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Abstract

A new Nijmegen soft-core OBE potential model is presented for the low-
energy YN interactions. Besides the results for the fit to the scattering data,
which largely defines the model, we also present some applications to hyper-
nuclear systems using the G-matrix method. The potentials are generated by
the exchange of nonets of pseudoscalar, vector, and scalar mesons. As stan-
dard in the Nijmegen soft-core models, we also include the J = 0 contributions
from the tensor f2, f

′
2, a2 and pomeron Regge trajectories, and use Gaussian

form factors to guarantee that the potentials have a soft behavior near the ori-
gin. An important innovation with respect to the original soft-core potential
is the assignment of the cut-off masses for the baryon-baryon-meson (BBM)
vertices in accordance with broken SU(3)F , which serves to connect the NN
and the YN channels. As a novel feature, we allow for medium strong break-
ing of the coupling constants, using the 3P0 model with a Gell-Mann–Okubo
hypercharge breaking for the BBM coupling. Charge-symmetry breaking in
the Λp and Λn channels is included as well. We present six hyperon-nucleon
potentials which describe the available YN cross section data equally well,
but which exhibit some differences on a more detailed level. The differences
are constructed such that the models encompass a range of scattering lengths
in the ΣN and ΛN channels. In all cases, we obtained χ2/Ndata ≈ 0.55 for 35
YN data. In particular, we were able to fit the precise experimental datum
rR = 0.468±0.010 for the inelastic capture ratio at rest. For the scalar-meson
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mixing angle we obtained values θS = 37◦–40◦, which points to almost ideal
mixing angles for the scalar qq̄ states. The G-matrix results indicate that the
remarkably different spin-spin terms of the six potentials appear specifically
in the energy spectra of Λ hypernuclei.
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I. INTRODUCTION

In Refs. [1, 2], henceforth referred to as I and II, respectively, it has been shown that
a soft-core one-boson-exchange (OBE) model, based on Regge-pole theory [3], provides an
excellent simultaneous description of the rich and accurate nucleon-nucleon (NN) and the
more scarce hyperon-nucleon (YN) low-energy scattering data. However, in the application
to the hypernuclear systems using the G-matrix method, it was found that the spin-spin
interaction in the ΛN channels needs a correction [4, 5, 6]. Another inconvenience with I and
II is that an extension to the ΛΛ and ΞN channels cannot be done without the introduction
of extra free parameters.

In order to improve the soft-core interaction on these points, we here modify the original
soft-core OBE models of I and II in the following way. First, we assign the cut-off parameters
in the form factors for the individual baryon-baryon-meson (BBM) vertices, constrained by
broken SU(3)F symmetry. This in contrast to I and II, where these cut-off parameters
were assigned per baryon-baryon SU(3)F -irrep. Because the ΛΛ and ΞN channels involve
the {1}-irrep, which does not occur in the NN and YN channels, the description of these
channels would require the introduction of additional free parameters. However, there are
no experimental scattering data to determine these parameters. (The only experimental
information on the ΛΛ interaction is limited to the ground states of double-Λ hypernuclei,
but such information is “contaminated” by few-body effects.) Second, we note that in
Ref. [2] the magnetic F/(F +D) ratio αmV for the vector mesons was fixed to its SU(6) value.
Therefore, in order to improve the spin-spin interaction, we here consider αmV as a free input
and make fits for different values of this parameter. It turns out that this allows us to
construct YN models which encompass a range of scattering lengths in the 1S0 and the 3S1

ΛN channels. It is found that various other quantities, calculated with these new models,
also exhibit an impressive correlation with the choice for αmV . By testing these models in
hypernuclear systems we can select the successful spin-spin interaction. In order to have
enough flexibility, we introduced a third modification with respect to I and II; namely, we
allow for medium strong breaking of the coupling constants. The breaking is implemented
according to the 3P0 model [7] with a Gell-Mann–Okubo hypercharge breaking.

Apart from the modifications indicated above, the OBE models of this paper, henceforth
referred to as NSC97 models, are motivated according to the same physical principles as
those of I and II. We refer to the latter papers [1, 2] for a more detailed description of the
physics background of the Nijmegen soft-core baryon-baryon models. We here only briefly
reiterate the main points.

The baryon-baryon soft-core models can be fully derived in the context of the analytical
S-matrix theory [3]. This seems a proper framework to describe baryons and mesons, which
are composite particles. In particular, in QCD the mesons are qq̄ systems and any reasonable
interaction used in a Bethe-Salpeter approach to the qq̄ systems leads to mesons on Regge
trajectories. The consequences of the Regge trajectories for low-energy scattering and the
corresponding (relativistic) Lippmann-Schwinger equations can be worked out in a consistent
manner in the mentioned framework.

With a combined treatment of the NN and YN channels we aim at a high-quality descrip-
tion of the baryon-baryon interactions. By high quality we mean a fit to the YN scattering
data with a low χ2, such that, while keeping the constraints forced on the potentials by the
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fit to the NN scattering data, the free parameters with a clear physical significance (like,
e.g., the F/(F +D) ratios αPV and αmV ) assume realistic values. Such a combined study of
all baryon-baryon interactions, and especially NN and YN , is desirable if one wants to test
the assumption of SU(3)F symmetry. For example, we want to investigate the properties
of the scalar mesons [ε(760), f0(975), a0(980), κ(880)], since especially the status of the
scalar nonet is at present not established yet. We also want to extract information about
scattering lengths, effective ranges, and the existence of resonances. This, in spite of the
scarce experimental YN data. Moreover, we aim to extend the theoretical description to the
ΛΛ and ΞN channels, where experiments may be realized in the foreseeable future.

In this paper we treat in detail the following YN reactions for which experimental data
exist: (i) The coupled-channel reaction Λp ⇒ Λp,Σ+n,Σ0p, below the threshold of the
coupling to the ΣN channels; (ii) The coupled-channel reaction Σ−p ⇒ Λn,Σ0n,Σ−p, and
(iii) The single-channel reaction Σ+p ⇒ Σ+p. The NSC97 models of this paper are a step
forward in the realization of a program where the baryon-baryon interactions for scattering
and hypernuclei can be described in the context of broken SU(3)F symmetry.

For definiteness, we list the meson exchanges which are included:
(i) The pseudoscalar mesons (π, η, η′, K), with the η–η′ mixing angle θPV = −23.00

from the Gell-Mann–Okubo mass formula. The F/(F +D) ratio, αPV = 0.355, is given by
the value found in semileptonic weak decays [8].

(ii) The vector mesons (ρ, φ, ω, K?), with the φ–ω mixing angle θV = 37.5◦ [8] and the
electric αeV = 1, which follows the “universality” assumption [9]. The magnetic αmV is used as
a free input to encompass a range of scattering lengths, characterizing the different models,
but is restricted to values consistent with static or relativistic SU(6) predictions [10].

(iii) The scalar mesons [a0(980), f0(975), f0(760), κ(880)]. In the following, we will
reserve f0 for the f0(975) meson and use ε for the f0(760) meson. The free f0–ε mixing
angle θS is to be determined in the fit to the YN data.

(iv) The “diffractive” contribution from the pomeron P and from the tensor mesons
[f2(1285), f ′2(1525), a2(1270)]. These exchanges will give repulsive contributions of a Gaus-
sian type.

The BBM vertices are described by coupling constants and form factors, which corre-
spond to the Regge residues at high energies [3]. The form factors are taken to be of the
Gaussian type, like the residue functions in many Regge-pole models for high-energy scatter-
ing. Note that also in (nonrelativistic) quark models a Gaussian behavior of the form factors
is most natural. These form factors evidently guarantee a soft behavior of the potentials in
configuration space at small distances.

It turns out that, starting from the soft-core OBE model for the NN interaction, we are
indeed able to achieve a very good description of the YN data, and at the same time maintain
values for the free parameters which are consistent with the present view on low-energy
hadron physics. Like in I and II we use SU(3)F symmetry for the coupling constants, while
SU(3)F breaking is included by (i) using the physical masses of the mesons and baryons in
the potentials and in the Schrödinger equation; (ii) allowing for meson-mixing within a nonet
(η–η′, ω–φ, ε–f0); (iii) including charge-symmetry breaking (CSB) due to Λ-Σ0 mixing [11],
which introduces a one-pion-exchange (OPE) potential in the Λp and Λn channels; and (iv)
taking into account the Coulomb interaction. In order to include the Coulomb interaction
exactly, and to account as much as possible for the mass differences between the baryons,
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we solve the multichannel Schrödinger equation on the physical particle basis. However, in
order to limit the number of different form factors, the nuclear potentials are calculated on
the isospin basis. This means that we include only the so-called “medium strong” SU(3)F
breaking in the potentials.

The content of this paper is as follows. In Sec. II we give the meson-baryon interac-
tion Lagrangian and define the OBE potentials for the Lippmann-Schwinger equation. In
Sec. III we review the possible YN channels that are allowed and discuss some aspects of
the multichannel Schrödinger equation. In Sec. IV we discuss the pseudoscalar- and vector-
meson multiplets. The scalar-meson multiplet is discussed rather extensively, because of its
important role in the soft-core OBE models. Also, some remarks are made on the origin
and nature of the pomeron and tensor-meson contributions. In Sec. V we outline the broken
SU(3)F scheme of the form factors and the coupling constants, in particular the employed
3P0 model. Section VI contains the results of the fits to the YN scattering data, while in
Sec. VII the properties of the models are investigated in hypernuclear systems within the
G-matrix approach. Finally, in Sec. VIII we finish with a final discussion and draw some
conclusions.

II. DEFINITION OF THE POTENTIALS

The nucleon-nucleon (NN) and hyperon-nucleon (YN) potentials constitute only a sub-
set of possible interaction channels for the baryon-baryon interaction; they cover only the
strangeness S = 0,−1 channels. The various members of the baryon octet, in principle,
allow for baryon-baryon interactions with total strangeness up to S = −4. Since at present
there are no scattering data for the S = −2, −3, and −4 channels, any results based on
these potentials are pure predictions and hence will be left for a future publication. Here we
only focus on the S = −1 channel, for which scattering data do exist. However, because our
models heavily rely on the assumption of SU(3) symmetry (although we allow for a breaking
of this symmetry to allow for the fact that the strange quark is much heavier than the up
and down quarks), we will here define the interaction Lagrangian, and hence the coupling
constants, for the complete baryon octet.

The eight JP = 1
2

+
baryons can be collected into a traceless matrix B, which has the

familiar form

B =



Σ0

√
2

+
Λ√
6

Σ+ p

Σ− −Σ0

√
2

+
Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6


, (2.1)

and which is invariant under SU(3) transformations. Similarly, the various meson nonets
(we take the pseudoscalar mesons with JP = 0+ as an example) can be written as

P = Psin + Poct, (2.2)

where the singlet matrix Psin has elements η0/
√

3 on the diagonal, and the octet matrix Poct

is given by
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Poct =



π0

√
2

+
η8√

6
π+ K+

π− − π
0

√
2

+
η8√

6
K0

K− K0 −2η8√
6


. (2.3)

One can now define the SU(3)-invariant combinations[
BBP

]
F

= Tr(BPB)− Tr(BBP )

= Tr(BPoctB)− Tr(BBPoct), (2.4)[
BBP

]
D

= Tr(BPB) + Tr(BBP )− 2
3

Tr(BB)Tr(P )

= Tr(BPoctB) + Tr(BBPoct), (2.5)[
BBP

]
S

= Tr(BB)Tr(P )

= Tr(BB)Tr(Psin), (2.6)

and hence an interaction Lagrangian [12]

LI = −goct
√

2
{
α
[
BBP

]
F

+ (1− α)
[
BBP

]
D

}
− gsin

√
1
3

[
BBP

]
S
, (2.7)

where α is known as the F/(F + D) ratio, and the square-root factors are introduced for
later convenience. We next introduce the isospin doublets

N =

(
p
n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, Kc =

(
K0

−K−

)
, (2.8)

and choose the phases of the isovector meson fields Σ and π such [12] that

Σ·π = Σ+π− + Σ0π0 + Σ−π+. (2.9)

If we now drop for a moment the Lorentz character of the interaction vertices (γ5γµ∂
µ for

pseudoscalar mesons), the pseudovector-coupled (derivative) pseudoscalar-meson interaction
Lagrangian is of the form

Lpv = Lsin
pv + Loct

pv , (2.10)

where the S-type coupling in Eq. (2.7) gives the singlet interaction Lagrangian

mπLsin
pv = −fNNη0(NN)η0 − fΛΛη0(ΛΛ)η0 − fΣΣη0(Σ·Σ)η0 − fΞΞη0(ΞΞ)η0, (2.11)

with the (derivative) pseudovector coupling constants

fNNη0 = fΛΛη0 = fΣΣη0 = fΞΞη0 = f sin
pv . (2.12)

As is customary [8], we introduced the charged-pion mass as a scaling mass to make the
pseudovector coupling constants f dimensionless. The interaction Lagrangian for the meson
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octet is obtained by evaluating the F - and D-type couplings in Eq. (2.7), and can be written
as

mπLoct
pv = −fNNπ(NτN)·π + ifΣΣπ(Σ×Σ)·π − fΛΣπ(ΛΣ + ΣΛ)·π − fΞΞπ(ΞτΞ)·π

−fΛNK

[
(NK)Λ + Λ(KN)

]
− fΞΛK

[
(ΞKc)Λ + Λ(KcΞ)

]
−fΣNK

[
Σ·(KτN) + (NτK)·Σ

]
− fΞΣK

[
Σ·(KcτΞ) + (ΞτKc)·Σ

]
−fNNη8(NN)η8 − fΛΛη8(ΛΛ)η8 − fΣΣη8(Σ·Σ)η8 − fΞΞη8(ΞΞ)η8. (2.13)

The octet coupling constants are given by the following expressions (f ≡ f oct
pv )

fNNπ = f, fΛNK = − 1√
3
f(1 + 2α), fNNη8 = 1√

3
f(4α− 1),

fΣΣπ = 2fα, fΞΛK = 1√
3
f(4α− 1), fΛΛη8 = − 2√

3
f(1− α),

fΛΣπ = 2√
3
f(1− α), fΣNK = f(1− 2α), fΣΣη8 = 2√

3
f(1− α),

fΞΞπ = −f(1− 2α), fΞΣK = −f, fΞΞη8 = − 1√
3
f(1 + 2α).

(2.14)

Similar relations (without the scaling mass mπ) are found for the coupling constants of the
scalar and vector mesons.

The assumption of SU(3) symmetry thus implies that for each type of meson (pseu-
doscalar, vector, scalar) we need only four parameters to characterize their couplings with all
possible baryons: the singlet coupling constant, the octet coupling constant, the F/(F +D)
ratio, and a mixing angle which relates the physical isoscalar mesons to their pure octet and
singlet counterparts. However, it is not a priori obvious that these SU(3) relations for the
coupling constants will be satisfied exactly. For example, the strange quark is much heavier
than the up and down quarks, and so already on the quark-mass level the SU(3) symmetry
is clearly broken.

In our models, breaking of the SU(3) symmetry is introduced in several places as well.
First of all, we use the physical masses for the baryons and mesons. Second, we allow for the
fact that the Λ and Σ0 have the same quark content, and so there is an appreciable mixing
between the isospin-pure Λ and Σ0 states [11]. Although exact SU(3) symmetry requires
that fΛΛπ0 = 0, Λ-Σ0 mixing and the interaction Σ0 → Λ + π0 result in a non-zero pion
coupling constant for the physical Λ-hyperon. Dalitz and von Hippel derive [11]

fΛΛπ = −2
〈Σ0|δM |Λ〉
MΣ0 −MΛ

fΛΣπ, (2.15)

where the ΣΛ element of the electromagnetic mass matrix is given by

〈Σ0|δM |Λ〉 = [MΣ0 −MΛ +Mp −Mn] /
√

3. (2.16)

Substituting for the physical baryon masses, we find

fΛΛπ = −0.0283 fΛΣπ. (2.17)
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Writing out the nucleon-nucleon-pion part of the interaction Lagrangian (2.13), we find

(NτN)·π = ppπ0 − nnπ0 +
√

2 pnπ+ +
√

2npπ−, (2.18)

and so the neutral pion is seen to couple to the neutron with opposite sign as compared to
its coupling to the proton. This implies that the non-zero fΛΛπ0 coupling produces strong
deviations from charge symmetry for the Λp and Λn potentials. Obviously, Λ-Σ0 mixing
also gives non-zero ΛΛ coupling constants for the other neutral isovector mesons, but they
give rise to much smaller effects.

Finally, we use the 3P0 model [7, 13] to account for the fact that the strange quark is
much heavier than the up and down quarks. In this model, the breaking of the SU(3)-flavor
symmetry is described by one parameter λfsb, where we allow for a different parameter for
each meson nonet. This will be discussed in more detail in Sec. V.

In order to define the potential in momentum space, we next consider the general baryon-
baryon scattering reaction

B1(p1) +B2(p2)→ B3(p3) +B4(p4), (2.19)

where the four-momentum of baryon Bi is pi = (Ei,pi), with Ei =
√

p2
i +M2

i and Mi its
mass. The second-order one-meson-exchange kernel is derived following the procedure as
discussed in our earlier papers on two-meson exchange [14, 15], to which we refer for details
and definitions. In this procedure the Thompson equation [16] for the wave function reads

φ++(p′) = φ
(0)
++(p′) + E

(+)
2 (p′;W )

∫
d3pK irr(p′,p|W )φ++(p), (2.20)

with W =
√
s the total energy, and p and p′ the center-of-mass momenta in the initial and

final states, respectively. The irreducible kernel is given by

K irr(p′,p|W ) = −(2π)2 [W − E3(p′)− E4(p′)] [W − E1(p)− E2(p)]
∫ ∞
−∞
dp′0

∫ ∞
−∞
dp0

×
{[
F

(3)
W (p′, p′0)F

(4)
W (−p′,−p′0)

]−1
[I(p′, p′0; p, p0)]++,++

[
F

(1)
W (p, p0)F

(2)
W (−p,−p0)

]−1
}
. (2.21)

Substituting for the one-meson-exchange Feynman propagator and performing the p0 and
p′0 integrations generates the two time-ordered one-meson-exchange diagrams with energy
denominator

D(ω) =
1

2ω

[
1

E2 + E3 −W + ω
+

1

E1 + E4 −W + ω

]
. (2.22)

Here, ω2 = k2 +m2, with m the meson mass and k = p′−p the momentum transfer. In the
static approximation Ei →Mi and W →M0

1 +M0
2 . Note that we have included a superscript

0 to indicate that these masses refer to the masses of the particular interaction channel we
are considering. They are not necessarily equal to the masses M1 and M2 occurring in
the time-ordered diagrams. For example, the potential for the ΣN → ΣN contribution in
the coupled-channel (ΛN,ΣN) system has M1 = MΣ and M2 = MN , but M0

1 = MΛ and
M0

2 = MN .
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In principle, the propagator in the static approximation can be handled exactly using
the fact that [14]

1

ω(ω + a)
=

2

π

∫ ∞
0

adλ

(ω2 + λ2)(a2 + λ2)
+

2θ(−a)

ω2 − a2
, (a < m). (2.23)

However, this requires an additional (numerical) evaluation of an integral whenever a 6= 0,
which might be a considerable time factor in practical calculations. A way to avoid this
additional integral is to assume that the average of the initial and final masses always
approximately equals the mass of the interaction channel, M0

1 +M0
2 . The advantage of this,

more crude, approximation is that the propagator can then be written as

D(ω)→ 1

ω2 − 1
4
(M3 −M4 +M2 −M1)2

, (2.24)

which means we have introduced an effective meson mass m, where the mass has dropped
to

m2 → m2 = m2 − 1
4
(M3 −M4 +M2 −M1)2. (2.25)

The change in mass can be considerable for certain potentials. For example, the effective
kaon mass in ΣN → NΣ drops from 495.8 MeV/c2 to 425.8 MeV/c2. In the following,
we will use the static approximation in the form of Eq. (2.24). In view of the relatively
large error bars on the experimental YN scattering data, we argue that at present it is not
worthwhile to pursue the more complicated exact treatment; we leave this for a later study.
Note also that this approximation still ensures that the potential, viewed as a matrix in
channel space, is symmetric, as required by time-reversal invariance.

The transition from the Thompson equation (2.20) to the Lippmann-Schwinger equation,

φ(p′) = φ(0)(p′) + g(p′;W )
∫
d3pV (p′,p|W )φ(p), (2.26)

is made by defining the transformations

φ++(p) = N(p;W )φ(p),

K irr(p′,p|W ) = N−1(p′;W )V (p′,p|W )N−1(p;W ),

E
(+)
2 (p;W ) = N2(p;W )g(p;W ), (2.27)

with the Green’s function

g(p;W ) =
1

(2π)3
Λ

(1)
+ (p)Λ

(2)
+ (p)

2Mred

p2
i − p2 + iδ

, (2.28)

with Λ+(p) a spin-projection operator and pi the on-shell momentum associated with W .
This defines the potential. We make the standard expansions and approximations valid for
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low-energy scattering and end up with the potentials as given in Ref. [2]1. The partial-wave
projection for the momentum-space potential is discussed in Ref. [17].

The potentials are regularized with a Gaussian cut off, which still allows for the Fourier
transform to configuration space to be carried out analytically. Details again can be found
in Ref. [2]. Unfortunately, this reference contains a number of typographical errors. The
corrected expressions are given in the appendix, where the potentials refer to the scattering
process where one of the meson vertices occurs between B1 and B3, and the other between
B2 and B4. The mass M13 then denotes the average of the B1 and B3 masses, and M24 the
average of the B2 and B4 masses. For the exchanged diagram we have to interchange 3↔ 4
everywhere and multiply by the exchange operator P . The exchange operator P = +1 for
even-L singlet and odd-L triplet partial waves, and P = −1 for odd-L singlet and even-
L triplet partial waves. For YN scattering, the exchanged diagram only occurs when the
exchanged meson carries strangeness (K, K∗, κ, K∗∗).

III. YN CHANNELS

In our approach, the potentials are calculated on the isospin basis. Because the two
nucleons form an isodoublet, the Λ-hyperon an isosinglet, and the three Σ-hyperons an
isotriplet, there are only two isospin channels:

I = 1
2

: (ΛN,ΣN)→ (ΛN,ΣN),

I = 3
2

: ΣN → ΣN. (3.1)

The isospin factors for the various meson exchanges in the two isospin channels are given
in Table I. We use the pseudoscalar mesons as a specific example, and P is the exchange
operator alluded to in the previous section. We also include the coupling of the Λ-hyperon to
the neutral pion, which is non-zero due to Λ-Σ0 mixing, as was discussed earlier. However,
this matrix element is only included when the potentials are used for calculations on the
physical particle basis.

In the physical particle basis, there are four charge channels:

q = +2 : Σ+p→ Σ+p,

q = +1 : (Λp,Σ+n,Σ0p)→ (Λp,Σ+n,Σ0p),

q = 0 : (Λn,Σ0n,Σ−p)→ (Λn,Σ0n,Σ−p),

q = −1 : Σ−n→ Σ−n. (3.2)

Obviously, the potential on the particle basis for the q = 2 and q = −1 channels are
given by the I = 3

2
ΣN potential on the isospin basis, substituting the appropriate physical

particle masses. For q = 1 and q = 0, the potentials are related to the potentials on the

1Note that in Ref. [2], Ω(P )
2 in Eq. (23) should have a minus sign and Ω(S)

6 in Eq. (25) should have
masses squared in the denominator.
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isospin basis by an isospin rotation. Using a notation where we only list the hyperons
[VΛΣ+ = (Λp|V |Σ+n), etc.], we find for q = 1


VΛΛ VΛΣ+ VΛΣ0

VΣ+Λ VΣ+Σ+ VΣ+Σ0

VΣ0Λ VΣ0Σ+ VΣ0Σ0

 =


VΛΛ

√
2
3
VΛΣ −

√
1
3
VΛΣ√

2
3
VΣΛ

2
3
VΣΣ(1

2
) + 1

3
VΣΣ(3

2
) 1

3

√
2
[
VΣΣ(3

2
)− VΣΣ(1

2
)
]

−
√

1
3
VΣΛ

1
3

√
2
[
VΣΣ(3

2
)− VΣΣ(1

2
)
]

1
3
VΣΣ(1

2
) + 2

3
VΣΣ(3

2
)

 ,
(3.3)

while for q = 0 we find


VΛΛ VΛΣ0 VΛΣ−

VΣ0Λ VΣ0Σ0 VΣ0Σ−

VΣ−Λ VΣ−Σ0 VΣ−Σ−

 =


VΛΛ

√
1
3
VΛΣ −

√
2
3
VΛΣ√

1
3
VΣΛ

1
3
VΣΣ(1

2
) + 2

3
VΣΣ(3

2
) 1

3

√
2
[
VΣΣ(3

2
)− VΣΣ(1

2
)
]

−
√

2
3
VΣΛ

1
3

√
2
[
VΣΣ(3

2
)− VΣΣ(1

2
)
]

2
3
VΣΣ(1

2
) + 1

3
VΣΣ(3

2
)

 .
(3.4)

The relativistic relation between the on-shell center-of-mass momentum pi in channel i
and the total energy

√
s is given by

p2
i =

1

4s

[
s− (M1(i) +M2(i))2

] [
s− (M1(i)−M2(i))2

]
, (3.5)

while the total energy squared for a specific interaction channel i with laboratory momentum
plab(i) is given by

s = M2
1 (i) +M2

2 (i) + 2M2(i)
√
p2

lab(i) +M2
1 (i). (3.6)

Expanding the square-root energies, we obtain the corresponding nonrelativistic expressions:

p2
i = 2Mred(i)

[√
s−M1(i)−M2(i)

]
,

√
s = M1(i) +M2(i) +Mred(i)

[
p2

lab(i)/2M2
1 (i)

]
.

We always use the relativistic relations (3.5) and (3.6). Substituting for the empirical baryon
masses, the various ΣN thresholds in the Λp channel are found to be at

pth
lab(Λp→ Σ+n) = 633.4 MeV/c, pth

lab(Λp→ Σ0p) = 642.0 MeV/c; (3.7)

those in the Λn channel at

pth
lab(Λn→ Σ0n) = 641.7 MeV/c, pth

lab(Λn→ Σ−p) = 657.9 MeV/c; (3.8)

and the average (single) threshold for the potential on the isospin basis at

pth
lab(ΛN → ΣN) = 643.8 MeV/c. (3.9)

Using nonrelativistic kinematics, the thresholds are found to be lower by about 30 MeV/c.
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There are various ways to solve the Lippmann-Schwinger equation for the partial-wave
momentum-space potential. We use the Kowalski-Noyes method [18, 19] to handle the
singularities in the Green’s function for the open channels. The Coulomb interaction in the
Σ+p→ Σ+p and Σ−p→ Σ−p channels is included via the Vincent-Phatak method [20].

The multichannel Schrödinger equation for the configuration-space potential is derived
from the Lippmann-Schwinger equation through the standard Fourier transform, and the
equation for the partial-wave radial wave function is found to be of the form [2]

u′′l,j + (p2
i δij − Aij)ul,j −Biju

′
l,j = 0, (3.10)

where Aij contains the potential, nonlocal contributions, and the centrifugal barrier, while
Bij is only present when nonlocal contributions are included. This equation can be easily
solved numerically using a method derived by Bergervoet [21]. A discussion of how to handle
the presence of closed channels is given, for example, in Ref. [22]. As is well known, the
inclusion of the Coulomb interaction in the configuration-space equation poses no additional
complications.

The potentials are of such a form that they are exactly equivalent in both momentum
space and configuration space. This means that the resulting phase shifts and mixing pa-
rameters are also the same, provided both equations (2.26) (in the static approximation)
and (3.10) are solved with sufficient accuracy.

IV. MESONS, COUPLING CONSTANTS, AND FLAVOR SU(3)

A. The pseudoscalar mesons JPC = 0−+

In the literature one encounters two couplings for the pseudoscalar mesons to the JP = 1
2

+

baryons: the pseudoscalar coupling, Lps = gψiγ5ψφ, and the pseudovector coupling, Lpv =
(f/mπ)ψγ5γµψ∂

µφ (or a mixture of these two). We assume SU(3) for the pseudovector
coupling f . Then, the Cabibbo theory of the weak interactions and the Goldberger-Treiman
relation give αPV = [F/(F +D)]pv = 0.355 [8]. In the Nijmegen soft-core models, this value
could be imposed while still keeping an excellent description of the YN data, including the
accurate datum on the capture ratio at rest.

The Nijmegen soft-core OBE models have quite sizable couplings to the baryons for the
scalar ε meson (see below). If this were to be used in a model for the pion-nucleon interaction
together with the pseudovector coupling for the pion, one would expect a large violation of
the soft-pion constraints on the πN scattering lengths. However, the Nijmegen soft-core OBE
models are compatible with these soft-pion constraints, because the potentially dangerous ε
contribution is canceled by an opposite pomeron-exchange contribution [23].

B. The vector mesons JPC = 1−−

An important ingredient of the baryon-baryon interaction is the exchange of the members
of the vector-meson nonet (ρ, φ, ω, K∗). The details of our treatment of the vector mesons
have been given in Refs. [24, 25, 26]; see also [27]. Ideal mixing between ω and φ implies
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θV = 35.3◦, which means that the φ meson would be pure ss̄, and hence would not couple
to the nucleon. We assume a small deviation from ideal mixing and use the experimental
value θV = 37.5◦ [8]. For the electric F/(F + D) ratio we take αeV = 1, as required by
the “universality” assumption [9]. The magnetic αmV is not always the same. In the OBE
models, the singlet-triplet strength in ΛN depends, besides on other things, especially on
αmV . This feature is used to construct a range of soft-core models.

C. The scalar mesons JPC = 0++

The scalar mesons have constituted an important role in the construction of the Nijmegen
potential models since 1970. They are an essential ingredient both in the hard-core models
D [25] and F [26], and in all the soft-core models as well.

The scalar meson σ(550) was introduced in 1960-1962 by Hoshizaki et al. [28]. In the OBE
models for NN , this scalar meson was necessary for providing sufficient intermediate-range
central attraction and for the spin-orbit interaction required to describe the 3PJ splittings.
In 1971 it was realized that the exchange of the broad ε(760) could explain the role of the
fictitious σ meson [29, 30]. From then on, this broad ε(760) has been used in the Nijmegen
OBE models. A recent analysis of π production in πN scattering with polarized nucleons
claimed to have found unambiguous evidence for a broad isoscalar JPC = 0++ state under
the peak of the ρ meson [31]. This was based on an amplitude analysis involving besides
π exchange also a1 exchange in the production mechanism. In a similar analysis of data
on K+n → K+π−p, evidence was found for an I = 1

2
, 0+(887) strange scalar meson under

the peak of the K∗(892) meson [32]. In the latest issue of the Particle Data Group [33]
this analysis is cited with reserve, asserting that the ε parameters of [31] cannot be correct
because the f0(980) is neglected in the analysis.

Gilman and Harrari [34] showed that all Adler-Weisberger sum rules can be satisfied
by saturation in the mesonic sector with the π(140), ε(760), ρ(760), and a1(1090). They
found the ε, in [34] called σ, to be degenerate with the ρ, having a width of Γ(ε → ππ) =
570 MeV. Used in this work were the Regge high-energy behavior, SU(2)⊗SU(2) chiral
algebra of charges, and pion dominance of the divergence of the axial-vector current. Similar
phenomenology was derived by Weinberg requiring that the sum of the tree graphs for
forward pion scattering, generated by a chiral-invariant Lagrangian, should not grow faster at
high energies than permitted by Regge behavior of the actual amplitudes [35, 36]. Therefore,
it seems that chiral symmetry combined with Regge behavior requires a broad scalar ε
degenerate with the ρ. Finally, we should mention that the Helsinki group now also finds
an ε meson and other members of a scalar nonet [37].

In the quark model, the scalar mesons have been viewed as conventional 3P0 qq̄ states,
while others view them as crypto-exotic q2q̄2 states [38] or glueball states. We will briefly
review the assignments as qq̄ and as q2q̄2 states.

In the qq̄ picture, one has for the unitary singlet and octet states, denoted respectively
by ε1 and ε8,

ε1 =
(
uū+ dd̄+ ss̄

)
/
√

3,

ε8 =
(
uū+ dd̄− 2ss̄

)
/
√

6. (4.1)
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The physical states are mixings of the pure SU(3) states and we write

ε = cos θSε1 + sin θSε8,

f0 = − sin θSε1 + cos θSε8. (4.2)

Then, for ideal mixing we have tan θS = 1/
√

2 or θS ≈ 35.3◦, and so

ε = f0(760) = (uū+ dd̄)/
√

2,

f0 = f0(980) = ss̄. (4.3)

Note that in contrast to [2], we here follow for the description of the meson mixing the same
conventions as for the pseudoscalar and vector mesons.

In the q2q̄2 picture [38] (see also [27]), one introduces diquarks q2 with F = 3∗, C = 3∗,
and S = 0, for the flavor, color, and spin representations, respectively. Since F = 3∗, one
denotes these diquark states by Q. This conjugated triplet Q has the contents S = [ud],
U = [sd], and D = [su], where [ud] stands for the antisymmetric flavor wave function
ud− du, and so on. The QQ states form a scalar flavor nonet. In particular, Jaffe predicted
the lowest-mass state (which we assume here to be ε) as SS, with I = 0, JPC = 0++, and
mass M = 690 MeV. In this scalar nonet, Jaffe predicted a degenerate pair of I = 0 and
I = 1 state at M = 1150 MeV. It seems natural to identify these with the f0(980) and
the a0(980). Explicitly, in the q2q̄2 model, the quark content of the neutral states f0(760),
f0(980), and a0(980) is

SS = [ūd̄][ud],(
UU ±DD

)
=
{

[s̄d̄][sd]± [s̄ū][su]
}
/
√

2. (4.4)

The strange members of this nonet are combinations like κ+ ∼ [ud][s̄d̄], etc. These are
expected at about M = 880 MeV, just under the K∗(892). Ideal mixing in the case of the
q2q̄2 states means that

ε = f0(760) = SS,

f0 = f0(980) = (UU +DD)/
√

2, (4.5)

which in this case implies that tan θS = −
√

2, or θS ≈ −54.8◦.
In view of the above, we note that ideal mixing for the scalar mesons in the case of

q2q̄2 states is quite distinct from that for the qq̄ states. To analyze some of the differences
between the qq̄ and the q2q̄2 assignments for the BB channels, we remind the reader that in
our strategy we keep the NN channel fixed. Considering the mixing, one obtains for gNNε
and gNNf0 , in terms of the flavor singlet and octet couplings,

gNNε = cos θSg1 + sin θSg8,

gNNf0 = − sin θSg1 + cos θSg8, (4.6)

where g1 = gNNε1 and g8 = gNNε8 = (4αS − 1)gNNa0/
√

3. Because gNNa0 , gNNε, and gNNf0

are fitted to the NN scattering data, the only freedom left for the YN and the Y Y systems
is in the variation of the scalar mixing angle θS. The scalar F/(F +D) ratio is restricted by
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g8 ≡
(4αS − 1)√

3
gNNa0 = sin θSgNNε + cos θSgNNf0 , (4.7)

from which it is clear that αS = αS(θS). This relation implies roughly that for positive
values of θS we get αS > 0, while for negative values we get αS < 0. For the ideal mixing
in the qq̄ case αS ≈ +1.0, and for ideal mixing in the q2q̄2 case αS ≈ −1.0. This difference
between the qq̄ and the q2q̄2 assignment is quite important for the YN and the Y Y systems.
In principle, one could of course allow for the possibility that the actual physical states,
ε(760) and f0(980), are mixtures of the qq̄ and the q2q̄2 states. We expect that θS > 0 if the
qq̄ component dominates, whereas θS < 0 when the q2q̄2 component dominates.

In Fig. 1, we show the strength of the scalar-exchange central potential, in arbitrary units,
for the diagonal matrix elements in YN . Here, we assumed equal masses for the members of
the scalar nonet. Considering the contribution from the scalar nonet, we note the following.
In the Σ+p(3S1) channel, the scalar-nonet contribution is attractive in the qq̄ case, whereas
in the q2q̄2 case it is repulsive. Note that for the spin-singlet the interaction in ΛN is quite
similar to that in ΣN , due to the dominance of the {27} irrep. Although outside the scope
of the present paper, we mention that in the ΛΛ(3S1) channel the scalar-nonet contribution
is much stronger for q2q̄2 domination than for qq̄ domination. A similar situation occurs
for the ΞN(1S0, I = 0) and ΞN(3S1, I = 1) states. So far, the soft-core OBE models all
have θS > 30◦, which indeed implies that the ΛΛ and the ΞN potentials are rather weakly
attractive in the intermediate range. They therefore cannot produce sufficient attraction to
account for the binding energies of the experimentally found double-Lambda hypernuclei,
e.g., 10

ΛΛBe [39].

D. The pomeron JPC = 0++ and the heavy mesons

The physical nature of pomeron-exchange can be understood in the framework of QCD
as a two-gluon (or multigluon) exchange effect. In the Low-Nussinov two-gluon model [40], it
was once proposed [41] to distribute the two-gluon coupling over the quarks of a hadron, the
so-called “subtractive pomeron”. Then, one would expect at low energies an attractive van
der Waals type of force. This is in conflict with the results from Regge phenomenology [3].
However, it became apparent experimentally in the study of the pp→ (ΛφK+)p and pp→
(ΛΛp)p reactions at

√
s = 63 GeV [42, 43] that the pomeron couples dominantly to individual

quarks. This leads to the so-called “additive pomeron”. The dominance of the one-quark
coupling can be understood as due to the fact that in the case of a coupling to two quarks
the loop momentum involved in such a coupling has to pass through at least one baryon.
Thus, the baryon wave function is involved, which leads to a suppression of a2/R2 [44],
where a and R are the quark and baryon radius, respectively. It is interesting to know
whether this is also true at lower energies. In the Low-Nussinov model one can argue that
the pomeron-quark coupling leads to a repulsive Gaussian potential [27], which has been
used in the Nijmegen soft-core models. The importance of the pomeron in OBE models
being compatible with chiral symmetry has already been mentioned above, see also [23].

Exact SU(3) and unitarity cause a strong mixing between the “bare” pomeron and the
isosinglet member of the tensor mesons. Medium strong SU(3) breaking then gives mixing
of these bare states, leading to the physical pomeron and f2 tensor meson. This is why
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we include the J = 0 contributions from the tensor f2, f ′2, and a2 Regge trajectories. So
far, the explicit exchange of axial and tensor mesons has hardly been explored in models
of baryon-baryon interactions for low energies. The axial mesons are very important in
connection with chiral symmetry and play an important role in sum rules [45]. The tensor
mesons are very important at higher energies, lying on a dominant Regge trajectory, and
they are exchange-degenerate with the vector mesons. In principle, there is no problem in
the present approach to incorporate these heavy mesons. (We already include the J = 0
contribution from the tensor mesons.) Recently, we have included these mesons explicitly,
using the estimates based on the Regge hierarchy from [3] as a guidance for the coupling
constants. With regard to the general features, no qualitative changes in the description of
the NN and YN channels were observed. This can be understood from the fact that these
mesons have masses well above 1 GeV, and hence are expected to affect the interaction only
at very short distances. But the short-distance part of the interaction can already very well
be parameterized phenomenologically by the form factor parameters at the BBM vertices.

V. BROKEN SU(3) FORM FACTORS AND COUPLING CONSTANTS

A. Form Factors

In this paper we describe the results of the NSC97 models where the form factors depend
on the SU(3)F assignment of the mesons, rather than on the SU(3)F -irrep structure of the
BB channel. The latter was done for the NSC89 model [2]. In principle, we can introduce
different form factor masses Λ8 and Λ1 for the {8} and {1} members of each meson nonet.
However, for practical reasons, we neglect the finer details of the isoscalar octet and singlet
meson mixing, and assign Λ1 to the physical isoscalar mesons and Λ8 to the physical octet
mesons. At this stage we are not yet trying to limit the number of free parameters to an
absolute minimum, and so here we also introduce a separate parameter ΛK for the strange
mesons. For example, for the pseudoscalar mesons we have the following cut-off parameters:
Λ1 for the BBη′ vertices, Λ8 for the BBπ and BBη vertices, and ΛK for the BBK vertices.

B. BBM coupling constants

For the flavor-symmetry breaking of the coupling constants we use the 3P0 mechanism [7,
13] for the meson-baryon-baryon coupling. In the 3P0 model, which is rather successful for
meson decay [46], the BBM coupling is due to the rearrangement of the quark of a virtual
quark-antiquark pair in the vacuum and a valence quark in the baryon. Such a rearrangement
leads the initial baryon state into the final baryon-meson state. The amplitude for the
formation of a meson is calculated from the overlap between the wave functions of the
incoming baryon, the outgoing baryon, the outgoing meson, and the qq̄-pair wave function.
For reasons of simplicity it is usually assumed that the momentum distribution of the created
pair is independent of the momenta.

In scattering, one has to describe not only the emission of mesons, but also the absorption
of mesons. In a Feynman graph a single vertex implicitly contains both processes and there
is no distinction between emission and absorption. Consider now the ΛNK vertex as a
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specific example. In the quark model the emission of a K is described by the creation of a
non-strange qq̄ pair, whereas the absorption of a K is described by the annihilation of an
ss̄ pair. To implement SU(3)F -symmetry breaking within the context of the 3P0 model, the
usual 3P0 interaction for decay has to be generalized. In [13] this is done by introducing
a factor which describes the transition of a quark from within a baryon to a quark within
a meson, or vice versa. This symmetric treatment of the “moving” quarks and the pair
quarks then leads to a covariant vertex. Therefore, in [13] the 3P0 Hamiltonian for the BBM
couplings is taken as follows

HI =
∫
d3x

∫
d3yF (x− y) [q̄(x)Oq̄qq(x)](1) ⊗ [q̄(y)Oq̄qq(y)](2) , (5.1)

where the quark-field operators are vectors in flavor space, with components qi = (u, d, s)
and q̄i = (ū, d̄, s̄). In Eq. (5.1) it is understood that the first factor creates or annihilates a
qq̄ pair, whereas the second factor “moves” a quark from the baryon into the meson or vice
versa. The operator Oq̄q is a matrix in quark-flavor space which is diagonal if we assume
there is no quark mixing. Since in general it will break SU(3) and SU(2) symmetry, it will
be of the form

(Oq̄q)i,j =

 γu 0 0
0 γd 0
0 0 γs

 , (5.2)

where the pair-creation constants γu, γd, and γs are unequal.
The space-time structure will not play an important role in this paper. We assume that

the effects from the overlap of the wave functions can be effectively absorbed into the γ
constants. Hence, our matrix elements will contain an SU(2)S part due to the spins, and
an SU(3)F part due to the flavors, and so from here on we can restrict ourselves to deal
explicitly only with the spin and flavor part of the interaction Hamiltonian density.

Writing the Oij matrix elements in terms of the SU(3) generators Fi = λi/2, (i =
1, . . . , 8), where λi are the well-known Gell-Mann matrices, we have

Oq̄q = γ0F0 + γ3F3 + γ8F8, (5.3)

with F0 the unit matrix. We neglect isospin breaking of the coupling constants, and we set
γu = γd ≡ γn. This gives

γ0 =
1

3
(2γn + γs), γ3 = 0, γ8 =

2√
3

(γn − γs). (5.4)

For γu = γd = γs one has exact SU(3)F symmetry, assuming there is no breaking due to
differences between the wave functions of different quark flavors. For γu = γd 6= γs, one gets
a breaking of the coupling constants. In this case, there is still isospin symmetry, SU(2)I ,
but SU(3)F is broken. As an operator in flavor space, the interaction (5.1) can now be
written as

HI = [γ0F0 + γ8F8](1) ⊗ [γ0F0 + γ8F8](2)

= H(1)
I +H(8)

I +H(8⊗8)
I , (5.5)
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where the singlet interaction, H(1)
I , and the octet interaction, H(8)

I , correspond to the γ2
0 and

γ0γ8 terms, respectively. Because we expect that the SU(3)F symmetry is not broken by
more than 20%, the 8 ⊗ 8 interaction as given by the γ2

8 term will be rather small. In the
3P0-model calculations [13] the 8⊗8 piece is implicitly included and can readily be retrieved
from the results by translating γn and γs into γ0 and γ8.

The 3P0 model has approximately SU(6)W symmetry [47]. Therefore, in [13] the BBM
couplings were evaluated using SU(6)W wave functions. Since in SU(6)W the majority of
the mesons have W = 1, we use here the results for the SU(3)F breaking for W = 1 for all
mesons. In terms of the SU(3)-flavor breaking parameter λfsb = γs/γn, the modification to
the pseudovector coupling constants is as follows. For the K,

fΛNK → fΛNK − fΛNK(1− λfsb),

fΛΞK → fΛΞK − fΛΞK(1− λfsb),

fΣNK → fΣNK − fΣNK(1− λfsb),

fΣΞK → fΣΞK − fΣΞK(1− λfsb), (5.6)

for the η8,

fΣΣη8 → fΣΣη8 − 1
3
fΣΣη8(1− λ2

fsb),

fΞΞη8 → fΞΞη8 − 8
9
fΞΞη8(1− λ2

fsb), (5.7)

and for the η0,

fΛΛη0 → fΛΛη0 − fΛΛη0(1− λ2
fsb),

fΣΣη0 → fΣΣη0 + 1
3
fΣΣη0(1− λ2

fsb),

fΞΞη0 → fΞΞη0 − 4
3
fΞΞη0(1− λ2

fsb). (5.8)

Similar expressions apply for the vector and scalar mesons.

VI. FIT TO YN TOTAL CROSS SECTIONS

In principle, the potential model contains four free parameters for each type of meson
exchange, and (at this stage) three cut-off parameters to regularize the corresponding baryon-
baryon-meson vertices. As mentioned earlier, the advantage of abandoning the SU(3)-irrep
scheme for the cut-off parameters is that now the fit to the YN (andNN) scattering data fixes
all parameters, and so the model can be readily extended to the strangeness S = −2, −3,
and −4 sectors. The SU(3)-irrep scheme requires the introduction of new cut-off parameters
for these channels, whereas there are no experimental data to fix them.

We have made six different fits to the YN scattering data, including partial waves up to
L = 2. The data we use are tabulated in Ref. [2], and are at sufficiently low energies that
the contributions of the higher partial waves can be safely neglected. The NN interaction
puts constraints on most of the parameters, and so we are left with only a limited set
of parameters that we can vary. The parameters common to all six models are given in
Table II. For the remaining parameters we chose six fixed values for the magnetic vector-
meson F/(F +D) ratio αmV , ranging from αmV = 0.4447 to αmV = 0.3647. Adjusting the scalar
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mixing angle θS and the SU(3)-flavor breaking parameters λfsb, equally good fits to the YN
scattering data have been obtained. The fitted parameters are given in Table III, where the
models NSC97a through NSC97f are classified by their different choices for the magnetic
vector-meson F/(F +D) ratio αmV .

The aim of the present study is to construct a set of models which give essentially the
same fit to the YN scattering data, but which differ somewhat in the details of their param-
eterization. These models will then be used to study the model dependence in calculations
of hypernuclei and in their predictions for the S = −2, −3, and −4 sectors. Especially for
the latter application, these models will be the first models for the S < −1 sector to have
their theoretical foundation in the NN and YN sectors. The results for the S < −1 sector
will be presented in a future publication.

The χ2 on the 35 YN scattering data for the different models is given in Table IV.
Although there is some variation in the description of some experiments from one model
to the next, these variations are rather small. The total χ2 on all data varies only a little,
and is found to be 15.68, 15.82, 15.62, 15.76, 16.06, and 16.67, for models NSC97a through
NSC97f, respectively. The capture ratio at rest, given in the last column of Table IV, is
defined as

rR =
1

4

σs(Σ
−p→ Σ0n)

σs(Σ−p→ Λn) + σs(Σ−p→ Σ0n)
+

3

4

σt(Σ
−p→ Σ0n)

σt(Σ−p→ Λn) + σt(Σ−p→ Σ0n)
, (6.1)

where σs is the total reaction cross section in the singlet 1S0 partial wave, and σt the total
reaction cross section in the triplet-coupled 3S1-3D1 partial wave, both at zero momentum.
In practice these cross sections are calculated at plab = 10 MeV/c, which is close enough to
zero. The capture ratio at nonzero momentum is the capture ratio in flight, defined as

rF =
σ(Σ−p→ Σ0n)

σ(Σ−p→ Λn) + σ(Σ−p→ Σ0n)
. (6.2)

This capture ratio turns out to be rather constant up to lab momenta of about 150 MeV/c.
Obviously, for very low momenta the cross sections are almost completely dominated by S
waves, and so the capture ratio in flight converges to the capture ratio at rest.

The comparison to the experimental data for models NSC97a, NSC97c, and NSC97f is
shown in Fig. 2. Models NSC97b, NSC97d, and NSC97e give similar results, but are left
out to avoid overcrowding in the figures. The Λp total cross section in Fig. 2(b) shows a
pronounced cusp of almost 50 mb at the Σ+n threshold, which is caused by the coupling of
the ΛN and ΣN channels and the rather strong interaction in the 3S1-wave ΣN channel.
Because the cusp occurs over a very narrow momentum range, it is hard to see this effect
experimentally. Indeed, the old bubble-chamber data [53, 54] have too large error bars to
identify any possible cusp effect. (Note that these data have not been used in our fits.)

It should be noted that the Σ+p and Σ−p elastic cross sections are not the “true” total
cross sections. The latter are hard to measure because of the large Coulomb contribution at
forward angles. The cross sections that were measured are defined as [50]

σ =
2

cos θmax − cos θmin

∫ θmax

θmin

dσ(θ)

d cos θ
d cos θ, (6.3)
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with typical values −0.2 to −0.5 for cos θmin and 0.3 to 0.5 for cos θmax. In order to stay
as close as possible to the plotted experimental data, the theoretical curves in Figs. 2(c)
and (d) have been calculated with cos θmin = −0.5 and cos θmax = 0.5. The Heidelberg
group [50] also presents elastic differential cross sections for Σ±p scattering at pΣ± = 170
and 160 MeV/c, respectively. The corresponding potential model predictions are plotted in
Fig. 3; again, only models NSC97a, NSC97c, and NSC97f are shown.

Although the six models give an equally good description of the (few) YN scattering data,
the different choices for αmV give rise to different properties on a more detailed level. This
implies that these scattering data do not unambiguously determine the YN interaction. For
example, in Fig. 4 we show the wide spread in the Λp 1S0 and Σ+p 3S1 phase shifts which,
according to the results in Table IV, are still compatible with the scattering data. Also, the
S-wave scattering lengths in the four YN channels exhibit a fair amount of variation from
one model to the next, as shown in Table V.

As will be discussed in the next section, the differences among these models in applica-
tions other than low-energy YN scattering are even more pronounced. As a consequence,
they will provide important information to further pin down the YN interaction. It is found
that especially NSC97f exhibits nice features when applied to hypernuclear systems. There-
fore, rather than providing many tables with results for all the models, we will here only
give some results for NSC97f. The phase shifts for Σ+p and Λp scattering are given in
Tables VI and VII, respectively. Predictions for the total cross sections in the Λp channel
above the ΣN thresholds are given in Table VIII, while those for the total nuclear (i.e.,
without Coulomb) cross sections in the Σ−p channel are given in Table IX.

VII. G-MATRIX ANALYSES OF NSC97 MODELS

The properties of hypernuclear systems are linked closely to the underlying YN interac-
tions. Since the free-space YN scattering data are sparse at the present stage, it is quite
important to test our OBE models through the study of hypernuclear phenomena. Espe-
cially, the coming precise data of γ-ray observation from Λ hypernuclei will provide very
valuable information on the spin-dependent forces such as spin-spin and spin-orbit interac-
tions. Effective YN interactions in a nuclear medium, which reflect the properties of the
bare interactions, can be derived using the G-matrix procedure. One of the authors (Y.Y.)
and his collaborators performed the G-matrix calculations in nuclear matter with the vari-
ous OBE models by the Nijmegen [25, 26, 2] and Jülich groups [55, 56], and found specific
differences among them [57, 4, 58]. Here, we discuss the properties of G-matrix interactions
derived from the NSC97 models in comparison with the old NSC89 version [2], and the
hard-core models D [25] and F [26] (referred to as NHC-D and NHC-F, respectively). In
order to compare the present results with the past works [57, 4, 58], the calculations are
done in the same framework: We adopt the simple QTQ prescription for the intermediate-
state spectrum, which means that no potential term is taken into account in the off-shell
propagation. As discussed later, this procedure is reliable enough to investigate the feature
of spin-dependent terms.

In Table X we show the potential energies UΛ for a zero-momentum Λ and their partial-
wave contributions UΛ(2S+1LJ) at normal density (kF=1.35 fm−1) for the NSC97 models,
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where a statistical factor (2J + 1) is included in UΛ(2S+1LJ). It is seen that the values for
each state vary smoothly from NSC97a to NSC97f. The obtained values for UΛ are not so
far from the well depths (∼28 MeV) of Λ-nucleus Woods-Saxon potentials as obtained from
analyses of the (π+, K+) reaction data [59, 60, 61], though the comparison should be only
considered on a qualitative level. It should be noted here that the odd-state interactions,
which are uncertain experimentally, are very different among the various OBE models. In
the case of the NSC97 models, the odd-state contributions are found to be strongly repulsive.
On the other hand, they are strongly attractive, weakly attractive, and almost vanishing in
the case of NHC-D, NHC-F, and NSC89, respectively [58]. The stronger odd-state repulsion
of the NSC97 models is compensated by the also stronger even-state attraction.

It is noted that the relative ratios of UΛ(1S0) and UΛ(3S1) are very different among the
NSC97 models, as seen in Table X, indicating different spin-spin interactions. In order
to see the spin-dependent features of the G-matrix interactions more clearly, we obtain the
contributions to UΛ from the spin-independent, spin-spin, LS, and tensor components of the
G matrices, denoted as U0, Uσσ, ULS, and UT , respectively, by the following transformations:

U0(S) =
1

4

{
U(3S1) + U(1S0)

}
,

Uσσ(S) =
1

12

{
U(3S1)− 3U(1S0)

}
,

U0(P ) =
1

12

{
U(3P0) + U(3P1) + U(3P2) + 3U(1P1)

}
,

Uσσ(P ) =
1

36

{
U(3P0) + U(3P1) + U(3P2)− 9U(1P1)

}
,

ULS(P ) =
1

12

{
−2U(3P0)− U(3P1) + U(3P2)

}
,

UT (P ) =
1

72

{
−10U(3P0) + 5U(3P1)− U(3P2)

}
. (7.1)

The obtained values are shown in Table XI, where also the ones for NSC89, NHC-D, and
NHC-F are given for comparison. We can see here the nice correlation between the αmV values
taken in the NSC models and the strengths of the spin-spin interactions in even states; the
smaller value of αmV leads to the more repulsive strength. This marked difference of the
spin-spin interactions for NSC97a–f will show up characteristically in hypernuclear spectra,
which should be tested in comparison with experimental data. On the other hand, the
differences of LS components amongst the Nijmegen models turn out to be less remarkable
than the spin-spin ones. It is notable here that also the strengths of the LS interactions vary
smoothly with the αmV values in the NSC97 models. The detailed discussion of spin-orbit
components is given later.

As is well known, there remains some ambiguity in the lowest-order G-matrix approxi-
mation concerning the intermediate spectrum in the propagator. The choice of a continuous
intermediate-energy spectrum (CIES), extended smoothly from the on-shell one, leads to the
considerable gain of UΛ values in comparison with the QTQ prescription [4, 58, 62]. Now,
let us demonstrate that the spin-dependent parts are not so much affected by these different
treatments, in spite of the considerable change of the spin-independent part U0. In Table XII
the above-defined components for NSC97f are compared for the cases of QTQ and CIES,
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where the results are given at kF = 1.35 and 1.0 fm−1. It should be noted here that the
differences of the spin-dependent parts are far smaller than those of the spin-independent
ones U0, especially in the case of kF = 1.0 fm−1. The reason is that these spin-dependent
contributions are determined essentially by the differences of the partial-wave contributions,
and the induced changes cancel out considerably. In addition, the P -state contributions are
far less sensitive to the treatment of the intermediate spectrum than the S-state ones. Due
to the same reasons, the density dependencies of the spin-dependent parts are considerably
weaker than those of the spin-independent parts.

If the nucleon rearrangement effect is taken into account [57], the values of UΛ are
multiplied by (1− κN), κN = 0.10 ∼ 0.15 (at normal density) being the average correlation
probability for nucleons. In Table XII we find that the QTQ results without the (1 − κN)
correction simulate roughly the CIES results with this correction.

Thus, we can say that the G-matrix interactions are reliable enough for bridging the
spin-dependent terms of the OBE models with hypernuclear spectra separately from the
ambiguities of the spin-independent parts alluded to above. A convenient approach is, for
instance, to adjust the spin-independent parts adequately so as to reproduce the experi-
mental Λ binding energies in applying the G-matrix interactions to structure calculations of
hypernuclei [58].

Let us discuss the Λ `-s potentials in hypernuclei, which are derived from the LS and
anti-symmetric LS (ALS) components of our G-matrix interactions, in comparison with
the corresponding nucleon one. In the Scheerbaum-approximation [63] the `-s potential is
related to the two-body LS (ALS) interaction as follows:

U ls
B (r) = KB

1

r

dρ

dr
l · s with B = N,Λ,

KN = −π
2
SLS and KΛ = −π

3
(SLS + SALS),

SLS,ALS =
3

q̄

∫ ∞
0

r3j1(q̄r)GLS,ALS(r) dr, (7.2)

where GLS(r) and GALS(r) are the LS and ALS parts of the G-matrix interactions in
configuration space, respectively, and ρ(r) is the nuclear density distribution. We take here
q̄ = 0.7 fm−1 simply in the same way as [63], since the results are insensitive to the value of
q̄.

Table XIII shows the values of KΛ and SLS,ALS obtained from the LS and ALS parts of
the ΛN G-matrix interactions derived from various Nijmegen models, where the G matrices
are calculated at kF = 1.0 fm−1. Due to the reason mentioned above, the LS and ALS
parts are very insensitive to kF . For comparison we give also KN and SLS for a typical NN
G-matrix interaction (G0) [64] derived from the Reid soft-core potential. Here, it should be
noted that the effective strengths SLS of the ΛN LS interactions are not so small compared
to that of NN . In the case of NSC97f, for instance, the absolute value of SLS is smaller than
that of NN by 66%, but the KΛ value is smaller than the KN one by 32%. There are two
reasons why the values of KΛ become so small compared to that of KN . One is that KΛ

is smaller than KN kinematically by 2/3, which is determined by the ratio of the number
of NN and ΛN 3O-bonds in the nucleus. The other reason is that the LS contribution is
canceled substantially by the ALS one in the ΛN case.
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Furthermore, be aware that the ratio of the Λ and N `-s splitting energies should be
further reduced compared with KΛ/KN . First, the value of KN obtained with G0 accounts
for only about 60 ∼ 70% of the empirical `-s splitting; the additional contributions are
supposed to come from the many-body correlations related to the Pauli exclusion effect [65],
which are not expected to be present for a Λ particle. Second, the Λ single-particle wave
function should extend farther than the N one due to its smaller binding energy, which leads
to a reduction of the ΛN matrix elements. In the case of 17

Λ O, for instance, it was found that
the Λ `-s splitting energy evaluated with the precise Λ wave function is reduced by ∼ 25%
from that with the single harmonic oscillator one [66]. Then, the ratio of Λ and N `-s
splitting energy is estimated as about one half of KΛ/KN . Precise calculations of Λ splitting
energies can be done with use of the above values of KΛ or GLS,ALS(r) themselves [66].

Thus, it is concluded that Λ `-s splitting energies in hypernuclei are likely to be very
small compared to nucleon ones, even if the ΛN LS interaction is not so much weaker than
the NN one. Precise measurements of Λ `-s splitting energies are crucially important to
extract information on the two-body LS and ALS interactions.

Finally, we comment on the properties of the ΣN G-matrix interactions. The calculations
are done in the same way as in Ref. [58]. The QTQ spectra are adopted in ΣN intermediate
states, but continuous intermediate ones are taken into account in ΛN states coupled to
ΣN channels. The potentials in the intermediate ΛN states only slightly influence the real
parts of the ΣN G matrices, but work decisively on their imaginary parts related to the
conversion width in nuclear matter. The reason is that the imaginary part is determined by
the energy-conserving transition from the starting ΣN state to the ΛN one. We calculate
here Σ single-particle potentials UΣ and conversion widths ΓΣ for the NSC97 models. The
obtained results are more or less similar to each other. In Table XIV the calculated values
of UΣ and ΓΣ at kF = 1.0 fm−1 for the NSC97e and NSC97f are compared with those for
the other Nijmegen models. We find remarkable differences among the models.

The ΓΣ directly reflects the strength of the ΣN -ΛN coupling interaction, and those of
the NSC97 models turn out to be considerably smaller than for NSC89. It is worthwhile
to say that the moderate ΣN -ΛN coupling interactions of the NSC97 models are free from
possible troubles which appear in applications of the NSC89 model to hypernuclear systems
due to its too strong ΛN -ΣN coupling.

Recently, the existence of 4
ΣHe has been confirmed [67], which gives valuable information

on the ΣN interaction. The observed values of the Σ binding energy, BΣ, and the width are
4.4± 0.3± 1 MeV and 7.7± 0.7+1.2

−0.0 MeV, respectively. As discussed in Ref. [68], the strong
spin-isospin dependence shows up in the ΣN interaction, and the value of BΣ is determined
mainly by the attractions in the T = 1/2 3S1 and T = 3/2 1S0 states. It should be noted that
the NSC97 models are adequately attractive in these states, as well as the other Nijmegen
models. Be careful that our calculated values of ΓΣ should not be compared directly to
the above experimental one. Because of weak binding of the Σ, the wave function extends
outwards and is of small overlap with the nucleon ones, which leads likely to a remarkable
reduction of ΓΣ. It is an open problem to perform exact four-body calculations on the basis
of these OBE models.
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VIII. DISCUSSION AND OUTLOOK

The NSC97 models are an important step forward in the realization of a program where
the baryon-baryon interactions for scattering and hypernuclei can be described in the context
of broken SU(3)F symmetry.

First, it turns out that starting from the soft-core OBE model for NN , we are indeed
able to achieve a very good description of the YN data and at the same time maintain values
for the free parameters which are consistent with the present view on low-energy hadron
physics. For example, the value used for the F/(F + D) ratio αPV for the pseudoscalar
mesons is the same as that found in the weak interactions; see, e.g., Ref. [8]. Also, the range
of values used for the magnetic ratio of the vector mesons is compatible with the estimates
from static and non-static SU(6) [10].

Second, for the first time the soft-core model NSC97f passes the tests from the hypernu-
clear studies very satisfactorily. It is no longer necessary to introduce a phenomenological
spin-spin interaction for the ΛN systems, as was the case for the NSC89 model [2], see
Ref. [4]. This is an important achievement with the NSC97 models.

Third, the NSC97 models give parameter-free predictions for the S = −2,−3,−4 two-
body systems. In the S = −2 systems, the experimental information is limited to the ground
states of 6

ΛΛHe, 10
ΛΛBe, and 13

ΛΛB, from which it is inferred that ∆BΛΛ = 4 − 5MeV, corre-
sponding to a rather strong attractive ΛΛ interaction. The estimate for the 1S0 ΛΛ matrix
element in 6

ΛΛHe for NHC-D [25] is ∆BΛΛ = 4 MeV, in agreement with the experimental
observation. For more details we refer to Ref. [58]. Now, the characteristic feature of NHC-
D is that, instead of a scalar nonet, there is only a scalar singlet. This makes the scalar
central attraction independent of the baryon-baryon channel, and hence equally strong as
in NN . However, in the soft-core models constructed sofar, we have nearly ideal mixing for
qq̄ states, which implies that

|VΛΛ(0+)| < |VΛN(0+)| < |VNN(0+)|,

which leads to much weaker attractive potentials than in the case of NHC-D in the ΛΛ and
ΞN systems. For example, an estimate for the ΛΛ(1S0) scattering length, based on ∆BΛΛ

quoted above, is aΛΛ(1S0) ≈ −2.0 fm [69, 70]. In the NSC97 models we obtain values between
–0.3 and –0.5 fm. The only way to produce stronger ΛΛ forces is to go to smaller θS and ipso
facto a smaller αS. However, when we tried this for the soft-core OBE models, we produced
a ΛN(1S0) bound state. On the other hand, preliminary results from a potential model
which includes also the two-meson-exchange contributions within the present framework,
do show the apparently required attraction in the ΛΛ interaction. This model is currently
under further development.

Finally, to put the NSC97 models in perspective, we conclude by discussing the present
situation of the Nijmegen models for the central, spin-spin, and spin-orbit interactions with
respect to information from hypernuclear studies.
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1. Central interaction

The Λ well depth UΛ in nuclear medium is of basic importance in hypernuclear physics.
The data of the middle and heavy Λ hypernuclei at BNL [60] and KEK [61] play an essential
role, because it seems rather ambiguous to extrapolate UΛ from Λ binding energies in light
systems. The phenomenological analyses that have been performed for experimental BΛ

values with the use of Woods-Saxon potentials, indicate a depth of ∼ 28 MeV [59, 61].
Some OBE models, including the present NSC97 ones, reproduce this value fairly well in
the lowest-order G-matrix theory. From a fundamental many-body point of view, however,
the comparison should be considered as being qualitative, because of ambiguities in this
G-matrix approximation, especially in the spin-independent parts. One of the features of
NSC97 models is that the odd-state interactions are strongly repulsive, but are compensated
by the strong even-state attractions. This in contrast to the earlier Nijmegen models. It is
an open problem to test this feature, for instance, by analyzing the experimental Λ single-
particle spectra in medium and heavy hypernuclei [58].

2. Spin-spin interaction

The spin-doublet splittings (J>,< = Jc ± sΛ
1/2) of several hypernuclei have been ana-

lyzed extensively by Yamamoto et al. [58] using the G-matrix interactions derived from the
Nijmegen and Jülich potentials. As seen in Table XI, the strengths of the spin-spin interac-
tions are very different among the Nijmegen models, where the most repulsive (attractive)
is that of NSC89 (NHC-D). Those of the Jülich potentials are known to be more attractive
than NHC-D [58]. The spin-spin interactions show up in the differences of the 1S0 and
3S1 phase shifts. The values obtained for Λp scattering at pΛ = 200 MeV/c are −18.89◦,
−15.33◦, −10.55◦, −3.34◦, 1.40◦, 5.60◦, 9.14◦, −4.17◦, and 2.02◦ for NSC97 models a, b, c,
d, e, f, NSC89, NHC-D, and NHC-F, respectively. Here, positive (negative) values mean
repulsive (attractive) spin-spin interactions. Comparing these values to those for Uσσ, we
find a nice systematic correspondence between them. The experimental manifestation of the
ΛN spin-spin interaction is found in the 0+-1+ doublet states of 4

ΛH and 4
ΛHe [71], where

the J< = 0+ state is below the J> = 1+ one by about 1 MeV. The analysis of 4
ΛH with

the G-matrix interactions indicates that the spin-spin interaction should be repulsive and
its adequate strength is between those of NHC-F and NSC89 [58]. Then, that of NSC97e or
NSC97f seem to be of adequate strength, though a definite conclusion should be based on
more elaborate four-body calculations. A complementary indication can be obtained from
the exact three-body calculations of 3

ΛH by Miyagawa et al. [72, 73], where the repulsive
(attractive) spin-spin interaction of NSC89 (Jülich A) is shown to be adequate (inadequate)
to reproduce the experimental Λ binding energy. Recently, Miyagawa performed the same
calculations using the NSC97 models [74]: The model NSC97f, whose spin-spin interaction
is of the most repulsive among the NSC97 models, reproduces a reasonable Λ binding en-
ergy. On the other hand, the model NSC97e gives rise to only a very weakly bound state
compared to the experimental one, and no bound states are obtained for models NSC97a–d.
Thus, the 3

ΛH problem turns out to be one of the critical tests for the spin-spin interactions.
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Results for the NSC97 potentials with regard to the Carlson-Gibson computation [75] of the
3
ΛHe, 4

ΛHe, and 5
ΛHe hypernuclei are not available yet.

The ground-state doublet splitting energies of some light p-shell hypernuclei are also
indicative of the spin-spin interactions. The shell-model analyses of 10

ΛB, 11
ΛB, 12

ΛC, and
12
ΛB with the G-matrix interactions showed that the repulsive spin-spin interactions such

as NHC-F and NSC89 make the J< states lower than the J> states [58]. (Experimentally
the ground-state spins of 11

ΛB and 12
ΛB are J< = 5/2+ and 1−, respectively.) This situation

is altered by the LS and ALS interactions, however, which works more attractively on
the J> states against the spin-spin interaction. For instance, the spin-spin interaction of
NHC-F is weakly repulsive and makes J< states slightly lower than J> states, but this
order is reversed by adding the LS and ALS terms [58]. On the other hand, the spin-spin
interaction of NSC89 is so repulsive that the J< states are kept lower [58]. Although the
spin-spin interaction of NSC97f is less repulsive than that of NSC89, the J< states are also
kept lower, in spite of adding the LS and ALS ones [76]. Considering that the spin-spin
interaction of NSC89 is suggested to be too repulsive [58], that of NSC97f is expected to
be of reasonable strength. The less repulsive one of NSC97e is maybe of lower limit. Of
course, there still remain ambiguities because the strengths of LS and ALS interactions are
not established experimentally.

As new experiments are planned using hypernuclear γ-ray spectrometers with the ger-
manium detectors [77], there are good prospects for progress in this sector. For instance,
the planned experiment of the ground-state doublet splitting of 7

ΛLi is very promising, be-
cause this splitting is considered to be fairly free from the LS and ALS interactions [78].
In contrast, the [8Be(2+)⊗ (s1/2)Λ]5/2+,3/2+ splitting in 9

ΛBe is almost purely determined by
the LS and ALS interactions [78]. In view of these developments, one can envisage that the
ΛN spin-spin and spin-orbit interactions will be established rather well in the coming years.

3. Spin-orbit interaction

The Λ `-s splitting energies in hypernuclei are related intimately to the two-body LS and
ALS components of ΛN interactions. It has been observed that the Λ `-s splitting energies
are far smaller than the nucleon ones. The first indication was given by the 16O(K−, π−)16

ΛO
experiment at CERN [79]. The splitting of the observed two peaks of the [(p−1

3/2)n(p3/2)Λ]0+

and [(p−1
1/2)n(p1/2)Λ]0+ configurations was almost the same as that of the neutron p1/2 and

p3/2 hole states in 15O, and the splitting of p-state Λ was estimated to be less than 0.3
MeV. In the 13C(K−, π−)13

ΛC experiment at BNL [80], the Λ splitting energy in 13
ΛC was

obtained as 0.36±0.3 MeV with help of some theoretical consideration on the dominant
configurations of the peak. The 9Be(K−, π−γ)9

ΛBe experiment at BNL [81] also indicates
the small Λ `-s splitting. Only one observed γ-ray peak suggests that the excited doublets
[9Be(2+) ⊗ (s1/2)Λ]3/2,5/2 are almost degenerate, where the splitting energy has to be less
than the experimental resolution of 0.1 MeV. Anyway, the data of Λ `-s splitting energies
are yet still far from a quantitative determination.

In Table XIII the values of SLS,ALS and KΛ for the Nijmegen models are compared to the
corresponding ones of nucleons. As stressed in the previous section, the ΛN LS interaction
is not so small compared with the NN one, which seemingly is contradictory to the above
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experimental indications. However, the Λ `-s splitting is likely to be far smaller than the
N one due to the reasons mentioned in the previous section. Additionally, the coupling
effects with core-excited states also possibly influence the Λ `-s splitting energies. Recently,
Dalitz et al. [66] analyzed the excited doublet states of 16

ΛO, whose dominant components
are [(p1/2)−1

N (p1/2,3/2)Λ]0+,2+ . This splitting energy was shown to be understood on the basis
of the LS and ALS terms of G-matrix interactions derived from the Nijmegen models, if the
coupling to core-excited states with a (s1/2)Λ are taken into account. The new experiment
at BNL (E929) is now in progress to determine the Λ `-s splitting in 13

ΛC by detecting the
γ-rays from (p3/2)Λ and (p1/2)Λ states. In order to extract information on the underlying ΛN
LS interaction from the coming data, it will be necessary to perform an elaborate structure
calculation in which core-excited states are fully taken into account [78].

The spin-orbit interaction is also very interesting from the point of view of the quark
model. Namely, the P -wave baryons are hard to describe by the theory if one keeps the full
Fermi-Breit spin-orbit interaction from gluon exchange [82]. For the literature since 1980,
see Valcarce et al. [83]. Here one finds an indication that meson-exchange between quarks
(π, ε, ρ, ω, etc.) is a possible solution. Another possibility is that the inclusion of the decay
channels will be a way out of this problem [84].
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APPENDIX: POTENTIAL IN CONFIGURATION SPACE

(a) Pseudoscalar-meson exchange (pseudovector coupling):

VPV (r) =
m

4π

[
fP13f

P
24

(
m

mπ

)2 [
1
3
(σ1 ·σ2)φ1

C + S12φ
0
T

]]
. (A1)

(b) Vector-meson exchange:

VV (r) =
m

4π

[{
gV13g

V
24

[
φ0
C +

m2

2M13M24

φ1
C −

3

4M13M24

(∆φ0
C + φ0

C∆)

]

+

[
gV13f

V
24

m2

4MM24

+ fV13g
V
24

m2

4MM13

]
φ1
C + fV13f

V
24

m4

16M2M13M24

φ2
C

}
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+
m2

4M13M24

{(
gV13 + fV13

M13

M

)(
gV24 + fV24

M24

M

)
φ1
C + fV13f

V
24

m2

8M2
φ2
C

}
2
3
(σ1 ·σ2)

− m2

4M13M24

{(
gV13 + fV13

M13

M

)(
gV24 + fV24

M24

M

)
φ0
T + fV13f

V
24

m2

8M2
φ1
T

}
S12

− m2

M13M24

{[
3
2
gV13g

V
24 + gV13f

V
24

M24

M
+ fV13g

V
24

M13

M

]
φ0
SO + 3

8
fV13f

V
24

m2

M2
φ1
SO

}
L·S

+
m4

16M2
13M

2
24

{
gV13g

V
24 + 4(gV13f

V
24 + fV13g

V
24)

√
M13M24

M
+ 8fV13f

V
24

M13M24

M2

}
3

(mr)2
φ0
TQ12

− m2

M13M24

{[
gV13g

V
24φ

0
SO − fV13f

V
24

m2

4M2
φ1
SO

]
(M2

24 −M2
13)

4M13M24

−(gV13f
V
24 − fV13g

V
24)

√
M13M24

M
φ0
SO

}
1
2
(σ1 − σ2)·L

]
. (A2)

(c) Scalar-meson exchange:

VS(r) = −m
4π
gS13g

S
24

{[
φ0
C −

m2

4M13M24

φ1
C

]
+

m2

2M13M24

φ0
SOL·S +

m4

16M2
13M

2
24

3

(mr)2
φ0
TQ12

+
m2

M13M24

(M2
24 −M2

13)

4M13M24

φ0
SO

1
2
(σ1 − σ2)·L +

1

4M13M24

(∆φ0
C + φ0

C∆)

}
. (A3)

(d) Diffractive (pomeron-like) exchange:

VD(r) =
m

4π
gD13g

D
24

4√
π

m2

M2

[{
1 +

m2

2M13M24

(3− 2m2r2) +
m2

M13M24

L·S +
m4

4M2
13M

2
24

Q12

+
m2

M13M24

(M2
24 −M2

13)

2M13M24

1
2
(σ1 − σ2)·L

}
e−m

2r2

+
1

4M13M24

(∆e−m
2r2

+ e−m
2r2

∆)
]
. (A4)

The expressions for the configuration-space functions φnX(r) can be found in Refs. [1, 2],
while S12 and Q12 are the standard tensor and quadratic spin-orbit operators:

S12 = 3(σ1 ·r̂)(σ1 ·r̂)− (σ1 ·σ2),

Q12 = 1
2

[(σ1 ·L)(σ2 ·L) + (σ2 ·L)(σ1 ·L)] . (A5)

The terms proportional to (∆φ+φ∆) are known as the nonlocal contributions, and represent
the explicit momentum-dependent terms (i.e., terms proportional to q2, the square of the
sum of the initial and final momenta) in the momentum-space potential.

In addition to the vector-exchange potential given in Eq. (A2), there is a non-negligible
contribution due to the second part of the vector-meson propagator, kµkν/m

2. Its structure
is similar to the scalar-exchange potential given in Eq. (A3), and so we have

VV (r)→ VV (r)− (M3 −M1)(M4 −M2)

m2
VS(r), (A6)

where in VS(r), obviously, now the vector-meson coupling constants have to be used. Also,
it is clear that this part only contributes when both M3 6= M1 and M4 6= M2.
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FIG. 1. Volume integral for the scalar-exchange central YN potentials in arbitrary units.
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FIG. 2. Calculated total cross sections compared with experimental data. Solid curve: NSC97a;
dashed curve: NSC97c; dotted curve: NSC97f. Experimental data in (a) from Ref. [48] (closed
circles) and Ref. [49] (open triangles); in (b) from Ref. [53] (closed circles) and Ref. [54] (open
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TABLES

TABLE I. Isospin factors for the various meson exchanges in the two isospin channels. P is
the exchange operator (see text).

Matrix element I = 1
2 I = 3

2

(ΛN |η|ΛN) 1 0
(ΛN |η′|ΛN) 1 0
(ΛN |π|ΛN) −0.0283 0
(ΛN |K|NΛ) P 0
(ΣN |η|ΣN) 1 1
(ΣN |η′|ΣN) 1 1
(ΣN |π|ΣN) −2 1
(ΣN |K|NΣ) −P 2P
(ΛN |π|ΣN) −

√
3 0

(ΛN |K|NΣ) −P
√

3 0
(ΣN |π|ΛN) −

√
3 0

(ΣN |K|NΛ) −P
√

3 0

TABLE II. Coupling constants, F/(F + D) ratios α, mixing angles, and cut-off parameters
in MeV/c2, common to all six models. Singlet refers to the physical meson, i.e., η′, ω, ε, and
pomeron. Subscripts 8, 1, and K on the cut-off parameter Λ refer to isovector, isoscalar, and
strange (isodoublet) mesons within the meson nonet, respectively. A dash means this parameter
differs from one model to the next.

Mesons Singlet Octet α Angles Λ8 Λ1 ΛK
Pseudoscalar f/

√
4π 0.14410 0.27286 0.355 –23.0◦ 1254.63 872.09 1281.64

Vector g/
√

4π 2.92133 0.83689 1.000 37.5◦ 895.07 949.33 1184.52
f/
√

4π 1.18335 3.53174 –
Scalar g/

√
4π 4.59789 1.39511 – – 548.72 988.99 935.75

Diffractive g/
√

4π 2.86407 0.0 0.250 0.0◦

TABLE III. Fitted scalar-meson mixing angle, θS , and flavor-symmetry breaking parameters,
λfsb, for models NSC97a–f. Note that the scalar F/(F+D) ratio αS was not fitted, but is determined
by Eq. (4.7).

Model αmV θS αS λPfsb λVfsb λSfsb
(a) 0.4447 37.07◦ 1.086 0.957 0.828 0.918
(b) 0.4247 37.32◦ 1.091 1.003 0.895 0.946
(c) 0.4047 37.57◦ 1.096 1.022 0.985 0.990
(d) 0.3847 38.31◦ 1.111 1.084 1.090 1.037
(e) 0.3747 38.88◦ 1.123 1.137 1.145 1.061
(f) 0.3647 39.65◦ 1.138 1.242 1.188 1.070
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TABLE IV. χ2 results on the 35 YN experimental total cross sections for the six different
models, labeled according to the αmV input (see Table III. The last column gives the predictions
for the capture ratio at rest.

Λp→ Λp Λp→ Λp Σ+p→ Σ+p Σ−p→ Σ−p Σ−p→ Σ0n Σ−p→ Λn rth
R

Model Ref. [48] Ref. [49] Ref. [50] Ref. [50] Ref. [51] Ref. [51] Ref. [52]
(a) 1.63 2.12 0.07 2.28 5.90 3.68 0.469
(b) 1.59 2.22 0.06 2.32 5.82 3.77 0.466
(c) 1.78 2.00 0.08 1.98 5.86 3.90 0.469
(d) 1.98 1.93 0.10 1.89 5.84 4.01 0.468
(e) 2.29 1.89 0.10 1.89 5.88 4.00 0.468
(f) 2.52 2.04 0.20 1.95 6.01 3.94 0.467

TABLE V. Singlet 1S0 and triplet 3S1 scattering lengths for models NSC97a–f in the different
channels.

Σ+p Λp Λn Σ−n
Model 1S0

3S1
1S0

3S1
1S0

3S1
1S0

3S1

(a) –4.35 –0.14 –0.71 –2.18 –0.76 –2.14 –6.13 –0.15
(b) –4.32 –0.17 –0.90 –2.13 –0.97 –2.08 –6.06 –0.18
(c) –4.28 –0.25 –1.20 –2.08 –1.28 –2.06 –5.98 –0.28
(d) –4.23 –0.29 –1.71 –1.95 –1.82 –1.93 –5.89 –0.33
(e) –4.23 –0.28 –2.10 –1.86 –2.24 –1.82 –5.90 –0.32
(f) –4.35 –0.25 –2.51 –1.75 –2.68 –1.66 –6.16 –0.29

TABLE VI. Σ+p nuclear bar phase shifts in degrees for NSC97f.

pΣ+ (MeV/c) 200 400 600 800 1000
Tlab (MeV) 16.7 65.5 142.8 244.0 364.5

1S0 42.01 28.67 11.86 –3.82 –17.81
3P0 4.92 9.79 4.51 –5.48 –16.48
1P1 2.55 9.36 13.70 12.40 7.39
3P1 –3.03 –9.72 –17.07 –24.94 –32.92
3S1 7.11 16.10 28.36 39.79 43.80
ε1 –1.90 –2.82 0.08 3.16 4.23

3D1 0.26 1.20 1.31 –1.26 –6.60
1D2 0.29 1.88 5.01 8.90 11.70
3D2 –0.43 –2.24 –4.23 –6.51 –9.49
3P2 0.79 4.43 8.01 9.60 9.83
ε2 –0.36 –1.84 –3.00 –3.20 –2.60

3F2 0.03 0.38 0.83 0.76 –0.41
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TABLE VII. Λp nuclear bar phase shifts in degrees for NSC97f.

pΛ (MeV/c) 100 200 300 400 500 600 633.4
Tlab (MeV) 4.5 17.8 39.6 69.5 106.9 151.1 167.3

1S0 25.68 31.52 28.08 21.52 14.03 6.42 3.92
3P0 0.02 0.05 –0.39 –2.01 –5.10 –9.42 –11.00
1P1 –0.08 –0.59 –1.82 –3.88 –6.71 –10.08 –11.24
3P1 –0.09 –0.74 –2.38 –5.04 –8.47 –12.12 –13.06
3S1 19.26 25.92 24.76 20.57 15.62 11.55 7.68
ε1 0.16 0.81 1.80 3.03 4.77 10.18 19.81

3D1 0.00 0.05 0.36 1.49 5.15 23.26 76.52
1D2 0.00 0.05 0.30 0.96 2.08 3.54 4.07
3D2 0.00 0.08 0.44 1.27 2.61 4.32 4.95
3P2 0.05 0.31 0.59 0.52 –0.16 –1.45 –1.99
ε2 –0.00 –0.01 –0.10 –0.31 –0.62 –0.99 –1.11

3F2 0.00 0.00 0.01 0.06 0.19 0.47 0.70

TABLE VIII. Λp → Λp,Σ+n,Σ0p total cross sections in mb above the ΣN thresholds for
NSC97f.

pΛ (MeV/c) Tlab (MeV) Λp→ Λp Λp→ Σ+n Λp→ Σ0p

650 175.5 23.30 8.11 2.90
700 201.4 15.87 7.80 3.68
750 228.7 15.34 7.39 3.59
800 257.2 15.94 6.93 3.41
850 286.9 16.82 6.50 3.22
900 317.8 17.73 6.12 3.04
950 349.7 18.60 5.79 2.88
1000 382.6 19.40 5.50 2.74
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TABLE IX. Σ−p→ Σ−p,Σ0n,Λn total nuclear cross sections in mb above the ΣN thresholds
for NSC97f.

pΣ− (MeV/c) Tlab (MeV) Σ−p→ Σ−p Σ−p→ Σ0n Σ−p→ Λn
50 1.0 427.8 672.8 862.3
100 4.2 211.8 232.3 270.2
150 9.4 143.2 128.1 132.5
200 16.6 107.8 85.3 78.4
250 25.8 86.0 62.7 51.9
300 37.0 71.4 48.8 37.0
350 50.1 60.9 39.4 28.0
400 65.0 53.2 32.6 22.1
450 81.8 47.3 27.5 18.1
500 100.2 42.7 23.5 15.3

TABLE X. Partial-wave contributions to the Λ potential energy UΛ(kΛ = 0) at kF = 1.35 fm−1

in the cases of NSC97 models. G-matrix calculations are performed with the QTQ prescription for
intermediate spectra. All entries are in MeV.

Model 1S0
3S1

1P1
3P0

3P1
3P2 Sum

(a) –3.8 –30.7 1.5 –0.2 1.6 –2.2 –33.9
(b) –5.5 –30.0 1.6 –0.1 1.9 –2.1 –34.1
(c) –7.8 –29.7 1.7 0.2 2.2 –1.9 –35.3
(d) –11.0 –27.7 1.9 0.4 2.7 –1.5 –35.1
(e) –12.8 –26.0 2.1 0.5 3.2 –1.2 –34.3
(f) –14.4 –22.9 2.4 0.5 4.0 –0.7 –31.1

TABLE XI. Contributions to UΛ at kF = 1.35 fm−1 from spin-independent, spin-spin, LS, and
tensor parts of the G-matrix interactions. See the text for the definitions of U0, Uσσ, ULS , and UT .
All entries are in MeV.

S-states P -states
Model U0(S) Uσσ(S) U0(P ) Uσσ(P ) ULS(P ) UT (P )

(a) –8.62 –1.61 0.30 –0.39 –0.28 0.17
(b) –8.88 –1.13 0.38 –0.41 –0.32 0.17
(c) –9.37 –0.52 0.46 –0.40 –0.37 0.15
(d) –9.67 0.43 0.61 –0.42 –0.43 0.15
(e) –9.70 1.04 0.72 –0.44 –0.46 0.17
(f) –9.33 1.68 0.92 –0.50 –0.47 0.22

NSC89 –6.00 3.10 0.27 –0.43 –0.53 0.14
NHC-F –7.67 0.77 0.13 –0.39 –0.49 0.14
NHC-D –8.13 –0.24 –1.08 0.46 –0.44 0.09
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TABLE XII. Comparison between the QTQ and CIES treatments for the intermediate spec-
trum. See the text for the definitions of U0, Uσσ, ULS , and UT . All entries are in MeV.

kF = 1.35 fm−1 kF = 1.0 fm−1

QTQ CIES QTQ CIES
UΛ –31.1 –34.3 –19.9 –21.9
U0(S) –9.33 –9.96 –5.25 –5.73
Uσσ(S) 1.68 1.58 0.66 0.66
U0(P ) 0.92 0.83 0.18 0.16
Uσσ(P ) –0.50 –0.47 –0.11 –0.10
ULS(P ) –0.47 –0.44 –0.10 –0.09
UT (P ) 0.22 0.14 0.06 0.05

TABLE XIII. Strengths of Λ spin-orbit splittings for various Nijmegen models. See the text
for the definitions of KB and SLS,ALS . The corresponding ones for the NN interaction (G0) are
also shown.

Model SLS SALS KB

(a) –14.2 6.2 8.
(b) –16.2 6.4 10.
(c) –18.9 6.7 13.
(d) –21.7 7.1 15.
(e) –23.1 7.2 17.
(f) –23.9 7.0 18.

NSC89 –28.0 7.9 21.
NHC-F –22.8 5.0 19.
NHC-D –22.0 7.3 15.
G0(NN) –36.4 57.

TABLE XIV. Contributions to UΣ at kF = 1.0 fm−1 in the cases of NSC97e, NSC97f, NSC89,
NHC-F, and NHC-D. Conversion widths ΓΣ are also shown. All entries are in MeV.

Isospin T = 1/2 Isospin T = 3/2
Model 1S0

3S1 P 1S0
3S1 P Sum ΓΣ

NSC97e 5.2 –7.5 0.0 –6.1 –2.5 –0.9 –11.8 14.6
NSC97f 5.2 –7.6 0.0 –6.1 –2.2 –0.9 –11.5 15.5
NSC89 3.0 –4.2 –0.3 –5.8 3.7 0.1 –3.6 25.0
NHC-F 4.2 –10.9 –1.5 –5.3 18.6 –1.7 3.5 16.3
NHC-D 2.1 –9.6 –2.2 –5.4 9.4 –3.0 –8.7 8.7
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