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Abstract

A review is given of the different ways to describe p̄p scattering. Next the
Nijmegen partial-wave analyses of the p̄p data as well as the corresponding
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I. INTRODUCTION

Starting with an antiproton beam directed on a proton target many reactions are possi-
ble. First of all is the elastic scattering p̄p → p̄p. For this reaction differential cross sections
σel(θ), analyzing-power data Ael(θ) [1, 2], and even some depolarization data Dyy(θ) [3]
have been measured. We will discuss these extensively in this talk. The annihilation chan-
nel, p̄p → mesons, is studied very intensively by theorists as well as by experimentalists.
Many different reactions can be distinguished. For our purposes, however, only a global
description will turn out to be sufficient. The charge-exchange reaction p̄p → n̄n has its
threshold at pL = 99 MeV/c. Important is that in the one-boson-exchange (OBE) picture
only charged mesons can be exchanged. The most important of these are the π± and ρ±

mesons. The study of this reaction allowed us to determine the coupling constant of the
charged pion to the nucleons [4]. Recently, excellent data for this charge-exchange reaction
has been obtained at LEAR for the differential cross section σce(θ) and for the analyzing
power Ace(θ) [5]. Very recently, even charge-exchange depolarization data have become avail-
able [6]. Excellent data are also available for the strangeness-exchange reaction p̄p → Λ̄Λ
with threshold pL = 1.435 GeV/c [7]. More data for this reaction are forthcoming as well
as data for the other strangeness-exchange reactions p̄p → Λ̄Σ, Σ̄Λ [8] and Σ̄Σ. These re-
actions are very important for the precise determination of the ΛNK and ΣNK coupling
constants and combining these with the NNπ coupling constant gives us information about
flavor SU(3) [9].

II. ANTINUCLEON-NUCLEON POTENTIALS

It is customary to start with some meson-theoretic NN potential and then apply the G-
parity transformation [10] to get the corresponding NN potential. This is a straightforward,
but rather cumbersome procedure. When you ask people about details, then most people
must confess that they do not know.

We would like to point out that just charge conjugation, together with charge indepen-
dence, without actually combining them to G, is sufficient for our purposes. To understand
this, let us look at the ppm0 vertex describing the coupling of a neutral meson m0 to the
proton p with a coupling constant g. When we apply charge conjugation C we have

p̄ = Cp and m0 = Cm0 ,

and we describe now the p̄p̄m0 vertex. For nonstrange, neutral mesons m0 one can define the
charge parity ηc by m0 = ηcm0. Charge-conjugation invariance of the interaction Lagrangian
describing this ppm0 vertex requires that the coupling constant g of the meson m0 to the
proton p is equal to the coupling constant of the antimeson m0 to the antiproton p̄. The
coupling constant ḡ of the meson m0 to the antiproton is then given by

ḡ = ηcg .

For mesons of the type QQ, with relative orbital angular momentum L and total spin S the
charge parity is
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ηc = (−)L+S .

Therefore the pseudoscalar (1S0) mesons have JPC = 0−+, the vector (3S1) mesons have
JPC = 1−−, the scalar (3P0) mesons have JPC = 0++, etc.

We see that from the important mesons only the vector mesons have negative charge
parity and therefore the coupling constants of the vector mesons change sign when going
from the nucleons to the antinucleons. In the OBE picture the pp potential V (pp) is the
sum of the exchanges of the pseudoscalar meson π, the vector mesons ρ and ω, the scalar
meson ε(760), etc. That is

V (pp) = Vπ + Vρ + Vω + Vε + . . .

The potential V (p̄p) described in the same OBE picture is then given by

V (p̄p) = Vπ − Vρ − Vω + Vε + . . .

In these reactions only neutral mesons are exchanged. When we want to describe the
charge-exchange reaction p̄p → n̄n, then it is easiest to recall charge independence. Charge
independence requires that the coupling constant gc of the charged meson to the nucleons
is given by gc = g

√
2, and to the antinucleons by ḡc = ḡ

√
2. The charge-exchange potential

is therefore given by

Vce = 2(Vπ − Vρ + . . .) .

The diagonal potential in the n̄n channel is, using charge independence, given by V (n̄n) =
V (p̄p).

What can we learn from the NN potentials about the NN potentials?
The pp central force is relatively weak due to the cancellations between the repulsive con-
tribution of the vector mesons ω and ρ and the attractive contribution of the scalar mesons
ε(760), etc. The p̄p central force is strongly attractive, because the vectors mesons have now
an attractive contribution which adds coherently to the attractive contribution of the scalar
mesons, giving a very strong overall central force. Also the tensor force in NN is relatively
weak, because π and the important ρ contributions have opposite sign. In the NN case these
mesons add coherently again to give a very strong tensor force. This strong tensor force is
responsible for the importance of the transitions

3S1 ↔ 3D1 , 3P2 ↔ 3F2 , 3D3 ↔ 3G3 etc.

III. VARIOUS MODELS

A. Black-disk model

One of the simplest models for the description of the elastic and inelastic cross section
is the black-disk model. This model gives

σel = σann =
1
2
σT = πR2 ,
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where R is the radius of the black disk. This relation is satisfied very approximately. It
shows that the annihilation cross section predicts radii for the black disk which are energy
dependent and pretty large. In the momentum interval 200 MeV/c < pL < 1 GeV/c this
radius R varies from more than 2 fm to about 1.4 fm.

B. Boundary-condition model

The boundary-condition model in NN was first introduced by M. Spergel in 1967 [11].
Later many more people used this now more than a quarter century old model (see e.g.
Refs. [12, 13]). The model is based on the observation that the interaction for large values of
the radius is often well-known, while the interaction for small radii is very hard to describe.
This problem is then solved by just specifying a boundary condition at r = b. For this
boundary condition one takes the logarithmic derivative of the radial wave function at the
boundary radius b

P = b
(

dψ
dr

/ψ
)

r=b

.

Outside this radius one assumes that the interaction can be described by a known potential
VL. This long-range interaction is made of meson exchanges as described in section II and
it contains of course also the electromagnetic interaction.

A nice, instructive example is the modified black disk, where VL = 0 and P = −ipb. The
P matrix contains a negative imaginary part, implying absorption of flux at the boundary.
The boundary b is a measure for the annihilation radius. This modified black disk is specified
by only one parameter: the radius b.

When one looks how these boundary-condition models have been used, then one sees that
in these extremely simple models every time only very few parameters have been introduced.
The conclusion is that such a few-parameter model can fit possibly some data, but it will
never be able to fit all the available NN data, with the same set of only a few parameters.

C. Optical-potential model

The optical-potential models have become quite an industry in the NN community. The
first such model was from R. Bryan and R. Phillips in 1968 [14]. In the optical-potential
model the interaction between the antinucleon and the nucleon is described by a complex
potential from r = 0 to infinity. For the basic potential one takes a meson-theoretic potential,
obtained from some known NN potential by using the charge-conjugation operation. Then,
in order to get annihilation, to this potential is added another complex potential,

V (r) = (U − iW )f(r) .

Here U and W are constants and f(r) is some radial function. This radial function can
be the Woods-Saxon form, a Gaussian form, or even a square well. Let us give you a
DO-IT-YOURSELF-KIT called:
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How to make your own optical potential?

Instructions:
1. Look through the literature and decide which NN potential your want to use.
2. Apply to this potential charge conjugation, so that you obtain the corresponding NN
potential.
3. Pick your favored functional form for f(r). This will contain a range parameter b. After
you have made this choice, find some arguments, which sound like QCD, to justify this
chosen form.
4. Pick one of the beautiful differential cross sections as measured by Eisenhandler et al. [15]
and adjust U , W , and b such that a reasonable fit (at least at sight) is obtained for this
particular cross section.
Your model is now a three-parameter model, which fits some of the data (at least the
Eisenhandler data at one energy) reasonably well (at sight), but it cannot possibly fit all
the NN data, because the model does not have enough freedom.

After Bryan and Phillips many people have constructed similar models (see e.g. Refs. [16,
17, 18, 19]). Also in Nijmegen we made such an optical-potential model, which we optimized
by making a least-squares fit to our database, which contained at that time Nd = 3309 data.
Because we actually performed a fit to all the NN data we think that we will have about
the lowest χ2 of all the available two- or three-parameter optical-potential models. For our
model χ2

min = 6 109. This enormously large number is NOT a printing error, but just an
expression of the total failure of such simple models. It is, therefore, astonishing to see
that regularly new measurements from LEAR are compared to one or more of these few-
parameter optical-potential models (see e.g. Ref. [3]), as if something can be learned from
such a comparison!

There is only one group, the theory group of R. Vinh Mau in Paris, that has seriously
tried to fit all available NN data with an optical-potential model. In 1982 they got a fit
with χ2/Nd = 2.8, where they compared with the then available pre-LEAR data [20]. In
1991 they published an update [21], where they fitted now also the LEAR data. For the real
part of the potential they took the G-conjugated Paris NN potential [22]. Because the inner
region of this NN potential is treated totally phenomenologically it is impossible to take
that over to NN , so something has been done there and probably some extra parameters
have been introduced. The imaginary part of the potential they write as

W (r) =
{

gc(1 + fcTL) + gss(1 + fssTL) σ1 · σ2

+ gT S12 + gLS L · S 1
4m2r

d
dr

}

K0(2mr)
r

,

where TL is the lab kinetic energy and the parameters are the g’s and the f ’s. For each
isospin a set of 6 parameters is fitted, so that the imaginary part is described by about
12 real parameters. In total the Paris NN potential uses at least 12, possibly about 22,
parameters. The correct number used is not so important, what is important, is that the
number is much larger than 3. The Paris group do fit then to 2714 data and get χ2/Nd = 6.7.
The quality of this fit is very hard to assess, because the Paris group did not try to make
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their own selection of the data, but tried to fit all the available data, many of which are
contradictory. It would be interesting to see their fit to the Nijmegen p̄p database [30] (see
section V), where all the contradictory sets have been removed.

An important lesson could have been learned already in 1982 from this Paris work. An
optical-potential model needs at least about 15 parameters to be able to give a reasonable
fit to the NN data. This means that practically all few-parameter optical-potential models
published after 1982 should have been rejected by the journals.

D. Coupled-channels model

Another way to introduce inelasticity in our formalism is to introduce explicitly couplings
from the NN channels to annihilation channels. This was done in 1984 by P. Timmers et al.
in the Nijmegen coupled-channels model: CC84 [23]. Fitting to the then available pre-
LEAR data resulted in a quite satisfactory fit with χ2/Nd = 1.39. Several people have have
later tried similar models [24, 25]. An update of the old model CC84 was made in 1991 in
Nijmegen in the thesis of R. Timmermans [26]. This new coupled-channels model, which we
would like to call the Nijmegen model CC93, gives χ2/Nd = 1.58, when fitted to Nd = 3646
data. We will come back to this model somewhat later.

IV. ANTIPROTON-PROTON PARTIAL-WAVE ANALYSIS

In Nijmegen we have for almost 15 years been busy with partial-wave analyses of the
NN data. We have now developed rather sophisticated and accurate methods to do these
PWA’s [27, 28, 29]. A few years ago we realized that it was possible to do a PWA of all the
available p̄p data in exactly the same way as our NN PWA. Before this realization we always
thought that such a PWA would be almost impossible in NN . Luckily, it is not impossible.
We will try to give a short description of our PWA [30].

In an energy-dependent partial-wave analysis one needs a model to describe the energy
dependence of the various partial-wave amplitudes. Our model is a mixture of the boundary-
condition model and the optical-potential model. We choose the boundary at b = 1.3 fm.
This value is determined by the width of the diffraction peak and cannot be chosen differently,
without deteriorating the fit to the data. The long-range potential VL for r > b is

VL = VNN + VC + VMM .

Here VC is the relativistic Coulomb potential, VMM the magnetic-moment interaction, and
VNN is the charge-conjugated Nijmegen NN potential, Nijm78 [31]. We solve the relativistic
Schrödinger equation [32] for each energy and for each partial wave, subject to the boundary
condition

P = b
(

dψ
dr

/ψ
)

r=b

,

at r = b. This boundary condition may be energy dependent. To get the value of P as
a function of the energy we use for the spin-uncoupled waves (like 1S0, 1P1, 1D2, . . . and
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3P0, 3P1, 3D2, . . .) the optical-potential picture. We take a square-well optical potential for
r ≤ b. This short-ranged potential VS we write as

VS = US − iWS .

In this way we get in each partial wave and for each isospin the parameters US and WS.
Using these potentials we can calculate easily the boundary condition P and the scattering
amplitudes. For example in all singlet waves 1S0, 1P1, 1D2, . . ., we get U = 0 and W ≈ 100
MeV. For the triplet waves we take W independent of the isospin. The parameters for the
3P0 wave are e.g. W = 159±9 MeV and independent of the isospin, and U(I = 0) = −132±9
MeV and U(I = 1) = 178± 19 MeV. To describe all relevant partial waves we need in our
NN PWA 30 parameters. In our fit to the data we use all available data in the momentum
interval 119 MeV/c < pL < 923 MeV/c. The lowest momentum is determined by the fact
that for lower momenta no data are available. The highest momentum is determined by
several considerations. In NN we use all data up to TL = 350 MeV, which corresponds to
pL = 810 MeV/c. Because we wanted to include all the elastic backward cross sections of
Alston-Garnjost et al. [33], we need to go to pL = 923 MeV/c which corresponds to TL = 454
MeV. At this energy the potential description in NN is still valid, and therefore we feel that
also here our description must work at least up to this momentum.

Our final dataset contains Nd = 3646 experimental data. In our analyses we need to
determine Nn = 113 normalizations and Np = 30 parameters. This leads to the number Ndf

of degrees of freedom Ndf = Nd−Nn−Np = 3503. When the dataset is a perfect statistical
ensemble and when the model to describe the data is totally correct, then one expects for
χ2

min:

〈χ2
min〉 = Ndf ±

√

2Ndf .

Thus expected is 〈χ2
min(p̄p)〉/Ndf = 1.000± .024.

In our PWA we obtain χ2
min(p̄p)/Ndf = 1.085. We see that we are about 3.5 standard

deviations away from the expectation value. To get a feeling for these numbers let us
compare with the pp data and the pp PWA. The number of data is now Nd = 1787 and we
expect

〈χ2
min(pp)〉/Ndf = 1.000 ± 0.035 .

In the latest Nijmegen analysis, NijmPWA93 [29], we get

χ2
min(pp)/Ndf = 1.108,

which is 3 standard deviations too high. We see that our p̄p analysis compares favorable
with a similar analysis for the pp data. This means therefore that we have a statistically
rather good solution and also that this solution will be essentially correct.

V. THE NIJMEGEN NN DATABASE

An essential ingredient in our successfully completed PWA, as well as an important
product of this PWA, is the Nijmegen NN database [30]. As pointed out before, we use
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elastic charge exchange
LEAR rest LEAR rest

σT , σA 124 - - 63
σ(θ) 281 2507 91 154
A(θ) 200 29 89 -
D 5 - 9 -
total 610 2536 189 217

TABLE I. Number of elastic and charge-exchange data divided over various categories.

all data with pL < 925 MeV/c or TL < 454 MeV. This means that our momentum range
is similar to the momentum range used in the Nijmegen NN PWA’s. We will compare
regularly with the NN case to show that the same methods, which work well in NN , work
also well in NN and that the results are also similar.

The number of data Nd in the various final datasets are Nd(p̄p) = 3543, Nd(pp) = 1787,
and Nd(np) = 2514. In the processes to come to these final datasets we had to reject data.
We do not want to go into details [27] about what are the various criteria to remove data
from the dataset. We would like to point out, however, that in pp scattering there is a long
history about which datasets are reliable, and which not. We did not invent the method
of discarding incorrect data, we just followed common practice and used common sense. In
the p̄p case we needed to reject 744 data, which is 17% of our final dataset. In the pp case
we discarded 292 data or 14% of the final dataset, and in the np case we rejected 932 data,
which amounts to 27% of the final dataset. It is clear that the p̄p case does not seem to be
out of bounds. Of course, it is unfortunate that so many data have to be rejected, because
these data represented many man-years of work and a lot of money and effort. However,
when one wants to treat the data in a statistically correct manner, then often one cannot
handle all datasets, but one must reject certain datasets. This does not mean that all these
rejected datasets are “bad” data, it only means, that if we want to apply statistical methods,
then, unfortunately, certain datasets cannot be used.

In Table I we give the number of data points divided into elastic versus charge exchange,
LEAR versus the rest, and total cross sections σT , annihilation cross sections σA, differential
cross sections σ(θ), analyzing-power data A(θ), and depolarization data D(θ). This table
give some interesting information.
The most striking fact is that:
Of the final dataset only 22% of the data comes from LEAR.
This is after 10 years operation of LEAR. Remember the promises (or were it boasts) from
CERN, made before LEAR was built. They were something like: “Only one day running of
LEAR will produce more scattering data then all other methods together.” Unfortunately,
this promise of CERN did not work out. Also it is clear that LEAR has not given much
valuable information about σ(θ) for the elastic reaction. A lot of the elastic σ(θ) data from
LEAR unfortunately needed to be rejected [30]! This does not mean that LEAR did not
produce beautiful data. Some of the charge-exchange data and the strangeness-exchange
data are really of high quality.

Another striking fact is the virtual absence of spin-transfer and spin-correlation data.
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FIG. 1. Total cross sections (PS172) and annihilation cross sections (PS173) with the curves
from the Nijmegen PWA.

For the elastic reaction below 925 MeV/c there are only 5 depolarizations measured with
enormous errors [3]. Very recently, some depolarization data of good quality have become
available for the charge-exchange reaction [6].

A valid question is therefore:
Can one do a PWA of the p̄p data, when there are essentially no “spin data”?
The answer is yes! The proof that it can be done lies in the fact that we actually produced
a p̄p PWA with a very good χ2/Nd. We have also checked this at length in our pp PWA’s.
We convinced ourselves that a pp PWA using only σ(θ) and A(θ) data gives a pretty good
solution. Of course, adding spin-transfer and spin-correlation data was helpful and tightened
the error bands. However, most spin-transfer and spin-correlation data in the pp dataset
actually did not give any additional information.

VI. FITS TO THE DATA

It is of course impossible to show here how well the various experimental data are fitted.
From our final χ2/Nd = 1.085 one can draw the conclusion, that almost every dataset will
have a contribution to χ2 which is roughly equal to the number of data points as is required
by statistics. Let us look at some of the experimental data. In Fig. 1 we present total
cross sections from PS172 [34]. The fit gives for these 75 data points χ2 = 88.4. In the
same Fig. 1 one can also find 52 annihilation cross sections from PS173 [35]. These points
contributed χ2 = 65.3 to the total χ2. In Fig. 2 we plot the elastic differential cross section
σ(θ) at pL = 790 MeV/c as measured in 1976 by Eisenhandler et al. [15] The 95 data points
contribute χ2 = 101.5. The vertical scale is logarithmic. The nice fit reflects the high quality
of these pre-LEAR data.
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FIG. 2. Elastic differential cross section at 790 MeV/c from Eisenhandler et al., with the curve
from the Nijmegen PWA.

The differential cross section of the charge-exchange reaction p̄p → n̄n at pL = 693
MeV/c as measured by PS199 is given in Fig. 3. The 33 data contribute χ2 = 39.3. This
dataset can be considered important, because it is very constraining. One needs all partial
waves up to L = 10 to get a satisfactory fit to these data.

VII. COUPLED-CHANNELS POTENTIAL MODEL

Having finished our discussion of the Nijmegen p̄p partial-wave analysis we can look at
the NN potentials. We decided to update the old coupled-channels model Nijmegen CC84
of Timmers et al. [23]. Because of our experience with the various datasets this was not
very difficult, just very computer-time consuming. The result was the new Nijmegen CC93
model [26]. In this model we treat the NN coupled channels on the particle basis. We
therefore have a p̄p channel as well as a n̄n channel. This allows us to introduce the charge-
independence breaking effects of the Coulomb interaction in the p̄p channel and of the mass
differences between the proton and neutron as well as between the exchanged π0 and π±.

These NN channels are coupled to annihilation channels. We assume here that annihi-
lation can happen only into two fictitious mesons; into one pair of mesons with total mass
1700 MeV/c2, and into another pair with total mass 700 MeV/c2. Moreover, we assume
that these annihilation channels appear in both isospins I = 0 as well as I = 1. We end up
with 6 coupled channels for each of the p̄p channels: 1S0, 1P1, 1D2, 1F3, etc. and 3P0, 3P1,
3D2, 3F3, etc. Due to the tensor force we end up with 12 coupled channels for each of the
p̄p coupled channels: 3S1 + 3D1, 3P2 + 3F2, 3D3 + 3G3, etc.

We use the relativistic Schrödinger equation in coordinate space. The interaction is then
described by either a 6× 6 or a 12× 12 potential matrix
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FIG. 3. Charge-exchange differential cross section at 693 MeV/c from PS199, with the curve
from the Nijmegen PWA.

V =





VNN VA

˜VA 0



 .

The 2× 2 (or 4× 4) submatrix VNN we write as

VNN = VC + VMM + VOBE ,

where for VC we use the relativistic Coulomb potential, VMM describes the magnetic-moment
interaction, and for VOBE we use the charge-conjugated Nijmegen NN potential Nijm78 [31].
We have assumed that we may neglect the diagonal interaction in the annihilation channels.
The annihilation potential VA connects the NN channels to the two-meson annihilation
channels. It is either a 2× 4 matrix or a 4× 8 matrix. This potential we write as

VA(r) =
(

VC + VSSσ1 · σ2 + VT S12mar + VSOL · S 1
m2

ar
d
dr

)

1
1 + emar .

The factor mar is introduced in the tensor force to make this potential identically zero at
the origin. Here ma is the mass of the meson (either 850 MeV/c2 or 350 MeV/c2). This
annihilation potential depends on the spin structure of the initial state. For each isospin
and for each meson channel five parameters are introduced: VC , VSS, VT , VSO, and ma. This
gives a model with in total 4 × 5 = 20 parameters. These parameters can then be fitted
to the NN data. Doing this we obtained χ2/Nd = 3.5. It is clear, of course, that although
the old Nijmegen soft-core potential Nijm78 is a pretty good NN potential, it is definitely
not the ultimate potential. We decided therefore to introduce now as extra parameters the
coupling constants of the ρ, ω, ε(760), pomeron, and a0(980). Adding these parameters
allowed us quite a drop in χ2. Now we reached
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χ2/Nd = 1.58 ,

with a total of 26 parameters.

VIII. THE REACTION P̄P → Λ̄Λ

It is perhaps not superfluous to point out here, that we also made a PWA of the
strangeness-exchange reaction p̄p → Λ̄Λ [9, 36]. Fitting the Nd = 142 data, we get
χ2

min/Nd = 1.027.
The first theoretical treatments of this reaction were by F. Tabakin and R.A. Eisen-

stein [37] and independently by P. Timmers in his thesis [38]. Many other treatments of this
reaction can be found (see e.g. Refs. [39, 40, 41, 42, 43, 44, 45]). In the meson-exchange
models it is clear that next to K(494) exchange, there is also the exchange of the vector
meson K∗(892). In Nijmegen we have been able to determine the ΛNK coupling constant
at the pole [9]. We found f 2

ΛNK = 0.071± 0.007. This value is in agreement with the value
f2

ΛNK = 0.0734 used in the recent soft-core Nijmegen hyperon-nucleon potential [46]. When
we determine also the mass of the exchanged pseudoscalar meson we find m(K) = 480± 60
MeV in good agreement with the experimental value m(K) = 493.646(9) MeV. This shows
that we are actually looking at the one-kaon-exchange mechanism in the reaction p̄p → Λ̄Λ.

When the data for the reactions p̄p → Λ̄Σ and Σ̄Λ are available, then also the ΣNK
coupling constant can be determined. When this can be done with sufficient accuracy, then
information about the SU(3) ratio α = F/(F + D) can be obtained, and SU(3) for these
coupling constants can then actually be studied.

IX. PWA AS A TOOL

We have presented here some of the results of the first, energy-dependent partial-wave
analysis of the elastic and charge-exchange p̄p scattering data [30]. We also discussed the
Nijmegen NN dataset, where we removed the contradictory or otherwise not so good data
from the world p̄p dataset.

The main reason that we have been able to perform a PWA of the p̄p scattering data is
that practically all partial-wave amplitudes are dominated by the potential outside r = 1.3
fm. This long range potential consists of the electromagnetic potential, the OPE potential,
and the exchange potentials of the mesons like ρ, ω, ε, etc. This long-range potential
is therefore well known. In our PWA of the NN scattering data [29] it was noticed by
us that the long-range potential in the NN case dominated the NN partial-wave scattering
amplitudes. In the p̄p case the long-range potential is much stronger (see section II), and the
dominance in the p̄p case is therefore more marked. One could formulate this the following
way. The important p̄p partial-wave amplitudes are “π, ρ, ε, and ω dominated.” This gives
the most important energy dependence of these amplitudes. The slower energy dependence
due to the short-range interaction can easily be parametrized.

A second reason for the successful PWA is the availability and easy access to computers,
because the methods used are very computer intensive.
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We want to stress the fact that our multienergy PWA can now be used as a tool. This
tool allows us first of all to judge the quality of a particular dataset. This enabled to us
to set up the Nijmegen NN database. Secondly, it can be used in the study of the NN
interaction.

To demonstrate these things let us look at the Meeting Report of the Archamps meeting
from October 1991 [47]. Beforehand the participants were asked to discuss at the meeting
such questions as:
What is the evidence for one-pion exchange in the NN interaction?
In Nijmegen we determined [4, 30], using the PWA as a tool, the NNπ coupling constant
for charged pions from the data of the charge-exchange reaction p̄p → n̄n. We found [30]

f2
c = 0.0732 ± 0.0011 .

This is only 64 standard deviations away from zero!! Using analogous techniques we could
also determine this coupling constant for charged pions in our analyses of the np scattering
data. We found there [48]

f 2
c = 0.0748 ± 0.0003 .

The same coupling constant can also be seen in analyses of the π±p scattering data. There
the VPI&SU group finds f 2

c = 0.0735 ± 0.0015 [49]. In pp scattering we have determined
the ppπ0 coupling constant. Our latest determination gives [48]

f 2
p = 0.0745 ± 0.0006 .

The nice agreement between these different values shows
(1) the charge independence for these coupling constants and its shows that
(2) the presence of OPE in the NN interaction is a 64 s.d. effect.
What more evidence does one wants?
We also played around with the pion masses. In NN scattering we were able to determine
the masses of the π0 and π±. We found there mπ0 = 135.6(1.3) and mπ± = 139.4(1.0)
MeV/c2, to be compared to the particle-data values
mπ0 = 134.9739 and mπ± = 139.56755 MeV/c2. We did not try to determine these masses
again in NN scattering. However, we think we could have. We checked that changing the
correct pion masses to an averaged π-mass raised our χ2

min(p̄p) with 9.
Another question posed before that meeting was “What is the evidence for the G-parity

rule?” In our determination of the NNπ coupling constant in the charge-exchange reac-
tion this G-parity rule was of course implicitly assumed. Our determination of f2

c and its
agreement with the expected value can therefore be seen as a proof of this rule for pion
exchange.

When one looks through the literature one finds several, what we think, artificially
created problems. Why is this done? Only to get beamtime? One of such problems is
the statement: “The OBE model does not work.” We would like to point out that the
OBE model works excellently [26]. Other examples can be found in the already mentioned
Archamps Meeting Report [47]. The authors of this report claim that the charge-exchange
differential cross sections at low energy pose a challenge for every model. Let us look at
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those data. Contrary to what is stated in the Meeting Report these data are a part of our
dataset, so we have sufficient knowledge to discuss them. The discussion concerns data of
PS173 [50]. At four momenta the differential cross section for p̄p → n̄n was measured. The
results of our PWA for these measurements are:
At pL = 183 MeV/c there are 13 dσce/dΩ data. 4 of these data are rejected because each
of them contributes more than 9 to our χ2. This is the three-standard-deviation rule. The
remaining 9 data contribute χ2 = 8.3.
At pL = 287 MeV/c there are 14 dσce/dΩ data, where 1 of these data points is discarded
because it contributes more than 9 to our χ2. The remaining 13 data contribute χ2 = 24.0.
At pL = 505 MeV/c there are 14 dσce/dΩ data. One of them is discarded because of its too
large χ2 contribution. The remaining 13 data contribute χ2 = 30.1.
At pL = 590 MeV/c there are 15 dσce/dΩ data, where 2 of them are discarded. The remaining
13 data points contribute χ2 = 32.8.

What can we conclude? At the lowest momentum we rejected 30% of the data and the
remaining dataset is then OK. However, at the other three momenta we find rather large
contributions to χ2. A dataset of 13 data is, according to the three-standard-deviation rule,
not allowed to contribute more than χ2

max = 31.7 to the χ2
min of our database. This means

that we really should reject the data at pL = 590 MeV/c. When we combine the 4 datasets
to one dataset with 47 data points, we see that these data points contribute χ2 = 95.2 to
χ2

min of our database. The rule says that a set of 47 data may not have a χ2-contribution
larger than 78.5. This means that this whole dataset should be rejected. The only reason,
that these dubious data are still contained in the Nijmegen NN database and not discarded,
is that there are no other charge-exchange data at such low momenta. Our philosophy here
was that these imperfect data are perhaps better than no data at all. The authors of the
Archamps Meeting Report [47], two experimentalists and a phenomenologist, are obviously
incorrect. Our PWA shows clearly that these data cannot pose “a challenge for every model,”
because these data should really be discarded!

Another challenge for models seems to be that “the strangeness-exchange reaction p̄p →
Λ̄Λ takes place in almost pure triplet states.” Let us look for a moment in more detail at the
beautiful data of PS185 [7]. These data have been studied by many people. In Nijmegen
we performed also a PWA of these data [9, 36]. It is very clear from our PWA that in this
reaction the tensor force plays a dominant role. The tensor force acts only in triplet waves.
These triplet waves make up the bulk of the cross section. This result has been confirmed
by several groups and clearly this is not a challenge, but only a case of strong tensor forces.
In section II we already explained the reason for such strong tensor forces.

A big deal is often made of the ρ parameter, the real-to-imaginary ratio of the forward
scattering amplitude. The extraction of this parameter from the available experimental data
is based on a rather shaky theory and on not much better data, polluted by Molière scattering
and, in our opinion, the underestimation of systematic errors. When we look for example
at the seven ρ determinations by PS173 [51] then we note that this group has published
only at four of these energies the corresponding dσ/dΩ data [52]! In our PWA we discard
these data at three of the energies. We feel therefore strongly, that the ρ determinations by
PS173 should clearly be discarded and very probably the errors on the determinations by
PS172 [53] should be enlarged considerably. This leads to the simple picture as shown in
Fig. 4.
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FIG. 4. The ρ amplitude. Data are from PS172 and PS173. The curve is the prediction from
the Nijmegen PWA.

Another curious trend is the direct comparison between predictions of meson-exchange
models and of simple quark-gluon models for the strangeness-exchange reaction. There are
even serious proposals [54, 55] for experiments to distinguish between these models: it is
proposed to measure the spin transfer in p̄p → Λ̄Λ.

Let us make it clear from the outset, that we believe that all data must eventually be
explained in terms of quark-gluon exchanges, because this is the underlying theory. However,
for the analogous NN interaction one has unfortunately not yet succeeded to give a proper
explanation of the meson-exchange mechanism in terms of quarks and gluons exchanges.
The theory is not so advanced yet. In the NN reactions we are of course in exactly the same
situation. Using our PWA as a tool we determined the ΛNK coupling constant and the
mass of the exchanged kaon. This way we established beyond any doubt that the one-kaon-
exchange potential is present in the transition potential and that again the tensor potential
dominates. It is absolutely not necessary to measure the spin transfer to distinguish between
the K(494)- and K∗(892)-exchange picture and a simple quark-gluon-exchange picture. This
distinction has already been made using our PWA as a tool and using just the differential
cross sections and polarizations.

It has become a fad to promote the measurements of spin-transfer and spin-correlation
data, as if these data will solve all our troubles. For example in the already often mentioned
Archamps Meeting Report [47] one can read that the longitudinal spin transfer is obviously
a favorite of one of its authors. Somewhere else in the same report one finds the question:
“Which new spin measurement would be crucial to confirm or rule out present models?”
The answer to this last question is of course: None! When one measures differential cross
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sections, polarizations, spin transfers, or spin correlations, carefully enough, none of the
present models will fit these new data, but adjustments will be made in the models in such
a way that they do fit the data again. Physics is hard work from experimentalists as well
as from theorists. One needs many and varied data and one single experiment has only a
marginal influence.
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