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momentum space partial wave meson-baryon potentials are presented.
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I. INTRODUCTION

The strong interactions between mesons and baryons,
in particular for pion-nucleon, kaon-nucleon and
antikaon-nucleon, have been the subject of investigation
for some decades, experimentally as well as theoretically.

A large number of scattering experiment have been
performed to investigate the pion-nucleon interaction.
The empirical phase shifts are obtained from a partial
wave (PW) analysis of the scattering observables, which
analysis judges the consistency with general principles
of the scattering data, and which provides a compact
representation of these data. Although at first sight in
principle an infinite number of phase shifts need to be
determined from the data, the strong interactions are
short-ranged and only the lower partial wave phase shifts
will suffice. In constructing theoretical models for these
interactions, it is usually much more economic to use the
results of a PW-analysis than the scattering observables
themselves. Different pion-nucleon PW-analyses [1–3]
give quite accurate and consistent results. The most re-
cent pion-nucleon PW-analysis has been performed by
Arndt et al. [1], to which we refer for more information
on the current pion-nucleon scattering data base.

However, the situation for the kaon-nucleon interac-
tion is different from the pion-nucleon interaction. The
kaon-nucleon scattering observables are known to less ac-
curacy, especially at low energies, due to the relatively
low flux of the kaon beams. Consequently, the different
kaon-nucleon phase shift analyses do not give quite accu-
rate and may be not totally consistent results. The most
recent kaon-nucleon PW-analysis has been performed by
Hyslop et al. [4], where much information on the kaon-
nucleon scattering data base can be found.

This lack of empirical knowledge makes it impossible to
construct realistic theoretical kaon-nucleon models, using
as input only information from KN -data.

∗Submitted for publication.

Recently there has been an increase of interest in the
kaon-nucleon and antikaon-nucleon interaction. An ex-
otic resonance, the so called “penta-quark”, in the isospin
zero kaon-nucleon system has been observed [5], this ex-
periment, however, was not a simple scattering experi-
ment and a resonance has never been seen in the present
kaon-nucleon scattering data.

The construction of new K-factories at the Japan Pro-
ton Accelerator Research Complex (J-PARC), and at
GSI (FAIR) in Germany, will hopefully change the ex-
perimental situation drastically. One of the major beams
of these new accelerators will be kaon beams, having a
much higher intensity (ca. ten times) than the presently
available kaon beams, for example at Brookhaven Na-
tional Laboratory and KEK. Therefore, in the near fu-
ture many more and accurate experimental data on the
kaon-nucleon and antikaon-nucleon interaction can there-
fore be expected. Other new scattering data could be
delivered by the DAΦNE facility at Frascati [6]. These
activities will give much stronger constraints on kaon-
nucleon models and a better understanding of the role of
SUf (3) in meson-baryon interactions. Akaishi and Ya-
mazaki [7] have investigated the possibility of nuclear
anti-kaon bound states in nuclei in the framework of
the Brueckner-Hartree-Fock theory using a simple phe-
nomenological antikaon-nucleon model. Such a state has
indeed been observed experimentally [8].

In view of these experimental and theoretical develop-
ments it is rather timely to construct theoretical kaon-
nucleon models as realistically as possible, and this work
is an attempt to do so.

The subject of this work is the construction of a
dynamical model for the pion-nucleon (πN) and kaon-
nucleon (K+N) interactions. In two papers we describe
the so called Nijmegen soft-core meson-baryon model
(NSC model) and report on the results, obtained so far.
First a soft-core meson- and baryon-exchange model for
the πN interaction is derived, showing that the soft-core
approach of the Nijmegen group is not only successful for
baryon-baryon (NN and Y N) interactions but also for
meson-baryon interactions. The rich and accurate πN
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scattering data base is used to determine the nonstrange
coupling constants. Several other πN models already ex-
ist and the NSC πN -model, besides the value in its own
right, mainly serves as a natural starting point for the
construction of the NSC K+N -model. This K+N -model
is an SUf (3) extension of the NSC πN -model, similar
to the successful Nijmegen soft-core one-boson-exchange
nucleon-nucleon and hyperon-nucleon models [9] and [10].
In this way many parameters in the NSC K+N -model
are determined by the NSC πN -model, and the lack of
accurate K+N -data can be overcome partially.

In concept, the approach for the strong low- and
intermediate-energy hadron-hadron interactions [11–13],
used by the Nijmegen group, is schematically outlined in
Figure 1. The starting point is the Standard Model, in
which strong interactions occur between the six quarks
and the gluons, and integrating out the heavier quarks
to arrive at an effective QCD for the light quarks (u,d,s)
only. Generally accepted, the vacuum of QCD becomes
unstable for momenta transfer q2 ≤ Λ2

χSB ' 1GeV2

and the chiral symmetry is broken spontaneously (χSB).
The vacuum goes through a phase transition and gener-
ates constituent quark masses (mq ≈ 300 MeV) and re-
duces the strong coupling constant αs. The pseudoscalar-
mesons are viewed as the Nambu-Goldstone bosons orig-
inating from the χSB, which makes it natural to assume
the presence of a meson-cloud around the constituent
quarks.

This provides a natural basis for an approach to the
interaction between mesons and baryons using effective
baryon-meson Lagrangians. At low- and intermediate-
energies we do not consider a mixed phase of hadrons
and quarks, as is done by others using the resonating-
group method (RGM) [14–16], but restrict ourselves to
the hadronic phase only. Furthermore, heavy baryons
and mesons can be viewed as being integrated out, using
for example the renormalization method in the manner of
Wilson [17], and an effective field theory, with meson and
baryon masses with M≤ 1.5 GeV, results. In this work,
this general picture is appealed to in the construction of a
soft-core meson-baryon model for low- and intermediate-
energy interactions.

In the NSC model the one-meson-exchange and one-
baryon-exchange potentials are obtained from field the-
oretical Feynman diagrams in momentum space using
effective interaction Hamiltonians, together with the
meson-baryon Green’s function they constitute the kernel
of the two-particle integral equation for the amplitude,
which is a three-dimensional reduction of the fully co-
variant (four-dimensional) Bethe-Salpeter equation [18].
Alternatively, one could view this work in the frame-
work of the covariant perturbation theory as formulated
by Kadyshevsky [19–22]. Here the particles, also in
the intermediate states, remain on the mass shell, and
pair-suppression can be implemented in a covariant way.
Moreover, the three-dimensional integral equation ob-
tained in the Kadyshevsky-scheme has exactly the same
form as used in this work.
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Figure 1: Overview of the theoretical basis for the soft-core
meson-baryon interactions.

Form factors of the Gaussian type are introduced to
take into account the extended size of the hadrons and
to make the integral equation of the Fredholm type. The
Coulomb interaction, playing a role at very low energies
only and which is important in charge symmetry break-
ing (CSB) studies, will be neglected in this work. The
integral equation for the amplitude is solved on the par-
tial wave basis, in this way only one-dimensional integrals
need to be performed to find the amplitude and the cor-
responding scattering observables or phase shifts for each
partial wave.

We present this work in two papers. In general, this
first paper, referred to as I, contains a description of the
theory and the second paper, referred to as paper II [23],
gives the results for πN and K+N .

The contents of this first paper are as follows. The
definition of the field theoretical one-meson-exchange and
one-baryon-exchange potentials in the context of a three-
dimensional integral equation, a relativistic generaliza-
tion of the Lippmann-Schwinger equation, is reviewed in
Sec. II. We introduce the usual potential forms in Pauli-
spinor space, where we include the central (C) and the
spin-orbit (SO) potentials, which are the only relevant
potentials in case of spin-1 spin- 1

2 interactions. And the
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relations between the relativistic and center-of-mass am-
plitudes are given.

The integral equation for the amplitude is solved on
the partial wave basis in order to find the partial wave
phase shifts, which are compared with the empirical
phase shifts. Therefore we perform the basic partial wave
projections, in particular those for the spinor invariants,
in Sec. III. And the relations between the partial wave
amplitudes, the phase shifts and the scattering observ-
ables, σ, dσ/dΩ and P , for spin-1 spin 1

2 scattering are
given. The partial wave basis is chosen according to the
convention of [24].

The effective baryon-baryon-meson and meson-meson-
meson interaction Hamiltonians from which the one-
meson-exchange and one-baryon-exchange Feynman dia-
grams are derived, are given in Sec. IV. The explicit ex-
pressions for the momentum space Feynman diagrams for
scalar-meson-, vector-meson-, tensor-meson- and baryon-
exchanges for general baryon and meson masses as well
as their partial wave projections are also listed in this
section.

In the appendices added, details are given on the calcu-
lation of the partial wave matrix elements (Appendix A),
the one-particle-exchange Feynman diagrams (Appendix
B), and the expansion coefficients, X, Y and Z, of the
partial wave potentials in x = cos θ for the different ex-
changes (Appendix C).

For results and a discussion, we refer to paper II.

II. THE MESON-BARYON POTENTIAL AND
AMPLITUDE

The field theoretical one-particle-exchange meson-
baryon potentials in the context of a two-particle equa-
tion are defined in this section for the case of JPC = 0−+

mesons and JP = 1
2 baryons. We approximate the Bethe-

Salpeter equation by assuming “dynamical pair sup-
pression”, hence neglecting the propagation of negative-
energy states and by integrating out the time variable,
we end up with a three-dimensional integral equation for
the meson-baryon amplitude in the center of mass sys-
tem. The relations between the center of mass and the
relativistic amplitudes are given in the last part of this
section.

A. Kinematics and relativistic amplitudes

We consider the meson-baryon or more specific the πN
and K+N reactions

Pi(q) + Bi(p, s) → Pf (q′) + Bf (p′, s′) , (2.1)

where P stands for the pseudoscalar-mesons, and B
stands for the baryons. We will refer to Pi and Pf as
particles 1 and 3 and to Bi and Bf as particles 2 and 4.
The four momentum of particle i is pi = (Ei,pi) where

Ei =
√

p2
i +M2

i is the energy and Mi is the mass of par-
ticle i. In our convention the transition amplitude matrix
M is related to the S-matrix via

〈f |S|i〉 = 〈f |i|〉 − i(2π)4δ4(Pf − Pi)〈f |M |i〉 , (2.2)

in this convention a negative potential corresponds with
attraction and a positive potential with repulsion. Here
Pi = p + q and Pf = p′ + q′ represent the total four
momentum for the initial state |i〉 and the final state
|f〉. The latter refer to the two-particle states, which we
normalize in the following way, see e.g. [25, 26],

〈p′1,p′2|p1,p2〉 = (2π)32E(p1)δ3(p′1 − p1)×
(2π)32E(p2)δ3(p′2 − p2) . (2.3)

With this normalization, the unpolarized differential
cross section in the center of mass (CM) system is given
by

(
dσ

dΩ

)

CM

=
pf

pi

1
2

∑∣∣∣∣
〈f |M |i〉
8π
√
s

∣∣∣∣
2

, (2.4)

where
∑

stands for the summation over the spin of the
final baryon.

Since in this work, the scattering particles are always
on the mass-shell, i.e. p2

i = m2
i , parity conservation and

Lorentz invariance implies that the matrix elements of
the M -operator for meson-baryon interactions, which is
a 4×4-matrix sandwiched between Dirac spinors, can be
written in terms of two independent amplitudes

〈f |M |i〉 = ūB′(p′, sf )
[
Afi(s, t, u) +

6q′+ 6q
2

Bfi(s, t, u)
]

× uB(p, si) , (2.5)

where f and i stand for the two-particle channels
πN,K+N , etc.... In the Dirac spinors sf , si are the mag-
netic spin variables, which will be specified later. The
functions Afi(s, t, u) and Bfi(s, t, u) are Lorentz scalars,
and depend on the Mandelstam invariants

s = (p+ q)2 = (p′ + q′)2 ,

t = (q′ − q)2 = (p− p′)2 ,

u = (p− q′)2 = (p′ − q)2 , (2.6)

which satisfy the well-known (on-mass-shell) relation s+
t + u =

∑4
i=1m

2
i . The total and relative four-momenta

(Pc and kc) of the initial, final, and intermediate channel
(c = i, f, n) are defined by

Pc = pc + qc , kc = µc,2 pc − µc,1 qc , (2.7)

where the weights are arbitrary besides the condition
µc,1+µc,2 = 1. For each channel the four-momenta of the
baryons and pseudoscalar-mesons (pc and qc) in terms of
Pc and kc are

pc = µc,1Pc + kc , qc = µc,2 Pc − kc . (2.8)
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In this work we will use µc,1 = µc,2 = 1
2 . In the center-

of-mass system (CM-system) we have for on-mass-shell
momenta

pc = (E (pc) ,pc) , qc = (E (pc) ,−pc) ,
Pc = (Wc,0) , kc = (µ2E (pc)− µ1E (pc) ,pc) ,

(2.9)

where the total energy is Wc =
√
s = E(pc) + E(pc).

Obviously the relative three-momentum is equal to the
center-of-mass three-momentum of the baryon.

In general Feynman diagrams, in particular in the
Green’s functions, the particles are off-mass-shell. In the
following the three-momenta for the initial and the final
states are denoted respectively by qi and qf . Because of
translation invariance Pi = Pf and so

√
s = Wi = Wf .

As introduced here, the total energies in the CM-system
are Wi = E(qi) + E(qi), and Wf = E(qf ) + E(qf ).

B. Relativistic two-particle equations

The Bethe-Salpeter equation, a full two-particle rela-
tivistic scattering equation, for the M-amplitudes reads

Mfi(qf , qi;P ) = Mirr
fi (qf , qi;P ) +

∑
n

∫
d4kn

×Mirr
fn (qf , kn;P )G(kn, P )Mni(kn, qi;P ) ,(2.10)

where the interaction kernel is denoted byMirr, and G is
the two-particle Green’s function. The contributions to
the kernel Mirr come from the meson-baryon irreducible
Feynman diagrams. The reducible diagrams are gener-
ated by the integral equation. In deriving Eq. (2.10) the
integration over the momenta of the intermediate parti-
cles can be replaced by an integration over the total and
relative momenta

∫ ∫
d4pnd

4qn →
∫ ∫

d4Pnd
4kn. Then,

using the conservation of the total four-momentum, one
can perform

∫
d4Pc and separate an overall (2π)4δ4(Pf −

Pi) factor. The meson-baryon Green’s function is given
in terms of the one-particle Green’s functions

G(kn, P ) =
i

(2π)4

[
1

γ (µn,1P + k)−Mn

](a)

×
[

1
(µn,2P − k)2 −m2

n

](b)

. (2.11)

It is instructive to separate the positive- and the negative-
energy components of the propagator. For that purpose,
we rewrite the one-particle propagators as follows. For
the spin- 1

2 baryons the off-mass-shell propagator can be
written in terms of the Dirac spinors as

6p+M

p2 −M2 + iδ
=

M

E(p)

[
Λ+(p)

p0 − E(p) + iδ
− Λ−(−p)
p0 + E(p)− iδ

]
,

(2.12)

where the projection operators Λ+(p) and Λ−(p) on the
positive- and negative-energy states are [27]

Λ+(p) =
∑

s

u(p, s)⊗ ū(p, s)
2M

=
6p+M

2M
,

Λ−(p) = −
∑

s

v(p, s)⊗ v̄(p, s)
2M

=
− 6p+M

2M
, (2.13)

and u(p, s) and v(p, s) are the Dirac spinors for spin-
1
2 particles, which are on-mass-shell by definition. For
the meson propagator similar to Eq. (2.12) one has the
identity

1
q2 −m2 + iδ

=
1

2E(q)

[
1

q0 − E(q) + iδ
− 1
q0 + E(q)− iδ

]
.

(2.14)
Then, in the CM-system, where P = 0 and P0 = W , the
meson-baryon Green’s function can be written as

G(kn, P ) =
i

(2π)4

[
M

2E(kn)E(kn)

]

×
[

Λ+(kn)
µn,1W + k0

n − E(kn) + iδ

− Λ−(−kn)
µn,1W + k0

n + E(kn)− iδ

]

×
[

1
µn,2W − k0

n − E(kn) + iδ

− 1
µn,2W − k0

n + E(kn)− iδ

]
. (2.15)

Multiplying out Eq. (2.15), writing the ensuing terms
using an obvious short hand notation, the contribution
of the different propagating components is displayed fully

G(kn, P ) = G+(kn,W ) +G−(kn,W ) , (2.16)

where the superscripts (+) and (−) indicate the positive-
and negative-energy baryon states. Considering similarly
the amplitudes Mβ,α

ij :

M+,+
ij = ūB′(pf , sf )MijuB(pi, si) ,

M+,−
ij = ūB′(pf , sf )MijvB(pi, si) ,

etc. (2.17)

where the subscripts i and j refer to the different two-
particle channels, one obtains from Eqs. (2.10), (2.16)
and (2.17) the full relativistic scattering equation

Mβ,α
fi (qf , qi;P ) = (M irr)β,α

fi (qf , qi;P ) +
∑

n

∫
d4kn(M irr)β,γ

fn (qf , kn;P ) ×

Gγ
n(kn, P ) Mγ,α

ni (kn, qi;P ) . (2.18)

In all we have 22 = 4 amplitudes, which are coupled as
illustrated in Eq. (2.18).
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The complexity of the previous equation can be
reduced considerably if we assume dynamical pair-
suppression, i.e. if we neglect the contribution of
negative-energy states. Then the full scattering equa-
tion Eq. (2.18), for α = + and β = +, reduces to the
four-dimensional integral equation

M+,+
fi (qf , qi;P ) = (M irr)+,+

fi (qf , qi;P ) +
∑

n

∫
d4kn(M irr)+,+

fn (qf , kn;P )

G+
n (kn, P ) M+,+

ni (kn, qi;P ) ,(2.19)

with the positive-energy Green’s function

G+(kn, P ) ≈ i

(2π)4

[
1

4E(kn)E(kn)

]

× 1
[µ1W + k0

n − E(kn) + iδ]

× 1
[µ2W − k0

n − E(kn) + iδ]
. (2.20)

We note that this simplification in principle brings about
a hopefully tolerable breach of relativistic invariance. On
the other hand in Feynman diagrams particles go off-
mass-shell, and the off-mass-shell behavior is not really
known for mesons and baryons, certainly not if a trun-
cated kernel is used, which is always the case. Then it
might be better to allow positive-energy states only.

C. Three-dimensional two-particle equations

Three-dimensional integral equations for the ampli-
tudes can be derived in various ways. The methods
assume 2-particle unitarity as a basic ingredient. The
derivation for the meson-baryon systems follows the same
procedure as that for the baryon-baryon channels. For
the latter see e.g. references [28–34]. In [35] the deriva-
tion is based entirely on two-particle unitarity and the
analyticity properties of the amplitudes, using the N/D-
formalism. In the latter approach the in essence Regge
pole nature of meson-exchange can be apprehended most
easily.

1. On-mass-shell approximation

The simplest way to reduce the four-dimensional inte-
gral equation, Eq. (2.19), to a three-dimensional one is
to put the intermediate particles on the mass-shell, i.e.
p0

n = E(kn) =
√

k2
n +M2

n, q0n = E(kn) =
√

k2
n +m2

n. It
can readily be shown from Eq. (2.8) that the zero com-
ponents of the relative and total momenta kn and Pn are
given by

k0
n = µn,2E(kn)− µn,1E(kn) ,

P 0
n = E(kn) + E(kn) . (2.21)

T = V + V G0 T

1

Figure 2: Diagrammatic representation of the meson-baryon
scattering equation Eq. (2.24). The solid line denotes the
baryon and the dashed line denotes the meson.

If we neglect the k0
n-dependence of the amplitudes, and

evaluate them at the value given by Eq. (2.21), the de-
pendence of the four-dimensional equation on k0

n only
occurs in the Green’s function, and the k0

n-integration
of the Green’s function can be done. We can define the
k0

n-independent amplitudes

Tni(kn,qi;W ) = M+,+
ni (k̃n, qi;P ) ,

Vfn(qf ,kn;W ) =
(
M irr

)+,+

fn
(qf , k̃n;P ) , (2.22)

where k̃0
n = µn,2E(kn) − µn,1E(kn). Now, the k0

n-
integration in Eq. (2.19) can be carried through, this
leads to

G0 (kn;W ) =
∫ ∞

−∞
dkn0 G

+
n (kn;P )

=
1

(2π)3
1

4E(kn)E(kn)

× 1
W − E(kn)− E(kn) + iδ

.(2.23)

The four-dimensional integral equation, Eq. (2.19), now
results in the three-dimensional integral equation , which
is also derived in [34],

Tfi(qf ,qi;W ) = Vfi(qf ,qi;W ) +
∑

n

∫
d3kn

(2π)3
×

Vfn(qf ,kn;W )G0(kn,W )Tni(kn,qi;W ) .(2.24)

The integral equation for the T -matrix, Eq. (2.24), is
schematically given in Figure 2.

We remark that the three-dimensional integral equa-
tion for the amplitude, Eq. (2.24), is here obtained as
an approximation of the Bethe-Salpeter equation, but in
the formulation of Quantum Field Theory (QFT) as de-
veloped by Kadyshevsky [19–22] this integral equation is
obtained without making any approximation. In this for-
mulation of QFT all particles, in particular the interme-
diate particles, are always on the mass-shell in contrast
to the formalism of Feynman. Hence a covariant form of
pair-suppression can be introduced phenomenologically.

Until this subsection the intermediate particles were in
principle off-mass-shell and the total four momentum was
conserved. Now we have put the intermediate particles
on-mass-shell, but now in principle they are off-energy-
shell, which means that W 6= E(kn)+E(kn). And the to-
tal four momentum in not conserved, but the total three
momentum is conserved.
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Note that if the intermediate state is on-energy-shell,
i.e. W = E(kn) + E(kn), the two poles of the Green’s
function, Eq. (2.20), coincide. The value of k0

n at which
this “pinching” occurs is given by the on-mass-shell value,
Eq. (2.21),

k0
n = µn,2E(kn)− µn,1E(kn)± iδ . (2.25)

The contribution to the integral around this value of k0
n

will be dominant, due to the pinching of the poles. This
is the rationale for the “on-mass-shell approximation”.

2. Potentials for the 3-d integral equation

In order to calculate cross sections or phase shifts we
need to solve Eq. (2.24), which is a complex integral
equation for the T -matrix, even for physical momenta.
It is possible to transform Eq. (2.24) into a Lippmann-
Schwinger equation (which can be Fourier-transformed
into coordinate space). However we do our calculations
always in momentum space, so we do not need to solve
the Lippmann-Schwinger equation but we will always
solve Eq. (2.24).

Using rotational invariance and parity conservation we
expand the T -matrix, which is a 2 × 2-matrix in Pauli-
spinor space, into a complete set of Pauli-spinor invari-
ants. Introducing the momentum vectors

q =
1
2
(qf + qi) , k = qf − qi , n̂ = q̂i × q̂f , (2.26)

where qf and qi are the final and initial CM-three-
momenta respectively, there are only two independent
spinor invariants Pα, rotational invariant and invariant
under parity transformations. We choose for the opera-
tors Pα in spin-space

P1 = 1 , P2 = σ · qi × qf , (2.27)

corresponding to the central and spin-orbit piece of the
amplitude, now the expansion of the T -matrix in spinor
invariants reads

T =
2∑
1

Tα(q2
f ,q

2
i ,qf · qi) Pα

= f(qf ,qi) + i g(qf ,qi) (σ · n̂) . (2.28)

For the partial wave projection we found it convenient to
rewrite the T -matrix in terms of the amplitudes F and
G

T = F (qf ,qi) + (σ · q̂f ) G (qf ,qi) (σ · q̂i) . (2.29)

The relation between the “spin-nonflip” and “spin-flip”
amplitudes f, g and the amplitudes F,G is readily found
to be

F = f + (q̂f · q̂i) g , G = −g . (2.30)

The connection between the non-relativistic amplitudes
F and G defined in Eq. (2.29) and the relativistic ampli-
tudes A and B defined in Eq. (2.5) can be obtained in a
straightforward way using the explicit representation of
the Dirac spinors, as will be shown in Sec. IID. Similar
to Eq. (2.28) we expand the potentials V , so

V =
2∑
1

Vα(q2
f ,q

2
i ,qf · qi) Pα

= VC(qf ,qi) + i VSO(qf ,qi) (σ · n) . (2.31)

3. Lippmann-Schwinger equation

In order to arrive at a Lippmann-Schwinger equation,
one chooses a new Green’s function g(k,W ) which sat-
isfies a dispersion relation in p2(s) rather than in s [28].
Then one obtains

g(kn,W ) =
−1

2[E(kn) + E(kn)]
(k2

n − q2
n − iδ)−1 , (2.32)

where qn is the on-energy-shell momentum. This Green’s
function is then used in the integral equation Eq. (2.24)
instead of the Green’s functionG0(kn,W ). So the correc-
tions to 〈f |W |i〉 due to the transformation of the Green’s
functions are neglected here, they are of higher order
in the couplings and are usually discarded in an OBE-
approach. With the substitution of g for G0, Eq. (2.23)
becomes identical to Eq. (2.19) of [28]. From now on we
follow Sec. II of [28] in detail, the transformation to the
non-relativistic normalization of the two-particle states
leads to states with

(p′1, s
′
1;p

′
2, s

′
2|p1, s1;p2, s2) = (2π)6δ3(p′1 − p1)δs′1,s1

×δ3(p′2 − p2)δs′2,s2 .(2.33)

For these states we define the non-relativistic T -matrix

(f |T |i) =
1√

4µ34(E3 + E4)
〈f |T |i〉 1√

4µ12(E1 + E2)
,

(2.34)

where µ12 and µ34 are the reduced masses for respectively
the initial and final state. Then we get from Eq. (2.24)
the Lippmann-Schwinger equation

(3, 4|T |1, 2) = (3, 4|V|1, 2) +
∑

n

∫
d3kn

(2π)3
(3, 4|V|n1, n2)

× 2µn1,n2

q2
n − k2

n + iδ
(n1, n2|T |1, 2) , (2.35)

where the potential V is defined analogously to the T -
matrix, Eq. (2.34). If in the low-energy approxima-
tion, the energies are expanded in terms of the mo-
menta squared, the Lippmann-Schwinger equation in mo-
mentum space can in principle be Fourier-transformed
into the equivalent Schrödinger equation in configuration
space. However our calculations are always in momen-
tum space, so we always solve Eq. (2.24).
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D. Relation between relativistic- and
CM-amplitudes

The relation between the relativistic amplitudes A and
B and the non-relativistic amplitudes F and G is found
making use of the representation of the Dirac spinors
[27]. Since in the three-dimensional integral equation,
Eq. (2.24), off-energy shell amplitudes appear, we now
distinguish between the CM-energies of the final and ini-
tial states, defined by

W 2
f ≡ sf = (p′ + q′)2 , W 2

i ≡ si = (p+ q)2 . (2.36)

Then, a straightforward calculation of the operators 1
and 6Q between Dirac spinors gives the corresponding
operators between Pauli spinors.

ū(pf , sf )u(pi, si) =
√

(Ef +Mf )(Ei +Mi) χ
†
f ×[

1− σ · pf σ · pi

(Ef +Mf )(Ei +Mi)

]
χi ,

ū(pf , sf ) 6Qu(pi, si) =
√

(Ef +Mf )(Ei +Mi) χ
†
f ×[

1
2

[(Wf −Mf ) + (Wi −Mi)]+

1
2

[(Wf +Mf ) + (Wi +Mi)] ×
σ · pf σ · pi

(Ef +Mf )(Ei +Mi)

]
χi ,(2.37)

with

Qµ =
1
2

(qf + qi)
µ
. (2.38)

In Eq. (2.37) we used the shorthand notations Ef =
E(pf ) etc. for the baryon variables. The meson vari-
ables were eliminated using q0 = W − E etc. From the
expressions in Eqs. (2.37), (2.5) and (2.29) we immedi-
ately obtain the relations between the amplitudes F , G
and A,B

F (pf ,pi) =
√

(Ef +Mf )(Ei +Mi)
[
A(s, t, u) +

Wf −Mf +Wi −Mi

2
B(s, t, u)

]
,

G(pf ,pi) =
√

(Ef −Mf )(Ei −Mi)
[
−A(s, t, u) +

Wf +Mf +Wi +Mi

2
B(s, t, u)

]
. (2.39)

III. THE PARTIAL WAVE EQUATION

The NSC model is fitted to the partial wave analyses
of the πN and K+N scattering data, for this purpose the
integral equation for the meson-baryon amplitude must

be solved on the partial wave basis. This section deals
with the transformation of the integral equation on the
plane wave basis to the integral equation on the partial
wave (LSJ) basis. From the unitarity of the scattering
matrix, the relation between the partial wave amplitude
and the partial wave phase shifts is derived.

A. Partial wave analysis

1 The states for the meson-baryon system are charac-
terized by J, L, where J is the total angular momentum
and L the orbital angular momentum. The latter,
for fixed J-value, can assume the values L = J ∓ 1

2 ,
since the spin of the baryons is S = 1

2 . Distinguishing
between the partial waves with parity P = (−)J−1/2

and P = (−)J+1/2, using rotational invariance, we can
write the potential matrix elements on the LSJ-basis in
the following way

(i) P = (−)L+ , L+ = J − 1/2:

(qf ;L′J ′M ′| V |qi;LJM) =

4π V J,L+(L′, L) δJ′JδM ′MδL′L , (3.1)

(ii) P = (−)L− , L− = J + 1/2:

(qf ;L′J ′M ′| V |qi;LJM) =

4π V J,L−(L′, L) δJ′JδM ′MδL′L . (3.2)

Because of parity conservation in strong interactions, the
L+ = J − 1/2 and the L− = J + 1/2 waves obviously
are decoupled. So mixing between states with different
angular momentum never occurs.

The spherical wave functions in momentum space with
quantum numbers J,M,L, S = 1/2 are

YM
JL(p̂, s) =

∑
m,µ

C
L 1

2 J

m µ M Y L
m(p̂) χ( 1

2 )
µ (s) , (3.3)

where s is a spin variable for the baryons. For example,
s denotes the helicity of the baryon, or the projection of
the spin along the normal n̂ to the scattering plane, or
the projection of the spin along the z-axis. The latter
spin variable we will use in this work. Then, in Eq. (3.3)
we have χ(1/2)

µ (s) = δs,µ. The central and non-central
potential matrix elements on the LSJ-basis are derived
in detail in Appendix A 1, the results are

1. Central P1 = 1:

(qf ;L′J ′M ′|F (qf ,qi)|qi;LJM) =
4πFL (qf , qi) δL′LδJ′,JδM ′,M , (3.4)

1 In this section we use the non-relativistic normalization Eq.
(2.33) of the two-particle states.
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2. Non-central P ′2 = (σ · q̂f )(σ · q̂i):

(qf ;L′J ′M ′|G(qf ,qi)|qi;LJM) =

4π
∑

L′′
aL′,L′′GL′′ (qf , qi) aL′′,L δJ′,JδM ′,M ,(3.5)

where the partial wave projections FL and GL as well as
the matrix aL′,L are defined in Appendix A. The partial
wave potentials V J,L+ and V J,L− in Eqs. (3.1) and (3.2)
can be expressed in terms of the partial wave expansions
of F and G. As expected from parity conservation, the
partial wave potentials are diagonal in the L = (J±1/2)-
space

V J,L± = FL± +GL±±1 . (3.6)

The partial wave potentials can also be expressed in
terms of the partial wave projections of the central and
spin-orbit potential. The relation between F and G
and the central and spin-orbit potentials is given by Eq.
(2.30),

F = V C + cos θ V SO , G = −V SO . (3.7)

The partial wave potentials in terms of the partial wave
projections of the central and spin-orbit potentials be-
comes

V J,L+ = V C
L+

; L+ = 0 ,

V J,L± = V C
L± +

L± + 1
2L± + 1

V SO
L±+1 +

L±
2L± + 1

V SO
L±−1 − V SO

L±±1 ; L± ≥ 1 .(3.8)

B. Partial wave integral equations and the
unitarity relations

1. Partial wave integral equations

The integral equation Eq. (2.24) we write first explic-
itly in terms of the plane wave states

(
qf , sf |T (

√
s)|qi, si

)
=

(
qf , sf |V (

√
s)|qi, s

)

+
∑

n

∫
d3kn

(2π)3
(
qf , sf |V (

√
s)|kn, sn

)
G0(kn,

√
s)

× (
kn, sn|T (

√
s)|qi, si

)
, (3.9)

where, apart from spin-space, the amplitude T , the
Green’s function G0 and the potential V are matrices
in the two-particle channel space. The partial wave T -
matrix for L = Li = Lf defined by

TJ,L(qf , qi;
√
s) =

(
qf ;LJM |T (

√
s)|qi;LJM

)
, (3.10)

which is independent of Jz = M due to rotation invari-
ance, is related to the T -matrix on the plane wave basis

by

TJ,L(qf , qi;
√
s) =

∑
sf ,si

∫
d3q′f
(2π)3

∫
d3q′i
(2π)3

(
qf ;LJM |q′f , sf

)

× (
q′f , sf |T (

√
s)|q′i, si

)
(q′i, si|qi;LJM) . (3.11)

The integral equation for the partial wave amplitude now
becomes

TJ,L(qf , qi;
√
s) = VJ,L(qf , qi;

√
s) +

∑
n

∫ ∞

0

k2
ndkn

(2π)3
×

VJ,L(qf , qn;
√
s) G0(kn,

√
s)TJ,L(qn, qi;

√
s) . (3.12)

2. Partial wave unitarity relations, phase shifts

From the unitarity of the S-matrix, S† S = 1, the
M -matrix in Eq. (2.2) satisfies the condition

2=〈f |M |i〉 = −(2π)4
∑

n

δ4(Pf − Pn)

×〈f |M†|n〉〈n|M |i〉 . (3.13)

In deriving Eq. (3.13) one factors out a δ4(Pf −Pi). The
previous equation for the CM-amplitudes can be written
more explicitly, see for example Eq. (II.1.14) of [34], as

2= (qf , sf |T |qi, si) = − 1
(2π)2

∑
n

∫
d3kn

4E(kn)E(kn)

× (
qf , sf |T †|kn, sn

)
δ(
√
s− E(kn)− E(kn))

× (
kn, sn|T |qi, si

)
, (3.14)

where the summation
∑

n is over all intermediate two-
particle channels coupled to the initial and final state.
Here, si, sf , and sn are the spin labels for the initial,
final, and intermediate states. The momentum of the
intermediate state kn is such that E(kn) + E(kn) =

√
s.

The unitarity relation for the partial wave amplitude then
becomes

2=TJ,L(qf , qi) = −
∑

n

qn
16π2

√
s
T †J,L (qf , qn)

×TJ,L (qn, qi) , (3.15)

where qn is the on-energy-shell momentum of the inter-
mediate state. Introducing the partial wave amplitudes
FJ,L by the definition

TJ,L = −32π2
√
s FJ,L , (3.16)

we find the simple unitarity relation for these amplitudes

=FJ,L(qf , qi) =
∑

c

qc FJ,L(qf , qc)†FJ,L(qc, qi) . (3.17)

For the single channel case qc = qi = qf = q, phase shifts
can be defined for the partial wave amplitude FJ,L in the
usual way

FJ,L =
1
q

sin δJ,L(q) exp (iδJ,L(q)) . (3.18)
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The relation of FJ,L with the partial wave S-matrix is

SJ,L = e2iδJ,L = 1 + 2iq FJ,L . (3.19)

Now the expression for the differential cross section be-
comes

dσ

dΩ
=

∣∣∣f̃
∣∣∣
2

+ |g̃|2 , (3.20)

where the commonly used spin-nonflip and spin-flip am-
plitudes f̃ and g̃ are given by

f̃ =
f

8π
√
s

=
∑

L

[
(L+ 1)FL+ 1

2 ,L + LFL− 1
2 ,L

]
PL(cos θ) ,

g̃ =
g

8π
√
s

=
∑

L

[
FL+ 1

2 ,L − FL− 1
2 ,L

]
sin θ

dPL(cos θ)
d cos θ

.

(3.21)

The expressions for the total cross section, which is found
by integrating the differential cross section, and the po-
larization are

σ = 4π
∑

J

2J + 1
2

(∣∣FJ,L+

∣∣2 +
∣∣FJ,L−

∣∣2
)
,

P (θ) =
2=

(
f̃ g̃∗

)

∣∣∣f̃
∣∣∣
2

+ |g̃|2
. (3.22)

IV. BARYON- AND MESON-EXCHANGE
POTENTIALS

The effective local interaction Hamiltonians that are
used to calculate the one-hadron-exchange potentials are
defined in this section. The Lorentz structure of the inter-
action is given and the SUf (3) structure is reviewed, since
we extend the NSC πN -model to the NSC K+N -model.
The amplitudes of the one-hadron-exchange Feynman di-
agrams are given and a partial wave projection is made
to find the partial wave potentials.

A. The interaction Hamiltonians

The potentials we use are obtained from the t-channel
one-meson-exchange (OBE) and the u- and s-channel
baryon-exchange Feynman diagrams. In the t-channel
we consider the exchange of vector- and scalar-mesons
and in the u- and s-channel we consider the exchange of
JP = 1

2

+ and 3
2

+-baryons. In this work we also include
Pomeron-exchange diagrams, where the physical nature
of the Pomeron can be understood in the light of QCD
as a two-gluon-exchange effect, see [36, 37]. The contri-
bution of the Pomeron will almost completely cancel the
contribution of the isoscalar scalar-meson σ.

The OBE Feynman diagrams for meson-baryon in-
teractions contain a meson-baryon-baryon vertex and a

meson-meson-meson vertex. These vertices are deter-
mined by the effective local interaction Hamiltonian den-
sities. The Lorentz structure of the local interaction den-
sities for the meson-baryon-baryon (MBB) vertices we
use are listed below

a. JPC = 0−+ Pseudoscalar-mesons:
For the pseudoscalar-mesons we use the pseudovec-
tor interaction Hamiltonian

HPV =
f

mπ+
ψ̄fγ5γµψi ∂

µφP , (4.1)

which is scaled with the charged-pion mass in or-
der to have a dimensionless pseudovector coupling
constant.

b. JPC = 1−− Vector-mesons:
The interaction Hamiltonian is given in terms of
the electric and magnetic interaction

HV = gV ψ̄fγµψi φ
µ
V

+
fV

4M ψ̄fσµνψi (∂µφν
V − ∂νφµ

V ) , (4.2)

where usually the proton mass is used for M to
scale the magnetic part of the interaction Hamil-
tonian. The antisymmetric tensor operator used
here, is defined as σµν = i

2 [γµ, γν ].

c. JPC = 0++ Scalar-mesons:

HS = gS ψ̄fψi φS . (4.3)

Since we include Pomeron-exchange in the NSC
model, the scalar-meson-exchange is canceled for
the greater part, hence it is possible to satisfy
the soft-pion theorem while including scalar-meson-
exchange.

d. JPC = 2++ Tensor-mesons:
For the tensor-mesons we use the interaction
Hamiltonian

HT =
[
i

4
ψ̄f

(
γµ

↔
∂ν +γν

↔
∂µ

)
ψi F1−

1
4

(
ψ̄f

↔
∂µ

↔
∂ν ψi

)
F2

]
φµν

T , (4.4)

where the coupling constants F1 and F2 are related
to the dimensionless Pauli coupling constants by
GT,1 = MF1 and GT,2 = M2F2. Using the Gor-
don decomposition the Pauli coupling constants are
related to the Dirac coupling constants by gT =
GT,1 +GT,2 and fT = −GT,2.

e. JP = 3
2

+ Resonance-Baryon-Pseudoscalar-meson:

The local interaction density for the JP = 3
2

+ Res-
onance -Nucleon-Pseudoscalar-meson (Y ∗NP ) in-
teraction is

HY ∗NP = −i f
∗

mπ+
ψ̄N ψY ∗,µ ∂

µφP , (4.5)
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where the charged-pion mass makes the coupling
dimensionless. We use the Rarita-Schwinger for-
malism for the spin-3/2 resonances, see e.g. [26,
38].

f. JP = 1
2

− Resonance-Baryon-Pseudoscalar-meson:

The local interaction Hamiltonian for the JP = 1
2

−

Resonance-Nucleon-Pseudoscalar-meson (RNP )
interaction is

HRNP =
f∗(v)

mπ+
ψ̄NγµψR ∂µφP , (4.6)

where ψR denotes the JP = 1
2

− resonance, which
has opposite parity to the nucleon. The JP =
1
2

− resonances we consider in this work are the
S11(1555) in the πN system and the Λ(1405) in
the KN system.

Here φ denotes the pseudoscalar-, vector-, scalar-, and
tensor-meson fields respectively and ψ denotes the
baryon fields. The Pomeron-baryon-baryon interaction
density we use, has the same Lorentz structure as the
scalar-mesons.

We note that, making use of the Dirac equation
(γµ∂µ +M)ψ = 0, the pseudovector interaction Hamil-
tonian density in Eq. (4.1) is “equivalent” to the pseu-
doscalar density HPS = ig ψ̄fγ5ψi φP for on-mass-
shell particles. The coupling constants are then re-
lated according to g/(MBf

+ MBi) = f/mπ+ . Analo-
gous we find that the vector coupling Hamiltonian den-
sity in Eq. (4.6) is “equivalent” to the scalar density
HS = ig∗(s)ψ̄NψR φP for on-mass-shell particles. The
coupling constants are in this case related according to
g∗(s)/(MN −MR) = f∗(v)/mπ+ .

The Lorentz structure of the local interaction density
for triple-meson (MMM) vertices is schematically given
below, they are discussed in more detail in paper II.

(i) JPC = 1−− Vector-mesons:

HPPV = gPPV φµ
V

(
φP

↔
∂ µ φP

)
. (4.7)

(ii) JPC = 0++ Scalar-mesons:

HPPS = gPPS φS (φP φP ) . (4.8)

(iii) JPC = 2++ Tensor-mesons:

HPPT =
2gPPT

mπ+
φµν

T (∂µφP ) (∂νφP ) . (4.9)

Concerning the flavor structure of the interaction densi-
ties, we assume that the coupling constants are related
via SUf (3) symmetry, as outlined in paper II , here the
relevant isoscalar and isospin factors are given. However
the potentials will break the SUf (3) symmetry dynami-
cally, since we use the physical masses of the particles.

B. The relativistic invariant amplitudes

Using the previously defined interaction Hamiltoni-
ans, we give, besides the isospin and isoscalar factors,
the contributions to the relativistic invariant amplitudes
A(s, t, u) and B(s, t, u) in Eq. (2.5) for the elastic (e.g.
πN and K+N) channels, i.e. Mi = Mf ≡ M , mi =
mf = m, where Mf and MI are the final and initial
baryon masses and mf and mi are the final and initial
pseudoscalar-meson masses respectively. Amplitudes for
the general mass case are listed in Appendix B.

1. Baryon-exchange amplitudes

For JP = 1
2

+ baryon-exchange the relativistic ampli-
tudes are

Aps(s, t, u) = − g14g23
u−M2

B + iε
[MB −M ] ,

Bps(s, t, u) = − g14g23
u−M2

B + iε
,

Apv(s, t, u) = − f14f23/m
2
π+

u−M2
B + iε

[
u (M +MB)

−M3 −M2MB

]
,

Bpv(s, t, u) = − f14f23/m
2
π+

u−M2
B + iε

[u+ 2MMB

+M2
]
, (4.10)

for pseudoscalar (ps) and pseudovector (pv) coupling re-
spectively, MB is the mass of the exchanged baryon. The
JP = 1

2

+ baryon direct pole gives rise to the relativistic
amplitudes

Aps(s, t, u) = − g12g34
s−M2

B + iε
[MB −M ] ,

Bps(s, t, u) =
g12g34

s−M2
B + iε

,

Apv(s, t, u) = − f12f34/m
2
π+

s−M2
B + iε

[
s (M +MB)

−M3 −M2MB

]
,

Bpv(s, t, u) =
f12f34/m

2
π+

s−M2
B + iε

[s+ 2MMB

+M2
]
, (4.11)

for pseudoscalar and pseudovector coupling respectively.
For JP = 1

2

− baryon-exchange the relativistic amplitudes
are

As(s, t, u) =
g
∗(s)
14 g

∗(s)
23

u−M2
B + iε

[MB +M ] ,

Bs(s, t, u) = − g
∗(s)
14 g

∗(s)
23

u−M2
B + iε

,
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Av(s, t, u) =
f
∗(v)
14 f

∗(v)
23 /m2

π+

u−M2
B + iε

[
u (−M +MB)

+M3 −M2MB

]
,

Bv(s, t, u) =
f
∗(v)
14 f

∗(v)
23 /m2

π+

u−M2
B + iε

[−u+ 2MMB

−M2
]
, (4.12)

for scalar (s) and vector (v) coupling respectively, MB is
the mass of the exchanged baryon. The JP = 1

2

− baryon
direct pole gives rise to the relativistic amplitudes

As(s, t, u) =
g
∗(s)
12 g

∗(s)
34

s−M2
B + iε

[MB +M ] ,

Bs(s, t, u) =
g
∗(s)
12 g

∗(s)
34

s−M2
B + iε

,

Av(s, t, u) =
f
∗(v)
12 f

∗(v)
34 /m2

π+

s−M2
B + iε

[
s (−M +MB)

+M3 −M2MB

]
,

Bv(s, t, u) = −f
∗(v)
12 f

∗(v)
34 /m2

π+

s−M2
B + iε

[−s+ 2MMB

−M2
]
, (4.13)

for scalar and vector coupling respectively. The JP =
3
2

+ resonance-exchange relativistic amplitudes are more
complicated

AY ∗(s, t, u) =
f∗14f

∗
23/m

2
π+

u−M2
Y ∗ + iε

[[
t− 2m2

]

2
(M +MY ∗)

+
MY ∗

3
[
u−M2

]

+
1

6MY ∗

[− u2 + 2Mu (M +MY ∗)

−2M3MY ∗ −M4 +m4
]

+
1

6M2
Y ∗

[
M2 −m2 − u

]2
(M +MY ∗)

]
,

BY ∗(s, t, u) =
f∗14f

∗
23/m

2
π+

u−M2
Y ∗ + iε

[
−

[
t− 2m2

]

2

+
1

3MY ∗

[
(M +MY ∗)

(
2MMY ∗ −m2

)

−uM +M3
]

− 1
6M2

Y ∗

[
u−M2 +m2

]2
]
, (4.14)

where MY ∗ is the mass of the exchanged resonance. The
JP = 3

2

+ resonance direct pole gives rise to the relativis-
tic amplitudes

AY ∗(s, t, u) =
f∗12f

∗
34/m

2
π+

s−M2
Y ∗ + iε

[[
t− 2m2

]

2
(M +MY ∗)

+
MY ∗

3
[
s−M2

]

+
1

6MY ∗

[− s2 + 2Ms (M +MY ∗)

−2M3MY ∗ −M4 +m4
]

+
1

6M2
Y ∗

[
M2 −m2 − s

]2
(M +MY ∗)

]
,

BY ∗(s, t, u) = − f∗12f
∗
34/m

2
π+

s−M2
Y ∗ + iε

[
−

[
t− 2m2

]

2

+
1

3MY ∗

[
(M +MY ∗)

(
2MMY ∗ −m2

)

−sM +M3
]

− 1
6M2

Y ∗

[
s−M2 +m2

]2
]
. (4.15)

2. Meson- and Pomeron-exchange amplitudes

The relativistic amplitudes for the t-channel
Pomeron-exchange, scalar-meson-exchange, vector-
meson-exchange and tensor-meson-exchange are

AP (s, t, u) =
gPPP gP

M , BP (s, t, u) = 0 ,

AS(s, t, u) =
gPPS gS

t−m2
S + iε

, BS(s, t, u) = 0 ,

AV (s, t, u) =
gPPV

t−m2
V + iε

fV

2M [s− u] ,

BV (s, t, u) = −2
gPPV

t−m2
V + iε

[
gV +

M

M fV

]
,

AT (s, t, u) =
gPPT /mπ+

t−m2
T + iε

[
1
4

(s− u)2 F2 − 1
6

[
4m2 − t

]

×
[
2MF1 +

1
2

(
4M2 − t

)
F2

] ]
,

BT (s, t, u) =
gPPT /mπ+

t−m2
T + iε

[s− u] F1 , (4.16)

where mS , mV and mT are the masses of the ex-
changed scalar-meson, vector-meson and tensor-meson
respectively.

Here we notice that for the meson-exchange and
Pomeron-exchange amplitudes an extra factor 2 must be
added to the amplitudes if both the initial and final state
contain a π or η, this is not the case for any other com-
bination of pseudoscalar-mesons in the initial and final
state. For elastic πN scattering for example, an extra
factor 2 is added to the ρ-exchange, Pomeron-exchange
and σ-exchange amplitudes.
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C. Partial wave potentials

As discussed in Sec. III we solve the integral equation
for the T -matrix on the partial wave basis, Eq. (3.12).
And in paper II we fit the NSC model to the πN par-
tial wave analysis [1] and the K+N partial wave analysis
[4]. For this purpose we need to calculate the partial wave
projection of the potentials, Eq. (3.6). In our approxima-
tion, the potentials are given by the invariant amplitudes
A and B, Eqs. (4.10)–(4.16), of the one-meson-exchange
and one-baryon-exchange Feynman diagrams.

Until this point, we did not mention the need for form
factors to regulate the high energy behavior, i.e. the short
distance behavior, of the potentials, but in fact the ker-
nel of the integral equation without form factors does not
satisfy the Fredholm condition,

∫ ∫
dp dk |K(p, k)|2 <

∞, in general. Furthermore we have derived our
one-meson-exchange and one-baryon-exchange potentials
from Quantum Field Theory, which is in principle only
valid for point particles, while mesons and baryons have
an internal structure. Therefore we need to take into ac-
count the extended size of the mesons and baryons by
means of a form factor. Since the ground state wave
functions of the quarks are Gaussian, form factors of the
Gaussian type are used in the NSC model. For t-channel
exchanges we multiply the potentials by the form factor

F (Λ) = e−(pf−pi)
2/Λ2

, (4.17)

where pi and pf are the CM three-momenta for the ini-
tial and final state respectively, i.e. at both vertices
we have used the difference between the final and ini-
tial three-momenta. Λ is a cutoff mass, which will be
determined in the fit to the experimental phases.

For u- and s-channel exchanges, the difference between
the final and initial three-momenta of the baryon is used,
giving the form factor

F (Λ) = e−(p2
f +p2

i )/2Λ2
. (4.18)

This form factor obviously does not depend on the scat-
tering angle θ, which makes the partial wave projection
easier. For the u- and t-channel we rewrite the denomi-
nators of the potentials in the form

1
t−m2

=
−1

2pfpi

1
zt − x

,

1
u−m2

=
−1

2pfpi

1
zu + x

, (4.19)

where x = cos(θ) and θ is the angle between the final and
initial three-momenta pf and pi. Here we have defined
the zt and zu factors

zt =
1

2pfpi

[
m2 + p2

f + p2
i −

1
4

[Ei − Ef − ωi + ωf ]2
]
,

zu =
1

2pfpi

[
m2 + p2

f + p2
i −

1
4

[Ei + Ef − ωi − ωf ]2
]
,

(4.20)

where Ef,i are the baryon energies, ωf,i are the meson
energies and m the mass of the exchanged particle. For
positive and real momenta, i.e. for open channels, we
have z > 1. Now it is clear that the potentials V (α) of
Eq. (2.31), where α stands for central or spin-orbit, can
be expanded in x as 2

V (α)(pf ,pi) =
1

2pfpi

[
X(α) + xY (α) + x2Z(α)

] F (Λt)
zt − x

,

V (α)(pf ,pi) =
1

2pfpi

[
X(α) + xY (α) + x2Z(α)

] F (Λu)
zu + x

,

V (α)(pf ,pi) =
[
X(α) + xY (α)

] F (Λs)
s−M2

B

, (4.21)

for t-, u- and s-channel exchanges respectively, for all par-
ticles that are exchanged. The coefficientsX(α), Y (α) and
Z(α) can be found easily by writing out the x-dependence
of the invariant amplitudes A and B, they are listed in
Appendix C for each type of exchange.

The partial wave potentials V (α)
L are found by inverting

the partial wave expansion Eq. (A2), giving

V
(α)
L (pf , pi) =

1
2

∫ 1

−1

dxPL(x)V (α)(pf ,pi) . (4.22)

The partial wave potentials now take the form

V
(α)
L (pf , pi) =

[
X(α) F (Λs)

s−M2
B

δL,0 + Y (α) F (Λs)
s−M2

B

δL,1

3

]

V
(α)
L (pf , pi) =

1
2pfpi

[(
X(α) + ztY

(α) + z2
tZ

(α)
)

×UL(Λt, zt)−
(
Y (α) + ztZ

(α)
)
RL(Λt, zt)

−Z(α)SL(Λt, zt)
]
,

V
(α)
L (pf , pi) =

(−1)L

2pfpi

[(
X(α) − zuY

(α) + z2
uZ

(α)
)

×UL(Λu, zu)−
(
−Y (α) + zuZ

(α)
)
RL(Λu, zu)

−Z(α)SL(Λu, zu)
]
, (4.23)

for s-, t-, and u-channel exchanges respectively. We have
defined the basic partial wave projections UL, RL, SL

and TL in terms of the Legendre polynomials PL(x) and
the form factors

UL(Λ, z) =
1
2

∫ 1

−1

dx
PL(x)F (Λ)
z − x

,

2 In case of more complicated exchanges, e.g. JPC = 3
2

+
-

resonance, the expansions of the potentials have an additional
term of higher order in x, for the t- and u-channel x3U(α), and
for the s-channel x2Z(α).
We notice that a similar expansion for F and G instead of V (C)

and V (SO) would be a little simpler. However we will use the
central and spin-orbit potentials in light of a momentum space
version of the NSC model.
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RL(Λ, z) =
1
2

∫ 1

−1

dxPL(x)F (Λ) ,

SL(Λ, z) =
1
2

∫ 1

−1

dxPL(x)xF (Λ) ,

TL(Λ, z) =
1
2

∫ 1

−1

dxPL(x)x2F (Λ) . (4.24)

The factor (−)L appearing in the u-channel partial wave
potentials, which is the result of changing the integration
variable x → −x in the Legendre polynomial, is typical
for exchange forces. In this way it can be seen that the
total partial wave potential is a linear combination of a
direct and an exchange potential, V (±) = Vd±Ve and the
corresponding T -matrix is T (±) = Td ± Te. The ampli-
tudes Td and Te do not satisfy an integral equation, but
the two linear combinations T (±) = Td ± Te do.

We notice that if the form factor does not depend on
x (in case of u-channel potentials) or if we consider the
limit Λ → ∞, i.e. F (Λ) → 1, the basic partial wave
projections defined in Eq. (4.24) are proportional to the
simple functions

UL(Λ, z) ∝ QL(z) ,
RL(Λ, z) ∝ δL,0 ,

SL(Λ, z) ∝ 1
3
δL,1 ,

TL(Λ, z) ∝ 1
3
δL,0 +

2
15
δL,2 , (4.25)

where QL(z) is the Legendre function of the second kind,
which is an analytic function of its argument except for
a cut on the real axis running from –1 to 1, as is clear
from Eq. (4.24). In view of Eq. (4.20), the cut is entered
only for on-energy-shell potentials below threshold, but
we always calculate the on-energy-shell potentials above
threshold, so we will never reach the cut.

In the NSC πN -model we will include s-channel
baryon-exchange diagrams, which are in principle sep-
arable diagrams, having the form

V (pf , pi) =
Γ (pf ) Γ (pi)√

s±M0
. (4.26)

Writing out the partial wave potential for the ∆ pole
(P33-wave) explicitly, using Eq. (3.6) and Eq. (4.23),

V33 =
f2

πN∆

m2
π+

1
3

√
(Ei +Mi) (Ef +Mf )

× pfpi
1√

s−M0
, (4.27)

we see that this potential is of the separable kind indeed.
We need to be careful in including the s-channel di-

agrams in a model that has been renormalized, i.e. in
which (renormalized) physical coupling constants and

masses are used. It is not possible to simply add the
s-channel diagrams to the other ones, because iterations
of s-channel diagrams will give contributions to the ver-
tex and self-energy. The way these diagrams are included
in the NSC model is described in paper II, here we show
that bare masses and coupling constants should be used
in the s-channel diagrams and that these bare parame-
ters are determined by requiring that (i) the T -matrix
has a pole at the physical mass

√
s = Me, (ii) the residue

at the pole is given by the physical coupling constant.

V. SUMMARY

Analogous to the Nijmegen soft-core one-boson-
exchange NN and Y N models, we have derived the NSC
model for the interaction between pseudoscalar-mesons
and baryons (πN , K+N , etc.).

For the general mass case the meson-baryon potentials
in the context of a relativistic two-particle equation, the
Bethe-Salpeter equation, are defined in Sec. II. The po-
tentials consist of one-meson and one-baryon-exchange
Feynman diagrams. The Bethe-Salpeter equation is
approximated by assuming dynamical pair-suppression,
hence neglecting the propagation of negative-energy
states, and by integrating over the time variable, giving
a three-dimensional integral equation for the scattering
amplitude, which is a generalization of the Lippmann-
Schwinger equation.

A transformation of this equation on the plane wave
basis to the partial wave (LSJ) basis is described in Sec.
III. A one-dimensional integral equation for the partial
wave scattering amplitude is derived, which is decoupled
for each partial wave, because of parity conservation in
strong interactions.

In Sec. IV the interaction Hamiltonians are given
and the resulting one-baryon-exchange and one-meson-
exchange invariant amplitudes have been derived, these
amplitudes define the partial wave potentials used in the
calculations.
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Appendix A: MATRIX ELEMENTS ON THE
LSJ-BASIS

1. Partial wave amplitudes
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Here we derive the central and non-central potential matrix elements on the LSJ-basis in Eqs. (3.4) and (3.5)

1. Central P1 = 1:

(qf ;L′J ′M ′|F (qf ,qi)|qi;LJM) =
∑
sf ,si

∫
d3q′f
(2π)3

∫
d3q′i
(2π)3

× (
qf ;L′J ′M ′|q′f , sf

) (
q′f , sf |Fop|q′i, si

)
(q′i, si|qi, LJM) . (A1)

We now use the matrix elements

(
q′f , sf |Fop|q′i, si

)
= F (q′f ,q

′
i)δsf ,si = 4π

∞∑

l=0

Fl(q′f , q
′
i)

l∑

n=−l

Y l
n(q̂′f )Y l

n(q̂′i)
∗ δsf ,si ,

(q′, s|q, LJM) = (2π)3
δ(q′ − q)

q2
YM

JL(q̂′, s) . (A2)

Then, substituting Eq. (A2) into Eq. (A1) and performing the momentum and angular integrals and summations,
we find

(qf ;L′J ′M ′|F (qf ,qi)|qi;LJM) = 4πFL (qf , qi) δL′,LδJ′,J δM ′,M . (A3)

2. Non-central P ′2 = (σ · q̂f )(σ · q̂i):

(qf ;L′J ′M ′|G(qf ,qi)|qi;LJM) =
∑
sf ,si

∫
d3q′f
(2π)3

∫
d3q′i
(2π)3

× (
q′f ;L′J ′M ′|q′f , sf

) (
q′f , sf |Gop|q′i, si

)
(q′i, si|qi, LJM) , (A4)

where analogously to Eq. (A2),

(
q′f , sf |Gop|q′i, si

)
= 4π

∞∑

l=0

Gl(q′f , q
′
i)

l∑

n=−l

Y l
n(q̂′f )Y l

n(q̂′i)
∗ ·

∑
s

(
sf |(σ · q̂′f )|s) (s|(σ · q̂′i)|si) . (A5)

Using Eq. (A2) and substituting Eq. (A5) into Eq. (A4), and performing the momentum integrals, we find

(qf ;L′J ′M ′|Gop|qi;LJM) = 4π
∑

sf ,si,s

∑

l

Gl (qf , qi)
l∑

n=−l

×
∫
dΩ̂qf

YM ′
J′L′(q̂f , sf )∗(sf | (σ · q̂f ) |s) Y l

n(q̂f )

×
∫
dΩ̂qi Y

l
n(q̂i)∗(s| (σ · q̂i) |si) YM

JL(q̂i, si) . (A6)

In the two-dimensional L = J ∓ 1
2 -space, the (σ · q̂)-operator has the matrix elements, see Appendix A 2,

∑

s′
(s| (σ · q̂) |s′) YM

JL(q̂, s′) =
∑

L′
YM

JL′(q̂, s) aL′,L where aL′,L =
(

0 −1
−1 0

)
. (A7)

The angular integrals in Eq. (A6) can now be performed easily. Then, the result for the non-central amplitude is

(qf ;L′J ′M ′|G|qi;LJM) = 4π
∑

L′′
aL′,L′′GL′′ (qf , qi) aL′′,LδJ′,JδM ′,M . (A8)
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2. LSJ representation operator

In this appendix we derive Eq. (A7). The spherical wave functions in momentum space with quantum numbers J ,
L, S, are for spin-0 spin-1/2 given by [39]

YM
JL(p̂, s) =

∑
m,µ

CL 1
2 J

m µ M Y L
m(p̂) χ( 1

2 )
µ (s) , (A9)

where χ is the baryon spin wave function. Using the definition for YM
JL, Eq. (A9), we have

∑
s

(s′| (σ · p̂) |s) YM
JL(p̂, s) = (−)mp̂m (s′|σ−m|s) CL 1

2 J

ml µ M Y L
ml

(p̂) χ( 1
2 )

µ (s)

= (−)mp̂m (s′|σ−m|s) CL 1
2 J

ml s M Y L
ml

(p̂) , (A10)

where we used the convention of summation over repeated indices, and quantization along the z-axis, which defines
the spin variables s, s′. Now, we use the expressions

p̂m Y L
ml

(p̂) =

√
4π
3
Y 1

m(p̂) Y L
ml

(p̂)

=

√
4π
3

[
3(2L+ 1)

4π(2L′ + 1)

]1/2

CL 1 L′
0 0 0 CL 1 L′

ml m m′
l
Y L′

m′
l
(p̂) ,

(s′|σ−m|s) =
√

3 C
1
2 1 1

2
s −m s′ ,

(−)m = −
√

3 C1 1 0
m −m 0 . (A11)

From the definition of the 9j-coefficient [40], these formulas give for Eq. (A10) the result

∑
s

(s′| (σ · p̂) |s) YM
JL(p̂, s) = −3

∑

L′

[
(2L+ 1)
(2L′ + 1)

]1/2

CL 1 L′
0 0 0



L 1

2 J
1 1 0
L′ 1

2 J


 YM

JL′(p̂, s
′) . (A12)

Evaluating Eq. (A12), one finds for the matrix a in Eq. (A7), a =
(

0 −1
−1 0

)
.

Appendix B: RELATIVISTIC INVARIANT
AMPLITUDES

In this appendix the contributions from the various
Feynman diagrams to the relativistic invariant ampli-
tudes Afi(s, t, u) and Bfi(s, t, u), defined in Eq. (2.5),
are given. The results are valid for elastic as well as in-
elastic reactions. For details of the derivation we refer to
[41].

1. Momentum space baryon-exchange diagrams

(i) JP = 1
2

+ baryon-exchange

(i) pseudoscalar coupling:

Aps = − g14g23
u−M2

B + iε

[
−Mf +Mi

2
+MB

]
,

Bps = − g14g23
u−M2

B + iε
. (B1)

(ii) pseudovector coupling:

Apv = − f14f23/m
2
π+

u−M2
B + iε

[
u

(
Mf +Mi

2
+MB

)

−Mf +Mi

2
MfMi −

M2
f +M2

i

2
MB

]
,

Bpv = − f14f23/m
2
π+

u−M2
B + iε

[u+ (Mf +Mi)MB

+MfMi] . (B2)

(ii) JP = 1
2

+ pole diagram

Using crossing symmetry [42], we can cross the results
of the u-channel baryon-exchange into the s-channel
and obtain the invariant amplitudes Afi(s, t, u) and
Bfi(s, t, u) for the pole diagram. We have to replace
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q → −q′ and q′ → −q, which means that we have to
make the substitutions u ↔ s, m2

f ↔ m2
i and add a

minus sign to the amplitude B because of Eq. (2.5).
The JP = 1

2

+ pole amplitudes are

(i) pseudoscalar coupling:

Aps = − g12g34
s−M2

B + iε

[
−Mf +Mi

2
+MB

]
,

Bps =
g12g34

s−M2
B + iε

. (B3)

(ii) pseudovector coupling:

Apv = − f12f34/m
2
π+

s−M2
B + iε

[
s

(
Mf +Mi

2
+MB

)

−Mf +Mi

2
MfMi −

M2
f +M2

i

2
MB

]
,

Bpv =
f12f34/m

2
π+

s−M2
B + iε

[s+ (Mf +Mi)MB

+MfMi] . (B4)

(iii) JP = 1
2

− baryon-exchange

(i) scalar coupling:

As = − g
∗(s)
14 g

∗(s)
23

u−M2
B + iε

[
−Mf +Mi

2
−MB

]
,

Bs = − g
∗(s)
14 g

∗(s)
23

u−M2
B + iε

. (B5)

(ii) vector coupling:

Av = −f
∗(v)
14 f

∗(v)
23 /m2

π+

u−M2
B + iε

[
u

(
Mf +Mi

2
−MB

)

−Mf +Mi

2
MfMi +

M2
f +M2

i

2
MB

]
,

Bv = −f
∗(v)
14 f

∗(v)
23 /m2

π+

u−M2
B + iε

[u− (Mf +Mi)MB

+MfMi] . (B6)

(iii) JP = 1
2

− pole diagram

Applying crossing symmetry again we find, similar to the
JP = 1

2

+ baryon pole diagram, the invariant amplitudes
for the JP = 1

2

− baryon pole diagram.

(i) scalar coupling:

As = − g
∗(s)
12 g

∗(s)
34

s−M2
B + iε

[
−Mf +Mi

2
−MB

]
,

Bs =
g
∗(s)
12 g

∗(s)
34

s−M2
B + iε

. (B7)

(ii) vector coupling:

Av = −f
∗(v)
12 f

∗(v)
34 /m2

π+

s−M2
B + iε

[
s

(
Mf +Mi

2
−MB

)

−Mf +Mi

2
MfMi +

M2
f +M2

i

2
MB

]
,

Bv =
f
∗(v)
12 f

∗(v)
34 /m2

π+

s−M2
B + iε

[s− (Mf +Mi)MB

+MfMi] . (B8)

(v) JP = 3
2

+ baryon-exchange

AY ∗ =
f∗14f

∗
23/m

2
π+

u−M2
Y ∗ + iε

[
t−m2

f −m2
i

2

×
[
Mf +Mi

2
+MY ∗

]

+
1

6M2
Y ∗

[
M2

f −m2
i − u

] [
M2

i −m2
f − u

]

×Mf +Mi

2
+
MY ∗

3

[
u− M2

f +M2
i

2

]

+
1
3


Mf +Mi

2
u−

(
M2

f +M2
i

)
(Mf +Mi)

4

+

(
m2

i −m2
f

)
(Mf −Mi)

4


 +

1
6MY ∗

×
[(
M2

f −m2
i − u

)(
Mi

2
(Mi −Mf )−m2

f

)
−

(
M2

i −m2
f − u

)(
Mf

2
(Mi −Mf ) +m2

i

)] ]
,

BY ∗ =
f∗14f

∗
23/m

2
π+

u−M2
Y ∗ + iε

[
− t−m2

f −m2
i

2

− 1
6M2

Y ∗

[
u−M2

f +m2
i

] [
u−M2

i +m2
f

]

+
MY ∗

3
(Mf +Mi)−

m2
f +m2

i − (Mf +Mi)
2

6
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+
1

6MY ∗

[
Mf

(
M2

i −m2
f − u

)

+Mi

(
M2

f −m2
i − u

)]
]
. (B9)

(vi) JP = 3
2

+ pole diagram

Applying crossing symmetry again we find, similar to the
JP = 1

2

+ baryon pole diagram, the invariant amplitudes
for the JP = 3

2

+ baryon pole diagram

AY ∗ =
f∗12f

∗
34/m

2
π+

s−M2
Y ∗ + iε

[
t−m2

f −m2
i

2

×
[
Mf +Mi

2
+MY ∗

]

+
1

6M2
Y ∗

[
M2

f −m2
f − s

] [
M2

i −m2
i − s

]

×Mf +Mi

2
+
MY ∗

3

[
s− M2

f +M2
i

2

]

+
1
3


Mf +Mi

2
s−

(
M2

f +M2
i

)
(Mf +Mi)

4

+

(
m2

f −m2
i

)
(Mf −Mi)

4


 +

1
6MY ∗

×
[(
M2

f −m2
f − s

)(
Mi

2
(Mi −Mf )−m2

i

)
−

(
M2

i −m2
i − s

) (
Mf

2
(Mi −Mf ) +m2

f

)] ]
,

BY ∗ = − f∗12f
∗
34/m

2
π+

s−M2
Y ∗ + iε

[
− t−m2

f −m2
i

2

− 1
6M2

Y

[
s−M2

f +m2
f

] [
s−M2

i +m2
i

]

+
MY ∗

3
(Mf +Mi)−

m2
f +m2

i − (Mf +Mi)
2

6

+
1

6MY ∗

[
Mf

(
M2

i −m2
i − s

)

+Mi

(
M2

f −m2
f − s

)]
]
. (B10)

2. Momentum space meson-exchange diagrams

(i) JP = 0++ scalar-meson-exchange

AS =
gPPS gS

t−m2
S + iε

,

BS = 0 . (B11)

(ii) JP = 1−− vector-meson-exchange

AV =
gPPV

t−m2
V + iε

[
gV

m2
f −m2

i

m2
V

(Mi −Mf )

+
s− u

2M fV

]
,

BV = −2
gPPV

t−m2
V + iε

[
fV

Mf +Mi

2M + gV

]
. (B12)

(iii) JP = 2++ tensor-meson-exchange

AT =
gPPT /mπ+

∆2 −m2
T + iε

[(
s− u

2

)2

F2

− 1
2m2

T

(
m2

f −m2
i

)
(s− u) [(Mi −Mf ) F1

+
(
M2

i −M2
f

)
F2

]
+

1
2m4

T

(
m2

f −m2
i

)2 ×

(
M2

i −M2
f

)
[
(Mi −Mf )F1 +

M2
i −M2

f

2
F2

]

−4
3

[
−Q2 +

1
4m2

T

(
m2

f −m2
i

)2
]
×

[
− 1

2

(
(Mf +Mi)F1 +

1
2

(p′ + p)2 F2

)

+
M2

i −M2
f

2m2
T

(
(Mi −Mf )F1

+
1
2

(
M2

i −M2
f

)
F2

)] ]
,

BT =
gPPT /mπ+

∆2 −m2
T + iε


 (s− u) F1

−

(
m2

f −m2
i

)(
M2

i −M2
f

)

m2
T

F1


 . (B13)

3. Momentum space Pomeron-exchange

AP =
gPPP gP

M ,

BP = 0 . (B14)
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Appendix C: X,Y,Z-COEFFICIENTS

Here we list the explicit expressions for the expansion
coefficients X(α), Y (α), Z(α) and U (α) of the partial wave

potentials, Eq. (4.23), for each type of exchange in the
s-, u- and t-channel. We have introduced the notation
N±

fi =
√

(Ei ±Mi) (Ef ±Mf ).

1. Baryon-exchange

(i) JP = 1
2

+ baryon-exchange

(i) pseudoscalar coupling:

X
(C)
B = g14g23N

+
fi

[
MB +

Wf +Wi

2
−Mf −Mi

]
,

Y
(C)
B = g14g23 N

−
fi

[
−MB +

Wf +Wi

2
+Mf +Mi

]
,

X
(SO)
B = −g14g23 N−

fi

[
−MB +

Wf +Wi

2
+Mf +Mi

]
. (C1)

(ii) pseudovector coupling:

X
(C)
B = −f14f23

m2
π+

N+
fi

[(
−Mf +Mi

2
−MB

) ((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
+
Mf +Mi

2
MfMi

+
M2

f +M2
i

2
MB − Wf +Wi −Mf −Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i + (Mf +Mi)MB

+MfMi

)]
,

Y
(C)
B = −f14f23

m2
π+

[
N+

fi

[
−

(
−Mf +Mi

2
−MB

)
+
Wf +Wi −Mf −Mi

2

]
2pfpi +N−

fi

[
−

(
−Mf +Mi

2

−MB)

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
− Mf +Mi

2
MfMi −

M2
f +M2

i

2
MB

−Wf +Wi +Mf +Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i + (Mf +Mi)MB +MfMi

)]]
,

Z
(C)
B = −f14f23

m2
π+

N−
fi

[
−Mf +Mi

2
−MB +

Wf +Wi +Mf +Mi

2

]
2pfpi ,

X
(SO)
B =

f14f23
m2

π+

N−
fi

[
−

(
−Mf +Mi

2
−MB

) ((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
− Mf +Mi

2
MfMi

−M
2
f +M2

i

2
MB − Wf +Wi +Mf +Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i + (Mf +Mi)MB

+MfMi

)]
,

Y
(SO)
B =

f14f23
m2

π+

N−
fi

[
−Mf +Mi

2
−MB +

Wf +Wi +Mf +Mi

2

]
2pfpi .

(C2)

(ii) JP = 1
2

+
pole term
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(i) pseudoscalar coupling:

X
(C)
B = −g12g34 N+

fi

[
MB − Wf +Wi

2

]
,

Y
(C)
B = g12g34 N

−
fi

[
MB +

Wf +Wi

2

]
,

X
(SO)
B = −g12g34 N−

fi

[
MB +

Wf +Wi

2

]
. (C3)

(ii) pseudovector coupling:

X
(C)
B =

f12f34
m2

π+

N+
fi

[ (
−Mf +Mi

2
−MB

)
s+

Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s+ (Mf+

Mi)MB +MfMi] +
M2

f +M2
i

2
MB

]
,

Y
(C)
B =

f12f34
m2

π+

N−
fi

[
−

(
−Mf +Mi

2
−MB

)
s− Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s+ (Mf+

Mi)MB +MfMi]−
M2

f +M2
i

2
MB

]
,

X
(SO)
B = −f12f34

m2
π+

N−
fi

[
−

(
−Mf +Mi

2
−MB

)
s− Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s+ (Mf+

Mi)MB +MfMi]−
M2

f +M2
i

2
MB

]
. (C4)

(iii) JP = 1
2

− baryon-exchange

(i) scalar coupling:

X
(C)
B = g

∗(s)
14 g

∗(s)
23 N+

fi

[
−MB +

Wf +Wi

2
−Mf −Mi

]
,

Y
(C)
B = g

∗(s)
14 g

∗(s)
23 N−

fi

[
MB +

Wf +Wi

2
+Mf +Mi

]
,

X
(SO)
B = −g∗(s)14 g

∗(s)
23 N−

fi

[
MB +

Wf +Wi

2
+Mf +Mi

]
. (C5)

(ii) vector coupling:

X
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

N+
fi

[(
−Mf +Mi

2
+MB

) ((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
+
Mf +Mi

2
MfMi

−M
2
f +M2

i

2
MB − Wf +Wi −Mf −Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf +Mi)MB

+MfMi

)]
,

Y
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

[
N+

fi

[
−

(
−Mf +Mi

2
+MB

)
+
Wf +Wi −Mf −Mi

2

]
2pfpi +N−

fi

[
−

(
−Mf +Mi

2

+MB)

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
− Mf +Mi

2
MfMi +

M2
f +M2

i

2
MB
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−Wf +Wi +Mf +Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf +Mi)MB +MfMi

)]]
,

Z
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

N−
fi

[
−Mf +Mi

2
+MB +

Wf +Wi +Mf +Mi

2

]
2pfpi ,

X
(SO)
B =

f
∗(v)
14 f

∗(v)
23

m2
π+

N−
fi

[
−

(
−Mf +Mi

2
+MB

) ((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)
− Mf +Mi

2
MfMi

+
M2

f +M2
i

2
MB − Wf +Wi +Mf +Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf +Mi)MB

+MfMi

)]
,

Y
(SO)
B =

f
∗(v)
14 f

∗(v)
23

m2
π+

N−
fi

[
−Mf +Mi

2
+MB +

Wf +Wi +Mf +Mi

2

]
2pfpi . (C6)

(iv) JP = 1
2

− pole term

(i) scalar coupling:

X
(C)
B = g

∗(v)
12 g

∗(v)
34 N+

fi

[
MB +

Wf +Wi

2

]
,

Y
(C)
B = g

∗(v)
12 g

∗(v)
34 N−

fi

[
−MB +

Wf +Wi

2

]
,

X
(SO)
B = −g∗(v)

12 g
∗(v)
34 N−

fi

[
−MB +

Wf +Wi

2

]
. (C7)

(ii) vector coupling:

X
(C)
B =

f
∗(v)
12 f

∗(v)
34

m2
π+

N+
fi

[ (
−Mf +Mi

2
+MB

)
s+

Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s− (Mf+

Mi)MB +MfMi]−
M2

f +M2
i

2
MB

]
,

Y
(C)
B =

f
∗(v)
12 f

∗(v)
34

m2
π+

N−
fi

[
−

(
−Mf +Mi

2
+MB

)
s− Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s− (Mf+

Mi)MB +MfMi] +
M2

f +M2
i

2
MB

]
,

X
(SO)
B = −f

∗(v)
12 f

∗(v)
34

m2
π+

N−
fi

[
−

(
−Mf +Mi

2
+MB

)
s− Mf +Mi

2
MfMi +

Wf +Wi −Mf −Mi

2
[s− (Mf+

Mi)MB +MfMi] +
M2

f +M2
i

2
MB

]
. (C8)

(v) JP = 3
2

+ baryon-exchange

X
(C)
Y ∗ = −f

∗
14f

∗
23

m2
π+

N+
fi

[
A0 +

B0

2
(Wf +Wi −Mi −Mf )

]
,

Y
(C)
Y ∗ = −f

∗
14f

∗
23

m2
π+

[
N+

fi

[
A1 +

B1

2
(Wf +Wi −Mf −Mi)

]
+N−

fi

[
−A0 +

B0

2
(Wf +Wi +Mf +Mi)

]]
,

Z
(C)
Y ∗ = −f

∗
14f

∗
23

m2
π+

[
N+

fi

[
A2 +

B2

2
(Wf +Wi −Mf −Mi)

]
+N−

fi

[
−A1 +

B1

2
(Wf +Wi +Mf +Mi)

]]
,
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U
(C)
Y ∗ =

f∗14f
∗
23

m2
π+

N−
fi

[
−A2 +

B2

2
(Wf +Wi +Mf +Mi)

]
,

X
(SO)
Y ∗ =

f∗14f
∗
23

m2
π+

N−
fi

[
−A0 +

B0

2
(Wf +Wi +Mi +Mf )

]
,

Y
(SO)
Y ∗ =

f∗14f
∗
23

m2
π+

N−
fi

[
−A1 +

B1

2
(Wf +Wi +Mi +Mf )

]
,

Z
(SO)
Y ∗ =

f∗14f
∗
23

m2
π+

N−
fi

[
−A2 +

B0

2
(Wf +Wi −Mf −Mi)

]
. (C9)

Where A0, A1, A2, B0, B1 and B2 depend on the mass and momentum of the particles as follows.

A0 =
1

12M2
Y ∗

(Mf +Mi)
(−2pfpizu +M2

Y ∗
)2

+
(
− 1

6M2
Y ∗

(
M2

f +M2
i −m2

f −m2
i

) Mf +Mi

2
+
MY ∗

3
+

Mf +Mi

6
− 1

6MY ∗

(
Mi

2
(Mi −Mf )−m2

f +
Mf

2
(Mf −Mi)−m2

i

))(−2pfpizu +M2
Y ∗

)

+
1
2

(
Mf +Mi

2
+MY ∗

) (
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i

)
− m2

f +m2
i

2

(
Mf +Mi

2
+MY ∗

)

+
1

12M2
Y ∗

(Mf +Mi)
(
M2

f −m2
i

) (
M2

i −m2
f

)− MY ∗

6
(
M2

f +M2
i

)
+

1
12

( (
m2

i −m2
f

)
(Mf −Mi)

− (
M2

f +M2
i

)
(Mf +Mi)

)
+

1
6MY ∗

((
M2

f −m2
i

) (
Mi

2
(Mi −Mf )−m2

f

)
+

(
M2

i −m2
f

)×
(
Mf

2
(Mf −Mi)−m2

i

))
,

A1 =
[
− 1

12M2
Y ∗

(Mf +Mi) 2
(−2pfpizu +M2

Y ∗
)

+
1

6M2
Y ∗

(
M2

f +M2
i −m2

f −m2
i

) Mf +Mi

2
− MY ∗

3
−

Mf +Mi

6
+

1
6MY ∗

(
Mi

2
(Mi −Mf )−m2

f +
Mf

2
(Mf −Mi)−m2

i

)
+

1
2

(
Mf +Mi

2
+MY ∗

)]
2pfpi ,

A2 =
1

12M2
Y ∗

(Mf +Mi) (2pfpi)
2
,

B0 =
m2

f +m2
i

2
− 1

6M2
Y ∗

(
M2

f −m2
i

) (
M2

i −m2
f

)
+
MY ∗

3
(Mf +Mi)−

m2
f +m2

i − (Mf +Mi)
2

6

+
1

6MY ∗

(
Mf

(
M2

i −m2
f

)
+Mi

(
M2

f −m2
i

))− 1
2

(
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i

)

− 1
6M2

Y ∗

(−2pfpizu +M2
Y ∗

)2
+

(
1

6M2
Y ∗

(
M2

f +M2
i −m2

f −m2
i

)− 1
6MY ∗

(Mf +Mi)
)
×

(−2pfpizu +M2
Y ∗

)
,

B1 =
[

1
3M2

Y ∗

(−2pfpizu +M2
Y ∗

)− 1
6MY ∗

(
1

MY ∗

(
M2

f +M2
i −m2

f −m2
i

)− (Mf +Mi)
)
− 1

2

]
2pfpi ,

B2 = − 1
6M2

Y ∗
(2pfpi)

2
. (C10)

(vi) JP = 3
2

+
pole term

X
(C)
Y ∗ =

f∗12f
∗
34

m2
π+

N+
fi

[
A0 +

B0

2
(Wf +Wi −Mi −Mf )

]
,

Y
(C)
Y ∗ =

f∗12f
∗
34

m2
π+

[
N+

fi

[
A1 +

B1

2
(Wf +Wi −Mf −Mi)

]
+N−

fi

[
−A0 +

B0

2
(Wf +Wi +Mf +Mi)

]]
,
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Z
(C)
Y ∗ =

f∗12f
∗
34

m2
π+

N−
fi

[
−A1 +

B1

2
(Wf +Wi +Mf +Mi)

]
,

X
(SO)
Y ∗ = −f

∗
12f

∗
34

m2
π+

N−
fi

[
−A0 +

B0

2
(Wf +Wi +Mi +Mf )

]
,

Y
(SO)
Y ∗ = −f

∗
12f

∗
34

m2
π+

N−
fi

[
−A1 +

B1

2
(Wf +Wi +Mi +Mf )

]
.

(C11)

Where A0, A1, B0 and B1 depend on the mass and momentum of the particles as follows.

A0 =
1
2

(
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i −m2

f −m2
i

)(
Mf +Mi

2
+MY ∗

)
+

1
6M2

Y ∗

(
M2

f −m2
f − s

)×

(
M2

i −m2
i − s

) Mf +Mi

2
+

1
3MY ∗

(
s− 1

2
(
M2

f +M2
i

))
+

1
3


Mf +Mi

2
s−

(
M2

f +M2
i

)
(Mf +Mi)

4

+
m2

f −m2
i

4
(Mf −Mi)

)
+

1
6MY ∗

((
M2

f −m2
f − s

)(
Mi

2
(Mi −Mf )−m2

i

)
− (

M2
i −m2

i − s
)×

(
Mf

2
(Mi −Mf ) +m2

f

))
,

A1 =
1
2

[
Mf +Mi

2
+MY ∗

]
2pfpi ,

B0 =
1
2

(
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i −m2

f −m2
i

)
− 1

6M2
Y ∗

(
s−M2

f +m2
f

) (
s−M2

i +m2
i

)

−MY ∗

3
(Mf +Mi) +

m2
f +m2

i − (Mf +Mi)
2

6
− 1

6MY ∗

(
Mf

(
M2

i −m2
i − s

)
+Mi

(
M2

f −m2
f − s

))
,

B1 = pfpi . (C12)

2. Meson-exchange

(i) JP = 0++ scalar-meson-exchange

X
(C)
S = −gPPSgS N+

fi ,

Y
(C)
S = gPPSgS N−

fi ,

X
(SO)
S = −gPPSgS N−

fi . (C13)

(ii) JP = 1−− vector-meson-exchange

X
(C)
V = −gPPV gV N+

fi




(
m2

f −m2
i

)
(Mi −Mf )

m2
V

− (Wf +Wi −Mi −Mf )


− gPPV fV N+

fi

[
− Mf +Mi

2M

× (Wf +Wi −Mi −Mf ) +
(ωf + ωi) (Ef + Ei) + p2

f + p2
i

2M

]
,

Y
(C)
V = −gPPV gV N−

fi


−

(
m2

f −m2
i

)
(Mi −Mf )

m2
V

− (Wf +Wi +Mi +Mf )


− gPPV fV

[
N+

fi

pfpi

M

+N−
fi

[
−Mf +Mi

2M (Wf +Wi +Mi +Mf )− (ωf + ωi) (Ef + Ei) + p2
f + p2

i

2M

]]
,
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Z
(C)
V = gPPV fV N−

fi

pfpi

M ,

X
(SO)
V = gPPV gV N−

fi


−

(
m2

f −m2
i

)
(Mi −Mf )

m2
V

− (Wf +Wi +Mf +Mi)


 + gPPV fV N−

fi

[
− Mf +Mi

2M

× (Wf +Wi +Mf +Mi)−
(ωf + ωi) (Ef + Ei) + p2

f + p2
i

2M

]
,

Y
(SO)
V = −gPPV fV N−

fi

pfpi

M . (C14)

(iii) JP = 2++ tensor-meson-exchange

X
(C)
T = −gPPTF1

mπ+
N+

fi

[
A0 +

B0

2
(Wf +Wi −Mi −Mf )

]
,

Y
(C)
T = −gPPTF1

mπ+

[
N+

fi

[
A1 +

B1

2
(Wf +Wi −Mf −Mi)

]
+N−

fi

[
−A0 +

B0

2
(Wf +Wi +Mf +Mi)

]]
,

Z
(C)
T = −gPPTF1

mπ+

[
N+

fiA2 +N−
fi

[
−A1 +

B1

2
(Wf +Wi +Mf +Mi)

]]
,

U
(C)
T =

gPPTF1

mπ+
N−

fiA2 ,

X
(SO)
T =

gPPTF1

mπ+
N−

fi

[
−A0 +

B0

2
(Wf +Wi +Mi +Mf )

]
,

Y
(SO)
T =

gPPTF1

mπ+
N−

fi

[
−A1 +

B1

2
(Wf +Wi +Mi +Mf )

]
,

Z
(SO)
T = −gPPTF1

mπ+
N−

fiA2 . (C15)

Where A0, A1, A2, B0 and B1 depend on the mass and momentum of the particles as follows.

A0 =
F2

F1




(
(ωi + ωf ) (Ef + Ei) + p2

f + p2
i

2

)2

+
1

4m4
T

(
m2

f −m2
i

)2 (
M2

i −M2
f

)2

− (ωi + ωf ) (Ef + Ei) + p2
f + p2

i

2m2
T

(
m2

f −m2
i

) (
M2

i −M2
f

)− 1
3


−2

(
m2

f +m2
i

)
+

(
m2

f −m2
i

)2

m2
T

+
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i







(
M2

i −M2
f

)2

4m2
T

− M2
f +M2

i

2
+

1
4

(
− p2

f − p2
i +

(Ef − Ei)
2 + (ωf − ωi)

2

2

)





+


−

(ωi + ωf ) (Ef + Ei) + p2
f + p2

i

2m2
T

(
m2

f −m2
i

)
(Mi −Mf )

+
1

2m4
T

(
m2

f −m2
i

)2 (
M2

i −M2
f

)
(Mi −Mf )− 1

3


−2

(
m2

f +m2
i

)
+

(
m2

f −m2
i

)2

m2
T

− p2
f − p2

i

+
(Ef − Ei)

2 + (ωf − ωi)
2

2







(
M2

i −M2
f

)

2m2
T

(Mi −Mf )− 1
2

(Mf +Mi)





 ,
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A1 =
F2

F1


(ωi + ωf ) (Ef + Ei) + p2

f + p2
i −

(
m2

f −m2
i

)(
M2

i −M2
f

)

m2
T

− 1
6


−2

(
m2

f +m2
i

)
+

(
m2

f −m2
i

)2

m2
T

+
(Ef − Ei)

2 + (ωf − ωi)
2

2
− p2

f − p2
i


−

(
M2

i −M2
f

)2

6m2
T

+
M2

f +M2
i

3
− 1

6

(
(Ef − Ei)

2 + (ωf − ωi)
2

2

−p2
f − p2

i

) 
 pfpi

+


−

(
m2

f −m2
i

)
(Mi −Mf )

m2
T

−

(
M2

i −M2
f

)
(Mi −Mf )

3m2
T

+
Mf +Mi

3


 pfpi ,

A2 = −1
3
p2

fp
2
i

F2

F1
,

B0 = (ωi + ωf ) (Ef + Ei) + p2
f + p2

i −

(
m2

f −m2
i

)(
M2

i −M2
f

)

m2
T

,

B1 = 2pfpi . (C16)

3. Pomeron-exchange

X
(C)
P = gPPP gP N+

fi ,

Y
(C)
P = −gPPP gP N−

fi ,

X
(SO)
P = gPPP gP N−

fi . (C17)
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