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Abstract
The NN results are presented from the Extended-soft-core (ESC) interactions. They consist of

local- and non-local-potentials due to (i) One-boson-exchanges (OBE), which are the members of
nonets of pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) Diffractive exchanges, (iii) Two
pseudo-scalar exchange (PS-PS), and (iv) Meson-Pair-exchange (MPE). We describe a fit to the
pp- and np-data for 0 ≤ Tlab ≤ 350 MeV, having a typical χ2/Ndata = 1.145. Here, we used less
than 20 quasi-free physical parameters, being coupling constants and cut-off masses. A remarkable
feature of the couplings is that we were able to require them to follow rather closely the pattern
predicted by the 3P0 quark-pair creation (QPC) model. As a result the 11 OBE-couplings are
rather constrained, i.e. quasi-free. Also, the deuteron binding energy and the several NN scattering
lengths are fitted.
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I. INTRODUCTION

In a series of three papers we present the results recently obtained with the Extended-
Soft-Core (ESC) model [1] for nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-
hyperon (YY) with S = −2. For NN [1–5] it has been demonstrated that the ESC-model
interactions give an excellent description of the NN data. Also for YN the first attempts [6, 7]
showed that the ESC-approach is potentially rather promising to give improvements w.r.t.
the One-Boson-Exchange (OBE) soft-core models [8, 9]. As compared to the earlier versions
of the ESC-model, we introduce in these papers two innovations. First, we introduce a zero
in the form factor of the scalar mesons. Secondly, we exploit the exchange of the axial-vector
mesons. In this first paper of the series, we display the recent results fitting exclusively the
NN-data, giving the NN -model presented in this paper ESC04(NN). In the second paper,
henceforth referred to as II [10], we report on the results for NN ⊕ Y N , in a simultaneous
fit of the NN- and YN-data. This is a novelty w.r.t. our procedure described in previous
publications on the Nijmegen work. The advantages will be discussed in II. In the third
paper, henceforth referred to as III [11], we will report on the predictions for Y N and Y Y
with S = −2.

A general modern theoretical framework for the soft-core interactions is provided by the
so called standard model (SM). Starting from SM we consider the stage where the heavy
quarks are integrated out, leaving an effective QCD-world for the u,d,s quarks. The generally
accepted scenario is now that the QCD-vacuum is unstable for momentum transfers for
which Q2 ≤ Λ2

χSB ≈ 1 GeV2 [12], causing spontaneous chiral-symmetry breaking (χSB). A

phase-transition of the vacuum generates constituent quark masses via 〈0|ψ̄ψ|0〉 6= 0, and
thereby the gluon coupling αs is reduced substantially. In view of the small pion mass,
the Nambu-Goldstone bosons associated with the spontaneous χSB are naturally identified
with the pseudo-scalar mesons. Also, as a result of the phase-transition the dominating
degrees of freedom are the baryons and mesons. In this context, low-energy baryon-baryon
interactions are described naturally by meson-exchange using form factors at the meson-
baryon vertices. This way, the phase transition has transformed the effective QCD-world
into an effective hadronic-world. To reduce this complex world with its numerous degrees
of freedom, we consider a next step. This is, envisioning the integrating out of the heavy
mesons and baryons using a renormalization procedure a la Wilson [13], we restrict ourselves
to mesons with M ≤ 1 GeV/c2, arriving at a so-called effective field theory as the proper
arena to describe low energy baryon-baryon scattering. This is the general physical basis
for the Nijmegen soft-core models.

Because of the composite nature of the mesons in QCD, the proper description of meson-
exchange is quite naturally in terms of Regge-trajectories. For example, in the Bethe-
Salpeter approach to the QQ̄-system any reasonable interaction leads to Regge poles. There-
fore, in the Nijmegen soft-core approach meson-exchange is treated as the dominant part of
the mesonic reggeon-exchange. This includes also the J = 0 contributions from the tensor
trajectories (f2,f

′
2 and A2). In elastic scattering we notice that the most important exchange

at higher energies is pomeron-exchange. Therefore in the soft-core OBE-models [14] the tra-
ditional OBE-model was extended by including the pomeron, and the pomeron parameters
determined from the low-energy NN -data were in good agreement with those found at high
energy. This feature is also found to persist in the ESC-models. For a more elaborate dis-
cussion of the pomeron, and its importance for the implementation of chiral-symmetry in
the soft-core models, we refer to [8, 15].
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The dynamics in the ESC-model is constructed employing the following mesons together
with flavor SU(3)-symmetry:

1. The pseudoscalar-meson nonet π, η, η′, K with the η − η′ mixing angle θP = −23.00

from the Gell-Mann-Okubo mass formula.

2. The vector-meson nonet ρ, φ, K?, ω with the φ− ω ideal mixing angle θV = 37.560.

3. The axial-vector-meson nonet a1, f1 K1, f
′
1 with the f1 − f ′1 mixing angle θA = 47.30

[4].

4. The scalar-meson nonet a0(962) = δ, f0(993) = S?, κ, f0(760) = ε with a free S? − ε
mixing angle θS to be determined in a fit to the Y N -data.

5. The ‘diffractive’ contribution from the pomeron P, and the tensor-mesons f2, f
′
2, and

A2. These interactions will give mainly repulsive contributions of a gaussian type to
the potentials in all channels. In the present ESC-model we have taken gA2 = gBBf2 =
gBBf ′2 = 0, i.e. only the pomeron contributes.

The BBM-vertices are described by: (i) coupling constants and F/(F+D)-ratio’s obeying
broken flavor SU(3)-symmetry, see paper II for details, and (ii) gaussian form factors. This
type of form factor is like the often used residue functions in Regge phenomenology. Also,
from the point of view of the (nonrelativistic) quark models a gaussian behavior of the
form factors is most natural. Here, we remark that in the ESC-models the two-meson-
cut contributions to the form factors are taken into account using meson-pair exchanges
(MPE) (see below). Evidently, with cut-off masses Λ ≈ 1 GeV, these form factors assure a
soft behavior of the potentials in configuration space at small distances. The form factors
depend on the SU(3) assignment of the mesons, as described in detail in [9].

The potentials of the ESC-model are generated by

(i) One-Boson-Exchange (OBE). The treatment of the OBE in the soft-core approach has

been given for NN in [14], and for Y N in [8]. With respect to these OBE-interactions
the present ESC-model contains, as mentioned above, two innovations. First, in the
scalar meson form-factor we have introduced a zero. This zero is natural in the 3P0-
pair-creation (QPC) [16–18] model for the coupling of the mesonic quark-antiquark
(QQ̄) system to baryons. The scalar meson, being itself in this picture a 3P0 QQ̄-
bound state, gets a zero when it couples to a baryon. A pragmatic reason to exploit
such a zero is that in this way we were able to avoid a bound state in ΛN -scattering.
Secondly, for the first time we incorporated axial-meson exchange in the potentials.
As is well known, they are considered as the chiral partners of the vector mesons. It
turned out that the strength of the axial-meson exchanges is found to agree with the
theoretical determination ga1 ≈ (ma1/mπ)fNNπ [19].

(ii) Two-Meson-Exchange (TME). The configuration space soft-core uncorrelated two-

meson exchange for NN has been derived in [2, 20]. We use these potentials in this
paper for PS-PS exchange. Here, we give a complete SU(3)-symmetry treatment in
NN, as well as in YN and YY. For example, we include double K-exchange in NN -
scattering. Similarly in papers II and III their generalization to Y N respectively Y Y .
The PS-PS potentials contain the important long-range two-pion potentials. The other
kind of two-meson exchange, as pseudo-scalar-vector (PS-V), and pseudo-scalar-scalar
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(PS-S) etc. are supposed to be less important, because of cancellations, and can be
covered by OBE in an effective manner. Of course, this gives some contamination in
the meson-baryon coupling constants.

(iii) Meson-Pair-Exchange (MPE). These have been described for NN and justified in [3].
Again, in II and III the generalization is used in Y N and Y Y . Also, the treatment
given is complete as far as SU(3) is concerned. In [3, 4] it is argued that the MPE-
potentials are thought to represent effects of heavy meson-exchange as well as meson-
baryon resonances. Here we in particularly think about the πN resonances, like ∆33.

A remarkable achievement with the ESC-model, in the version as described above, is
that for the first time we could constrain the NNM-couplings such that they are close to
the predicted values of the QPC-model. With the same parameters for the quark-model,
we find relations like gε ≈ gω ≈ 3gρ ≈ 3ga0 . Moreover, with the same 3P0-parameters the
predicted ga1 agrees well with that of [19].

A particular new feature of these new ESC-models is that we can allow for SU(3)-
symmetry breaking of the coupling constants. In this breaking it is assumed that the
amplitude for the creation of strange quarks from the vacuum is different than for non-
strange quarks. We consider this possibility explicitly in paper II, but in this paper we will
assume, apart from meson-mixing, not such an SU(3)-breaking.

The contents of this paper is as follows. In section II we review the definition of the
ESC-potentials in the context of the relativistic two-body equations, the Thompson-, and
Lippmann-Schwinger-equation. Here, we exploit the Macke-Klein [21] framework in Field-
Theory. For the Lippmann-Schwinger equation we introduce the usual potential forms in
Pauli spinor space. We include here the central (C), the spin-spin (σ), the tensor (T ), the
spin-orbit (SO), the quadratic spin-orbit (Q12), and the antisymmetric spin-orbit (ASO)
potentials. For TME-exchange, in the approximations made in [2, 3] only the central, spin-
spin, tensor, and spin-orbit potentials occur. In section III the ESC-potentials in momentum
space are given, emphasizing the differences with earlier publications on the soft-core inter-
actions. We discuss the OBE-potentials, the PS-PS-interactions, and the MPE-interactions.
In section IV we discuss the coupling constants from the point of view of the 3P0-model. In
section V the NN results are displayed for coupling constants, scattering phases, low-energy
parameters, and deuteron properties. Finally in section VI we give a general discussion and
outlook.

Appendix A contains the derivation of the axial-meson exchange potentials.

II. TWO-BODY INTEGRAL EQUATIONS IN MOMENTUM SPACE

A. Relativistic Two-Body Equations

We consider the nucleon-nucleon reactions

N(pa, sa) +N(pb, sb) → N(pa′ , sa′) +N(pb′ , sb′) (2.1)

with the total and relative four-momenta for the initial and the final states

P = pa + pb , P ′ = pa′ + pb′ ,
p = 1

2
(pa − pb) , p′ = 1

2
(pa′ − pb′) ,

(2.2)
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which become in the center-of-mass system (cm-system) for a and b on-mass-shell

P = (W,0) , p = (0,p) , p′ = (0,p′) . (2.3)

In general, the particles are off-mass-shell in the Green-functions. In the following of this
section, the on-mass-shell momenta for the initial and final states are denoted respectively
by p and p′. So, p0

a = Ea(p) =
√

p2 +M2
a and p0

a′ = Ea′(p
′) =

√
p′2 +M2

a′ , and similarly
for b and b’. Because of translation-invariance P = P ′ and W = W ′ = Ea(p) + Eb(p) =
Ea′(p

′) + Eb′(p
′). The two-particle states we normalize in the following way

〈p′1,p′2|p1,p2〉 = (2π)32E(p1)δ
3(p′1 − p1) ·

×(2π)32E(p2)δ
3(p′2 − p2) . (2.4)

The relativistic two-body scattering-equation for the scattering amplitude reads [22–24]

M(p′, p;P ) = I(p′, p;P ) +

∫
d4p′′ I(p′, p′′;P ) ·

×G(p′′;P ) M(p′′, p;P ) , (2.5)

where M(p′, p;P ) is a 16 × 16-matrix in Dirac-space, and the contributions to the kernel
I(p, p′) come from the two-nucleon-irreducible Feynman diagrams. In writing (2.5) we have
taken out an overall δ4(P ′ − P )-function and the total four-momentum conservation is im-
plicitly understood henceforth.

The two-baryon Green function G(p;P ) in (2.5) is simply the product of the free prop-
agators for, in general, the baryons of line (a) and (b). The baryon Feynman propagators
are given by the well known formula

G
(s)
{µ},{ν}(p) =

∫
d4x 〈0|T (ψ

(s)
{µ}(x)ψ̄

(s)
{ν}(0))|0〉 eip·x

=
Πs(p)

p2 −M2 + iδ
(2.6)

where ψ
(s)
{µ} is the free Rarita-Schwinger field which describes the nucleon (s = 1

2
), the ∆33-

resonance (s = 3
2
), etc. (see for example [25]). For the nucleon, the only case considered in

this paper, {µ} = ∅ and for e.g. the ∆-resonance {µ} = µ. For the rest of this paper we
deal only with nucleons.
In terms of these one-particle Green-functions the two-particle Green-function in (2.5) is

G(p;P ) =
i

(2π)4

[
Π(sa)(1

2
P + p)

(1
2
P + p)2 −M2

a + iδ

](a)

·

×
[

Π(sb)(1
2
P − p)

(1
2
P − p)2 −M2

b + iδ

](b)

. (2.7)

Using now a complete set of on-mass-shell spin s-states in the first line of (2.6) one finds
that the Feynman propagator of a spin-s baryon off-mass-shell can be written as [26]

Π(s)(p)

p2 −M2 + iδ
=

M

E(p)

[
Λ

(s)
+ (p)

p0 − E(p) + iδ

− Λ
(s)
− (−p)

p0 + E(p)− iδ

]
, (2.8)
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for s = 1
2
, 3

2
, . . .. Here, Λ

(s)
+ (p) and Λ

(s)
− (p) are the on-mass-shell projection operators on the

positive- and negative-energy states. For the nucleon they are

Λ+(p) =

+1/2∑

σ=−1/2

u(p, σ)⊗ ū(p, σ) ,

Λ−(p) = −
+1/2∑

σ=−1/2

v(p, σ)⊗ v̄(p, σ) , (2.9)

where u(p, σ) and v(p, σ) are the Dirac spinors for spin-1/2 particles, and E(p) =
√

p2 +M2

with M the nucleon mass. Then, in the cm-system, where P = 0 and P0 = W , the Green-
function can be written as

G(p;W ) =
i

(2π)4

(
Ma

Ea(p)

) [
Λ

(sa)
+ (p)

1
2
W + p0 − Ea(p) + iδ

− Λ
(sa)
− (−p)

1
2
W + p0 + Ea(p)− iδ

]

×
(

Mb

Eb(p)

) [
Λ

(sb)
+ (−p)

1
2
W − p0 − Eb(p) + iδ

− Λ
(sb)
− (p)

1
2
W − p0 + Eb(p)− iδ

]
(2.10)

Multiplying out (2.10) we write the ensuing terms in shorthand notation

G(p;W ) = G++(p;W ) +G+−(p;W ) +G−+(p;W ) +G−−(p;W ) , (2.11)

where G++ etc. corresponds to the term with Λsa
+ Λsb

+ etc. Introducing the spinorial ampli-
tudes

Mr′s′;rs(p
′, p;P ) = ūr

′
(p′a, s

′
a)ū

s′(p′b, s
′
b)M(p′, p;P ) ur(pa, sa) u

s(pb, sb) , (r, s = +,−) ,
(2.12)

with (r, s) = + for the positive energy Dirac spinors, and (r, s) = − for the negative energy
ones. Then, the two-body equation, (2.5) for the spinorial amplitudes becomes

Mr′s′;rs(p
′, p;P ) = Ir′s′;rs(p

′, p;P ) +
∑

r′′,s′′

∫
d4p′′ Ir′s′;r′′s′′(p′, p′′;P ) ·

×Gr′′s′′(p
′′;P ) Mr′′s′′;rs(p

′′, p;P ) . (2.13)

Invoking ‘dynamical pair-suppression’, as discussed in [20], (2.13) reduces to a 4 × 4-
dimensional equation for M++;++, i.e.

M++;++(p′, p;P ) = I++;++(p′, p;P ) +

∫
d4p′′ I++;++(p′, p′′;P ) ·

×G++(p′′;P ) M++;++(p′′, p;P ) , (2.14)

with the Green-function

G++(p;W ) =
i

(2π)4

[
MaMb

Ea(p)Eb(p)

]
·
[
1

2
W + p0 − Ea(p) + iδ

]−1 [
1

2
W − p0 − Eb(p) + iδ

]−1

.

(2.15)
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B. Three-Dimensional Equation

In [20] we introduced starting from the Bethe-Salpeter equation for the two-baryon wave
function ψ(pµ) and applying the Macke-Klein procedure [21]. In this paper we employ the
same procedure, but now for the two-baryon scattering amplitude M(p′, p;P ). For any
function f(p1, . . . , pn) we define the projection [27]

PR,pi
f(p1, . . . , pn) = f(p1, . . . , pn)PL,i ≡

∮

UHP

dpi,0 AW (pi) f(. . . , pi, . . .) , (2.16)

where the contour consists of the real axis and the infinite semicircle in the upper half plane
(UHP), and with Macke’s right-inverse of the

∫
dp0 operation

AW (p) = (2πi)−1

(
1

p0 + Ep −W − iδ
+

1

−p0 + Ep −W − iδ

)

= − 1

2πi

W −W(p)

F
(a)
W (p, p0)F

(b)
W (−p,−p0)

. (2.17)

Here, we used the frequently used notations

FW (p, p0) = p0 − E(p) +
1

2
W + iδ , W(p) = Ea(p) + Eb(p) . (2.18)

Notice that the Green function (2.15 can be written as

G++(p;W ) =
1

(2π)3

[
MaMb

Ea(p)Eb(p)

]
AW (p) (W −W(p) + iδ)−1 . (2.19)

Now, we make the rather solid assumption that for the scattering amplitudes, the UHP
contains no poles or branch points in the p0-variable. Then, one sees from (2.16) that as
a result of the PR,pi

-operation the argument pi0 → W − E(pi), and similarly for PL,pi
.

Introducing the projections

PR,p′M++;++(p′, p;P ) PL,p ≡ M(p′,p|W ) , (2.20a)

PR,p′I++;++(p′, p;P ) PL,p ≡ K irr(p′,p|W ) , (2.20b)

we apply this to equation (2.14). This gives

M(p′,p|W ) = K irr(p′,p|W ) +

∫
d3p′′

(2π)3

[
MaMb

Ea(p′′)Eb(p′′)

]
(W −W(p′′) + iδ)

−1 ·

×
{∫ ∞

−∞
dp′′0 I++;++(p′, p′′;P )|p′0=W−E(p′) AW (p′′) M++;++(p′′, p;P )|p0=W−E(p)

}
, (2.21)

Next, we redefine M(p′′,p|W ) by

M(p′,p|W ) →
√

MaMb

Ea(p′)Eb(p′)
M(p′,p|W )

√
MaMb

Ea(p)Eb(p)
, (2.22)

and similarly for Kirr(p′′,p|W ). The thus redefined quantities obey again equation
(2.21), except for the factor [. . .] on the right-hand side. Closing now the contour of
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the p′′0-integration in the upper-half plane, one picks up again only the contribution at
p′′0 = W − E(p′′), which means that (2.21) becomes the Thompson equation [28]

M(p′,p|W ) = K irr(p′,p|W ) +

∫
d3p′′

(2π)3
Kirr(p′,p′′|W ) E

(+)
2 (p′′;W ) M(p′′,p|W ) , (2.23)

where E
(+)
2 (p′′;W ) = (W −W(p′′) + iδ)−1. Written explicitly, we have from (2.20b) that

the two-nucleon irreducible kernel is given by

K irr(p′,p|W ) = − 1

(2π)2

√
MaMb

Ea(p′)Eb(p′)

√
MaMb

Ea(p)Eb(p)
(W −W(p′)) (W −W(p))

×
∫ +∞

−∞
dp′0

∫ +∞

−∞
dp0

[{
F

(a)
W (p′, p′0)F

(b)
W (−p′,−p′0)

}−1

× [I(p′0,p
′; p0,p)]++,++

{
F

(a)
W (p, p0)F

(b)
W (−p,−p0)

}−1
]
, (2.24)

which is the same expression as we exploited in our previous papers, e.g. [2, 5, 20]. In the
latter we exploited the three-dimensional wave function according to Salpeter [29] combined
with the Macke-Klein ansatz [21]. For the scattering amplitude the derivation given above
is more direct. For a discussion and comparison with other three-dimensional reductions
of the Bethe-Salpeter equation we refer to [27]. In case one does not assume the strong
pair-suppression, one must study instead of equation (2.14) a more general equation with
couplings between the positive and negative energy spinorial amplitudes. Also to this more
general case one can apply the described three-dimensional reduction, and we refer the reader
to [27] for a treatment of this case.

The M/E-factors in (2.24) are due to the difference between the relativistic and the
non-relativistic normalization of the two-particle states. In the following we simply put
M/E(p) = 1 in the kernel K irr Eq. (2.24). The corrections to this approximation would
give (1/M)2-corrections to the potentials, which we neglect in this paper. In the same ap-
proximation there is no difference between the Thompson [28] and the Lippmann-Schwinger
equation, when the connection between these equations is made using multiplication factors.
Henceforth, we will not distinguish between the two.

The contributions to the two-particle irreducible kernel K irr up to second order in the
meson-exchange are given in detail in [2, 3].

C. Lippmann-Schwinger Equation

The transformation of (2.23) to the Lippmann-Schwinger equation can be effectuated by
defining

T (p′,p) = N(p′) M(p′,p|W ) N(p) , (2.25a)

V (p′,p) = N(p′) K irr(p′,p|W ) N(p) , (2.25b)

where the transformation function is

N(p) =

√
p2
i − p2

2MN(E (pi)− E(p))
. (2.26)
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1

FIG. 1: One-boson-exchange graphs: The dashed lines with momentum k refers to the bosons:
pseudo-scalar, vector, axial-vector, or scalar mesons.

Application of this transformation, yields the Lippmann-Schwinger equation

T (p′,p) = V (p′,p) +

∫
d3p′′

(2π)3

×V (p′,p′′) g(p′′;W ) T (p′′,p) (2.27)

with the standard Green function

g(p;W ) =
MN

p2
i − p2 + iδ

. (2.28)

The corrections to the approximation E
(+)
2 ≈ g(p;W ) are of order 1/M2, which we neglect

hencforth.
The transition from Dirac-spinors to Pauli-spinors, is given in Appendix C of [20], where

we write for the the Lippmann-Schwinger equation in the 4-dimensional Pauli-spinor space

T (p′,p) = V(p′,p) +

∫
d3p′′

(2π)3

×V(p′,p′′) g(p′′;W ) T (p′′,p) . (2.29)

The T -operator in Pauli spinor-space is defined by

χ
(a)†
σ′a

χ
(b)†
σ′b

T (p′,p) χ(a)
σa
χ(b)
σb

= ūa(p
′, σ′a)ūb(−p′, σ′b)

×T̃ (p′,p) ua(p, σa)ub(−p, σb) . (2.30)

and similarly for the V-operator. Like in the derivation of the OBE-potentials [14, 30] we

make off-shell and on-shell the approximation, E(p) = M+p2/2M and W = 2
√

p2
i +M2 =

2M+p2
i /M , everywhere in the interaction kernels, which, of course, is fully justified for low

energies only. In contrast to these kind of approximations, of course the full k2-dependence of
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(a)

p

p’

-p

-p’

p’’

-p’’

k

k’

(b)

p

p’

-p

-p’

p’’

-p’’

k

k’

(c)

p

p’

-p

-p’

p’’
-p’’

k

k’

(d)

FIG. 2: BW two-meson-exchange graphs: (a) planar and (b)–(d) crossed box. The dashed line
with momentum k1 refers to the pion and the dashed line with momentum k2 refers to one of the
other (vector, scalar, or pseudoscalar) mesons. To these we have to add the “mirror” graphs, and
the graphs where we interchange the two meson lines.

the form factors is kept throughout the derivation of the TME. Notice that the Gaussian form
factors suppress the high momentum transfers strongly. This means that the contribution to
the potentials from intermediate states which are far off-energy-shell can not be very large.

Because of rotational invariance and parity conservation, the T -matrix, which is a 4× 4-
matrix in Pauli-spinor space, can be expanded into the following set of in general 8 spinor
invariants, see for example [31]. Introducing [32]

q =
1

2
(p′ + p) , k = p′ − p , n = p× p′ , (2.31)
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k
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FIG. 3: Planar-box TMO two-meson-exchange graphs. Same notation as in Fig. 2. To these we
have to add the “mirror” graphs, and the graphs where we interchange the two meson lines.

with, of course, n = q× k, we choose for the operators Pj in spin-space

P1 = 1 , (2.32a)

P2 = σ1 · σ2 , (2.32b)

P3 = (σ1 · k)(σ2 · k)− 1

3
(σ1 · σ2) k2 , (2.32c)

P4 =
i

2
(σ1 + σ2) · n , (2.32d)

P5 = (σ1 · n)(σ2 · n) , (2.32e)

P6 =
i

2
(σ1 − σ2) · n , (2.32f)

P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q) , (2.32g)

P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q) . (2.32h)

Here we follow [8], where in contrast to [14], we have chosen P3 to be a purely ‘tensor-force’
operator. The expansion in spinor-invariants reads

T (p′,p) =
8∑
j=1

T̃j(p
′2,p2,p′ · p) Pj(p

′,p) . (2.33)

Similarly to (2.33) we expand the potentials V . Again following [8], we neglect the potential
forms P7 and P8, and also the dependence of the potentials on k · q . Then, the expansion
(2.33) reads for the potentials as follows

V =
4∑
j=1

Ṽj(k
2,q 2) Pj(k,q) . (2.34)
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FIG. 4: One- and Two-Pair exchange graphs. To these we have to add the “mirror” graphs, and
the graphs where we interchange the two meson lines.

III. EXTENDED-SOFT-CORE POTENTIALS IN MOMENTUM SPACE

The potential of the ESC-model contains the contributions from (i) One-boson-exchanges,
Fig. 1, (ii) Uncorrelated Two-Pseudo-scalar exchange, Fig. 2 and Fig. 3, and (iii) Meson-
Pair-exchange, Fig 4. In this section we review the potentials and indicate the changes with
respect to earlier papers on the OBE- and ESC-models.

A. One-Boson-Exchange Interactions in Momentum Space

The OBE-potentials are the same as given in [8, 14], with the exception of (i) the
zero in the scalar form factor, and (ii) the axial-vector-meson potentials. Here, we review
the OBE-potentials briefly, and give those potentials that are not incuded in the above
references. The local interaction Hamilton densities for the different couplings are

12



a) Pseudoscalar-meson exchange

HPV = i
fP
mπ+

ψ̄γµγ5ψ∂
µφP , (3.1)

b) Vector-meson exchange

HV = igV ψ̄γµψφ
µ
V +

fV
4M ψ̄σµνψ(∂µφνV − ∂νφµV ) , (3.2)

c) Axial-vector-meson exchange

HA = gAψ̄γµγ5ψφ
µ
A +

ifA
M

[
ψ̄γ5ψ

]
∂µφ

µ
A , (3.3)

We take fA = 0, and notice that for the A1-meson the interaction (3.3) is part of interaction

L(A)
I = 2gA

[
ψ̄γ5γµ

τ

2
ψ + (π∂µσ − σ∂µπ)

+ fπ∂µπ

]
·Aµ , (3.4)

which is such that the A1 couples to an almost conserved axial current (PCAC). Therefore,
the A1-coupling used is compatible with broken SU(2)V × SU(2)A-symmetry [33].

d) Scalar-meson exchange
HS = gSψ̄ψφS . (3.5)

Here, we used the conventions of [26] where σµν = [γµ, γν ]/2i. The scaling masses mπ+ and
M are chosen to be the charged pion and the proton mass, respectively. Note that the
vertices for ‘diffractive’-exchange have the same Lorentz structure as those for scalar-meson-
exchange.

Including form factors f(x′ − x) , the interaction hamiltonian densities are modified to

HX(x) =

∫
d3x′ f(x′ − x)HX(x′) , (3.6)

for X = PV, V , A, S, or D. Because of the convolutive non-local form, the potentials in
momentum space are the same as for point interactions, except that the coupling constants
are multiplied by the Fourier transform of the form factors.

In the derivation of the Vi we employ the same approximations as in [8, 14], i.e.

1. We expand in 1/M : E(p) = [k2/4 + q2 +M2]
1
2

≈ M + k2/8M + q2/2M and keep only terms up to first order in k2/M and q2/M .
This except for the form factors where the full k2-dependence is kept throughout the
calculations. Notice that the gaussian form factors suppress the high k2-contributions
strongly.

2. In the meson propagators (−(p1 − p3)
2 +m2) ≈ (k2 +m2) .

3. When two different baryons are involved at a BBM -vertex their average mass is used
in the potentials and the non-zero component of the momentum transfer is accounted
for by using an effective mass in the meson propagator (for details see [8]).
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Due to the approximations we get only a linear dependence on q2 for V1. In the following,
we write

Vi(k
2,q2) = Via(k

2) + Vib(k
2)q2 , (3.7)

where in principle i = 1, 8.
The OBE-potentials are now obtained in the standard way (see e.g. [8, 14]) by evaluating

the BB-interaction in Born-approximation. We write the potentials Vi of Eqs. (2.34) and
(3.7) in the form

Vi(k
2,q 2) =

∑
X

Ω
(X)
i (k 2) ·∆(X)(k2,m2,Λ2) , (3.8)

where X = P, V, A, S, and D (P = pseudo-scalar, V = vector, A = axial-vector, S =
scalar, and D = diffractive). Furthermore for X = P, V

∆(X)(k2,m2,Λ2) = e−k2/Λ2

/
(
k2 +m2

)
, (3.9)

and for X = S,A a zero in the form factor

∆(S)(k2,m2,Λ2) =
(
1− k2/U2

)
e−k2/Λ2

/
(
k2 +m2

)
, (3.10)

and for X = D

∆(D)(k2,m2,Λ2) =
1

M2
e−k2/(4m2

P ) . (3.11)

In the latter expression M is a universal scaling mass, which is again taken to be the proton
mass. The mass parameter mP controls the k2-dependence of the pomeron-, f -, f ′-, A2-,
and K??-potentials.

Next, we make remarks which point out the differences in the potentials of this work as
compared to with earlier soft-core model papers:

a) For pseudo-scalar mesons, the graph’s of Fig. 1 give for the second-order potential

VPS(k,q) ≈ K
(2)
PS(p

′,p|W )

VPS(k,q) = −f13f24

m2
π

(
1− (q2 + k2/4)

2MYMN

)
·

×(σ1 · k)(σ2 · k)

ω(k)[ω(k) + a]
exp

(−k2/Λ2
)
, (3.12)

where a ≈ (q2 + k2/4) − p2
i . Here, pi is the on-energy-shell momentum. On-energy-shell

a = 0, and henceforth we neglect the non-adiabatic effects, i.e. a 6= 0, in the OBE-potentials.
However, we do include the non-local term in (3.12, to which we refer in the following as
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the Graz-correction [34]. From (3.12) we find for Ω
(P )
i :

Ω
(P )
2a = gP13g

P
24

(
k2

12MYMN

)
(3.13a)

Ω
(P )
2b = −gP13g

P
24

(
k2

24M2
YM

2
N

)
(3.13b)

Ω
(P )
3a = −gP13g

P
24

(
1

4MYMN

)
(3.13c)

Ω
(P )
3a = +gP13g

P
24

(
1

8M2
YM

2
N

)
(3.13d)

The Ω
(P )
2b,3b contributions were not included in [8, 14].

b) For vector-, and diffractive OBE-exchange we refer the reader to Ref. [8], where the

contributions to the different Ω
(X)
i ’s for baryon-baryon scattering are given in detail. Also,

it is trivial to obtain from [8] the scalar-meson Ωi making the substitutions:

Ω
(S)
i → (

1− k2/U2
)

Ω
(S)
i ,

which now evidently have a zero for k2 = U2.

c) For the axial-vector mesons, the detailed derivation of the Ω
(A)
i is given in Appendix A.

Using the approximations (1-5), from the 1st-term in the axial-meson propagator we get, see
(A11), the following contributions

Ω
(A)
2a = −gA13g

A
24

(
1 +

k2

24MYMN

)
, (3.14a)

Ω
(A)
2b = −gA13g

A
24

1

6MYMN

, (3.14b)

Ω
(A)
3 = +gA13g

A
24

3

4MYMN

, (3.14c)

Ω
(A)
4 = −gA13g

A
24

1

2MYMN

, (3.14d)

Ω
(A)
6 = −gA13g

A
24

(M2
N −M2

Y )

4M2
YM

2
N

. (3.14e)

From the 2nd-term propagator we get, see (A13),

Ω
(A)
2a = −gA13g

A
24

(
1− k2

8MYMN

)
· k2

3m2
, (3.15a)

Ω
(A)
2b = +gA13g

A
24

1

2MYMN

· k2

3m2
, (3.15b)

Ω
(A)
3a = −gA13g

A
24

(
1− k2

8MYMN

)
· 1

m2
, (3.15c)

Ω
(A)
3b = +gA13g

A
24

1

2MYMN

· 1

m2
. (3.15d)
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For the inclusion of the zero in the axial-vector meson form factor we also make here the
changes

Ω
(A)
i → (

1− k2/U2
)

Ω
(A)
i ,

with the same U -mass as used for the scalar mesons. The motivation for the inclusion
of a zero in the form factor here is again motivated by the quark-model, because for the
axial-vector mesons one has the configuration QQ̄(3P1).

As in Ref. [8] in the derivation of the expressions for Ω
(A)
i , given above, MY and MN

denote the mean hyperon and nucleon mass, respectively MY = (M1 + M3)/2 and MN =
(M2+M4)/2, andm denotes the mass of the exchanged meson. Moreover, the approximation
1/M2

N +1/M2
Y ≈ 2/MNMY , is used, which is rather good since the mass differences between

the baryons are not large.

B. One-Boson-Exchange Interactions in Configuration Space

a) For X = P the local configuration space potentials are given in Ref. [8]. Here, we give

the non-local Graz- corrections. From the Fourier transform of the Ω
(P )
2b,3b contributions

and (3.13d) we have

∆VPS(r) =
f13f24

4π
· m

3

m2
π

·
{

1

3
(σ1 · σ2)

(∇2φ1
C + φ1

C∇2
)

+
(∇2φ0

T S12 + φ0
TS12∇2

)}
/(4MYMN) , (3.16)

where φ0
C , φ

1
C , φ

0
T are defined in [8, 14], and are functions of (m, r,Λ).

b) Again, for X = V,D we refer to the configuration space potentials in Ref. [8]. For
X = S we give here the additional terms w.r.t. those in [8], which are due to the zero
in the scalar form factor. They are

∆VS(r) = −m

4π

m2

U2

[
gS13g

S
24

{[
φ1
C −

m2

4MYMN

φ2
C

]
+

m2

2MYMN

φ1
SO L · S

+
m4

16M2
YM

2
N

φ1
T Q12 +

m2

4MYMN

M2
N −M2

Y

MYMN

φ
(1)
SO ·

1

2
(σ1 − σ2) · L

}]
. (3.17)

c) For the axial-vector mesons, the configuration space potential corresponding to (3.14e)
is

V
(1)
A (r) = −g

2
A

4π
m

[
φ0
C (σ1 · σ2)− 1

12MYMN

(∇2φ0
C + φ0

C∇2
)
(σ1 · σ2)

+
3m2

4MYMN

φ0
T S12 +

m2

2MYMN

φ0
SO(m, r) L · S

+
m2

4MYMN

M2
N −M2

Y

MYMN

φ
(0)
SO ·

1

2
(σ1 − σ2) · L

]
. (3.18)
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The configuration space potential corresponding to (3.15d) is

V
(2)
A (r) =

g2
A

4π
m

[
1

3
(σ1 · σ2)φ

1
C +

1

12MYMN

((σ1 · σ2)
(∇2φ1

C + φ1
C∇2

)

+S12 φ
0
T +

1

4MYMN

(∇2φ0
TS12 + φ0

TS12∇2
)]

, (3.19)

The extra contribution to the potentials coming from the zero in the axial-vector
meson form factor are obtained from the expression (3.18) by making substitutions as
follows

∆V
(1)
A (r) = V

(1)
A

(
φ0
C → φ1

C , φ
0
T → φ1

T , φ
0
SO → φ1

SO

) · m
2

U2
. (3.20)

Note that we do not include the similar ∆V
(2)
A (r) since they involve k4-terms in

momentum-space.

C. PS-PS-exchange Interactions in Configuration Space

In Fig. 2 and Fig. 3 the included two-meson exchange graphs are shown schematically.
The Bruckner-Watson (BW) graphs [35] contain in all three intermediate states both mesons
and nucleons. The Taketani-Machida-Ohnuma (TMO) graphs [36] have one intermediate
state with only nucleons. Explicit expression for Kirr(BW ) and Kirr(TMO) were derived
[20], where also the terminology BW and TMO is explained. The TPS-potentials for nucleon-
nucleon have been given in detail in [2]. The generalization to baryon-baryon is similar to
that for the OBE-potentials. So, we substitute M → √

MYMN , and include all PS-PS
possibilities with coupling constants as in the OBE-potentials. As compared to nucleon-
nucleon in [2] here we have included in addition the potentials with double K-exchange. The
masses are the physical pseudo-scalar meson masses. For the intermediate two-baryon states
we take into account of the different thresholds. We have not included uncorrelated PS-
vector, PS-scalar, or PS-diffractive exchange. This because the range of these potentials is
similar to those of the vector-, scalar-, and axial-vector-potentials. Moreover, for potentially
large potentials, in particularly those with scalar mesons involved, there will be very strong
cancellations between the planar- and crossed-box contributions.

D. MPE-exchange Interactions

In Fig. 4 both the one-pair graphs and the two-pair graphs are shown. In this work
we include only the one-pair graphs. The argument for neglecting the two-pair graph is to
avoid some ’double-counting’. Viewing the pair-vertex as containing heavy-meson exchange
means that the contributions from ρ(750) and ε = f0(760) to the two-pair graphs is already
accounted for by our treatment of the broad ρ and ε OBE-potential. For a more complete
discussion of the physics behind MPE we refer to our previous papers [1, 3]. The MPE-
potentials for nucleon-nucleon have been given in [3]. The generalization to baryon-baryon is
similar to that for the TPS-potentials. For the intermediate two-baryon states we neglect the
different two-baryon thresholds. This because, although in principle possible, it complicates
the computation of the potentials considerably. The generalization of the pair-couplings
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to baryon-baryon is described in paper II [10], section III. Also here in NN , we have in
addition to [3] included the pair-potentials with K ⊗ K-, K ⊗ K∗-, and K ⊗ κ-exchange.
The convention for the MPE coupling constants is the same as in [3].

E. The Schrödinger equation with Non-local potential

The non-local potentials are of the central-, spin-spin, and tensor type. The method
of solution of the Schrödinger equation for nucleon-nucleon is described in [14] and [34].
Here, the non-local tensor is in momentum space of the form q2 ṽT (k). For a more general
treatment of the non-local potentials see [37].

IV. ESC-COUPLINGS AND THE QPC-MODEL

According to the Quark-Pair-Creation (QPC) model, in the 3P0-version [16], the baryon-
baryon-meson couplings are given in terms of the quark-pair creation constant γM , and the
radii of the (constituent) gaussian quark wave functions, by [17, 18]

gBBM(∓) = 2 (9π)1/4 γM XM (IM , LM , SM , JM) F
(∓)
M ,

where XM(. . .) is a isospin, spin etc. recoupling coefficient, and

F (−) = (mMRM)3/2

(
3R2

B

3R2
B +R2

M

)3/2 (
4R2

B +R2
M

3R2
B +R2

M

)
,

F (+) = (mMRM)1/2

(
3R2

B

3R2
B +R2

M

)3/2
4R2

M

(3R2
B +R2

M)

are coming from the overlap integrals. Here, the superscripts ∓ refer to the parity of the
mesons M : (−) for JPC = 0+−, 1−−, and (+) for JPC = 0++, 1++. The radii of the baryons,
in this case nucleons, and the mesons are respectively denoted by RB and RM .

The QPC(3P0)-model gives several interesting relations, such as

gω = 3gρ , gε = 3ga0 ,
ga0 ≈ gρ , gε ≈ gω .

(4.1)

We see here an interesting link between the vector-meson and the scalar-meson couplings,
which is not totally surprising, because the scalar polarization-vector ε0 of the vector mesons
in the quark-model is realized by a QQ̄(3P0)-state. This is the same state as for the scalar
mesons in the QQ̄-picture.

From ρ → e+e−, employing the current-field-identities (C.F.I’s) one can derive, see for
example [38], the following relation with the QPC-model

fρ =
m

3/2
ρ√

2|ψρ(0)| ⇔ γM

(
2

3π

)1/2
m

3/2
ρ

|′ψρ(0)′| , (4.2)

which, neglecting the difference between the wave functions on the left and right hand side,
gives for the pair creation constant γM → γ0 = 1

2

√
3π = 1.535. However, since in the QPC-

model gaussian wave functions are used, the QQ̄-potential is a harmonic-oscillator one. This

18



does not account for the 1/r-behavior, due to one-gluon-exchange (OGE), at short distance.
This implies a OG-correction [39] to the wave function, which gives for γM [40]

γM = γ0

(
1− 16

3

α(mM)

π

)−1/2

. (4.3)

In Table I γM(µ) is shown, using from [41] the parameterization

αs(µ) = 4π/
(
β0 ln(µ2/Λ2

QCD)
)
, (4.4)

with ΛQCD = 100 MeV and β0 = 11 − 2
3
nf for nf = 3. From this table one sees that

TABLE I: Pair-creation constant γM as function of αs.

µ [GeV] αs(µ) γM (µ)
∞ 0.00 1.535

80.0 0.10 1.685
35.0 0.20 1.889
1.05 0.30 2.191
0.55 0.40 2.710
0.40 0.50 3.94
0.35 0.55 5.96

at the scale of mM ≈ 1 GeV a value γM = 2.19 is reasonable. This value we will use
later when comparing the QPC-model predictions and the ESC04-model coupling constants.
As remarked in [40] the correction to γ0 is not small, and therefore should be seen as an
indication.
In Table II we show the 3P0-model results and the values obtained in the ESC04-fit. In this
table we fixed γM = 2.19 for the vector-, scalar-, and axial-vector-mesons, for RB = 0.54 fm.
This ’effective’ radius is choosen from [17], where it was determined using the Regge slopes.
Here, one has to realize that the QPC-predictions are kind of ”bare” couplings, which allows
vertex corrections from meson-exchange. For the pseudo-scalar, a different value has to be
used, showing indeed some ’running’-behavior as expected from QCD. In [40], for the decays
ρ, ε → 2π etc. it was found γπ = 3.33, whereas we need here γπ = 4.84. Of course, there
are several ways to change this by, for example, using other ’effective’ meson-radii. For the
mesonic decays of the charmonium states γψ = 1.12. One notices the similarity between the
QPC(3P0)-model predictions and the fitted couplings.

Finally, we notice that the Schwinger relation [19]

gNNa1 ≈
ma1

mπ

fNNπ , (4.5)

is also rather well satisfied, both in the QPC-model and the ESC04-fit.
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TABLE II: ESC04 Couplings and 3P0-Model Relations.

Meson rM [fm] XM γM
3P0 ESC04

π(140) 0.66 5/6 4.84 f = 0.26 0.26
ρ(770) 0.66 1 2.19 g = 0.93 0.78
ω(783) 0.66 3 2.19 g = 2.86 3.12
a0(962) 0.66 1 2.19 g = 0.93 0.81
ε(760) 0.66 3 2.19 g = 2.47 2.87
a1(1270) 0.66 5

√
2/6 2.19 g = 2.51 2.42

V. ESC-MODEL , RESULTS

A. Parameters and Nucleon-nucleon Fit

During the searches fitting the NN-data with the present ESC-model ESC04, it was found
that the OBE-couplings could be constraint successfully using the ’naive’ QPC-predictions
as a guidance [16]. Although these predictions, see section IV, are ’bare’ ones, we kept during
the searches all OBE-couplings rather closely in the neighborhood of these predictions. Also,
it appeared that we could either fix all F/(F +D)-ratios to those as suggested by the QPC-
model, or apply the same strategy as for the OBE-couplings.

The meson nonets contain SU(3) octet and mixed octet-singlet members. We assign in
principle cut-offs Λ8 and Λ1 to the octets and singlets respectively. However, because of
the octet-singlet mixings for the I = 0 members, and the use of the physical mesons in the
potentials, we use Λ1 for all I = 0-mesons. We have as free cut-off parameters (ΛP

8 ,Λ
V
8 ,Λ

S
8 ),

and similarly a set for the singlets. For the axial-vector mesons we use a single cut-off ΛA.
The treatment of the broad mesons ρ and ε is the same as in the OBE-models [8, 14].

In this treatment a broad meson is approximated by two narrow mesons. The mass and
width of the broad meson determines the masses m1,2 and the weights β1,2 of these naroow
ones. For the ρ-meson the same parameters are used as in [8, 14]. However, for ε = f0(760),
assuming [14] mε = 760 MeV and Γε = 640 MeV, the Bryan-Gersten parameters [42] are
used: m1 = 496.39796 MeV, m2 = 1365.59411 MeV, and β1 = 0.21781, β2 = 0.78219.

The ’mass’ of the diffractive exchanges were all fixed to mP = 309.1 MeV.
Summarizing the parameters we have for NN:

1. QPC-constrained: fNNπ, fNNη′ , gNNρ, gNNω,
fNNρ, fNNω, gNNa1 , ga0 , gNNε, gNNA2 , gNNP ,

2. Pair couplings: gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 ,
gNNπω, gNNπη, gNNπε,

3. Cut-off masses: ΛP
8 ,Λ

V
8 ,Λ

S
8 ,Λ

V
1 ,Λ

S
1 ,Λ

A.

The pair coupling gNN(ππ)0 was kept fixed at a small, but otherwise arbitrary value.
Together with the fit to the 1993 Nijmegen representation of the χ2-hypersurface of the

NN scattering data below Tlab = 350 MeV [43], also some low-energy parameters were fitted:
the np and nn scattering lengths and effective ranges for the 1S0, and the binding energy of
the deuteron EB.
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FIG. 5: Solid line: proton-proton I = 1 phase shifts for the ESC04-model. The dashed line: the
m.e. phases of the Nijmegen93 PW-analysis [43]. The black dots: the s.e. phases of the Nijmegen93
PW-analysis. The diamonds: Bugg s.e. [44].

We obtained for the phase shifts a χ2/Ndata = 1.155. The phase shifts are shown in
Table’s III and IV, and also in Fig.’s 5-8. In Table VIII the distribution of the χ2 for ESC04
is shown for the ten energy bins used in the single-energy (s.e.) phase shift analysis, and
compared with that of the updated partial-wave analysis [45].

We emphasize that we use the single-energy (s.e.) phases and χ2-surfaces [45] only as
a means to fit the NN-data. As stressed in [43] the Nijmegen s.e. phases have not much
significance. The significant phases are the multi-energy (m.e.) ones, see the dashed lines
in the figures. One notices that the central value of the s.e. phases do not correspond
to the m.e. phases in general, illustrating that there has been a certain amount of noise
fitting in the s.e. PW-analysis, see e.g. ε1 and 1P1 at Tlab = 100 MeV. The m.e. PW-
analysis reaches χ2/Ndata = 0.99, using 39 phenomenological parameters plus normalization
parameters, in total more than 50 free parameters. The related phenomenological PW-
potentials NijmI,II and Reid93 [46], with respectively 41, 47, and 50 parameters, all with
χ2/Ndata = 1.03. This should be compared to the ESC-model, which has χ2/Ndata = 1.155
using 20 parameters. These are 11 QPC-constrained meson-nucleon-nucleon couplings, 6
meson-pair-nucleon-nucleon couplings, and 3 gaussian cut-off parameters. From the figures it
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FIG. 6: Solid line: proton-proton I = 1 phase shifts for the ESC04-model. The dashed line: the
m.e. phases of the Nijmegen93 PW-analysis [43]. The black dots: the s.e. phases of the Nijmegen93
PW-analysis. The diamonds: Bugg s.e. [44].

is obvious that the ESC-model deviates from the m.e. PW-analysis at the highest energy for
some partial waves. If we evaluate the χ2 for the first 9 energies only, we obtain χ2/Ndata =
1.10.

In Table V the results for the low energy parameters are given. In order to discriminate
between the 1S0-wave for pp, np, and nn, we introduced some charge independence breaking
by taking gppρ 6= gnpρ 6= gnnρ. With this device we fitted the difference between the 1S0(pp)
and 1S0(np) phases, and the different scattering lengths and effective ranges as well. We
found gnpρ = 0.71, gnnρ = 0.74, which are not far from gppρ = 0.78, see Table VI.

For ann(
1S0) we have used in the fitting the value from an investigation of the n-p and

n-n final state interaction in the 2H(n, nnp) reaction at 13 MeV [47]. The value for ann(
1S0)

is still somewhat in discussion. Another recent determination [48] obtained e.g. ann(
1S0) =

−16.27±0.40 fm. Fitting with the latter value yields for the ESC04-model the value −16.74
fm. Then, the quality of the fit to the phase shift analysis is the same, with small changes
to the parameters and phase shifts. For a discussion of the theoretical and experimental
situation w.r.t. these low energy parameters, see also [49].
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FIG. 7: Solid line: neutron-proton I = 0 phase shifts for the ESC04-model. The dashed line: the
m.e. phases of the Nijmegen93 PW-analysis [43]. The black dots: the s.e. phases of the Nijmegen93
PW-analysis. The diamonds: Bugg s.e. [44].

B. Coupling Constants

In Table VI we show the OBE-coupling constants and the gaussian cut-off’s Λ. The
used α =: F/(F +D)-ratio’s for the OBE-couplings are: pseudo-scalar mesons αpv = 0.388,
vector mesons αeV = 1.0, αmV = 0.387, and scalar-mesons αS = 0.852, which is computed
using the physical S∗ = f0(993) coupling etc.. In Table VII we show the MPE-coupling
constants. The used α =: F/(F +D)-ratio’s for the MPE-couplings are: (πη) etc. and (πω)
pairs α({8s}) = 1.0, (ππ)1 etc. pairs αeV ({8}a) = 1.0, αmV ({8}a) = 0.387, (πρ)1 etc. pairs
αA({8}a) = 0.652.

Unlike in [2, 3], we did not fix pair couplings using a theoretical model, based on heavy-
meson saturation and chiral-symmetry. So, in addition to the 14 parameters used in [2, 3]
we now have 6 pair-coupling fit parameters. In Table VII the fitted pair-couplings are given.
Note that the (ππ)0-pair coupling gets contributions from the {1} and the {8s} pairs as
well, giving in total g(ππ) = 0.10, which has the same sign as in [3]. The f(ππ)1-pair coupling
has opposite sign as compared to [3]. In a model with a more complex and realistic meson-
dynamics [4] this coupling is predicted as found in the present ESC-fit. The (πρ)1-coupling
agrees nicely with A1-saturation, see [3]. We conclude that the pair-couplings are in general
not well understood, and deserve more study.

The ESC-model described here is fully consistent with SU(3)-symmetry. For the full
SU(3) contents of the pair interaction Hamiltonians we refer to paper II, section III.
Here, one finds for example that g(πρ)1 = gA8V P , and besides (πρ)-pairs one sees also that
(KK∗(I = 1)- and KK∗(I = 0)-pairs contribute to the NN potentials. All F/(F + D)-
ratio’s are taken fixed with heavy-meson saturation in mind, which implies that these ratios
are 0.4 or 1.0 depending on the heavy-meson type. The approximation we have made in this
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paper is to neglect the baryon mass differences, i.e. we put mΛ = mΣ = mN . This because
we have not yet worked out the formulas for the inclusion of these mass differences, which
is straightforward in principle.

VI. DISCUSSION AND CONCLUSIONS

We mentioned that we do not include negative energy state contributions. It is assumed
that a strong pair suppression is operative at low energies in view of the composite nature
of the nucleons. This leaves us for the pseudo-scalar mesons with two essential equivalent
interactions: the direct and the derivative one. In expanding the NNπ- etc. vertex in 1/MN

these two interactions differ in the 1/M2
N -terms, see [2] equations (3.4) and (3.5). This gives

the possibility to use instead of the interaction in (3.1) the linear combination

Hps =
1

2

[
(1− aPV )gNNπψ̄iγ5τψ · π+

aPV (fNNπ/mπ)γµγ5τψ · ∂µπ] , (6.1)
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TABLE III: ESC04 nuclear-bar pp and np phases in degrees.

Tlab 0.38 1 5 10 25
] data 144 68 103 290 352
∆χ2 20 38 17 34 12

1S0(np) 54.58 61.89 63.04 59.13 49.66
1S0 14.62 32.63 54.76 55.16 48.58
3S1 159.38 147.76 118.21 102.66 80.76
ε1 0.03 0.11 0.67 1.14 1.72

3P0 0.02 0.13 1.55 3.67 8.50
3P1 -0.01 -0.08 -0.87 -1.98 -4.78
1P1 -0.05 -0.19 -1.52 -3.12 -6.49
3P2 0.00 0.01 0.22 0.66 2.49
ε2 -0.00 -0.00 -0.05 -0.19 -0.78

3D1 0.00 -0.01 -0.19 -0.69 -2.85
3D2 0.00 0.01 0.22 0.86 3.73
1D2 0.00 0.00 0.04 0.16 0.68
3D3 0.00 0.00 0.00 0.00 0.04
ε3 0.00 0.00 0.01 0.08 0.56

3F2 0.00 0.00 0.00 0.01 0.10
3F3 0.00 0.00 -0.00 -0.03 -0.22
1F3 0.00 0.00 -0.01 -0.07 -0.42
3F4 0.00 0.00 0.00 0.00 0.02
ε4 0.00 0.00 0.00 -0.00 -0.05

where gNNπ = (2MN/mπ)fNNπ. In ESC04 we have fixed aPV = 1, i.e. a purely derivative
coupling.

The presented ESC-model is successful in describing the NN-data, even in this QPC-
constrained version. Allowing total freedom in the couplings and cut-off masses, and without
fitting the low-energy parameters, we reached the lowest χ2

p.d.p. = 1.10. However, in that
case some couplings look rather artificial. With some less freedom, a typical fit with ESC-
model has χ2

p.d.p. = 1.15, see e.g. [5]. This means that by constraining the parameters rather

strongly, In the present NN-model ESC04 we we reached χ2
p.d.p. = 1.155, i.e. we have only

an extra ∆χ2 ≈ 250, showing the feasibility of the QPC-inspired couplings.
The gain of this is that we have physical motivated OBE-couplings etc.. We will see in the

next paper of this series, where we study the S = −1 YN-channels, that this feature persists
when we fit NN+YN simultaneously. Then, the advantage is that going to the S = −2 YN-
and YY-channels, it is reasonable to believe that the predictions made for these channels
are realistic ones. So far, there did not exist a realistic NN-model with sizeable axial-vector
mesons couplings as predicted by Schwinger [19]. Also, the zero in the scalar form factor
has moderated the f0(760) -coupling such that it fits with the QPC-model.

A momentum space version of ESC04 is readily available, using the material in [5]. We
only have to add the momentum space potentials for the axial-vector mesons, and the Graz-
corrections [34], which is rather straightforward.
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TABLE IV: ESC04 nuclear-bar pp and np phases in degrees.

Tlab 50 100 150 215 320
] data 572 399 676 756 954
∆χ2 118 29 114 137 337

1S0(np) 38.81 24.24 13.80 3.27 -9.80
1S0 38.77 24.71 14.42 3.97 -9.05
3S1 63.03 43.79 31.66 20.27 6.93
ε1 1.96 2.18 2.50 3.08 4.21

3P0 11.51 9.68 5.14 -1.13 -10.19
3P1 -8.16 -13.22 -17.43 -22.24 -28.81
1P1 -9.92 -14.65 -18.67 -22.37 -29.87
3P2 5.78 10.94 14.09 16.26 17.28
ε2 -1.66 -2.63 -2.92 -2.77 -2.13

3D1 -6.58 -12.67 -17.29 -21.90 -27.41
3D2 8.97 17.20 22.06 24.92 25.15
1D2 1.67 3.77 5.76 7.82 9.65
3D3 0.27 1.28 2.53 3.94 5.24
ε3 1.62 3.52 4.87 6.01 6.93

3F2 0.32 0.75 1.00 0.97 0.07
3F3 -0.65 -1.42 -2.02 -2.65 -3.63
1F3 -1.12 -2.18 -2.87 -3.56 -4.70
3F4 0.11 0.46 0.95 1.67 2.84
ε4 -0.19 -0.51 -0.81 -1.11 -1.44

3G3 -0.27 -0.99 -1.88 -3.10 -4.92
3G4 0.72 2.14 3.56 5.20 7.29
1G4 0.15 0.40 0.67 1.02 1.63
3G5 -0.05 -0.19 -0.32 -0.42 -0.43
ε5 0.21 0.72 1.26 1.90 2.75

Finally, the potentials of this paper are available on the Internet [50].

APPENDIX A: AXIAL-VECTOR-MESON COUPLING TO NUCLEONS

The coupling of the axial mesons (JPC = 1++) to the nucleons is given by

LANN = gA
[
ψ̄γ5γµτψ

] ·Aµ + i
fA
M

[
ψ̄γ5τψ

] · ∂µAµ

≈ gA
[
ψ̄γ5γµτψ

] ·Aµ (A1)

Here, M = 1 GeV is again a scaling mass. We note that with fA = 0 this coupling is part
of the A1-interaction to pions and nucleons

LI = 2gA

[
ψ̄γ5γµ

1

2
τψ + (π∂µσ − σ∂µπ) + fπ∂µπ

]
·Aµ ,
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TABLE V: ESC04 Low energy parameters: S-wave scattering lengths and effective ranges, deuteron
binding energy EB, and electric quadrupole Qe.

experimental data ESC04
app(1S0) -7.823 ± 0.010 -7.770
rpp(1S0) 2.794 ± 0.015 2.753
anp(1S0) -23.715 ± 0.015 -23.860
rnp(1S0) 2.760 ± 0.030 2.787
ann(1S0) -18.70 ± 0.60 -18.63
rnn(1S0) 2.75 ± 0.11 2.81
anp(3S1) 5.423 ± 0.005 5.404
rnp(3S1) 1.761 ± 0.005 1.749

EB -2.224644 ± 0.000046 -2.224933
Qe 0.286 ± 0.002 0.271

TABLE VI: Meson parameters employed in the potentials shown in Figs. 1 to 4. Coupling constants
are at k2 = 0. An asterisk denotes that the coupling constant is not searched, but constrained via
SU(3) or simply put to some value used in previous work. The used widths of the ρ and ε are 146
MeV and 640 MeV respectively.

meson mass (MeV) g/
√

4π f/
√

4π Λ (MeV)
π 138.04 0.2621 829.90
η 548.80 0.1673∗ 900.00
η′ 957.50 0.1802 900.00
ρ 770.00 0.7794 3.3166 782.38
ω 783.90 3.1242 0.0712 890.23
φ 1019.50 –0.6957 1.2686∗ 890.23
a1 1270.00 2.4230 968.23
f1 1420.00 1.4708 968.23
f ′1 1285.00 0.5981∗ 968.23
a0 962.00 0.8111 1161.27
ε 760.00 2.8730 1101.62
f0 993.00 –0.9669 1101.62
a2 309.10 0.0000

Pomeron 309.10 2.2031

which is such that the A1 couples to an almost conserved axial current (PCAC). Therefore,
the A1-coupling used here is compatible with broken SU(2)V × SU(2)A-symmetry, see e.g.
[33, 51]. For a more complete discussion of the A1-couplings to baryons we refer to [4]. The
latter reveals that as far as the axial-nucleon-nucleon coupling is concerned it is indeed of
the type indicated above.
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TABLE VII: Pair-meson coupling constants employed in the ESC04 MPE-potentials. Coupling
constants are at k2 = 0.

JPC SU(3)-irrep (αβ) g/4π f/4π

0++ {1} (ππ)0 0.0000
0++ ,, (σσ) —
0++ {8}s (πη) –0.440
0++ (πη′) —
1−− {8}a (ππ)1 0.000 0.119
1++ ,, (πρ)1 0.835
1++ ,, (πσ) 0.022
1++ ,, (πP ) 0.0
1+− {8}s (πω) –0.170

TABLE VIII: χ2 and χ2 per datum at the ten energy bins for the Nijmegen93 Partial-Wave-
Analysis. Ndata lists the number of data within each energy bin. The bottom line gives the results
for the total 0− 350 MeV interval. The χ2-excess for the ESC model is denoted by ∆χ2 and ∆χ̂2,
respectively.

Tlab ] data χ2
0 ∆χ2 χ̂2

0 ∆χ̂2

0.383 144 137.5549 20.7 0.960 0.144
1 68 38.0187 52.4 0.560 0.771
5 103 82.2257 10.0 0.800 0.098
10 209 257.9946 27.5 1.234 0.095
25 352 272.1971 29.2 0.773 0.083
50 572 547.6727 141.1 0.957 0.247
100 399 382.4493 32.4 0.959 0.081
150 676 673.0548 85.5 0.996 0.127
215 756 754.5248 154.6 0.998 0.204
320 954 945.3772 350.5 0.991 0.367

Total 4233 4091.122 903.9 0.948 0.208

In the Proca-formalism, for the axial-vector propagator enters the polarization-sum

Πµν(k) =
∑

λ

εµ(k, λ)εν(k, λ) = −ηµν + kµkν/m2 (A2)

where m denotes the mass of the axial meson and εµ(k) the polarization vector. Because

[
ψ̄γ5γµψ

]
kµkν

[
ψ̄γ5γνψ

]
=

[−iψ̄γ5γµk
µψ

] [
+iψ̄γ5γνk

νψ
]

(A3)

the second term in the ’propagator’ gives potentials which exactly are of the form as those
of pseudo-vector exchange. We note that these Γ5(p

′, p) = γ5γ · k-factors come from the
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∂µ-derivative of the pseudo-vector baryon-current. Then,

ū(p′)Γ5(p
′, p)u(p) ≈ i [σ · (p− p′)

∓E(p)− E(p′)
2M

σ · (p + p′)
]

(A4)

in contrast to what is used in [20], where in the 1/M -term ω(k) is taken, instead of the
baryon energy difference. Notice that the second term in (A4) is of order 1/M2 and moreover
vanishes on energy-shell. Hence this term we neglect. We write

ṼA = Ṽ
(1)
A + Ṽ

(2)
A , (A5)

where Ṽ
(2)
A = ṼPV with f 2

PV /m
2
π → g2

A/m
2. The transformation to the Lippmann-Schwinger

equation implies the potential

ṼA ∼=
(

1− k2

8M ′M
− q2

2M ′M

)
ṼA (A6)

Below, M ′ = MN and M = MY , which are the average nucleon mass or an average hyperon
mass, depending on the baryon-baryon system.

1. V(1)
A -potential term

Restriction to terms which are at most of order 1/M2, we find for the potential in Pauli-

spinor space for the Lippmann-Schwinger equation for Ṽ(1)
A Note here that, especially for

the anti-spin-orbit term, that (M,σ1) and (M ′,σ2) go with line 1 respectively with line 2.
Defining

k = p′ − p , q =
1

2
(p′ + p) , (A7)

and using moreover the approximation

1

M2
+

1

M ′2 ≈
2

MM ′ , (A8)

the potential V(1)
A is given in momentum space by

Ṽ(1)
A = −g2

A

[(
1 +

(q2 + k2/4)

6M ′M

)
σ1 · σ2

+
2

MM ′

(
(σ1 · q)(σ2 · q)− 1

3
q2σ1 · σ2

)

− 1

4M ′M

(
(σ1 · k)(σ2 · k)− 1

3
k2σ1 · σ2

)

+

(
1

4M2
− 1

4M ′2

)
· i
2
(σ1 − σ2) · q× k

+
i

4M ′M
(σ1 + σ2) · q× k

]
·
(

1

ω2

)
, (A9)
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Now, for a complete treatment one has to deal with the non-local tensor. Although this
can be done, see notes on non-local tensor potentials [37], in this work we use an approx-
imate treatment. We neglect the purely non-local tensor potential by making in (A9) the
substitution

1

MM ′

(
(σ1 · q)(σ2 · q)− 1

3
q2σ1 · σ2

)
→

− 1

4MM ′

(
(σ1 · k)(σ2 · k)− 1

3
k2σ1 · σ2

)
(A10)

leading to a potential with only a non-local spin-spin term. With this approximation, (A9)
becomes

Ṽ(1)
A = −g2

A

[(
1 +

(q2 + k2/4)

6M ′M

)
σ1 · σ2

− 3

4M ′M

(
(σ1 · k)(σ2 · k)− 1

3
k2σ1 · σ2

)

+

(
1

4M2
− 1

4M ′2

)
· i
2
(σ1 − σ2) · q× k

+
i

4M ′M
(σ1 + σ2) · q× k

]
·
(

1

ω2

)
. (A11)

Then, we find in configuration space

V(1)
A = −g

2
A

4π
m

[
φ0
C(m, r)(σ1 · σ2)

− 1

12M ′M

(∇2φ0
C + φ0

C∇2
)
(m, r)(σ1 · σ2)

+
3m2

4M ′M
φ0
T (m, r) S12 +

m2

2M ′M
φ0
SO(m, r) L · S

+
m2

4M ′M
M ′2 −M2

M ′M
φ

(0)
SO(m, r) · 1

2
(σ1 − σ2) · L

]
.

(A12)

2. V(2)
A -potential term

For the PV-type contributions we have [34]

Ṽ(2)
A = − g2

A

m2

(
1− k2

8M ′M
− q2

2M ′M

)
·

×(σ1 · k)(σ2 · k)

(
1

ω2

)
. (A13)
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The corresponding potentials in configuration space are

V(2)
A =

g2
A

4π
m

[
1

3
(σ1 · σ2)φ

1
C +

1

12M ′M
(σ1 · σ2)

(∇2φ1
C + φ1

C∇2
)

+ S12 φ
0
T

+
1

4M ′M

(∇2φ0
TS12 + φ0

TS12∇2
)]

, (A14)
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