Doctoring Data

Johan de Swart $^{1}\,,\,$ Mart Rentmeester $^{2}\,,\,$ Rob Timmermans 3

(1) Radboud University Nijmegen

(2) UMC Utrecht

(3) University of Groningen

Contents Part I: np backward scattering

Part I: np backward scattering

- 1. Introduction to np cross sections
- 2. np backward scattering
 - Princeton (1974)
 - LAMPF (1978)
 - Freiburg (1978 1981 1990 2000)
 - TRIUMF (1982)
 - Uppsala (1993 now)
 - IUCF (2005)
- 3. Adnorm method
- 4. Doctoring data
- 5. Conclusion

np cross sections (normalization)

PWA 93: • accurate phases, thus

• accurate normalization, because (forget spin)

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 \text{ and } f(\theta) = \sum (2\ell+1) \frac{e^{2i\delta} - 1}{2ik} P_{\ell}(\cos\theta)$$

- measured normalization, datum (1.0 $\pm \Delta N$), should be included in data base
 - calculated normalization, should NOT be included in data base.
 - floated normalization.
- Difficulty : Doctoring of data

exp:

e.g. Error bars should represent only the statistical errors, but contain almost always a systematic component.

TRIUMF: np cross section at 212 MeV

TRIUMF: absolute normalization

• 23 april 1999

I know from my own experience at TRIUMF how difficult it is to get the absolute normalisation right.
We tried very hard and analysed all sorts of effects for 2 years.
I hope we got it right, but it is one of those places where I have the least confidence.

- At TRIUMF they measured 3 total cross sections below 350 MeV. absolute normalization N = 1.000 (8) PWA93: N = 0.954 (7) \Rightarrow 6 s.d.
- At 319 MeV the normalization of the forward data (N-phase) needed renormalization of 8.5 %

TRIUMF: doctoring data

• feb 2001

" I am unhappy if you renormalise ALL of the data sets. Our whole objective was to monitor carefully the neutron intensity, hence obtain ABSOLUTE cross sections. (The monitors were ABSOLUTELY normalised.) "

 No errors in relative normalizations can be obtained !! Only absolutely normalized data, obviously they think that they can measure normalizations without errors ?! RIDICULOUS !

• No statistical errors are available !! Only point-to-point errors. These contain systematic components. Consequence: An incorrect, lower value for χ^2 .

LAMPF: np cross sections

Huge dataset: $162 \text{ MeV} < T_{lab} < 700 \text{ MeV}$ divided over 29 energies

 T_{lab} < 350 MeV 11 energies N_d = 650 $<\chi^2>$ = 639 \pm 39 χ^2 = 714 \Rightarrow 2 s.d.

LAMPF: doctoring data

29 data sets with T_{lab} < 700 MeV. Momentum bins of $\Delta p = \pm$ 20 MeV/c 11 data sets with T_{lab} < 350 MeV

7 data sets with T_{lab} < 270 MeV and non-overlapping angular regions.

Difficulties with data:

Relative normalization between different angular regions not available. Data in overlapping angular regions ($T_{lab} > 270$ MeV) were averaged.

Uppsala group complains about sawtooth behavior of data.

Freiburg: Hürster data (1978)

$$N_d = 31$$

 $\langle \chi^2 \rangle = 30 \pm 8$
 $\chi^2 = 182 \Rightarrow 23 \, sd$

data doctored (Franz 2000):

$$N_d = 27$$

$$\chi^2 = 70.6 \Rightarrow 6 sd$$

Large data set:

20 energy bins (each 20 Mev wide) with 190 MeV < T_{lab} < 590 MeV 8 energy bins with T_{lab} < 350 MeV centered at T_{lab} = 200 MeV, 220 MeV,, 320 MeV, 340 MeV

Uppsala: np cross section at 162 MeV

Originally: $N_d = 31$ and $119 < \theta < 180$ PWA93: $<\chi^2> = 30 \pm 8$ $\chi^2/N_d = 292/31 \Rightarrow 33 \ s.d.$ refit: χ^2 (data) goes down 27.6 χ^2 (rest) goes up 7.4

Complaint by experimentalist:

" These data were rejected by applying controversial criteria "

Complaint by us:

data not as measured, but data were doctored ! data contain LARGE systematic errors

$$N_d$$
 = 15 χ^2 = 116.6
 \Rightarrow 19 s.d.

$$N_d$$
 = 16 χ^2 = 35.2
 \Rightarrow 3.7 s.d.

$$N_d$$
 = 18 χ^2 = 18.5
 \Rightarrow 0.3 s.d.

$$N_d = 21$$
 $\chi^2 = 49.4$
 \Rightarrow 4.6 s.d.

$$N_d = 18$$
 $\chi^2 = 37.5$
 \Rightarrow 3.5 s.d.

Trento, 21 june 2005 - p.15/34

$$N_d = 15 \quad \chi^2 = 116.6$$

$$N_d = 16 \quad \chi^2 = 35.2$$

$$N_d = 18 \quad \chi^2 = 18.5$$

$$N_d = 21 \quad \chi^2 = 49.4$$

$$N_d = 18 \quad \chi^2 = 37.5$$

$$N_d$$
 = 88 $<\chi^2>$ = 83 \pm 13 χ^2 = 257 \Rightarrow 13 s.d.

Uppsala: straight lines

-0.009(2)

Uppsala: Normalization

- Normalizations (5) were not measured, but doctored.
- Relative normalizations (4) determined by assuming that cross section is continuous. Slope is still discontinuous.
- Data in overlapping regions were averaged.
- Absolute normalization calculated from other sources.
- Data are real sick. They need "radical DOCTORING".

IUCF: np cross section at 194 MeV

 $\begin{array}{ll} \mathsf{N}_d = \mathsf{15} & <\chi^2 > = \mathsf{14} \pm \mathsf{5} \\ \\ \mathsf{PWA93:} & \chi^2 = \mathsf{27} & \mathrm{refit} & \chi^2 = \mathsf{26} & \Rightarrow & \mathsf{2.4} & \mathrm{s.d.} \\ \\ \chi^2 = \mathsf{26} & \mathrm{is \ considered \ acceptable} \ , \\ & \text{when the \ errors \ are \ purely \ statistical.} \end{array}$

What to do?

- Data from Princeton, Freiburg, Uppsala \Rightarrow Garbage Pail ????
- How much money was involved in doing these experiments ?
 Who wants to guess ?
- Proposed method to save these data from oblivion.
 Angle dependent normalization.
 Adnorm method.
- No positive response from experimentalists involved in these experiments.

Only "... they propose radical DOCTORING ..."

• Conclusion: Let us do this radical doctoring.

Apply euthanasia to these data sets .

Adnorm Method

The data are in the interval $\theta_{min} < \theta < \theta_{max}$ and $\theta_m = (\theta_{max} + \theta_{min}) / 2$ is the middle of this interval.

The adnorm $N(\theta)$ is then

$$N(\theta) = N_0 + N_1 (\theta - \theta_m) + N_2 (\theta - \theta_m)^2 + \dots$$

The parameters $(N_1, N_2, ...)$ are only taken unequal to zero, when they are more than 3 s.d. away from zero. When they are significant.

Notation: Only $N_0 \Rightarrow \chi_0^2$ $N_0, N_1 \Rightarrow \chi_1^2$ $N_0, N_1, N_2 \Rightarrow \chi_2^2$

Doctoring the Uppsala data

•
$$N_d = 15$$
 $\chi_0^2 = 117$ \Rightarrow $\chi_1^2 = 20$ \Rightarrow $\chi_2^2 = 9$
• $N_d = 16$ $\chi_0^2 = 35$ \Rightarrow $\chi_1^2 = 15$
• $N_d = 18$ $\chi_0^2 = 18$
• $N_d = 20$ $\chi_0^2 = 35$
• $N_d = 18$ $\chi_0^2 = 38$ \Rightarrow $\chi_1^2 = 15$

Doctoring the Freiburg data

4 experiments between 1978 and 2000. 8 energy bins (20 MeV wide) with T_{lab} < 350 MeV

exp I $N_d = 216$ $\chi_0^2 = 522$ \Rightarrow $\chi_p^2 = 179$ for 14 adnorm parsexp II $N_d = 245$ $\chi_0^2 = 471$ \Rightarrow $\chi_p^2 = 239$ for 10 adnorm parsexp III $N_d = 212$ $\chi_0^2 = 516$ \Rightarrow $\chi_p^2 = 260$ for 10 adnorm parsexp IV $N_d = 186$ $\chi_0^2 = 630$ \Rightarrow $\chi_p^2 = 153$ for 11 adnorm pars

Look at the problem this way. In total 959 data. 32 normalizations N(d.o.f.) = 927 χ_0^2 = 2139 45 adnorm pars N(d.o.f.) = 882 χ_p^2 = 831

Information contained in 882 pieces of data is still there !!

Doctoring the Princeton data (1974).

9 energy bins with T_{lab} < 350 MeV

 $N_d = 156$ $< \chi_0^2 > = 147 \pm 17$ $\chi_0^2 = 582$ \Rightarrow 26 s.d.14 adnorm pars $< \chi_p^2 > = 133 \pm 16$ $\chi_p^2 = 195$ \Rightarrow 4 s.d.

Per adnorm parameter a drop in χ^2 of about 27.

Let us be lenient and doctor some more:

Throw away 3 data points that deviate more than 2.5 s.d. (this limit was 3 s.d.).

 $N_d = 153$ $< \chi_0^2 > = 144 \pm 17$ $\chi_0^2 = 540$ \Rightarrow 23s.d.14 adnorm pars $< \chi_p^2 > = 130 \pm 16$ $\chi_p^2 = 169$ \Rightarrow 2.4s.d.

Doctoring the IUCF data ?

Conclusion

 \pm 2000 data (in order of quality ?)

IUCF TRIUMF LAMPF	$\left.\begin{array}{c}16\\90\\650\end{array}\right\}$	756 data	38%
Freiburg Princeton Uppsala	$ \left.\begin{array}{c} 959\\ 156\\ 100 \end{array}\right\} $	1215 data	62%

Contents Part II: πNN -coupling constants

Part II : πNN -coupling constants

- 1. Historical Introduction
 - Situation in general
 - Situation in Nijmegen
 - Situation around 1990
- 2. π^{\pm} pn coupling constants

General situation

• $\gamma p \rightarrow n \pi^+$	1950 1954	Ashkin Bernandini	$f_{c}^{2} \sim$ 0.3 f_{c}^{2} = 0.065
• $NN \rightarrow NN$	1952 1955 1958 1959 1968 1987	Lévy Gartenhaus Chew backward ng Cziffra et al. 0.06 4 MacGregor et al. Bergervoet et al.	$f^{2} = 0.054$ $f^{2} = 0.089$ $< f_{c}^{2} < 0.07$ $f_{p}^{2} = 0.081 (5)$ $f_{p}^{2} = 0.0725 (6)$
• $\pi N \rightarrow \pi N$	1953 1957 1958 1973 1990	Chew Gilbert (NP med) Dave Jackson Bugg et al. Arndt et al.	$\begin{aligned} f_c^2 &= 0.058 \\ f_c^2 &= 0.084 \\ f_c^2 &= 0.08 \ \text{(2)} \\ f_c^2 &= 0.079 \ \text{(1)} \\ f_c^2 &= 0.0735 \ \text{(15)} \end{aligned}$
• $\overline{p} p \to \overline{n} n$	1958 1991	Chew charge exch Timmermans et al.	ange $f_c^2 = 0.0751 (17)$

Situation in Nijmegen

- 1958 1974 Interest mainly in YN potentials. Couplings $\pi\Lambda\Sigma$, $\pi\Sigma\Sigma$, and πNN .
- 1971 1983 "Black Forest Meetings" (Höhler et al.) and "Compilation of low-energy parameters and coupling constants."
- 1975 Nijmegen D potential (NN and YN). $f^2 = 0.074$ Used Livermore PWA 1968. χ^2 better than for the Reid potential.

• 1983 FB - conference in Karlsruhe.

" We believe that f_p^2 is probably more in the neighborhood of 0.075 than of 0.080 "

• 1987 pp PWA 87 f_p^2 = 0.0725 (6) (without magn. moment) m_0 = 134.7 \pm 2.1 MeV (134.9766 MeV) pp PWA 91 f_p^2 = 0.0751 (6)

Situation around 1990

• 1987 πN - scattering $f_c^2 = 0.079 (1)$ pp - scattering $f_p^2 = 0.073 (1)$ Conclusion 1 : Large breaking of Charge Independence. • 1990 pp - result : $f_p^2 = 0.073 (1)$ Large CIB : Very unlikely

Conclusion 2 : πN - result must be wrong

Research topics in Nijmegen around that time

1. <i>pp</i> - PWA	Stoks,	de Kok
2. <i>np</i> - PWA	Bergervoet et al.,	Klomp
3. backward np	Rentmeester	
4. $\overline{p} p \rightarrow \overline{n} n$	Timmermans	
5. study CIB in cc	Timmermans	

π^{\pm} pn-coupling constants

type	N_d	χ^2	$1000 \; f_c^2$
$\sigma_t, \Delta \sigma_T, \Delta \sigma_L$	252	230	$75.1\ (1.1)$
$d\sigma/d\Omega$	1350	1363	$75.6\ (0.6)$
A_y	738	718	$74.8\;(0.4)$
A_{yy}, A_{zz}	86	71	$74.4\ (0.6)$
D_t	43	40	$75.1\ (1.1)$
$R_{t},R_{t}^{'},A_{t},A_{t}^{'}$	43	55	73.1(1.0)
All	2512	2477	$74.8\ (0.3)$

π^{\pm} pn-coupling constants

LAMPF data:

$T_{lab}(MeV)$	N_d	χ^2	f_c^2
162	43	60	69.9(3.0)
178	44	44	70.2(3.1)
211	43	31	72.8(3.3)
229	49	62	69.5(3.6)
247	53	39	69.7(9.3)
304	80	80	74.6(3.4)
324	82	92	78.9(4.3)
344	80	75	74.8(3.9)

Part III : EFT

Intermediate-range physics is treated very poorly.
 Contributions of mesons like η', σ, a₀(980), f₀(980), ρ, ω are frozen out.
 The spatial extensions of the nucleons and mesons are neglected.

This affects the shape of the intermediate-range potential !

• Applying χ PT to calculate a good *NN*-potential is therefore doomed to failure !

The coupling constants c_3 and c_4 , (in χ PT called LEC's), depend on the order, and on T_{max} , and c_3 comes out too low. Such potentials are perhaps good to say $T_{max} \sim 5$ MeV (?). These are the so called "Third (De)generation potentials"?

- Including higher orders like { N ... NLO }
 - \Rightarrow introduces MORE parameters (easier to get better fits),
 - \Rightarrow but does not necessarily introduces better physics.

Closing Remarks

THANKS FOR YOUR PATIENCE. NO QUESTIONS ALLOWED. HAVE A NICE LUNCH.