Comment on “πNN Coupling from High Precision np Charge Exchange at 162 MeV”

M.C.M. Rentmeester, R.A.M. Klomp, and J.J. de Swart*
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands

Abstract

In this updated and expanded version of our delayed Comment we show that the np backward cross section, as presented by the Uppsala group[1], is seriously flawed (more than 25 sd.). The main reason is the incorrect normalization of the data. We also show that their extrapolation method, used to determine the charged πNN coupling constant, is a factor of about 10 less accurate than claimed by Ericson et al.. The large extrapolation error makes the determination of the coupling constant by the Uppsala group totally uninteresting.

PACS numbers: 13.75.Cs, 13.75.Gx, 21.30.-x

*Email:swart@sci.kun.nl
In a not so recent anymore Letter[1], a measurement of the np differential cross-section in the backward direction at a single energy \(T_{\text{lab}} = 162 \text{ MeV} \) was reported. These 31 data were then used to extract for the charged pion-nucleon coupling constant the large value \(f_{c}^{2} = 0.0808 \). An incredibly small extrapolation error of only 0.0003 and a normalization error of 0.0017 are claimed. The systematic errors, however, have not been properly dealt with. This Uppsala value for the charged coupling constant is in agreement with the old-fashioned textbook values, but in strong disagreement with modern determinations[2].

First we make the observation that this coupling constant has been determined in the last decade by several groups (and not only the Nijmegen group as suggested in the Letter [1]) in various energy-dependent Partial Wave Analyses (PWA’s). For a review see reference [2]. These PWA’s give very good fits to about 12,000 np [3, 4, 5], \(\pi N \) [6, 7], and \(\bar{p} p \) charge-exchange [8] scattering data. The values of \(f_{c}^{2} \) determined in these different energy-dependent PWA’s from thousands of data are all in excellent agreement with each other, and in flagrant disagreement with the determination [1] from the merely 31 Uppsala data. A representative value (with error) for this coupling constant is \(f_{c}^{2} = 0.0748(3) \) [9]. This charged coupling constant \(f_{c} \) is via charge independence related to the \(pp\pi^{0} \) coupling constant \(f_{p}^{2} \). This latter coupling constant has been determined from almost two thousand \(pp \) data [2] with the result \(f_{p}^{2} = 0.0753(5) \). An incredibly large breaking of charge independence would therefore be implied if the Uppsala value of the charged coupling constant would be correct.

The backward np differential cross section is sensitive to \(f_{c}^{2} \). That it is therefore a good place to determine this coupling constant is a widespread misunderstanding. This has been shown [9] in an energy-dependent PWA of the np data. The backward np data do not show any particular sensitivity to \(f_{c}^{2} \). In table V of [9] one can see that in our energy-dependent PWA using all np scattering data and all types of observables, \(f_{c}^{2} \) shows no special sensitivity to any particular type of observable. The claim in [10] that “the Uppsala group has shown the contrary using pseudodata” is false. The Uppsala group did not study anything else but differential cross sections. Therefore they cannot make any statement about the relative importance of various observables (like differential cross sections, polarizations, spin transfer coefficients, etc.) in the determination of the coupling constant.

No particular sensitivity for any particular observable implies that all datatypes contribute with about the same weight. This means that the statistical errors in the different analyses are roughly inversely proportional to the square root of the number of datapoints. The pole extrapolations use about a factor of 100 less data than the energy dependent PWA’s, implying a statistical extrapolation error that is about 10 times larger than the error in the PWA’s. Such a large error makes the determination of \(f_{c}^{2} \), as described in the Letter [1], totally uninteresting. It must be clear from statistical reasons that a rather small data set cannot be used for an accurate determination.

In the same paper [9] it has been explicitly shown, using physical extrapolation techniques, that analyzing backward np data at a single energy, as in ref. [1], gives values of \(f_{c}^{2} \) with a large spread that results in a total error of 0.003, which is 10 times larger than the extrapolation error claimed in [1]. This was confirmed by Arndt et al. [11], who used exactly the same techniques as used in [1] for all the available backward data, and not for only one dataset as was done in [1]. Their values for \(f_{c}^{2} \) as determined at a single energy
vary from 0.061 to 0.091 with an average of 0.075 and an error of 0.009, which is 30 times the extrapolation error quoted in [1].

In their Reply to our Comment the authors of the Letter [1] imply that “the analysis of Arndt et al. [11] is not detailed enough and their examination of the input data not critical enough”. That expresses exactly our opinion about the work of Ericson et al. as presented in [1] and subsequent publications. From decades of experience with the work of Arndt we know that it definitely does not apply to the work of Arndt.

In the Letter [1] the authors use a self-invented extrapolation method, which they call the Difference Method. However, they did not study properly the systematic errors in their new method. This was done in [2], where it was shown that the model-dependence of their method is enormous. This large model-dependence gives rise to very large systematic errors in their value for the coupling constant and in their estimate of the error.

The authors of the Letter state in the Abstract that they can extrapolate precisely and model-independently to the pion pole. That is definitely incorrect. Their extrapolation method is strongly model-dependent, with large systematic errors, and as inaccurate as any other extrapolation method. Not better, not worse. A new extrapolation method that really produces extrapolation errors a factor of 10 smaller than other extrapolation methods would have been a sensational discovery in numerical analysis and/or statistics. This Difference Method is definitely not better than the standard Chew extrapolation technique. However, it is certainly much more cumbersome. It is so cumbersome, that the Uppsala group could not properly determine their errors.

The pole-extrapolation method used by Ericson et al. relies heavily on the absolute normalization of the data. Normalizing np cross-sections is very difficult. In their determination of f^2_σ the normalization is another important source of uncertainty. In energy-dependent PWA’s, as in [3], one does not need normalized data to determine the coupling constant; one can use the shapes of the measured differential cross-sections.

Do not misinterpret the above statement. We do not say that we apply all our methods directly to unnormalized data. We normalize data very accurately with the help of our PWA. This has been explained extensively in most of our publications [9] about PWA’s. This is definitely one of the successes of energy-dependent PWA’s; we determine the normalization of differential cross sections in np scattering with a typical uncertainty of about 0.5 %. This is a lot better than the 4 % normalization error used in the Letter. The remarks in the Reply about “loose normalizations” show an unfortunate lack of knowledge by the Uppsala group of the methods of modern PWA. The corresponding sentences in their Reply do not correspond to the truth, but are fabrications of the unbridled fantasies of the authors of the Reply.

The authors have applied their method for extraction of f^2_σ to data which cannot be described satisfactory by either the Nijmegen PWA [3] or the VZ40 PWA of Arndt et al. [5]. The Nijmegen PWA gives, after refitting, $\chi^2 = 264.0$ for these 31 data and the VPI&SU PWA [5] gives $\chi^2 = 236.7$. One reason for the bad fit can be seen in the large discrepancy between the shape of the newly reported data and the shape of the older data of Bonner et al. [12] at exactly the same energy. The authors should have reported f^2_σ from applying their extrapolation method to the Bonner data and compared the results.

In their Reply the authors claim: “the data of the present experiment are of a far
better quality than those of Bonner at 162 MeV”. When reading this above quote one must
realize here that people, not known for their familiarity with data analysis, are claiming that
their own experiment is the best. This is definitely not the opinion of the Nijmegen data
analysis group. They find in their careful, detailed, and critical analysis of the data that
the old Bonner data are of better quality than the new Uppsala data. The Bonner data are
included in the Nijmegen and the VPI&SU databases; the Uppsala data are not!

The new data disagree not only with the Bonner data, they disagree with the whole
Nijmegen np data set, currently consisting of circa 5000 data below 500 MeV. They disagree,
because of their wrong shape. The shape of the Uppsala differential cross section is more
than 25 sd away from both the Nijmegen and the VPI&SU databases. More than 3 sd is
already called “wrong”.

We [13] have studied these data to see what is really wrong with them. In their experiment
the Uppsala group performed 3 different measurements in 3 angular regions, which were
then separately normalized. They have 49 (partially overlapping) datapoints. These 3
datasets are then combined to one dataset with 31 points. We have pinpointed two errors.
Firstly, in those angular regions where these datasets overlap one clearly notices internal
inconsistencies in the slopes. This discrepancy is nowhere [14] discussed in the Uppsala
papers, but just ignored. Secondly, we can improve the χ^2 for the total dataset dramatically
by just renormalizing these 3 sets and discarding 4 datapoints [13]. However, we cannot
improve them so much that the data become acceptable. They are, after renormalization
and discarding the 4 bad points, still more than 3 sd. away from the Nijmegen database.
This is for statistical reasons unacceptable. But , we made the Uppsala data at least
almost acceptable.

In their Reply the authors refer to the Hörster et al. data [16], which are not used (but
intensively studied) in the Nijmegen PWA’s and also not used in the Arndt et al. PWA’s
because of their high χ^2. The authors claim that the shape of the incorrectly normalized
Uppsala data agrees with the shape of these Hörster et al. data. This is almost certainly
incorrect. Because then we need to assume that the Freiburg people made exactly the same
mistakes as the Uppsala people in normalizing their data and that these data have the same
kind of internal inconsistency. We see no reason to make such drastic assumptions. Also
the χ^2/datapoint for the Hörster et al. data is much smaller than for the (incorrectly nor-
malized) Uppsala data.

The authors state in their Reply that possibly the inclusion of the Bonner data in the
Nijmegen and VPI&SU PWA’s is responsible for the large χ^2 of the Uppsala data. This
also is incorrect. We have done PWA’s in which we discarded all Bonner data; the χ^2 of the
Uppsala data was still unacceptably high. These and other studies performed in Nijmegen
show that the Uppsala data are in disagreement with the whole database and not only with
the Bonner data.

In their Reply to our Comment it is stated that: “Their Letter argues that a rather small, but
well-controlled data set on a relevant observable can be used for an accurate determination
when carefully analyzed.” We observe that the dataset is indeed rather small, only 31 points.
This is insufficient for an accurate determination. According to the energy-dependent PWA’s
the dataset is definitely not well-controlled. In 1993 it was already shown in [9] that the backward differential cross section, combined with a pole-extrapolation method, is not an especially relevant observable. In the Reply one can read the unbelievable remark that our proof is not relevant to their approach. We find this an unprofessional way of discarding unwanted facts. We think that the statement “when carefully analyzed” is neither applicable to these incorrectly normalized data with internal inconsistencies, nor to their extrapolation analysis with their unnoticed, huge, systematic errors.

Our conclusions are:
i) The experimental data as presented are seriously flawed (more than 25 sd.). This is mainly caused by the way these data are normalized. Similar data[15] at 96 MeV from the same group are not included in the Nijmegen database[3] either because they too disagree significantly with the total dataset.

ii) Achieving an accurate determination of f_c^2 from the backward np data at one single energy is a rather unrealistic exercise. The label “dedicated” for such experiments is presumptuous and completely unwarranted. We have shown that to determine f_c^2 accurately the energy-dependent PWA’s are vastly superior over the pole-extrapolation methods.

We would like to thank Prof. N. Olsson for providing us the data, and R. Timmermans and T. Rijken for stimulating discussions.
REFERENCES

These data are well described in energy-dependent PWA’s.
[14] At the 1997 Groningen Few-Body Conference Prof. N. Olsson acknowledged the existence of this discrepancy and explained that they did not understand it.