use the pseudovector type of Lagrangian

LPV =
√

4π
f

mπ±
[iψγµγ5ψ] ∂µΦP . (26)

Although equivalent to the pseudoscalar type of interaction for one-meson exchange between
protons, the pseudovector interaction is favored because it gives a more reasonable two-pion–
exchange potential and because it leads to at most small breakings of flavor symmetry for
the coupling constants of the pseudoscalar nonet to baryons [31]. The scaling mass mπ± is
conventionally introduced to make the coupling constant f dimensionless.

• Vector-meson exchange. Included are ρ(770), ω(782), and φ(1019) exchange. The
Lagrangian (in terms of rationalized coupling constants) is

LV =
√

4πg [iψγµψ] Φµ
V +

√
4π

f
4Mp

[ψσµνψ] (∂µΦν
V − ∂νΦµ

V) . (27)

• Scalar-meson exchange. We include a0(783), f0(975), and f ′0(760) exchange. The
Lagrangian is

LS =
√

4πg [ψψ] ΦS . (28)

The scalar mesons have always been a controversial topic. In early one-boson–exchange
models for the NN interaction there was a clear need for an isoscalar scalar “σ” meson with
an effective mass of about 550 MeV [63, 64, 65]. While no such low-mass particle exists,
there was some evidence in production experiments for a broad structure ε(760) under
the ρ0, often explained away as a strong ππ final-state interaction. Later it was pointed
out [66, 67, 43] that such a wide (Γ ≈ 640 MeV) ε(760) simulates the narrow-“σ” exchange
in one-boson–exchange models for the NN interaction.

The situation in phase-shift analyses of ππ scattering data, obtained from reactions as
πN → ππN , has for a long time been confusing and not conclusive [68]. In these analyses
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the assumption has always been that only π exchange is relevant, while a1 exchange can
be neglected. Very recently, however, the situation has been much clarified [69]. Data on
πN ↑→ π+π−N using a polarized target provide unambiguous evidence for a broad I = 0
0++(750) state, when a proper amplitude analysis is done, including also a1 exchange. In a
similar amplitude analysis of data on K+n ↑→ K+π−p [70] evidence is found for I = 1/2
0+(887) strange scalar mesons under the K∗(892).

In the quark model, several mechanisms give rise to scalar (JP = 0+) mesons. The
simplest model is the 3P0 QQ states. Then there are the glueball states and the cryptoexotic
Q2Q2 states [71]. A physical scalar meson will in general be a mixture of QQ, Q2Q2, and
glueball components. The QQ states are expected [72] near the other 3P QQ mesons, that
is around 1250 MeV. Glueballs are also not very likely to exist below 1000 MeV [73]. For
the Q2Q2 states, however, one [71] does predict a low-lying nonet of scalar mesons. The
lowest state, with only nonstrange quarks, has I = 0 and decays into ππ. It can be identified
with the ε(760) under the ρ0. This nonet contains also a nearly degenerate set of I = 0 and
I = 1 cryptoexotic scalar mesons (like the ρ(770) and ω(782)) with an ss pair. These are
easily identified as the f0(975) and a0(983) mesons, previously called S∗(975) and δ(983)
respectively, with their relatively large branching ratios into KK. The nonet is completed
by a set of broad I = 1/2 strange mesons K∗

0(887) seen [74] under the K∗(892).
• Next to these conventional mesons, the Nijmegen soft-core potential (originally derived

from Regge-pole theory) also contains pomeron exchange, which in QCD is understood as
color-singlet two- or multigluon exchange [75, 76, 77], and the weak diffractive scalar-like
part of the tensor-meson exchanges. The short-range non-local terms of the potential are
neglected, which is a very good approximation outside r = b = 1.3 fm.

The consequences of meson exchanges for the NN interaction have been examined by
many authors, for instance by Dover and Richard [78, 79, 80]. It turns out from a qualitative
investigation that while in the NN case there is a strong coherence between the isospin
I = 1 spin-orbit forces, in the NN case very strong tensor forces occur, especially for isospin
I = 0. In the NN system the vector ω(782) and the scalar f ′0(760) exchange make up the
strong spin-orbit force that splits the 3P0,1,2 phase shifts, but the central potentials of these
exchanges largely cancel each other. Similarly, the spin-orbit forces due to the exchange of
the vector ρ(770) and the scalar a0(983) add up, but the central potentials cancel. Applying
charge conjugation to the different meson exchanges, one sees that in the NN potential
the central potentials from ω(782) and f ′0(760) exchange add coherently to a very strong
attractive potential. This has led to speculation about the existence of NN bound states
and resonances [81, 82, 83, 84, 85]. The tensor potentials from ρ(770) and π(140) exchange
also add up and dominate the charge-exchange reaction pp → nn. The same phenomenon
is present in the reaction pp → ΛΛ, where K(494) and K∗(892) exchange conspire to build
up the strong tensor force that is the hallmark of this reaction [31].

V. THE AMPLITUDES

The evaluation of the scattering amplitude in the presence of electromagnetic effects is
a non-trivial problem that requires special care. In the pp PWA the precise values and
energy dependence of the phase shifts are influenced significantly by the electromagnetic
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interaction. The same will obviously also be true in the pp case.
We start by discussing the case where next to the nuclear force we only have the Coulomb

potential to deal with. The scattering amplitude due to the Coulomb force is given by

〈s′m′a′|MC(θ)|sma〉 = −δss′δmm′δaa′
ηa

pa(1− cos θ)
e−iηa ln 1

2 (1−cos θ)+2iσ0,a

= −δss′δmm′δaa′
ηa

2pa

e2iσ0,a

(sin2 1
2θ)

1+iηa
. (29)

The partial-wave decomposition of MC(θ) in terms of Coulomb phase shifts and Legendre
polynomials does not converge point-like, due to the infinite range of the Coulomb potential.
However, it can be summed in the sense of distributions [86, 87, 88] to give the Coulomb
amplitude Eqn. (29). In order to make a partial-wave decomposition of the scattering
amplitude, the total scattering amplitude MC+N(θ) is split as follows

MC+N(θ) = MC(θ) + MC
C+N(θ) , (30)

where the amplitude MC
C+N(θ) is the nuclear scattering amplitude in the presence of the

Coulomb potential. Its partial-wave decomposition reads

〈s′m′a′|MC
C+N(θ)|sm a〉 =

∑

` `′J

√

4π(2` + 1) i`−`′ C`
0

s
m

J
m C`′

m−m′
s′
m′

J
m Y `′

m−m′(θ)

〈`′s′a′|S1/2
C (SC

C+N − 1)S1/2
C |` s a〉/2ipa , (31)

where SC
C+N is the nuclear S matrix in the presence of the Coulomb force. The total S

matrix SC+N , due to the Coulomb and nuclear interaction, is then given by

SC+N = S1/2
C SC

C+N S1/2
C . (32)

SC is the Coulomb S matrix with matrix elements

〈`′s′a′|SC |` s a〉 = δ``′δss′δaa′ exp(2iσ`,a) . (33)

The nuclear S matrix in the presence of the Coulomb force SC
C+N is obtained by solving the

Schrödinger equation numerically and matching to Coulomb wave functions (see Section II).
It is given by Eqn. (15).

Next we discuss the generalization to the case where next to the Coulomb force also the
magnetic-moment interaction is present [89]. Although this latter potential has a finite range
and consequently the partial-wave decomposition converges, it is still much more practical
to split off in the scattering amplitude the contribution of the magnetic-moment interaction.
In this way the magnetic-moment interaction can be included in all partial waves and the
summation in the nuclear amplitude converges much faster. We thus write

MC+MM+N(θ) = MC(θ) + MC
C+MM(θ) + MC+MM

C+MM+N(θ) . (34)

Here MC
C+MM(θ) is the scattering amplitude of the magnetic-moment interaction in the

presence of the Coulomb force. Since this amplitude is almost exactly in phase with the
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Coulomb scattering amplitude MC(θ), it is essential that the effect of the magnetic-moment
interaction is evaluated in Coulomb-distorted-wave Born approximation (CDWBA), and not
in plane-wave Born approximation, as was pointed out by Knutson and Chiang [90]. The
contribution, in CDWBA, of the magnetic-moment interaction to the K matrix is

〈`′s′a′|KMM |` s a〉 = −δaa′
Ma

pa

∫ ∞

0
dr F`′(ηa′ , pa′r)VMM(r)F`(ηa, par) . (35)

Integrals of this type can be evaluated very rapidly and accurately by a backward-recursion
algorithm [91]. The magnetic-moment interaction VMM is given in Eqn. (21) for pp → pp and
in Eqn. (22) for nn → nn. All these partial-wave contributions are subsequently summed to
obtain the total amplitude MC

C+MM(θ). In practice it turns out that the spin-orbit poten-
tial of the magnetic-moment interaction leads to a contribution ZLS to 〈11a|MC

C+N(θ)|10a〉
that converges much too slowly to be summed term by term. This part can be summed
analytically [90]. For antiproton-proton scattering the result is

ZLS = − MpfLS

sin θ
√

2

(

e−iη ln 1
2 (1−cos θ) − 1

2
(1− cos θ)

)

, (36)

where we have defined

fLS = − α
4M2

p
(8µp − 2) . (37)

There is a similar contribution −ZLS to 〈10a|MC
C+N(θ)|11a〉. The corresponding result for

pp scattering [90] is the properly symmetrized version of this expression. The partial-wave
decomposition of MC+MM

C+MM+N(θ), the nuclear scattering amplitude in the presence of the
Coulomb force and the magnetic-moment interaction, is similar to Eqn. (31), but there now
appears the following S matrix

SC+MM+N = S1/2
C

(

SC
C+MM

)1/2
SC+MM

C+MM+N

(

SC
C+MM

)1/2
S1/2

C . (38)

Since the magnetic-moment interaction contains a tensor part, the matrix SC
C+MM is not

diagonal in orbital angular momentum. However, the square root of this matrix is still
well-defined. What it all comes down to, is to rewrite the S matrix in the following manner
in order to split off the Coulomb amplitude MC and the amplitude MC

C+MM due to the
magnetic-moment interaction in the presence of the Coulomb force

SC+MM+N − 1 = (SC − 1) + S1/2
C

(

SC
C+MM − 1

)

S1/2
C +

S1/2
C

(

SC
C+MM

)1/2 (

SC+MM
C+MM+N − 1

) (

SC
C+MM

)1/2
S1/2

C , (39)

Other electromagnetic effects, like vacuum polarization, can be treated in a similar way. For
a more extensive discussion we refer to Ref. [89]. Because of the long range of the magnetic-
moment interaction the matrix elements of SC+MM

C+MM+N are hard to calculate. We will use the
approximation

SC+MM
C+MM+N ≈ SC

C+N . (40)

Exactly the same approximation is made in the Nijmegen NN partial-wave analyses [89].
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VI. THE PHASE SHIFTS

In this section we give the parametrization of the NN S matrix in terms of phase-shift
and inelasticity parameters. We first seek guidance in the way this is done in analyses of NN
scattering below the pion-production threshold where the S matrix is unitary and symmetric.
The symmetry of the S matrix is a consequence of time-reversal invariance which allows one
to choose the phases of the in- and out-states such that the coupled-channels potential
matrix, and thus the S matrix, is symmetric. If there is conservation of flux, the S matrix
is unitary.

The phase shift for uncoupled partial waves with ` = J , s = 0, 1 is defined by parametriz-
ing the 1× 1 S matrix as

SJ = exp(2iδ) . (41)

One usually denotes the different phase shifts by δ` for singlet s = 0 waves, and by δ`,J for
triplet s = 1 waves. For the partial waves with ` = J±1, s = 1 coupled by a tensor force one
writes the 2×2 S matrix in terms of two phase shifts δJ−1,J , δJ+1,J and one mixing parameter
εJ . A popular parametrization is the “eigenphase” convention of Blatt and Biedenharn [92],
in which the symmetric S matrix is diagonalized by way of a rotation

SJ = exp(−iεJσy) exp(2iδ) exp(iεJσy) , (42)

where

δ =
(

δJ−1,J 0
0 δJ+1,J

)

. (43)

More often one uses the “bar-phase” convention of Stapp, Ypsilantis, and Metropolis [93],
in which

SJ = exp(iδ) exp(2iεJσx) exp(iδ) . (44)

An advantage of the “bar-phase” convention is that the parameters go to zero when the
interaction vanishes, unlike the mixing parameter in the “eigenphase” convention. Only in
the former case is the mixing parameter a measure of the strength of the off-diagonal tensor
force. We will use the “bar-phase” parametrization for the three elastic parameters, since
this is at present the common choice in analyses of NN scattering.

In the presence of coupling to annihilation channels the S matrix describing NN scat-
tering is only a submatrix of the much larger coupled-channels S matrix, and is therefore
still symmetric, but no longer unitary. This doubles the number of parameters needed. The
parametrization of the S matrix for uncoupled partial waves with ` = J , s = 0, 1 in the
presence of annihilation requires two parameters. One writes

SJ = η exp(2iδ) , (45)

with |η| ≤ 1. To denote the inelasticities for the different partial waves we will use a similar
notation as for the phase shifts: η` for singlet s = 0 waves, and η`,J for triplet s = 1 waves.
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For the coupled partial waves with ` = J ± 1, s = 1 six parameters are needed, and it is not
so easy to think of a convenient parametrization which satisfies all constraints from unitarity,
is completely general, and free from non-trivial ambiguities. Fortunately, the essential work
has already been done by Bryan [94] and others [95, 96, 97] in the case of NN scattering
above the pion-production channel. Bryan generalizes the “bar-phase” convention by writing

SJ = exp(iδ) exp(iεJσx) HJ exp(iεJσx) exp(iδ) , (46)

where H is a three-parameter real and symmetric matrix representing inelasticity. Bryan
calls this matrix N , but we use H (capital η) to stress the analogy with the case of uncoupled
partial waves written in the form

SJ = exp(iδ) η exp(iδ) . (47)

If the inelasticity vanishes, then H tends to the unit matrix, and the “bar-phase”
parametrization is recovered. There are several nice ways to parametrize H, but we find it
convenient to follow Klarsfeld [96], who diagonalizes H in Blatt-Biedenharn fashion

HJ = exp(−iωJσy)
(

ηJ−1,J 0
0 ηJ+1,J

)

exp(iωJσy) , (48)

where the diagonal matrix contains the “eigeninelasticities” ηJ−1,J and ηJ+1,J . In this way
the partial-wave annihilation cross section depends only on the “eigeninelasticities,” since it
is proportional to

Tr (1−H2) = 2− η2
J−1,J − η2

J+1,J . (49)

If the phase parameters are actually searched for on a computer, it is better to write all
inelasticities as η = cos 2ρ. In this way, all parameters are real and unbounded. The mixing
parameter ωJ is finite as the inelasticity vanishes, just as the mixing parameter εJ in the
“eigenphase” convention tends to a finite value when the off-diagonal tensor force goes to
zero. Sprung [97] has extended the Bryan parametrization to allow the use of “eigenphases.”
In this case one writes

SJ = exp(−iεJσy) exp(iδ) HJ exp(iδ) exp(iεJσy) . (50)

The matrix H in that case is, in general, not equal to the matrix H in Eqn. (46). As stated
above, we will use the “bar-phases.” The algorithm, due to Bryan [94], to extract the phase
parameters and inelasticities from the S matrix presented in numerical form is reviewed in
the Appendix.

VII. STATISTICS

Statistics is an essential ingredient in analyses of large amounts of scattering data. The
theoretical predictions are compared with the experimental data using a least-squares fitting
procedure in which the model parameters are adjusted to the data. During this process one
continually scrutinizes the data and passes sentence on the quality of different sets, which
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sometimes have to be rejected on the basis of statistical criteria. This goes on until a
final verdict is reached and the building of the data set is completed. In this section this
procedure is outlined and the statistical tools required for our purpose are presented. A
more exhaustive treatment can be found in Ref. [5].

We start by assuming for the moment that the measurements have no normalization
uncertainties and that no other type of systematic error is present. In a certain experiment,
denoted by a subscript a, one has measured Na data points. Each such measurement with
statistical error is denoted by Ea,i ± εa,i (i = 1, . . . , Na). The model prediction for a certain
data point is given as Ma,i(p), where the model parameters are arranged in a vector p, with
entries pα (α = 1, . . . , Npar). The parameters are adjusted to the data by minimizing the
χ2-function

χ2(p) =
∑

a
χ2

a(p) =
∑

a

Na
∑

i=1

[

Ma,i(p)− Ea,i

εa,i

]2

(51)

with respect to all parameters.
In practice, however, measurements usually do have an overall normalization uncertainty,

specified by the experimentalists. These errors can be taken care of by introducing for each
group of data a normalization parameter νa with error εa,0. The normalization of a certain
group is then given as νa = 1± εa,0. This means essentially that for each group with a finite
normalization uncertainty another free parameter νa has been introduced, to be determined
in the fit, as well as an additional datum 1 with error εa,0. Since we want to restrict the
parameter space to the model parameters only, we employ the following trick to take the
normalization parameters into account. We redefine the χ2-function as follows

χ2(p) =
∑

a
χ2

a(p) =
∑

a
min

Na
∑

i=1

[

νaMa,i(p)− Ea,i

εa,i

]2

+
[

νa − 1
εa,0

]2

. (52)

In this way, the normalizations are adjusted trivially, by minimizing in each iteration a
quadratic function. In case the normalization of an experiment is completely unknown,
εa,0 = ∞ and we can remove the second term on the right-hand side of Eqn. (52). The cor-
responding normalization νa is determined in the fit. We say the normalization is “floated.”
If the normalization is exactly known we fix the normalization at νa = 1 and we can remove
again the second term. Angle-dependent normalization errors can be treated in a similar
manner. The minimum value χ2

min = χ2(p) |p=pmin is reached when

∂χ2(p)/∂pα ≡ 0 , (53)

for all values of α. At this point one defines the error matrix E of the parameters as

(E−1)αβ =
1
2

∂2χ2(p)/∂pα∂pβ

∣

∣

∣

p=pmin
. (54)

The standard error on the parameter pα is (Eαα)1/2. Assuming that the χ2-function is
quadratic near its minimum, one can show that this is the variation in pα that gives a rise
∆χ2 = 1 in χ2

min, when the remaining parameters are refitted [98].
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According to this discussion the following integers can be defined. In the fit one must
determine Nn normalization parameters as well as Npar model parameters. The actual num-
ber of free parameters is therefore Nfp = Npar + Nn. Of these Nn normalization parameters
Nne have a finite normalization error and the rest Nnf = Nn−Nne is the number of “floated”
normalizations. The total number of experimental scattering observables is Nobs and the
actual number of scattering data is Ndata = Nobs + Nne. The number of degrees of freedom
is Ndf = Ndata −Nfp = Nobs −Npar −Nnf .

In the process of screening the database, we employ certain rejection criteria to remove
data points that spoil the statistical quality of the data set, for instance by underestimated
statistical errors or by unspecified systematic errors. When statistical errors are underesti-
mated, data pretend to give more information than they actually do, causing false results.
By systematic errors we mean those errors that do not average to zero when the measure-
ment is repeated many times, causing them to have a correlated effect on the data. When
not treated correctly, systematic errors can bias the values of the model parameters and
therefore also of the phase parameter. A detailed discussion of this point can again be found
in Ref. [5]. Of course, we only reject data if there is conclusive evidence against them. The
rejection criteria are constructed in such a way that in a purely statistical ensemble they
have a very small chance to occur. The following rejection criteria have been employed by
us.

(i) An individual data point Ea,i that has χ2
a,i > 9 is rejected. Rejection of such outliers

will give more accurate values for the model parameters. This rejection criterium corresponds
to the usual three-standard-deviation rule. It implies that a correct datum has at most a
chance of 0.27% to be rejected. The same criterium applies to an experimental normalization.
If it contributes more than 9 to χ2

min, this datum is rejected and the normalization is floated.
(ii) A group of Na data is rejected if its χ2

a in the multienergy fit is less than a minimum
χ2

low(Na). The values for χ2
low can be found in Ref. [5]. They are constructed such that again

the chance for a correct group to be rejected is at most 0.27%. This rejection criterium is
used as a means to avoid systematic errors. Very low values of χ2 are very probably caused
by systematic errors present in the data and are not a virtue of a model. This criterium
generally does not seem to be appreciated by the uninitiated in statistical methods.

(iii) A group of Na data is also rejected if its χ2
a in the multienergy fit exceeds a maximum

βχ2
high(Na), where β = Ndf/(Ndf + Npar). The values for χ2

high can also be found in Ref. [5].

VIII. THE NIJMEGEN 1993 ANTIPROTON-PROTON DATABASE

A. Set-up of the 1993 database

In order to perform a pp PWA, we first had to put together a statistically sound data
set. In NN analyses, one has over 30 years experience with the data, and by now a proper
database is more-or-less agreed upon. In the pp case, we must start from scratch, but
fortunately we can use the experience of the NN analyses to arrive at an acceptable pp
database. Let us summarize the general features of our database. We will include in our pp
database all available pp scattering data below antiproton laboratory momentum plab = 925
MeV/c published in a regular physics journal since 1968. We do not take into account data

17



published only in conference abstracts, in conference proceedings, and/or theses. The reason
we restrict ourselves to this momentum range is that it corresponds roughly to the energy
range of the NN partial-wave analyses below kinetic energy Tlab = 350 MeV (momentum
925 MeV/c corresponds to Tlab = 379 MeV) and that we want to include the accurate
backward elastic cross sections between 406 and 922 MeV/c taken by Alston-Garnjost et
al. [117]. Low-energy data, below plab = 175 MeV/c, so Tlab ≈ 15 MeV, are of course
almost nonexistent here. Only scattering observables are analyzed, other “data” like for
instance the real-to-imaginary ratio of the forward scattering amplitude or the slope of the
pp forward nuclear amplitude are omitted, since the extraction of these quantities from the
data is model dependent. A summary of the Nijmegen 1993 pp database can be found in
Table I.

Several experiments [133, 134, 135] have reported a resonant structure in the antiproton-
proton total cross section near 490 MeV/c without agreeing, however, on the exact position,
strength, and width of a possible resonance. We do not include these data in the PWA,
since more recent and accurate measurements of total cross sections [136, 111, 109, 137, 114]
have convincingly ruled out the existence of this type of rather broad resonance. (A more
narrow type of resonance, however, is not ruled out by the existing data. In fact, there is
some statistical evidence for a narrow structure in backward elastic cross sections around
509 MeV/c [138]. Probably, only an accurate measurement of the backward charge-exchange
cross section can definitely settle this issue.)

High-quality total cross sections below 400 MeV/c have been measured at LEAR by
the PS172 collaboration [106]. The effects of the pure Coulomb force and Coulomb-nuclear
interference are not significant, except perhaps at low momenta <∼ 300 MeV/c. This may
be the reason why we had to reject the data at the two lowest momenta.

In a number of experiments [134, 139, 111, 140, 141, 142, 143, 144] the pp annihilation
cross section into charged mesons has been measured. We cannot include these data, not
even with a floated normalization, since the momentum dependence of the cross section for
annihilation into neutral mesons is not known. At LEAR the total annihilation cross section,
including annihilation into neutral channels, has been measured from 180 to 600 MeV/c by
the PS173 group [105, 100]. These last data are included.

We do not include integrated elastic-cross-section data [110, 104, 145, 113, 115], due to
difficulties in a proper treatment of Coulomb and Coulomb-nuclear interference. Integrated
charge-exchange cross sections, on the other hand, are included in the database. In two
experiments [108, 99] this observable was measured over a large momentum region. For
the experiment of Ref. [99] data points at the lowest momenta are rejected since they are
in conflict with more recent measurements done at LEAR by the PS173 group [103]. Our
PWA clearly favors this last experiment.

In the pre-LEAR era a very large part of the experimental data on pp scattering con-
sisted of elastic differential cross sections [110, 104, 129, 132, 128, 113]. The most accurate
data were those taken by Eisenhandler et al. at 690, 790, and 860 MeV/c (and higher mo-
menta) [128]. With the exception of the data at 194.8 MeV/c of Ref. [104] and the data
at 910 MeV/c of Ref. [132] we find these pre-LEAR data to be consistent. An accurate
measurement of the backward elastic differential cross section at cos θ = −0.994 was done
by Alston-Garnjost et al. [117] between 406 and 922 MeV/c. Since 1983, differential cross
sections on pp → pp have been measured by different groups at LEAR and at KEK. For an
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extensive discussion of these data we refer to the next subsection.
A number of pre-LEAR experiments determined the elastic differential cross sec-

tion at forward scattering angles in order to study the Coulomb-nuclear–interference re-
gion [146, 118, 112, 147]. At LEAR this was done by the collaborations PS172 [107, 125]
and PS173 [148]. In general, all these data are well described in the PWA, although in
some cases data points in the extreme-forward region had to be rejected since they are
contaminated by multiple Coulomb scattering in the target (so-called Molière scattering).

Some of the most important results coming from LEAR are the high-quality elastic
analyzing-power Ay (polarization) data, measured by the PS172 [122, 123] and PS198 [130,
120] collaborations at a number of energies above 439 MeV/c. Since in the pre-LEAR era
only very few and inaccurate data points existed [132, 127, 131], these experiments mean
real progress. We find the data of PS172 and PS198 to be consistent, except for their
normalizations. In our PWA we float the normalizations of the Ay data at 497, 523, and
679 MeV/c. PS172 has also obtained the first (not very accurate) results on the elastic Dyy

depolarization [150]. For these data we do not take a normalization error into account, in
view of the large error bars.

Before the advent of LEAR in 1983, also charge-exchange differential observables were
scarce. Some differential cross sections existed [119, 129, 151, 121, 152], but these were not
very accurate. Since 1984, however, the situation has improved enormously. High-quality
differential cross sections have been obtained at KEK between 392 and 781 MeV/c [116],
and at LEAR by the PS173 group at low momenta between 183 and 590 MeV/c [103]. One
of the most important experiments at LEAR has been PS199 whose goal was to study the
spin structure of the charge-exchange reaction. So far, it has obtained very accurate data on
the differential charge-exchange cross section at 693 MeV/c and very important data on the
charge-exchange analyzing power Ay between 546 and 875 MeV/c [126, 124]. More results
from PS199 can be expected in the near future. Very recently, an new LEAR experiment
called PS206 [153] has been approved that will further study the charge-exchange reaction.

B. Flaws in elastic differential cross-section data

Since 1983 several experiments have measured the elastic differential cross section at
different momenta. PS173 at LEAR measured this observable at low momenta between 181
and 590 MeV/c [101, 102]. It was subsequently measured at KEK between 392 and 781
MeV/c [115], by PS172 at 679, 783, and 886 MeV/c [123] (and at higher energies), and by
PS198 at 439, 544, and 697 MeV/c [130, 120]. Unfortunately, these different experiments
do not appear to be consistent with each other, nor with the accurate pre-LEAR data of
Eisenhandler et al. [128] which are described very well in the PWA. In fact, this is the most
serious flaw in the pp database and a major obstacle in fitting potential models [25]. It is
highly probable that some of these data contain unspecified systematic errors, or that the
statistical errors have been underestimated.

Since we are talking about a total of 540 cross sections (not counting the Eisenhandler
data) we decided to put some effort in trying to determine what is wrong with these data,
instead of rejecting them outright. This turned out to be very difficult. The discussion
about statistical and systematic errors in most of the original papers can be called marginal
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at best. Sometimes results from Legendre fits are presented, but in several cases it turns out
that the χ2

min of these fits is much too high for a statistical data set. The procedure that we
followed to examine these data was as follows. We fitted each differential cross section with

dσ/dΩ =
`max
∑

`=0

a`P`(cos θ) .

`max was determined by the requirement that the error on the corresponding coefficient
a` was smaller than the coefficient itself. In the ideal situation this would give a fit with
χ2

min/Ndf ≈ 1.0. However, for few groups this was actually the case. We then enlarged the
errors by adding a point-to-point systematic error in quadrature to the quoted statistical
errors. The amount of error added was determined by the requirement that now indeed
χ2

min ≈ Ndf . Once for a group this result was approached, outliers were removed (three-
standard-deviation rule). For some groups special measures had to be taken, which we will
discuss now. The results of these investigations are summarized in Table II.

The data measured by PS173 [101, 102] are at the most forward angles contaminated
by effects due to multiple scattering in the target (Molière scattering). Since the experi-
mentalists do not present their data corrected for these effects, and since these corrections
depend on details of the target used, there is no way for us to take these effects into ac-
count. Consequently, the only sensible thing to do is to reject the data at angles where
multiple-scattering effects are believed to be seen. These data were used to extract the
real-to-imaginary ratio of the forward scattering amplitude [148]. It is perhaps remarkable
that in Ref. [148] values for this ratio were presented at more momenta than the four for
which the corresponding differential cross sections were presented in Refs. [101, 102]. These
remaining cross sections have never been published. After removing the points at forword
angles, difficulties remain. At 287 MeV/c it is necessary to reject five individual data points
and add a 5% point-to-point error. At 505 MeV/c two outliers must be removed and at 590
MeV/c a 3% error must be added.

The data taken at KEK [115] present serious difficulties of a different kind. The only
manner to achieve satisfactory results in a Legendre fit seemed to be to either reject a
large number of data points or to enlarge all errors by a significant amount (≈ 6 − 7%).
However, improvement could be obtained in the following manner. It turned out that most
difficulties resided in the data taken in the “one-prong” region [115], i.e. at forward and
backward angles. The data at intermediate angles, the “two-prong” region, appear to be
less troublesome. In fact, in Ref. [115] different systematic errors are quoted for these two
regions, although the experimentalists perform Legendre fits to the data as one group. When
we split the groups at 490, 591, 689, and 781 MeV/c into two different parts, it suffices to
enlarge the statistical errors by a smaller amount, and in some “two-prong” regions the data
need no corrections at all.

The description of the data taken by PS172 [123] improves much when the points at the
most forward and at the most backward angle at removed at all momenta (F. Bradamante,
private communication). At 886 MeV/c three additional outliers have to be rejected. Espe-
cially for these groups there remains a big problem with the normalization [123] (see below).
For the data at 697 MeV/c [130] from the PS198 group the statistical errors may have been
underestimated. We had to enlarge these by adding a 6% point-to-point error.
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After all these corrections have been applied to the different groups the next step is to
see to what extent the Legendre coefficients at comparable momenta are consistent. These
coefficients are presented in Table III. It is immediately clear that significant problems occur
in the normalization a0 of the different groups (which is why we present the “renormalized”
Legendre coefficients a`/a0 for ` > 0). This is especially true for the PS172 data. The
probable reason [123] for the difficulties is that data could only be taken in a very limited
angular region, so that only a small fraction ≈ 5% of the cross section is detected. Properly
normalizing the data is then especially difficult. These data would have to be treated
with a “floated” normalization. Certainly a 10% normalization uncertainty as suggested in
Ref. [123] is not sufficient. Since also the KEK data in the “two-prong” region cover a limited
angular region it would be a good idea to float these normalizations as well, since they are
not consistent with the normalizations of the data in the “one-prong” regions. Apart from
these normalization problems it is clear from a study of Table III that it is very unlikely
that the different experiments are consistent. Certainly, the PS173 data at 590 MeV/c are
not compatible with the KEK data at 591 MeV/c; the PS172 data at 783 MeV/c are not
compatible with the KEK data at 781 MeV/c, nor with the Eisenhandler data at 790 MeV/c.
The PS198 data at 439 MeV/c do not appear to intrapolate between the KEK data at 392
and 490 MeV/c, etcetera. So, although many beautiful data have come out of LEAR and
KEK, unfortunately elastic differential cross sections are not among them.

To summarize, at present we are prejudiced in favor of the pre-LEAR data by Eisen-
handler et al. [128], although we cannot exclude completely the possibility that these data
contain unspecified systematic errors and that one of the LEAR or (more unlikely) the KEK
experiments is correct after all. Preliminary study showed that we could obtain a reasonable
fit to the LEAR data from PS172 and PS198, but only at the cost of rejecting the pre-LEAR
data of Eisenhandler et al. [128] and of Sakamoto et al. [113]. And still, the problems with
the data from PS173 and KEK would remain. Further investigation is required before such
a drastic step will be taken. Obviously, a dedicated new experiment that might shed some
light on this issue would be highly welcome.

IX. RESULTS

After deciding on the final content of the Nijmegen 1993 pp database to be used in the
PWA, the free P -matrix parameters are fitted to these data1. In Table I we present an
overview of the results of this fit for all the pp scattering data. In this Table one can find
the values for χ2

min for each individual group, the normalization predicted by the PWA, and
the data points and groups that have been rejected by us on statistical grounds. The total
number of scattering observables that are rejected is 204, not including the problematic
LEAR and KEK elastic differential cross sections discussed in the previous Section. Three
normalization data are rejected. We reject three groups because of an improbable high χ2

min,

1For the sake of completeness we mention that at the time of our final fit, the data of Refs. [151,
152, 147] were not available to us. Also, we were at that time not aware of the existence of the
data of Refs. [136, 137].
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and two groups because of an improbable low χ2
min. In the final fit we have (in the notation

of Sect. VII)

Nobs = 3543 , Nn = 113 , Nne = 103 , Npar = 30 ,

so that

Ndata = 3646 , Nfp = 143 , Nnf = 10 , Ndf = 3503 .

When the data set is a perfect statistical ensemble and when the model is totally correct
one expects

〈χ2
min/Ndf〉 = 1.000 ± 0.024 .

Our best fit to the final 1993 database results in

χ2
min = 3801.0 ,

corresponding to

χ2
min/Ndata = 1.043 and χ2

min/Ndf = 1.085 .

The 3543 scattering observables contribute 3700.9 to χ2
min, which means that the 103 nor-

malization data contribute the remaining 100.1 of χ2
min.

In order to get a feeling for some of these numbers, let us compare them to the NN
case. In the Nijmegen NN PWA the database contains Ndata = 4301 NN scattering data,
which are described with χ2

min = 4263.8 or χ2
min/Ndata = 0.991 [7]. The number of model

parameters needed in our case is 30, which is a reasonable number, in view of the fact that
21 parameters were used in the Nijmegen pp PWA and an additional 18 in the np PWA.

The values for the P -matrix parameters and their errors are tabulated in Table IV. The
parameters for the higher partial waves are the same as the corresponding state given in this
Table. For instance, the 1F3 wave has the same parameters as the 1D2 wave, the 3F3 wave
the same as the 3D2 wave, the 3G3 the same as the 3F2, and so on. This is just a convenient
prescription. For higher partial waves the short-range parametrization is irrelevant due to
the centrifugal barrier and the dynamics is completely determined by the potential tail. As
explained in Section III, these parameters correspond to a spin-dependent optical potential
for the short-range interaction. It can be seen that even if one introduces for each partial
wave of specific isospin a simple complex spherical-well potential, then still by no means all
of these parameters can be determined from the existing data. This is in striking contrast
with for instance the pp analysis where one needs 4 parameters already to describe the 1S0

channel. The reason is that the pp 1S0 phase shift is very accurately known at very low
energies (below 3 MeV). A proper description of the P waves in the pp case also requires
more than one parameter for each wave. In our pp case, no single partial wave (of specific
isospin) needs more than one parameter for the real part of the short-range interaction,
but on the other hand much more partial waves contribute significantly to the scattering
process. This is especially true for the charge-exchange reaction, as can be seen from Table V
where we give the partial-wave cross sections for the elastic and charge-exchange reaction
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at a number of momenta, as well as the total and annihilation cross section. Compared
to nucleon-nucleon scattering, one notes a large contribution of P and D waves to the
cross sections already at low momenta. The reason for this is the greater strength of the
antinucleon-nucleon potentials, especially the central and tensor potentials.

In Figure 1 we show the results for the total and annihilation cross sections as a function
of momentum. The high-quality data are from the LEAR experiments PS172 [106, 114] (total
cross sections) and PS173 [105, 100] (annihilation cross sections). We calculate total cross
sections with the optical theorem. Obviously, these cross sections can only be compared
to the experimental data, when the effects of the Coulomb interaction can be neglected.
Except for the lowest momenta (plab < 200 MeV/c) this is probably a good approximation.
An example of the fit to the differential cross sections from Eisenhandler et al. [128] is shown
in Figure 2. In Figure 3 the fit to the backward elastic cross sections (cos θ = −0.994) from
Ref. [117] is demonstrated. Assuming that these data are correct, it can be seen from this
Figure that there appears to be room for improvement at the lowest momenta. This is
precisely the momentum region (plab ≈ 509 MeV/c) where some statistical evidence for a
resonance was found [138]. The differential cross section for charge-exchange scattering is
given in Figure 4, compared to recent high-quality data taken by PS199 [126] at 693 MeV/c.
This is one of the most constaining experiments in the database. In order to fit this group
properly, orbital angular momenta up to ` = 10 must be taken into account. The cross
section exhibits the typical dip-bump structure at forward angles, which can be understood
as an interference effect between one-pion exchange and a background [154]. Unfortunately,
no data of similar quality have been taken in this dip-bump region.

In Figure 5 we give the results for the analyzing power (polarization) for elastic scattering,
compared with the recent data from PS172 [122] and from PS198 [130, 120]. The fits to the
analyzing-power data for the charge-exchange reaction from PS199 [126, 124] are shown in
Figure 6. Finally, in Figure 7 the prediction for the depolarization for elastic scattering at
783 MeV/c is shown compared to the data from PS172 [150]. Only a few depolarization data
exist: one point at 679 MeV/c, three points at 783 MeV/c, and one point at 886 MeV/c.
These data points are not included in the fit in view of the large error bars. This also means
that no normalization error is taken into account.

In Sect. VI a formalism was proposed to extract phase-shift parameters and inelasticities
from the S matrix for antinucleon-nucleon scattering. It does not make much sense to present
all these phase shifts, inelasticities and mixing parameters without a proper assessment of the
uncertainties (statistical errors). This, however, requires a lot of work. Preliminary study
shows that the phase-shift parameters for the 1S0 and 1P1 partial waves are not pinned
down accurately at all above plab ≈ 400 MeV/c. On the other hand, a large number of
parameters appear to be very well determined by the existing data, such as the 3P0,1,2 and
3D2,3 phase shifts and inelasticities, and the ε1,2 mixing parameters. All results are available
in numerical form from the authors. An extensive discussion of the remaining uncertainties
in the predictions of the PWA and the phase-shift parameters will be presented elsewhere.

In our 1991 preliminary PWA [29] we were able to determine the charged-pion–nucleon
coupling constant f 2

c from the data on the charge-exchange reaction pp → nn, in which only
isovector mesons can be exchanged. In this PWA we analyzed 884 scattering observables
between 400 and 950 MeV/c, using 23 free parameters. We found f 2

c = 0.0751(17), at the
pion pole. The error is purely statistical. This value was in nice agreement with other deter-
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minations of f 2
c from np [155] and π±p scattering data [156]. These results provided strong

evidence for an approximate charge-independent pion-nucleon coupling constant, since they
were consistent with the value for f2

p found in the Nijmegen pp PWA [6].
Since this preliminary analysis, more high-quality analyzing-power data for the charge-

exchange reaction have become available from PS199 [124]. We have repeated the deter-
mination of f2

c , but this time from the complete 1993 Nijmegen database. The coupling
constants of the neutral pion were kept at the value of f2

p = f2
n = 0.0745. Since f2

p is de-
termined by the data on elastic scattering pp → pp, and f2

c by the data on charge-exchange
scattering pp → nn, one expects that the correlation between the two is small. Adding f 2

c
as the 31st free parameter, we now find

f2
c = 0.0732(11) ,

at the pion pole. This result supersedes our previous value from Ref. [29]. Again, the error
is of statistical origin only. In view of the enormous amount of work involved, it is very
hard for us to make statements about possible systematic errors on this result. In Ref. [29]
we did demonstrate that there were no systematic errors due to form-factor effects or due
to ρ(770) exchange. In the Nijmegen pp PWA systematic errors could be more thoroughly
investigated and there they were found to be small [60]. Although in our case the systematic
errors are probably larger than for the pp case, it is very encouraging that the available
charge-exchange data pin down the charged-pion coupling constant with a remarkably small
statistical error and that the result is consistent with other determinations from π±p [156]
and NN scattering [155, 60]. Very probably the new LEAR experiment PS206 [153] will
further constrain the charged-pion–nucleon coupling constant.

X. SUMMARY OF CONCLUSIONS

To summarize, we have performed an energy-dependent partial-wave analysis of all
antiproton-proton scattering data below 925 MeV/c antiproton momentum, published in
a regular physics journal since 1968. This is the first time such an analysis has been at-
tempted. We have set up the Nijmegen 1993 pp database by scrutinizing and passing sentence
on all available pp scattering observables below 925 MeV/c. Serious problems were encoun-
tered with a set of 540 elastic differential cross sections from LEAR and KEK. These data
were rejected, although further study is required here. Of the remaining 3747 scattering
observables 204 (5.4%) were rejected on the grounds of sound statistical criteria. We also
rejected three normalization data. The final database contains 3543 scattering observables
and 103 normalization data for a total of 3646 scattering data. Using 30 free parameters
we obtain χ2

min = 3801.0 corresponding to χ2
min/Ndata = 1.043. This shows that the tail

of the charge-conjugated Nijmegen potential is a realistic intermediate- and long-range pp
force. Data on the charge-exchange reaction pp → nn provide further evidence for a “low”
and approximately charge-independent pion-nucleon coupling constant f2

NNπ ≈ 0.0745. The
present results will serve as a starting-point for future investigations by our group of the
antiproton-proton system, and should be of help in planning further experiments at LEAR
and elsewhere.
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APPENDIX: FROM S MATRIX TO PHASE PARAMETERS

In his second paper on the subject of parametrizing the S matrix for nucleon-nucleon
scattering above the pion-production threshold [94], Bryan has presented an easy algorithm
to extract the three parameters δJ−1,J , δJ+1,J , εJ , and the three different elements of the
inelasticity matrix HJ from the 2× 2 S matrix, written as

SJ = exp(iδ) exp(iεJσx) HJ exp(iεJσx) exp(iδ) . (A1)

For completeness we list the relevant expressions. The derivation can be found in the paper
by Bryan. If the S matrix is presented numerically as

SJ =
(

R11 exp(2iδ11) iR12 exp(2iδ12)
iR12 exp(2iδ12) R22 exp(2iδ22)

)

, (A2)

then the phase shifts δJ−1,J and δJ+1,J can be obtained from the following two equations

tan 2(θa + θb) =
R2

12 sin 2δ
R11R22 + R2

12 cos 2δ
, (A3)

tan(θa − θb) =
R22 −R11

R11 + R22
tan(θa + θb) . (A4)

Here we defined the auxilary phases

θa ≡ δ11 − δJ−1,J , (A5)
θb ≡ δ22 − δJ+1,J , (A6)
δ ≡ δ11 + δ22 − 2δ12 . (A7)

The mixing parameter εJ can subsequently be calculated from

tan 2ε =
2R12 cos(θa + θb − δ)

R11 cos 2θa + R22 cos 2θb
, (A8)

where ε ≡ εJ . Next the elements of the matrix HJ are isolated. One finds

2 cos 2εH11 = R11 cos 2θa(1 + cos 2ε) + R22 cos 2θb(1− cos 2ε) , (A9)
2 cos 2εH22 = R11 cos 2θa(1− cos 2ε) + R22 cos 2θb(1 + cos 2ε) , (A10)

cos 2εH12 = R12 sin(δ − θa − θb) . (A11)
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If the matrix HJ is parametrized according to Klarsfeld [96], the three inelastic parameters
ηJ−1,J , ηJ+1,J , and ωJ can be obtained from

ηJ−1,J + ηJ+1,J = Tr HJ , (A12)
ηJ−1,JηJ+1,J = det HJ , (A13)

tan 2ωJ = 2H12/(H11 −H22) . (A14)
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FIG. 1. Total and annihilation cross section as a function of momentum in antiproton-proton
scattering. The σtot data are from the LEAR experiment PS172 [114, 106] and the σann data are
from experiment PS173 [105, 100]. The curve from the PWA for σtot has χ2

min = 88.4 for 75 points,
and the curve for σann has χ2

min = 65.3 for 52 points.
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FIG. 2. Differential cross section for elastic scattering at 790 MeV/c. The data are from
Eisenhandler et al. [128]. The curve from the PWA has χ2

min = 101.5 for 95 points.
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FIG. 3. Elastic cross section at backward angle cos θ = −0.994 as a function of momentum.
The data are from Alston-Garnjost et al. [117]. The curve from the PWA has χ2

min = 36.7 for 30
points.
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FIG. 4. Differential cross section for charge-exchange scattering at 693 MeV/c. The data are
from the LEAR experiment PS199 [126]. The curve from the PWA has χ2

min = 39.3 for 33 points.
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FIG. 5. Analyzing power in elastic scattering at 544, 679, 783, and 886 MeV/c. The data
are from the LEAR experiments PS172 [122] and PS198 [120]. The curves from the PWA have
χ2

min =37.5, 23.1, 30.1, and 38.5 for 27, 26, 29, and 34 points, respectively.
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FIG. 6. Analyzing power in charge-exchange scattering at 546, 656, 767, and 875 MeV/c. The
data are from the LEAR experiment PS199 [126, 124]. The curves from the PWA have χ2

min =36.1,
21.9, 25.5, and 20.0 for 23, 21, 22, and 23 points, respectively.
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FIG. 7. Depolarization in elastic scattering at 783 MeV/c. The data are from the LEAR
experiment PS172 [150]. The curve from the PWA has χ2

min = 4.9 for 3 points.
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TABLES

TABLE I. Reference table of antiproton-proton scattering data below 925 MeV/c.

plab No.a Norm Pred.
(MeV/c) typeb χ2

min error normc Rejectedd Ref. Comm.
119.0–

–923.0 50 σce 29.2 3–5% 1.098 ≤385.0, #=8 [99] k, m
176.8–

–396.1 5 σann 7.5 4.4% 0.943 176.8 [100]
181.0 46 dσel 48.7 5% 1.037 ≥0.925, #=6 [101, 102] j, o
183.0 13 dσce 8.3 5% 0.976 0.940, −0.170,

−0.574, −0.966 [103]
194.8 19 dσel . 4% . all [104] f, i, o
200.0–

–588.2 48 σann 57.8 2.2% 0.978 [100, 105]
221.9–

–413.2 45 σtot 53.0 0.9% 0.971 221.9, 229.6 [106]
233.0 54 dσel 87.6 5% 1.034 ≥0.938, #=6;

0.764 [107] j
239.2 20 dσel 27.7 4% 1.089 [104] o
272.0 65 dσel 55.9 5% 1.055 0.967 [107] j
276.0–

–922.0 21 σce 32.0 5–10% 1.138 [108] m
276.9 20 dσel 18.9 4% 1.042 [104] o
287.0 54 dσel . 5% . all [101, 102] j, l, o
287.0 14 dσce 24.0 5% 1.201 0.985 [103]
310.4 20 dσel 30.1 4% 1.039 [104] o
340.9 20 dσel 32.2 4% 1.044 −0.850 [104] o
348.7 38 dσel 42.4 4% 0.993 [110] i, o
355.0–

–923.0 36 σtot . 1.5% . all [111] e, m
353.3 119 dσel 116.4 5% 1.037 0.366 [112] j, o
369.1 19 dσel 15.7 4% 1.020 0.550 [104] i, o
374.0 39 dσel 24.3 5% 1.067 [113] o
388.0–

–598.6 29 σtot 35.4 0.7% 0.973 [114]
392.4 19 dσel . 5% . all [115] l
392.4 15 dσce . 5% . all [116] f
404.3 40 dσel 38.6 4% 0.994 −0.575, −0.925 [110] i, o
406.0–

–922.0 30 dσel 36.7 4% 0.896 [117] n
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TABLE I. (Continued.)

plab No.a Norm Pred.
(MeV/c) typeb χ2

min error normc Rejectedd Ref. Comm.
406.0 119 dσel 99.8 5% 1.029 0.990, 0.750, 0.578 [112] j, o
411.2 38 dσel 37.9 5% 1.025 −0.925 [113] i, o
413.4 7 dσel 5.6 5% 1.054 0.992 [118] j, o
424.5 7 dσel . 5% . all [118] e, j, o
428.0 10 dσce 12.3 20% 1.221 [119]
435.8 7 dσel 1.6 5% 1.017 0.992 [118] j, o
439.0 27 dσel . 10% . all [120] l
439.0 24 Ay,el 38.8 5% 1.068 0.851 [120] o
439.9 39 dσel 42.0 5% 1.031 [113] o
440.8 38 dσel 61.4 5% 1.035 [113] i, o
444.1 38 dσel 35.0 4% 0.972 0.175, −0.825, −0.875 [110] i, o
446.0 119 dσel 115.3 5% 1.021 [112] j, o
447.1 7 dσel 6.9 5% 1.050 0.992 [118] j, o
458.3 8 dσel 2.0 5% 0.994 0.996 [118] j, o
467.5 39 dσel 32.7 4% 1.039 −0.925 [110] i, o
467.8 39 dσel 24.0 5% 1.056 [113] o
469.2 8 dσel 8.2 5% 1.013 0.996 [118] j, o
479.3 119 dσel 109.3 5% 1.003 0.919, 0.873, 0.697 [112] j, o
480.0 10 dσce 14.3 ∞ 1.154 [121] g
481.2 8 dσel 7.2 5% 1.048 0.996 [118] j, o
490.1 37 dσel . 5% . all [115] l
490.1 15 dσce 12.5 5% 1.068 −0.193 [116]
490.6 39 dσel 47.5 5% 0.983 [113] o
492.7 8 dσel 4.2 5% 1.014 0.996 [118] j, o
497.0 14 Ay,el 7.3 ∞ 0.718 [122, 123] h
498.7 37 dσel 27.7 4% 1.004 [110] i, o
503.8 8 dσel 13.3 5% 1.047 0.996 [118] j, o
504.7 39 dσel 14.3 5% 1.021 [113] o
505.0 54 dσel . 5% . all [101, 102] j, l, o
505.0 14 dσce 30.1 5% 1.034 0.574 [103]
508.0 119 dσel 105.3 5% 1.019 0.663, 0.530 [112] j, o
508.9 39 dσel 28.7 5% 1.025 [113] o
516.0 8 dσel 5.5 5% 1.018 0.996 [118] j, o
523.0 15 Ay,el 8.3 ∞ 0.786 [122, 123] h
524.8 36 dσel 32.2 4% 1.020 [110] i, o
525.9 39 dσel 45.0 5% 1.053 [113] o
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TABLE I. (Continued.)

plab No.a Norm Pred.
(MeV/c) typeb χ2

min error normc Rejectedd Ref. Comm.
528.2 8 dσel 3.2 5% 1.005 0.996 [118] j, o
533.6 119 dσel 133.7 5% 1.029 [112] j, o
537.0 10 dσce 19.4 ∞ 1.199 [121] g
540.6 8 dσel 10.9 5% 1.015 0.996 [118] j, o
543.2 39 dσel 38.4 5% 1.065 −0.975 [113] o
544.0 33 dσel . 10% . all [120] l
544.0 30 Ay,el 37.5 5% 1.046 ≥0.883, #=3 [120] o
546.0 23 Ay,ce 36.1 4% 0.959 [124]
549.4 10 dσce 7.1 20% 1.258 [119]
550.0 67 dσel 76.0 5% 1.006 ≥0.995, #=3;

0.910, 0.883, 0.869 [125] j
553.1 34 dσel 38.6 4% 0.981 [110] i, o
553.4 8 dσel 2.4 5% 1.017 0.996, 0.972 [118] j, o
556.9 119 dσel 125.4 5% 1.025 0.908 [112] j, o
558.5 39 dσel 45.4 5% 1.040 [113] o
565.5 8 dσel 5.7 5% 1.006 0.996 [118] j, o
568.4 37 dσel 34.3 5% 1.040 −0.675, −0.825 [113] i, o
577.2 36 dσel 36.0 4% 0.983 [110] i, o
578.1 9 dσel 6.2 5% 1.014 0.999 [118] j, o
578.3 119 dσel 132.3 5% 1.047 [112] j, o
584.0 10 dσce 15.7 ∞ 1.112 [121] g
590.0 39 dσel . 5% . all [101, 102] j, l, o
590.0 15 dσce 32.8 5% 1.092 0.996, −0.574 [103]
591.2 9 dσel 6.5 5% 1.029 0.999 [118] j, o
591.2 39 dσel . 5% . all [115] l
591.2 15 dσce 18.0 5% 1.058 −0.358 [116]
596.5 38 dσel 49.5 5% 1.075 [113] o
599.2 33 dσel 15.8 4% 0.997 [110] i, o
604.0 9 dσel 7.6 5% 0.987 0.998 [118] j, o
615.0 38 dσel 48.1 5% 1.046 −0.575 [113] o
617.0 9 dσel 6.7 5% 0.953 0.998 [118] j, o
630.0 10 dσce 9.3 ∞ 1.073 [121] g
630.9 9 dσel 4.6 5% 0.997 0.998 [118] j, o
639.6 38 dσel 17.1 5% 0.995 −0.175 [113] o
644.7 9 dσel 7.8 5% 0.996 0.998 [118] j, o
656.0 21 Ay,ce 21.9 4% 0.963 [124, 126]
658.1 38 dσel 37.4 5% 0.972 0.225, −0.675, −0.975 [113] o
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TABLE I. (Continued.)

plab No.a Norm Pred.
(MeV/c) typeb χ2

min error normc Rejectedd Ref. Comm.
658.6 9 dσel 8.9 5% 1.004 0.998 [118] j, o
670.0 10 dσce 5.5 ∞ 1.165 [121] g
671.5 9 dσel 3.3 5% 0.987 0.998 [118] j, o
679.0 26 dσel . ∞ . all [123] l
679.0 27 Ay,el 23.1 ∞ 0.846 0.540 [122, 123] h
679.0 1 Dyy 1.4 – . [150] p, q
679.1 4 Ay,el 6.3 5% 0.983 [127] o
680.1 38 dσel 40.2 5% 1.003 [113] o
686.1 9 dσel 3.9 5% 0.986 0.998 [118] j, o
689.0 39 dσel . 5% . all [115] l
689.0 16 dσce 26.5 5% 1.010 −0.139 [116]
690.0 89 dσel 103.5 4% 0.991 0.370 [128]
693.0 34 dσce 39.3 10% 1.069 −0.075 [126] r
696.1 21 dσel 16.4 4% 1.026 [129]
696.1 16 dσce 21.0 4% 1.050 [129]
697.0 24 dσel . 10% . all [130] l
697.0 33 Ay,el 20.3 5% 1.022 0.629 [130] o
698.0 10 dσce 7.1 ∞ 1.237 [121] g
700.0 4 Ay,el 2.1 5% 0.991 [131] o
701.1 9 dσel 3.5 5% 1.000 0.998 [118] j, o
715.3 9 dσel 10.6 5% 1.002 0.998 [118] j, o
728.0 10 dσce 2.9 ∞ 1.105 [121] g
757.0 72 dσel 95.7 5% 1.055 ≥0.996, #=3 [125] j
767.0 22 Ay,ce 25.5 4% 1.113 [124]
780.5 39 dσel . 5% . all [115] l
780.5 15 dσce 14.0 5% 0.974 [116]
783.0 30 dσel . ∞ . all [123] l
783.0 30 Ay,el 30.1 4.5% 0.944 −0.300 [122, 123]
783.0 3 Dyy 4.9 – . [150] p, q
790.0 95 dσel 101.5 4% 1.034 [128]
860.0 95 dσel 70.5 4% 1.045 0.510 [128]
875.0 23 Ay,ce 20.0 4% 0.995 [124]
886.0 34 dσel . ∞ . all [123] l
886.0 34 Ay,el 38.5 4.5% 0.992 [122, 123]
886.0 1 Dyy 1.2 – . [150] p, q
910.0 19 dσel . ∞ . all [132] f, g
910.0 21 Ay,el 14.7 5% 0.989 [132]
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a The number includes all published data, except those given as 0.0±0.0 (see Comment
i), and those having plab > 925 MeV/c (see Comment m).

b The subscripts “el” and “ce” denote observables in the elastic pp → pp and charge-
exchange pp → nn reactions, respectively. “dσ” denotes a differential cross section
dσ/dΩ, Ay a polarization-type datum (asymmetry or analyzing-power), and Dyy a
depolarization datum. σtot stands for total cross section, σann for (total) annihilation
cross section, and σce for integrated charge-exchange cross section.

c Normalization, predicted by the analysis, with which the experimental values should
be multiplied before comparison with the theoretical values.

d Tabulated is plab in MeV/c or cos θ. The notation “≥0.925, #=6” e.g. means that the
6 points with cos θ ≥0.925 are rejected.

e Group rejected due to improbable low χ2
min.

f Group rejected due to improbable high χ2
min.

g Floated normalization. Data are relative only.

h Normalization floated by us, since the norm contributes much more than 9 to χ2
min.

i Data points given as 0.0±0.0 not included.

j Coulomb-nuclear–interference measurement. Data points in the extreme forward an-
gular region are rejected when they contain multiple-scattering effects.

k Data points at low momenta rejected (see text).

l Problematic differential cross section. Not included in the database. See the text,
Sect. VIIIB and Tables II and III.

m Part of a group of data with points having plab > 925 MeV/c.

n Elastic differential cross sections as a function of momentum taken at backward angle
cos θ = −0.994.

o Normalization error assumed by us, since no clear number is stated in the reference.

p Depolarization data. Not included in the fit, in view of large error bars.

q Normalization error taken to be zero, in view of large error bars of these data.

r Data points taken at the same angles averaged.
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TABLE II. Corrections applied to elastic differential cross sections from Eisenhandler et al.,
from PS172, PS173, and PS198 from LEAR, and from KEK. The number of data includes all
published points. The column labeled “Syst. error” gives the approximate point-to-point error
that has to be added quadratically to the statistical error to reach χ2

min ≈ Ndf . The column
labeled “χ2

unc” gives the result of the Legendre fit without any corrections, except that PS173
points at forward angles contaminated by multiple-scattering effects are removed. For the values
of χ2

min after the corrections, see Table III.

plab No. Syst.
(MeV/c) Group data Rejected points (cos θ) error χ2

unc Ref. Comm.
181.0 PS173 46 > 0.92, #=6 41.0 [101, 102] a
287.0 PS173 54 > 0.95, #=9; 0.345, 0.199, 0.101, 0.051, −0.345 5% 160.7 [101, 102] a
392.4 KEK 19 2% 19.2 [115] b
439.0 PS198 27 4% 28.0 [120]
490.1 KEK 18 4% 202.0 b

19 15.0 [115] c
505.0 PS173 54 > 0.98, #=3; 0.96, 0.67 59.5 [101, 102] a
544.0 PS198 33 23.1 [120]
590.0 PS173 39 > 0.99, #=2 3% 39.0 [101, 102] a
591.2 KEK 19 0.825 3% 276.2 b

20 0.275, −0.075 2% 36.0 [115] c
679.0 PS172 26 0.50, −0.50 82.7 [123] d
689.0 KEK 15 3% 90.5 b

24 3% 24.2 [115] c
690.0 Eisenh. 89 0.37 101.9 [128]
697.0 PS198 24 6% 174.0 [130]
780.5 KEK 14 2% 30.5 b

25 16.4 [115] c
783.0 PS172 30 0.58, −0.58 31.9 [123] d
790.0 Eisenh. 95 88.2 [128]
860.0 Eisenh. 95 69.4 [128]
886.0 PS172 34 0.66, 0.54, 0.46, −0.18, −0.66 77.6 [123] d

a Data points in the extreme forward angular region are rejected because they contain
multiple-scattering effects.

b Data in the “one-prong” region. For a discussion, see the text.

c Data in the “two-prong” region. For a discussion, see the text.

d The most forward and the most backward data point are rejected (F. Bradamante,
private communication).
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TABLE III. Legendre-polynomial fits to elastic differential cross sections from Eisenhandler et
al., PS172, PS173, and PS198 from LEAR, and from KEK. The corrections summarized in Table II
are taken into account. The number of data is the number of published data minus the rejected
points. For the KEK groups at 490, 591, 689, and 781 MeV/c the first line gives the results for the
“one-prong” region, and the second line the results for the “two-prong” region.

plab No.
(MeV/c) Group data a0 a1/a0 a2/a0 a3/a0 a4/a0 a5/a0 a6/a0 χ2

min
181.0 PS173 40 7.02(25) 0.92(06) 0.46(07) 41.0
287.0 PS173 40 5.10(07) 1.58(03) 0.82(03) 0.15(02) 36.0
392.4 KEK 19 5.49(06) 1.92(04) 1.35(05) 0.35(03) 15.6
439.0 PS198 27 4.09(08) 1.93(06) 1.63(07) 0.67(08) 0.39(09) 0.19(07) 0.09(04) 19.6
490.1 KEK 18 5.07(10) 1.95(05) 1.55(07) 0.50(05) 0.10(03) 15.4

19 5.61(45) 1.91(21) 1.89(28) 0.72(13) 0.38(10) 15.0
505.0 PS173 49 4.18(05) 1.90(04) 1.76(04) 0.96(05) 0.49(06) 0.11(05) 0.06(04) 36.1
544.0 PS198 33 3.79(05) 2.08(05) 2.16(06) 1.16(06) 0.57(06) 0.12(04) 0.04(02) 23.1
590.0 PS173 37 3.73(06) 2.11(05) 2.09(05) 1.25(06) 0.66(06) 0.26(05) 0.10(03) 32.2
591.2 KEK 18 4.42(08) 2.12(05) 1.95(06) 0.83(04) 0.16(03) 13.8

18 5.24(33) 2.07(18) 2.08(22) 0.99(11) 0.38(07) 15.2
679.0 PS172 24 1.96(02) 2.59(05) 1.88(02) 1.39(04) 18.8
689.0 KEK 15 3.52(22) 2.27(15) 2.35(18) 1.46(11) 0.63(14) 0.17(07) 9.8

24 3.21(15) 2.16(14) 2.14(17) 1.20(09) 0.38(06) 19.0
690.0 Eisenh. 88 4.28(07) 2.28(06) 2.45(08) 1.67(07) 0.76(06) 0.23(04) 0.03(02) 81.6
697.0 PS198 24 3.54(09) 2.22(08) 2.30(09) 1.43(08) 0.51(05) 0.10(02) 21.5
780.5 KEK 14 3.14(23) 2.37(17) 2.72(23) 2.10(16) 1.07(16) 0.29(07) 9.1

25 2.39(10) 2.07(11) 2.39(16) 1.36(08) 0.66(07) 16.4
783.0 PS172 28 2.55(07) 2.73(17) 2.45(11) 2.26(20) 0.67(05) 0.38(07) 29.8
790.0 Eisenh. 95 3.87(08) 2.36(07) 2.69(09) 2.08(09) 1.09(07) 0.42(05) 0.12(03) 88.2
860.0 Eisenh. 95 3.67(06) 2.41(06) 2.83(07) 2.33(07) 1.34(05) 0.56(04) 0.17(02) 69.4
886.0 PS172 29 2.44(04) 2.66(08) 2.64(06) 2.46(09) 0.95(03) 0.47(04) 22.2
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TABLE IV. P -matrix parameters of the different partial waves. V0 and V1 are the real parts
of the short-range spherical-well potential, for isospin I = 0 and I = 1 respectively. W is the
isospin-independent imaginary part. The mixing angles that take care of the short-range I = 0
tensor force are: θ1 = 55.7◦ ± 1.3◦ for the 3C1 state, θ2 = 45.8◦ ± 1.1◦ for the 3C2 state, and θ2 =
10.7◦± 4.7◦ for the 3C3 state. The quoted errors are defined as the change in each parameter that
gives a maximal rise in χ2

min of 1 when the remaining parameters are refitted.

partial wave V0 (MeV) V1 (MeV) W (MeV)
1S0 0 0 −99(6)
3S1 −151(6) −17(3) −100(3)
1P1 0 0 −90(7)
3P0 −132(9) 178(19) −156(9)
3P1 155(12) −66(3) −97(4)
3P2 −136(4) −69(3) −142(3)
1D2 0 0 −105(12)
3D1 −215(7) 33(16) −106(5)
3D2 −38(12) −198(4) −110(4)
3D3 −152(6) −102(5) −163(4)
3F2 −101(20) −250(14) −179(7)
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TABLE V. Partial elastic and charge-exchange cross sections in mb.

pp → pp pp → nn
plab (MeV/c) 200 400 600 800 200 400 600 800

1S0 14.6 6.8 3.7 1.9 0.5
1P1 1.7 2.6 2.5 2.4 1.3 0.4
1D2 0.1 0.4 0.7 0.8 0.1 0.4 0.2
1F3 0.1 0.2 0.1 0.1 0.1
1G4 0.1 0.1 0.1
3P1 1.8 7.6 7.6 6.2 6.7 6.2 2.8 1.4
3D2 0.1 0.3 2.2 3.9 0.3 2.6 3.2 2.0
3F3 0.1 0.1 0.2 0.4 1.0 1.4
3G4 0.3 0.4
3P0 4.7 4.6 3.4 2.6 2.1 1.4 0.7 0.3
3S1 71.1 29.6 14.4 7.9 2.0 0.5 0.3 0.3

3S1 →3D1 0.2 0.1 0.6 0.5 0.1
3D1 →3S1 0.2 0.1 1.4 0.7 0.1

3D1 0.3 0.8 1.3 0.1 0.3 0.5 0.4
3P2 6.3 16.1 15.5 12.9 0.8 1.2 0.5 0.3

3P2 →3F2 0.1 0.1 0.2 0.2 0.1 0.4 0.4 0.2
3F2 →3P2 0.1 0.1 0.2 0.2 0.3 0.6 0.4 0.3

3F2 0.1 0.3 0.1
3D3 1.2 5.0 7.1 0.4 1.0 0.6

3D3 →3G3 0.1 0.1 0.1 0.2 0.3 0.2
3G3 →3D3 0.1 0.1 0.1 0.3 0.4 0.3

3G3 0.1
3F4 0.3 1.2 0.1 0.1

3F4 →3H4 0.1 0.1 0.2
3H4 →3F4 0.1 0.1 0.2 0.2

3H4

rest 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9
singlet 16.4 9.8 7.0 5.4 2.0 0.9 0.4 0.2
triplet 84.7 60.5 50.1 44.5 14.4 15.9 12.6 9.6
total 101.1 70.3 57.1 49.9 16.4 16.8 13.0 9.8

pp → all pp → mesons
plab (MeV/c) 200 400 600 800 200 400 600 800

314.7 193.9 151.8 128.5 197.2 106.8 81.7 68.8
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