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Abstract
This paper presents the Extended-Soft-Core (ESC) potentials ESC04a-ESC04d for baryon-

baryon channels with total strangeness S = −2. For these channels no experimental scattering
data exist, and also the information from hypernuclei is very limited. The potential models for
S = −2 are based on SU(3) extensions of potential models for the S = 0 and S = −1 sectors, which
are fitted to experimental data. Flavor SU(3)-symmetry is broken ’kinematically’ by the masses of
the baryons and the mesons. Moreover, in ESC04a,b also the coupling constants are broken, albeit
in a well defined way using the 3P0 quark-antiquark pair creation model as a guidance. But, the
fit to the S = 0 and S = −1 sectors provides the necessary constraints to fix all free parameters.
Therefore, the potentials for the S = −2 sectors do not contain additional free parameters, which
situation is similar to the soft-core one-boson-exchange NSC97-models. Various properties of the
potentials are illustrated by giving results for scattering lengths, bound states, phase-parameters,
and total cross sections. The features of Ξ hypernuclei predicted by ESC04d are studied on the
basis of the G-matrix approach.
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I. INTRODUCTION

In this paper the Extended-Soft-Core (ESC) potentials ESC04a-ESC04d, described in the
companion nucleon-nucleon (NN) [1] and the hyperon-nucleon (YN) paper [2], for baryon-
baryon channels with total strangeness S = −2. These papers will be referred to as paper
I and II respectively. In [3] the Nijmegen soft-core one-boson-exchange (OBE) interactions
NSC97a-f for baryon-baryon (BB) systems for S = −2,−3,−4 were presented.

For these channels hardly any experimental scattering information is available, and also
the information from hypernuclei is very limited. There are data on double ΛΛ-hypernuclei,
which recently became very much improved by the observation of the Nagara-event [4]. This
event indicates that the ΛΛ-interaction is rather weak, in contrast to the estimates based
on the older experimental observations [5, 6].

In the virtual absense of experimental information, we assume that the potentials obey
(broken) flavor SU(3) symmetry. As in I and II, the potentials are parametrized in terms of
meson-baryon-baryon, and meson-pair-baryon-baryon couplings and gaussian form factors.
This enables us to include in the interaction one-boson-exchange (OBE), two-pseudoscalar-
exchange (TME), and meson-pair-exchange (MPE), without any new parameters. All pa-
rameters have been fixed by a simultaneous fit to the NN and YN data, described in I and II.
Each NN ⊕YN -model leads to a YY-model in a well defined way. In II we have introduced
four different models, called ESC04a-d, based on the options: SU(3)-symmetry breaking/
no-breaking of coupling constants, and pure pv/ pv-ps mixture for the pseudoscalar meson
couplings. Then, SU(3)-symmetry allows us to define all coupling constants needed to de-
scribe the multi-strange interactions in the baryon-baryon channels occurring in {8} ⊗ {8}.
Most of the details on the SU(3) description are well known, and in particular for baryon-
baryon scattering they can be found in papers I, II, and e.g. [3, 7, 8]. So, here we restrict
ourselves to a minimal exposition of these matters, necessary for the readability of this
paper. Therefore, in Sec. II we first review for S = −2 the baryon-baryon multi-channel
description, and present the SU(3)-symmetric interaction Lagrangian describing the inter-
action vertices between mesons and members of the JP = (1/2)+ baryon octet, and define
their coupling constants. We then identify the various channels which occur in the S = −2
baryon-baryon systems. In appendix A the potentials on the isospin basis are given in terms
of the SU(3)-irreps. In most cases, the interaction is a multi-channel interaction, character-
ized by transition potentials and thresholds. Details were given in [3, 7]. For the details
on the pair-interactions, we refer to II [2]. In Sec. III we give a general treatment of the
problem of flavor-exchange forces, which is very helpful to understand the proper treatment
of exchange forces and the treatment of baryon-baryon channels with identical particles. In
Sec. IV we describe briefly the treatment of the multi-channel threshods in the potentials. In
Sec. V we present the results of the ESC04 potentials for all the sectors with total strangeness
S = −2. We give the couplings and F/(F + D)-ratio’s for OBE-exchanges of ESC04a,d.
Similarly, tables with the pair-couplings are shown in appendix B. We give the S-wave scat-
tering lengths, discuss the possibility of bound states in these partial waves. Also, we give
the S-matrix information for the elastic channels in terms of the Bryan-Klarsfeld-Sprung
(BKS) phase parameters [9–11], or in the Kabir-Kermode (KK) [12] format. Tables with
the BKS-phase parameters are displayed in appendix C. Such information is very usefull for
example for the construction of the Λ-, Σ-, and Ξ-nucleus potentials. We also give results
for the total cross sections for all leading channels.

Important differences among the four versions ESC04a,b,c,d appear in their ΞN sectors.
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Table XXV in Ref. [2] demonstrates that ESC04a,b (ESC04c,d) lead to repulsive (attractive)
Ξ potentials in nuclear matter. Especially, the ΞN interaction of ESC04d is attractive enough
to produce various Ξ hypernuclei. It is very interesting to study their features on the basis
of the G-matrix approach. In Sec. VI, we represent the ΞN G-matrix interactions derived
from ESC04d as density-dependent local potentials. In Sect. VII, structure calculations
for Ξ hypernuclei are performed with use of Ξ-nucleus folding potentials obtained from
the G-matrix interactions. It is discussed how the features of ESC04d appear in the level
structure of Ξ hypernuclei. We conclude the paper with a summary and some final remarks
in Sec. VIII.

II. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Multi-channel Formalism

In this paper we consider the baryon-baryon reactions with S = −2

A1(pa, sa) + B1(pb, sb) → A2(p
′
a, s

′
a) + B2(p

′
b, s

′
b) (2.1)

Like in Ref.’s [7, 8] we will for the YN-channels also refer to A1 and A2 as particles 1 and
3, and to B1 and B2 as particles 2 and 4. For the kinematics and the definition of the
amplitudes, we refer to paper I [1] of this series. Similar material can be found in [8].
Also, in paper I the derivation of the Lippmann-Schwinger equation in the context of the
relativistic two-body equation is described.

On the physical particle basis, there are four charge channels:

q = +2 : Σ+Σ+ → Σ+Σ+,

q = +1 : (Ξ0p, Σ+Λ, Σ0Σ+) → (Ξ0p, Σ+Λ, Σ0Σ+),

q = 0 : (ΛΛ, Ξ0n, Ξ−p, Σ0Λ, Σ0Σ0, Σ−Σ+) →
(ΛΛ, Ξ0n, Ξ−p, Σ0Λ, Σ0Σ0, Σ−Σ+),

q = −1 : (Ξ−n, Σ−Λ, Σ−Σ0) → (Ξ−n, Σ−Λ, Σ−Σ0),

q = −2 : Σ−Σ− → Σ−Σ−. (2.2)

Like in [7, 8], the potentials are calculated on the isospin basis. For S = −2 hyperon-nucleon
systems there are three isospin channels:

I = 0 : (ΛΛ, ΞN, ΣΣ → ΛΛ, ξN, ΣΣ),

I = 1 : (ΞN, ΣΛ, ΣΣ → ΞN, ΣΛ, ΣΣ),

I = 2 : ΣΣ → ΣΣ. (2.3)

For the kinematics of the reactions and the various thresholds, see [7]. In this work we do
not solve the Lippmann-Schwinger equation, but the multi-channel Schrödinger equation in
configuration space, completely analogous to [8]. The multi-channel Schrödinger equation for
the configuration-space potential is derived from the Lippmann-Schwinger equation through
the standard Fourier transform, and the equation for the radial wave function is found to
be of the form [8]

u′′l,j + (p2
i δi,j − Ai,j)ul,j −Bi,ju

′
l,j = 0, (2.4)
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FIG. 1: Thresholds in YN- and YY-channels for S = −2.

where Ai,j contains the potential, nonlocal contributions, and the centrifugal barrier, while
Bi,j is only present when non-local contributions are included. The solution in the presence
of open and closed channels is given, for example, in Ref. [13]. The inclusion of the Coulomb
interaction in the configuration-space equation is well known and included in the evaluation
of the scattering matrix.

Obviously, the potential on the particle basis for the q = 2 and q = −2 channels are
given by the I = 2 ΣΣ potential on the isospin basis. For q = 0 and q = ±1, the potentials
are related to the potentials on the isospin basis by an isospin rotation. Using the indices
a, b, c, d for ΛΛ, ΞN, ΛΣ, and ΣΣ respectively, we have [14]

V (q = 0) =

0
BBBBBBBBBBBBBB@

Vaa

q
1
2
Vba −

q
1
2
Vba 0 −

q
1
3
Vad

q
1
3
Vad

· 1
2

[Vbb(1) + Vbb(0)] 1
2

[Vbb(1)− Vbb(0)]
q

1
2
Vbc −

q
1
6
Vbd(0)

q
1
6
Vbd(0)− 1

2
Vbd(1)

· · 1
2

[Vbb(1) + Vbb(0)]
q

1
2
Vbc

q
1
6
Vbd(0) −

q
1
6
Vbd(0)− 1

2
Vbd(1)

· · · Vcc 0 −
q

1
2
Vcd

· · · · 1
3

[2Vdd(2) + Vdd(0)] 1
3

[2Vdd(2)− Vdd(0)]

· · · · · 1
6

[Vdd(2) + 3Vdd(1) + 2Vdd(0)]

1
CCCCCCCCCCCCCCA

,

(2.5)

and for q = +1 we have

V (q = +1) =




Vbb(1) Vbc −
√

1
2
Vbd

Vbc Vcc −
√

1
2
Vcd

−
√

1
2
Vbd(1) −

√
1
2
Vcd

1
2
[Vdd(1) + Vdd(2)]




, (2.6)

Here, when necessary an isospin label is added in parentheses.
The momentum space and configuration space potentials for the ESC04-model have been

described in paper I [1] for baryon-baryon in general. Therefore, they apply also to hyperon-
nucleon and we can refer for that part of the potential to paper I. Also in the ESC-model,
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the potentials are of such a form that they are exactly equivalent in both momentum space
and configuration space. The treatment of the mass differences among the baryons are
handled exactly similar as is done in [7, 8]. Also, exchange potentials related to strange
meson exchanhe K,K∗ etc. , can be found in these references.

The baryon mass differences in the intermediate states for TME- and MPE- potentials
has been neglected for YN-scattering. This, although possible in principle, becomes rather
laborious and is not expected to change the characteristics of the baryon-baryon potentials.

B. Potentials and SU(3) Symmetry

We consider all possible baryon-baryon interaction channels, where the baryons are the
members of the JP = 1

2

+
baryon octet

B =




Σ0

√
2

+
Λ√
6

Σ+ p

Σ− −Σ0

√
2

+
Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6




. (2.7)

The baryon masses, used in this paper, are given in Table II. The meson nonets can be
written as

P = Psin + Poct, (2.8)

where the singlet matrix Psin has elements η0/
√

3 on the diagonal, and the octet matrix Poct

is given by

Poct =




π0

√
2

+
η8√
6

π+ K+

π− − π0

√
2

+
η8√
6

K0

K− K0 −2η8√
6




, (2.9)

and where we took the pseudoscalar mesons with JP = 0+ as a specific example. Introducing
the following notation for the isodoublets,

N =

(
p
n

)
, Ξ =

(
Ξ0

Ξ−

)
, and

K =

(
K+

K0

)
, Kc =

(
K0

−K−

)
, (2.10)

the most general, SU(3) invariant, interaction Hamiltonian is then given by [15]

Hoct
pv = gNNπ(NτN)·π − igΣΣπ(Σ×Σ)·π + gΛΣπ(ΛΣ + ΣΛ)·π + gΞΞπ(ΞτΞ)·π +

gΛNK

[
(NK)Λ + Λ(KN)

]
+ gΞΛK

[
(ΞKc)Λ + Λ(KcΞ)

]
+

gΣNK

[
Σ·(KτN) + (NτK)·Σ]

+ gΞΣK

[
Σ·(KcτΞ) + (ΞτKc)·Σ

]
+

gNNη8(NN)η8 + gΛΛη8(ΛΛ)η8 + gΣΣη8(Σ·Σ)η8 + gΞΞη8(ΞΞ)η8 +

gNNη0(NN)η0 + gΛΛη0(ΛΛ)η0 + gΣΣη0(Σ·Σ)η0 + gΞΞη0(ΞΞ)η0, (2.11)
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where we again took the pseudoscalar mesons as an example, dropped the Lorentz character
of the interaction vertices, and introduced the charged-pion mass to make the pseudovector
coupling constant f dimensionless. All coupling constants can be expressed in terms of only
four parameters. The explicit expressions can be found in Ref. [7]. The Σ-hyperon is an
isovector with phase chosen such [15] that

Σ·π = Σ+π− + Σ0π0 + Σ−π+. (2.12)

This definition for Σ+ differs from the standard Condon and Shortley phase convention [16]
by a minus sign. This means that, in working out the isospin multiplet for each coupling
constant in Eq. (2.11), each Σ+ entering or leaving an interaction vertex has to be assigned
an extra minus sign. However, if the potential is first evaluated on the isospin basis and
then, via an isospin rotation, transformed to the potential on the physical particle basis (see
below), this extra minus sign will be automatically accounted for.

In appendix A, Table XVII and Table XVIII we give the relation between the potentials
on the isospin-basis, see (2.5)-(2.6), and the SU(3)-irreps.

Given the interaction Lagrangian (2.11) and a theoretical scheme for deriving the po-
tential representing a particular Feynman diagram, it is now straightforward to derive the
one-meson-exchange baryon-baryon potentials. We follow the Thompson approach [17–20]
and expressions for the potential in momentum space can be found in Ref. [8]. Since the nu-
cleons have strangeness S = 0, the hyperons S = −1, and the cascades S = −2, the possible
baryon-baryon interaction channels can be classified according to their total strangeness,
ranging from S = 0 for NN to S = −4 for ΞΞ. Apart from the wealth of accurate NN
scattering data for the total strangeness S = 0 sector, there are only a few, and not very
accurate, YN scattering data for the S = −1 sector, while there are no data at all for the
S < −1 sectors. We therefore believe that at this stage it is not yet worthwhile to explicitly
account for the small mass differences between the specific charge states of the baryons and
mesons; i.e., we use average masses, isospin is a good quantum number, and the potentials
are calculated on the isospin basis. The possible channels on the isospin basis are given in
(2.3).

However, the Lippmann-Schwinger or Schrödinger equation is solved for the physical par-
ticle channels, and so scattering observables are calculated using the proper physical baryon
masses. The possible channels on the physical particle basis can be classified according to
the total charge Q; these are given in (2.2). The corresponding potentials are obtained
from the potential on the isospin basis by making the appropriate isospin rotation. The
matrix elements of the isospin rotation matrices are nothing else but the Clebsch-Gordan
coefficients for the two baryon isospins making up the total isospin. (Note that this is the
reason why the potential on the particle basis, obtained from applying an isospin rotation
to the potential on the isospin basis, will have the correct sign for any coupling constant on
a vertex which involves a Σ+.)

In order to construct the potentials on the isospin basis, we need first the matrix elements
of the various OBE exchanges between particular isospin states. Using the iso-multiplets
(2.9) and the Hamiltonian (2.10) the isospin factors can be calculated. The results are given
in Table I, where we use the pseudoscalar mesons as a specific example. The entries contain
the flavor-exchange operator Pf , which is +1 for a flavor symmetric and −1 for a flavor
anti-symmetric two-baryon state. Since two-baryons states are totally anti-symmetric, one
has Pf = −PxPσ. Therefore, the exchange operator Pf has the value Pf = +1 for even-L
singlet and odd-L triplet partial waves, and Pf = −1 for odd-L singlet and even-L triplet

6



partial waves. In order to understand Table I fully, we have given in the following section
Sec. III a general treatment of exchange forces. This treatment shows also how to deal with
the case where the initial/final state involves identical particles and the final/inition state
does not.

Second, we need to evaluate the TME and the MPE exchanges. The method we used for
these is the same as for hyperon-nucleon, and is described in [2], Sec. IID.

III. EXCHANGE FORCES

The proper treatment of the flavor-exchange forces is for the S < −2-channels more
difficult than for the S = 0, 1-channels. The extra complication is the occurrence of cou-
pling between channels with identical and non-identical particles. In order to understand
the several

√
2-factors, see [3], we give here a systematic treatment of the flavor-exchange

potentials. The method followed is using a multi-channel framework, which starts starts by
ordering the two-particle states by assigning Ai and Bi for the channel labeled with the index
i, like in eq. (2.1). The particles Ai and Bi have CM-momenta pi and p′i, spin components
si and s′i. The two-baryon states |AiBi〉 and |BiAi〉 are considered to be distinct, leading
to distinct two-baryon channels. The ’direct’ and the ’exchange’ T-amplitudes are given by
the T-matrix elements

〈AjBj|Td|AiBi〉, 〈BjAj|Te|AiBi〉 , (3.1)

and similarly for the direct and flavor-exchange potentials Vd and Ve. It is obvious from
rotation invariance that

〈AjBj|Td|AiBi〉 = 〈BjAj|Td|BiAi〉 ,

〈BjAj|Te|AiBi〉 = 〈AjBj|Te|BiAi〉 . (3.2)

A similar definition (3.1) and relation (3.2) apply for the direct and flavor-exchange poten-
tials Vd and Ve.

We notice that there is here no exchange of momenta or spin-components. So, the
momentum transfer for Vd and Ve is the same. Viewed from the coupled-channel scheme
this is the normal situation.
The integral equations with two-baryon unitarity, e.g. the Thompson-, Lippmann-
Schwinger-equation etc., reads for the Td- and Te-operator

〈AjBj|Td|AiBi〉 = 〈AjBj|Vd|AiBi〉+
∑

k

[〈AjBj|Vd|AkBk〉 Gk 〈AkBk|Td|AiBi〉

+〈AjBj|Ve|AkBk〉 Gk 〈AkBk|Te|AiBi〉 ] , (3.3a)

〈BjAj|Te|AiBi〉 = 〈BjAj|Ve|AiBi〉+
∑

k

[〈BjAj|Vd|BkAk〉 Gk 〈BkAk|Te|AiBi〉

+〈BjAj|Ve|AkBk〉 Gk 〈AkBk|Td|AiBi〉 ] . (3.3b)

These coupled equations can be diagonalized by introducing the T- and V-operators

T± = Td ± Te , V ± = Vd ± Ve . (3.4)

which satisfy separate integral equations

〈AjBj|T±|AiBi〉 = 〈AjBj|V ±|AiBi〉+
∑

k

〈AjBj|V ±|AkBk〉 Gk 〈AkBk|T±|AiBi〉 .(3.5)
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Notice that on the basis of states with definite flavor symmetry

|AiBi〉± =
1√
2

[|AiBi〉 ± |BiAi〉] , (3.6)

the T± and V ± matrix elements are also given by

T±
ij =±〈AiBi|T |AjBj〉± , V ±

ij =±〈AiBi|V |AjBj〉± . (3.7)

A. Identical Particles

Sofar, we considered the general case where Ai 6= Bi for all channels. In the case that
Ai = Bi for some i, one has 〈BiAi|Ve|AiBi〉 = 0, because there is no distinct physical state
corresponding to the ’flavor exchange-state’. For example for a flavor single channel like pp
one deduces from (3.3b) that then also Te = 0, and one has in this case the integral equation

〈AjBj|Td|AiBi〉 = 〈AjBj|Vd|AiBi〉+∑

k

〈AjBj|Vd|AkBk〉 Gk 〈AkBk|Td|AiBi〉 , (3.8)

where the labels i and j now denote e.g. the spin-components.

B. Coupled ΛΛ and ΞN system

This multi-channel system represents the case where there is mixture of channels with
identical and with non-identical particles. The three states we distinguish are |ΛΛ〉, |ΞN〉,
and |NΞ〉. Choosing the same ordering, the potential written as a 3x3-matrix reads

V =




(ΛΛ|V |ΛΛ) (ΛΛ|V |ΞN) (ΛΛ|V |NΞ
(ΞN |V |ΛΛ) (ΞN |V |ΞN) (ΞN |V |NΞ
(NΞ|V |ΛΛ) (NΞ|V |ΞN) (NΞ|V |NΞ


 . (3.9)

With a similar notation for the T-matrix, the Lippmann-Schwinger equation can be written
compactly as a 3x3-matrix equation:

T = V + V G T , with Gij = Gi δij . (3.10)

Next, we make a transformation to states, which are either symmetric or anti-symmetric for
particle interchange. Then, according to the discussion above, we can separate them in the
Lippmann-Schwinger equation. This is achieved by the transformation




ΛΛ
ΞN
NΞ


 ⇒




ΛΛ

(ΞN + NΞ)/
√

2

(ΞN −NΞ)/
√

2


 =




1 0 0

0 1/
√

2 1/
√

2

0 1/
√

2 −1/
√

2







ΛΛ
ΞN
NΞ


 . (3.11)

one gets in the transformed basis for the potential

UV U−1 =




VΛΛ;ΛΛ (VΛΛ;ΞN + VΛΛ;NΞ)/
√

2 (VΛΛ;ΞN − VΛΛ;NΞ)/
√

2

(VΞN ;ΛΛ + VNΞ;ΛΛ)/
√

2 (VΞN ;ΞN + VΞN ;NΞ) 0

(VΞN ;ΛΛ − VNΞ;ΛΛ)/
√

2 0 (VΞN ;ΞN − VΞN ;NΞ)


 ,

(3.12)
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and of course, a similar form is obtained for the T-matrix on the transformed basis. Now,
obviously we have that VΛΛ;ΞN = VΛΛ;NΞ and VΞN ;ΛΛ = VNΞ;ΛΛ. Therefore, one sees that the
even and odd states under particle exchange are decoupled in (3.12). Also VΞN ;ΛΛ+VNΞ;ΛΛ =√

2VΞN ;ΛΛ, etc. showing the appearance of the
√

2-factors, mentioned before. Indeed, they
appear in a systematic way using the multi-channel framework.

C. The K-exchange Potentials

Consider for example the (ΛΛ, ΞN)-system, having I = 0. Mesons with strangeness,
K(495), K∗(892), κ(900), K1(1270), are obviously the only ones that can give transition
potentials, i.e. VΛΛ;ΞN 6= 0 and VΞN ;ΛΛ 6= 0. The ΞN(I = 0)-states anti-symmetric and
symmetric in flavor are respectively:

Pf = −1 :
1√
2

[|ΞN(I = 0)〉 − |NΞ(I = 0)〉] , (3.13a)

Pf = +1 :
1√
2

[|ΞN(I = 0)〉+ |NΞ(I = 0)〉] . (3.13b)

Analyzing the 1S0-state one has because of the anti-symmetry of the two-fermion state
w.r.t. the exchange of all quantum labels, Pf = −PσPx = +1, where Pf denotes the flavor-
symmetry. Taking here the K(495) as a generic example, and using (2.10) and (2.11), one
finds that

〈Ξ0n|V (K)|ΛΛ〉 = +gKΛNgKΞN , 〈Ξ−p|V (K)|ΛΛ〉 = −gKΛNgKΞN . (3.14)

Taking here the K(495) as a generic example, Then, since |ΞN(I = 0)〉 =
[|Ξ0n〉 − |Ξ−p〉] /√2, one obtains for the ’direct’ potential the coupling

VΞN ;ΛΛ = 〈ΞN(I = 0)〉|Vd(K)|ΛΛ〉 ⇐
√

2gKΛNgKΞN . (3.15)

The same result is found for the ’exchange’ potential VNΞ;ΛΛ. Therefore

1√
2

(VΞN ;ΛΛ + VNΞ;ΛΛ) = 〈ΞN(I = 0)|V (K)|ΛΛ〉 ⇐ 2gKΛNgKΞN , (3.16)

which has indeed the (1 + Pf )-factor given in Table I, and is identical to Table IV in [3], for
(ΛΛ|K|ΞN).

For 〈ΞN |K|ΣΛ〉 the entry for I = 1 consists of two parts. These correspond to Vd ∝
gΛNKgΞΣK and Ve ∝ gΣNKgΞΛK respectively, i.e. the direct and exchange contributions
involve different couplings. Therefore, they are not added together.

D. The η- and π-exchange Potentials

Next, we discuss briefly the computation of the entries for η- and π-exchange in Table I.
First, the entries with — indicate that the corresponding physical state does not exist. Next
we give further specific remarks and calculations:

9



TABLE I: Isospin factors for the various meson exchanges in the different total strangeness and
isospin channels. Pf is the flavor-exchange operator. The I = 2 case only contributes to S = −2
ΣΣ scattering, where the isospin factors can collectively be given by (ΣΣ|η, η′, π|ΣΣ) = 1

2(1 + Pf ),
and so they are not separately displayed in the table. Non-exixisting channels are marked by a
long-dash.

S = −2 I = 0 I = 1
(ΛΛ|η, η′|ΛΛ) 1

2(1 + Pf ) —

(ΞN |η, η′|ΞN) 1
2(1 + Pf ) 1

(ΣΣ|η, η′|ΣΣ) 1
2(1 + Pf ) 1

2(1− Pf )
(ΣΛ|η, η′|ΣΛ) — 1
(ΞN |π|ΞN) −3 1
(ΣΣ|π|ΣΣ) −(1 + Pf ) −1

2(1− Pf )

(ΛΛ|π|ΣΣ) −1
2

√
3(1 + Pf ) —

(ΣΛ|π|ΛΣ) — Pf

(ΣΣ|π|ΣΛ) — (1− Pf )
(ΛΛ|K|ΞN) 1 + Pf —
(ΣΣ|K|ΞN)

√
3(1 + Pf )

√
2(1− Pf )

(ΞN |K|ΣΛ) —
√

2;−Pf

√
2

a. For η, η′-exchange one has that Ve = 0. The matrix elements for the ΛΛ- and ΞN -state
are easily seen to be correct. For the ΣΣ-states one has Pf = 1 for IΣΣ = 0, 2, and
Pf = −1 for IΣΣ = 1. This explains the ΣΣ matrix element.

b. For 〈ΞN |π|ΞN〉 the computation is identical to that for NN, in particular pn.

c. For 〈ΣΣ|π|ΣΣ〉 consider the I = 0, I3 = 0 and I = 1, I3 = 0 matrix elements. In
these cases one has Ve = 0 as one can easily check. Then, using the cartesian base,
we have for 〈ΣiΣm|π|ΣjΣn〉 ⇒ −g2

ΣΣπ

∑3
p=1 εjipεnmp = −g2

ΣΣπ(δjnδim − δjmδin). Em-

ploying the states |I = 0, I3 = 0〉 ∼ −∑3
i,m=1 δim|ΣiΣm〉/

√
3 and |I = 1, I3 = 0〉 ∼

−i
∑3

i,m=1 εim3|ΣiΣm〉/
√

2, one obtains the results in Table I.

With the ingredients given above one can easily check the other entries in Table I.

IV. MULTI-CHANNEL THRESHOLDS AND POTENTIALS

A. Thresholds

Clearly, the S = −2 two-baryon channels represent a number of separate coupled-channel
systems, separated by the charge, see (2.2). A further subdivision is according to the total
isospin. The different thresholds have been discussed in detail in [3], and we show them
here in Fig. 1 for the purpose of general orientation. Their presence turns the Lippmann-
Schwinger and Schrödinger equation into a coupled-channel matrix equation, where the
different channels open up at different energies. In general one has a combination of ’open’

10



and ’closed’ channels. For a discussion of the solution of such a mixed system, we refer to
[21].

B. Threshold- and Meson-mass corrections in Potentials

As discussed in [3], the one-meson-exchange Feynman-graph consists actually of two
three-dimensional time-ordered graphs. The energy denominator from these two diagrams
reads

D(ω) =
1

2ω

[
1

E2 + E3 −W + ω
+

1

E1 + E4 −W + ω

]
, (4.1)

where, W =
√

s is the total energy and ω2 = k2+m2, with m the meson mass and k = p′−p
the momentum transfer. From (4.1) it is clear that the potential is energy dependent. We use
the static approximation Ei → Mi and W → M0

1 +M0
2 , where the superscript 0 refers to the

masses of the lowest threshold of the particular coupled-channel system q, see (2.2). They
are in general not equal to the masses M1 and M2 occurring in the time-ordered diagrams.
For example, the potential for the ΣΣ contribution in the coupled-channel ΛΛ system has
M1 = M2 = MΣ, but M0

1 = M0
2 = MΛ. Denoting a ≡ E2+E3−W ≈ M2+M3−M0

1−M0
2 > 0,

and similarly for E1 + E4 −W , we have for the ’propagators’ [19] for 0 < a < m

1

ω(ω + a)
=

2

π

∫ ∞

0

adλ

(a2 + λ2)(ω2 + λ2)
. (4.2)

This integral representation makes it possible to deal with it numerically rather exactly.
However, we think that such a sophistication is unnecessary at present nor for a description
of the S = −1 scattering data, nor for S = −2. where there are virtually no data at all.
Therefore, we handle with this approximately as follows:

1. Elastic potentials: In this case we use (4.2), and in (4.1) one has E1 = E3 ≈ Mi and

E2 = E4 ≈ M ′
i , for the elastic channel, label i. Here a ≈ Mi + M ′

i −M0
1 −M0

2 . Then,

Di(ω) =
1

ω2
+ ∆i(ω, a), ∆i(ω, a) =

2

π

∫ ∞

0

dλ

a2 + λ2
·

×
[

1

ω2
− 1

ω2 + λ2

]
, (4.3)

for 0 < a < m. Because of this condition we apply this not to the pseudoscalars, but to
the vector-, scalar-, and axial-mesons. For example, in the case of the ΛΛ-scattering, the
ΣΣ-channel potential is reduced by this effect. Since the ΣΣ-channel is rather far away
from the others, we in practice apply (4.3) only for that channel. In this case a > 0 and the
θ(−a)-term in Di(ω) vanishes.

2. Inelastic potentials: In this case, like in [3] and all other papers on the Nijmegen potentials,

we use the approximation of [22], using the fact that M0
1 + M0

2 is mostly rather close to the
average of the initial and final-sate baryon masses. Then, the propagator can be written as

D(ω) → 1

ω2 − 1
4
(M3 −M4 + M2 −M1)2

, (4.4)
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TABLE II: Baryon masses in MeV/c2.

Baryon Mass
Nucleon p 938.2796

n 939.5731
Hyperon Λ 1115.60

Σ+ 1189.37
Σ0 1192.46
Σ− 1197.436

Cascade Ξ0 1314.90
Ξ− 1321.32

which amounts to introducing an effective meson mass m

m2 → m2 = m2 − 1
4
(M3 −M4 + M2 −M1)

2. (4.5)

For more details of this effect on the exchanged meson masses, we refer to [3].
The used baryon masses are about the same as in [3], and are given in Table II. The used

meson masses are the same as in paper II [2], as well as the cut-off mases.

V. RESULTS

The main purpose of this paper is to present the properties of the four ESC04 potentials
for the S = −2 sector. We will show the detailed results for ESC04a and ESC04d, which are
sufficient to represent the possible kind of results. Model ESC04a is representative for the
inclusion of SU(3)-breaking of the couplings, and ESC04d for the case of SU(3)-symmetric
couplings. The free parameters in each model are fitted to the NN and YN scattering data
for the S = 0 and S = −1 sectors, respectively. Given the expressions for the coupling
constants in terms of the octet and singlet parameters and their values for the six different
models as presented in Ref. [7], it is straightforward to evaluate all possible baryon-baryon-
meson coupling constants needed for the S ≤ −2 potentials. A complete set of coupling
constants for models ESC04a and ESC04d is given in Tables III and IV, respectively.

In Fig’s 2 and Fig. 3 we display the OBE potentials for the individual pseudoscalar,
vector, scalar, and axial mesons in the case of model ESC04d.

In the following we will present the model predictions for scattering lengths, bound states,
and cross sections.

A. Effective-range parameters

For ESC04a the I = 0 low-energy parameters are

aΛΛ(1S0) = −3.804 [fm] , rΛΛ(1S0) = 2.420 [fm] .

aΞN(3S1) = −1.672 [fm] , rΞN(3S1) = 2.704 [fm] .
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TABLE III: Coupling constants for model ESC04a, divided by
√

4π. M refers to the meson. The
coupling constants are listed in the order pseudoscalar, vector (g and f), scalar, and diffractive.

Type M NNM ΣΣM ΣΛM ΞΞM M ΛNM ΛΞM ΣNM ΣΞM

f π 0.2631 0.2456 0.1620 –0.0175 K –0.2179 0.0977 0.0130 –0.1951
g ρ 0.7800 1.5600 0.0000 0.7800 K∗ –1.0022 1.0022 –0.5786 –0.5786
f 3.4711 1.9177 2.9009 –1.5535 –2.3080 0.1560 1.1524 –2.5750
g a1 2.5426 1.1922 2.2477 –1.3505 K1 –1.1597 –0.0492 0.7263 –1.3675
g a0 0.9251 1.5562 0.1698 0.6311 κ –1.0506 0.9261 –0.4628 –0.6785
g a2 0.00000 0.00000 0.00000 0.00000 K∗∗ 0.00000 0.00000 0.00000 0.00000

Type M NNM ΛΛM ΣΣM ΞΞM M NNM ΛΛM ΣΣM ΞΞM

f η 0.1933 –0.0203 0.2153 –0.1161 η′ 0.1191 0.1421 0.1167 0.1525
g ω 3.0135 2.2104 2.2104 1.4073 φ –0.3849 –0.9611 –0.9611 –1.5372
f 0.4467 –1.4028 2.0461 –1.5278 –0.0502 –1.3771 1.0973 –1.4667
g f1 1.0190 0.7973 1.2595 0.8067 f ′1 1.0352 –0.2915 2.4744 –0.2352
g ε 3.4635 2.5842 2.7926 1.8090 f0 –0.8162 –1.3699 –1.2387 –1.8580
g P 1.9651 1.9651 1.9651 1.9651 f2 0.0000 0.0000 0.0000 0.0000

TABLE IV: Coupling constants for model ESC04d, divided by
√

4π. M refers to the meson. The
coupling constants are listed in the order pseudoscalar, vector (g and f), scalar, and diffractive.

Type M NNM ΣΣM ΣΛM ΞΞM M ΛNM ΛΞM ΣNM ΣΞM

f π 0.2599 0.2592 0.1505 –0.0008 K –0.2997 0.1492 0.0008 –0.2599
g ρ 0.7038 1.4076 0.0000 0.7038 K∗ –1.2190 1.2190 –0.7038 –0.7038
f 3.2909 2.8332 2.1642 –0.4577 –3.5357 1.3715 0.4577 –3.2909
g a1 2.4310 1.1398 2.1490 –1.2912 K1 –2.0616 –0.0874 1.2912 –2.4310
g a0 1.0303 1.7331 0.1891 0.7028 κ –1.5955 1.4064 –0.7028 –1.0303
g a2 0.00000 0.00000 0.00000 0.00000 K∗∗ 0.00000 0.00000 0.00000 0.00000

Type M NNM ΛΛM ΣΣM ΞΞM M NNM ΛΛM ΣΣM ΞΞM

f η 0.2125 –0.0634 0.2137 –0.2007 η′ 0.1188 0.2359 0.1183 0.2942
g ω 3.0366 2.2944 2.2944 1.5523 φ –0.7935 –1.7606 –1.7606 –2.7277
f 0.0052 –2.1472 0.4878 –2.9822 1.7248 –1.0803 2.3537 –2.1684
g f1 1.7228 2.5283 0.8489 2.4941 f ′1 0.6363 –1.2614 2.6950 –1.1810
g ε 3.5434 3.2267 3.3017 2.9475 f0 0.7172 –0.8465 –0.4759 –2.2249
g P 2.3532 2.3532 2.3532 2.3532 f2 0.0000 0.0000 0.0000 0.0000

For ESC04d the I = 0 low-energy parameters are

aΛΛ(1S0) = −1.555 [fm] , rΛΛ(1S0) = 3.617[fm] .

aΞN(3S1) = +122.5 [fm] , rΞN(3S1) = 2.083 [fm] .
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FIG. 2: ESC04d: OBE contributions to the (1S0, I = 0) potentials for the PS, V, S, and A meson
nonets.

TABLE V: I = 0: Inverse-scattering-length and effective-range matrices at the ΞN threshold. The
order of the states (1-2) reads ΛΛ(1S0), ΞN(1S0). The dimension of the matrix elements are in
[fm]−1(A−1 and [fm](R).

ESC04a ESC04d
A−1 R A−1 R

11 –0.929 4.114 –0.584 3.484
12 0.667 –0.318 0.840 –1.666
22 1.108 1.494 0.470 1.626

For I = 1 we have for ESC04a:

aΞN(1S0) = 0.491 [fm] , rΞN(1S0) = −0.421 [fm] .

For I = 1 we have for ESC04d:

aΞN(1S0) = 0.144 [fm] , rΞN(1S0) = 4.670 [fm] .

For the S = −2 sector the results are given in Table V-VII. The ΛΛ(1S0) scattering lengths
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FIG. 3: ESC04d: OBE contributions to the (3S1, I = 0) potentials for the PS, V, S, and A meson
nonets.

TABLE VI: I = 1: Inverse-scattering-length and effective-range matrices at the ΞN threshold.
The order of the states (1-2) reads ΛΛ(1S0), ΞN(1S0). The dimension of the matrix elements are
in [fm]−1(A−1 and [fm](R).

ESC04a ESC04d
A−1 R A−1 R

11 0.281 2.752 –0.121 4.878
12 –4.067 –1.643 –0.977 1.851
22 –1.603 2.888 –0.380 2.028

are found to be larger than in the NSC97 models, indicating an attractive ΛΛ interaction,
which is strongest in ESC04a.

The old experimental information seemed to indicate a separation energy of ∆BΛΛ = 4−5
MeV, corresponding to a rather strong attractive ΛΛ interaction. As a matter of fact, an
estimate for the ΛΛ 1S0 scattering length, based on such a value for ∆BΛΛ, gives aΛΛ(1S0) ≈
−2.0 fm [23, 24]. However, in recent years the experimental information and interpretation
of the ground state levels of 6

ΛΛHe, 10
ΛΛBe, and 13

ΛΛB [25], has been changed drastically. This
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FIG. 4: ESC04d (1S0, I = 0) ΛΛ-phases. The dashed curve n.c. is the case with no coupling to
the ΞN, ΣΣ channels.

TABLE VII: I = 1: Inverse-scattering-length and effective-range matrices at the ΞN threshold.
The order of the states (1-2) reads ΛΛ(3S1), ΛΛ(3D1), ΞN(3S1). The dimension of the matrix
elements are in [fm]−1−l−l′(A−1 and [fm]1−l−l′(R).

ESC04a ESC04d
A−1 R A−1 R

11 1.484 4.896 0.021 139.289
12 –0.856 –11.999 0.015 –517.222
13 1.621 –8.293 –0.046 –160.711
22 270.392 –422.973 –0.009 5933.937
23 0.348 36.874 0.045 1471.645
33 –2.156 15.785 –0.274 382.035

because of the Nagara-event [4], identified uniquely as 6
ΛΛHe [4], which established that the

ΛΛ-interaction is weaker (∆BΛΛ ≈ 1 MeV).
In NSC97 [7] we could only increase the attraction in the ΛΛ channel by modifying the

scalar-exchange potential. If the scalar mesons are viewed as being mainly qq̄ states, one
finds that the (attractive) scalar-exchange part of the interaction in the various channels
satisfies

|VΛΛ| < |VΛN | < |VNN |, (5.1)

suggesting indeed a rather weak ΛΛ-potential. The NSC97 fits to the YN scattering data [7]

16



-80

-40

0

40

80

0 200 400 600 800 1000

 δ
[d

eg
] 

 pΞ,lab [MeV] 

 ΞN -> ΞN ESC04d (I=0)

 1S0

-80

-40

0

40

80

0 200 400 600 800 1000

 ρ
[d

eg
] 

 pΞ,lab [MeV] 

 ΞN -> ΞN ESC04d (I=0)

 1S0

-80

-40

0

40

80

0 200 400 600 800 1000

 δ
[d

eg
] 

 pΞ,lab [MeV] 

 ΞN -> ΞN ESC04d (I=0)

 3S1
 3D1

 ε1

-20

0

20

0 200 400 600 800 1000

 ρ
[d

eg
] 

 pΞ,lab [MeV] 

 ΞN -> ΞN ESC04d (I=0)

 α1
 β1
 φ1

FIG. 5: ESC04d I = 0 ΞN -phases.

give values for the scalar-meson mixing angle which seem to point to almost ideal mixing
for the scalars as qq̄ states, and we found that an increased attraction in the ΛΛ channel
would give rise to (experimentally unobserved) deeply bound states in the ΛN channel. On
the other hand, in the ESC04 models we have in principle more possibilities because of the
presence of meson-pair poteials. As one sees from the values of the aΛΛ(1S0) in the ESC04
models of this paper we can produce the apparently required attraction in the ΛΛ interaction
without giving rise to ΛN bound states (see below). Notice that also in ESC04 we have
scalar mixings close to ideal ones, akin to NSC97. The large values for the triplet effective
range rt in ΞN is a simple reflection of the fact that the 3S1 phase shift at small laboratory
momenta is very small and only very slowly increases in magnitude.

B. Bound states in S waves

A discussion of the possible bound-states, using the SU(3) content of the different S =
0,−1,−2 channels is given in [7]. As in [7], for a general orientation, we list in Table VIII
all the irreps to which the various baryon-baryon channels belong. In contrast to the NSC97
models, we find almost no bound states in the ESC04a-d models. An exception is model
ESC04d, where there occurs a ΞN bound state in the 3S1-

3D1 coupled partial wave. From
Table VIII one sees that this is a {8a}-state, which is a little bit surprising. This because
the OBE-potential one expects to be rather repulsive in the irrep {8a}, see [8]. However, in
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FIG. 6: ESC04d I = 1 ΞN -phases. The dashed curve n.c. is the case with no coupling to the
ΣΛ, ΣΣ channels.

the ESC04 models this situation is changed because of the contribution of the axial-vector-
mesons, and the meson pairs, cfrm. Fig. 8. The differences between ESC04a and ESC04d for
this channel are in the OBE and MPE, and accidentally there is a bound-state in ESC04d
but not in ESC04a.

From Table VIII one notices that this ΞN -channel is not a mixture of different SU(3)-
irreps, and so form this point of view simple. The same thing is for S = −2 only true for
the ΣΣ(1S0, I = 2)-channel. The other S = −2 channels are are mixtures of at least two
irreps, which makes an analysis of the presence or absence of bound states more difficult, as
pointed out in [7]. For the models ESC04a-d we did not find any S-wave bound states in
these ’mixed’ channels.

C. Partial Wave Phase Parameters

For the BB-channels below the inelastic threshold we use for the parametrization of
the amplitudes the standard nuclear-bar phase shifts [26]. The information on the elastic
amplitudes above thresholds is most conveniently given using the BKS-phases [9–11]. For
uncoupled partial waves, the elastic BB S-matrix element is parametrized as

S = ηe2iδ , η = cos(2ρ) . (5.2)
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FIG. 7: ESC04d I = 1 ΣΛ-phases.

For coupled partial waves the elastic BB-amplitudes are 2× 2-matrices. The BKS S-matrix
parametrization, which is of the type-S variety, is given by

S = eiδeiεN eiεeiδ , (5.3)

where

δ =

(
δα 0

0 δβ

)
, ε =

(
0 ε

ε 0

)
, (5.4)

and N is a real, symmetric matrix parametrize as

N =

(
η11 η12

η12 η22

)
. (5.5)

From the various parametrizations of the N -matrix, we choose the Kabir-Kermode
parametrization [12] to represent the N -matrix in the figures. Then, the N -matrix is given
by the inelasticity parameters (α, β, ϕ), called ρ-parameters, as follows

N =

(
cos(2α) sin(ϕ + ξ)

sin(ϕ + ξ) cos(2β)

)
, (5.6)
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FIG. 8: ESC04d: ΞN(3S1, I = 0)-potentials. The solid-, dashed-, and short-dashed-line are re-
spectively the total-, central-, and spin-spin-potentials.

where

α = ±1

2
cos−1(η11) , β = ±1

2
cos−1(η22) ,

ϕ = sin−1(η12)− sgn(η12) sin−1 Q

ξ = sgn(η12) sin−1 Q . (5.7)

Here
Q2 = 1− |η11 + η22|+ η11η22 . (5.8)

In Fig’s 4-7 the BKS-phases and coupling parameters (α, β, ϕ) for ESC04d are shown.
In Fig 4 and Fig. 6 we also show the 1S0-phases (n.c.) for the case with no coupling to
the other two-particle channels. For ΛΛ the n.c.-curve shows that the potential is repulsive,
which is mainly due to the {1}-irrep. The attraction comes in particular from the coupling
to the ΞN -channel.

In the Tables XXI-XXX, we give for the models ESC04a,d the inelasticity parameters ρ
and η11, η12, η22, which enable the reader to construct the N -matrix most directly.
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TABLE VIII: SU(3) content of the different interaction channels. S is the total strangeness and
I is the isospin. The upper half refers to the space-spin symmetric states 3S1, 1P1, 3D, . . . , while
the lower half refers to the space-spin antisymmetric states 1S0, 3P , 1D2, . . .

Space-spin symmetric
S I Channels SU(3)-irreps
0 0 NN {10∗}
–1 1/2 ΛN , ΣN {10∗}, {8}a

3/2 ΣN {10}
–2 0 ΞN {8}a

1 ΞN , ΣΣ {10}, {10∗}, {8}a

ΣΛ {10}, {10∗}
Space-spin antisymmetric

S I Channels SU(3)-irreps
0 1 NN {27}
–1 1/2 ΛN , ΣN {27}, {8}s

3/2 ΣN {27}
–2 0 ΛΛ, ΞN , ΣΣ {27}, {8}s, {1}

1 ΞN , ΣΛ {27}, {8}s

2 ΣΣ {27}

D. Total cross sections

We next present the predictions for the total cross section for several channels. We
suppose always that the beam as well as the target are unpolarized. Therefore, we incuded
the statistical factors, which are 1/4 for the spin-singlet and 3/4 for the spin-triplet case.

In Fig. 9 we present the elastic ΛΛ and the inelastic ΛΛ → ΞN total cross sections.
Being dominantly S-wave, there is in principle has a (sharp) cusp at the ΞN -threshold, i.e.
pΛ = 344.4 MeV/c2.

In Fig. 10 we present the ΞN and ΣΛ elastic and the, ΞN → ΛΛ and ΣΛ → ΞN inelastic
total cross sections.

For those cases where both baryons are charged, we do not include the purely Coulomb
contribution to the total cross section, nor do we include the Coulomb interference to the
nuclear amplitude. The cross section is calculated by summing the contributions from
partial waves with orbital angular momentum up to and including L = 2. We find this to
be sufficient for all the S 6= 0 sectors; inclusion of any higher partial waves has no significant
effect. Inclusion of higher partial waves will shift the total cross section to slightly higher
values without changing the overall shape. Of course, their inclusion would be necessary if
a detailed comparison with real experimental data were to be made.

In Table IX we show the ΛΛ → ΛΛ, ΞN total X-sections as a function of the laboratory
momentum pΛ. In Table X we show the ΞN → ΞN, ΛΛ total X-sections as a function of
the laboratory momentum pΞ. In Table XI we show the ΞN → ΞN, ΣΛ total X-sections
as a function of the laboratory momentum pΞ. In Table XII we show the I = 1, L = 0
ΣΛ → ΣΛ, ΞN, ΣΣ total X-sections as a function of the laboratory momentum pΣ.
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FIG. 9: ESC04d I = 0 σT (ΛΛ) and σT (ΞN).

VI. ΞN G-MATRIX INTERACTION

As demonstrated in our previous works [7] [2], the G-matrix theory is very convenient
to explore the features of YN and YY interaction models in nuclear medium. Table XXV
in Ref.[2] demonstrates the basic features of the ΞN G-matrix interactions derived from
ESC04a,b,c,d. It is important, here, that some versions (ESC04c,d) lead to the attractive
Ξ-nucleus potentials UΞ, predicting the existence of Ξ hypernuclei owing to their strong 13S1

attractions. (A two-body spin- and isospin-state is represented by (2I+1)(2S+1)LJ .) In the
present, the most reliable information for UΞ is considered to be given by the BNL-E885
experiment [27], in which they measured the missing mass spectra for the 12C(K−, K+)X
reaction. Reasonable agreement between this data and theory is realized by assuming a
Ξ-nucleus potential UΞ(ρ) = −V0f(r) with well depth V0 ∼ 14 MeV within the Wood-Saxon
prescription, named here as WS14.

Among the four versions of ESC04 models, only ESC04d seems to be compatible with
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FIG. 10: ESC04d I = 1 σT (ΞN) and σT (ΣΛ).

WS14. In Table XIII, we recapitulate the G-matrix result for ESC04d, where the partial-
wave contributions to UΞ are shown. The most important is here that the attractive values
of UΞ for ESC04d are due to the strong attractions in the 13S1 state. The difference between
the two versions of ESC04d specified by values of α is as follows: In Ref.[2], the medium-
induced repulsion was taken into account by changing masses of vector mesons in medium
with use of the parameter αV . Then, it was shown that this effect plays important roles
to reproduce nuclear saturation and Λ well depth. It is quite reasonable to take this effect
into account also in Ξ hypernuclear systems: A criterion for αV is the value of 0.18 used
successfully in S = 0 and −1 cases. However, we should not stick to this value, because there
is no definite information for Ξ hypernuclei experimentally in the present. A reasonable way
for us is to consider it as a changeable parameter to study features of Ξ states. Hereafter,
the parameter αV is denoted as α simply.

In this work, the imaginary parts of G-matrices in 11S1 and 13PJ states are taken into
account together with their real parts. The imaginary parts are due to the energy-conserving
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TABLE IX: (I = 0, L = 0) Total X-sections ΛΛ → ΛΛ, ΞN in [mb] as a function of the laboratory
momentum pΛ in [MeV]

ESC04a ESC04d
pΛ ΛΛ ΞN ΛΛ ΞN

10 447.92 — 75.59 —
50 326.93 — 66.71 —

100 171.59 — 47.39 —
200 50.31 — 18.51 —
300 17.72 — 7.45 —
350 11.30 0.72 6.87 2.56
400 5.90 1.42 2.74 4.37
500 1.50 1.19 0.95 3.44
600 0.22 0.89 1.04 2.57
700 0.07 0.67 1.48 1.99
800 0.34 0.51 1.87 1.60
900 0.73 0.39 2.13 1.33

1000 1.10 0.30 2.34 1.02

TABLE X: (I = 0, L = 0) Total X-sections ΞN → ΞN,ΛΛ in [mb] as a function of the laboratory
momentum pΞ in [MeV]

ESC04a ESC04d
pΞ ΞN ΛΛ ΞN ΛΛ
10 184.19 278.99 708.56 187x103

50 35.67 259.62 129.80 8496.85
100 16.84 212.47 57.73 2073.20
200 7.25 118.22 22.73 461.11
300 4.08 63.66 12.12 168.70
400 2.58 36.51 7.48 73.17
500 1.76 22.90 5.07 34.51
600 1.26 15.83 3.68 17.52
700 0.94 12.02 2.81 9.98
800 0.72 9.90 2.23 6.83
900 0.56 8.71 1.83 5.76

1000 0.44 8.06 1.48 5.53

transitions from ΞN to ΛΛ channels in nuclear medium. For simplicity, we evaluate them in
perturbation, the real parts being the same as those in Ref.[2]. Then, the conversion width
ΓΞ is obtained from the imaginary part of UΞ by multiplying −2. The calculated values of
ΓΞ are also given in Table XIII.

It should be stressed here that the features of the ΞN interaction in ESC04d are distinctly
different from those in OBE models. Among the Nijmegen OBE models, only the Nijmegen
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TABLE XI: (I = 1, L = 0) Total X-sections ΞN → ΞN, ΣΛ in [mb] as a function of the laboratory
momentum pΞ in [MeV]

ESC04a ESC04d
pΞ ΞN ΣΛ ΞN ΣΛ
10 297.54 —- 15.68 —-
50 278.46 —- 15.00 —-

100 233.23 —- 13.11 —-
200 142.04 —- 7.99 —-
300 87.03 —- 3.91 —-
400 57.54 —- 1.77 —-
500 41.08 —- 0.85 —-
600 28.31 2.22 0.98 3.27
700 20.64 3.63 2.55 3.21
800 16.73 3.38 3.19 2.45
900 14.10 3.27 3.62 2.20
950 15.26 1.59 11.88 3.69

1000 12.60 2.34 8.45 1.85

TABLE XII: (I = 1, L = 0) Total X-sections ΣΛ → ΣΛ, ΞN,ΣΣ in [mb] as a function of the
laboratory momentum pΣ in [MeV]

ESC04a ESC04d
pΣ ΣΛ ΞN ΣΣ ΣΛ ΞN ΣΣ
10 671.52 31.36 —- 1406.84 46.55 —-
50 127.24 29.40 —- 223.90 36.19 —-

100 58.38 26.51 —- 84.93 24.49 —-
200 24.24 20.73 —- 26.67 10.17 —-
300 13.63 16.18 —- 12.38 4.87 —-
400 8.92 13.06 —- 6.96 4.26 —-
500 6.56 10.74 —- 4.50 5.50 —-
600 5.86 12.39 —- 4.41 7.13 —-
650 3.70 13.53 2.04 3.85 7.92 0.81
700 3.60 11.00 2.31 2.50 8.35 0.46
800 3.40 9.48 1.82 1.85 9.24 0.17
900 3.24 8.59 1.67 1.56 9.76 0.26

1000 3.03 7.92 1.67 1.36 9.94 0.54

hard-core model D (NHC-D) [28] is known to give the attractive value of UΞ adequately
owing to its peculiar modeling, where octet scalar mesons are not taken into account. For
comparison, the result for NHC-D is also given in Table XIII, where the hard-core radii rc

are taken so as to reproduce Ξ-nucleus interactions compatibly to WS14: The value of rc in
11S0 state is taken as 0.53 fm, and those in the other channels as 0.47 fm. The former value
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TABLE XIII: Ξ single particle energies UΞ and conversion widths ΓΞ at normal density calculated
with ESC04d and NHC-D. S-state contributions in spin- and isospin- states and total P -state
contributions are also given. All entries are in MeV.

11S0
13S1

31S0
33S1 P UΞ ΓΞ

ESC04d(α = 0) 6.4 −19.6 6.4 −5.0 −6.9 −18.7 11.4
ESC04d(α = .18) 6.3 −18.4 7.2 −1.7 −5.6 −12.1 12.7
NHC-D −2.6 0.7 −2.3 −0.4 −16.8 −21.4 1.1

is chosen so that the ΛΛ interaction in this channel is consistent with the data of 6
ΛΛHe. The

features of NHC-D are found to be quite different from those of ESC04d(α): The attractive
value of UΞ in this case is dominated by the P -state contribution, and the calculated value
of ΓΞ is far smaller than those of ESC04d(α).

TABLE XIV: Parameters cij in Eq.6.1 for ESC04d(α).

Real Parts
I = 0 I = 1

c
(+)
1j −896.7 −181.5 −1865. 11.10 34.07 −50.69

1E c
(+)
2j 1632. 356.4 3236. 61.19 −95.18 115.8

c
(+)
3j −573.1 −153.3 −1457. 3.896 83.62 −63.83

c
(+)
1j −641.7 18.39 86.11 −35.84 33.02 .8333

3E c
(+)
2j 582.3 −39.56 −144.4 20.39 −96.59 −5.139

c
(+)
3j −197.9 64.61 63.89 8.864 95.87 4.944

c
(−)
1j 312.4 −13.64 26.39 −171.4 23.08 29.17

1O c
(−)
2j 75.00 13.86 −19.58 124.9 −79.25 −87.50

c
(−)
3j 20.00 15.24 3.611 −21.81 111.7 55.55

c
(−)
1j −331.4 4.944 580.6 −108.2 39.69 43.06

3O c
(−)
2j 39.75 −47.36 −1326. 24.25 −120.1 −113.6

c
(−)
3j 81.25 98.96 760.4 3.636 127.0 69.78

Imaginary Parts (I = 0)
c
(+)
1j −292.0 −916.9 569.4

1E c
(+)
2j 32.47 2096. −1621.

c
(+)
3j 19.74 −1152. 1059.

c
(−)
1j −10.55 1.619 −523.2

3O c
(−)
2j 3.295 3.817 1178.

c
(−)
3j −1.242 −8.286 −655.1

Now, our concern is to investigate how appear the features of ESC04d in level structures
of various Ξ hypernuclei. For such an aim, it is convenient to represent ΞN G-matrix inter-
actions in nuclear matter as density-dependent local potentials [29]. Because sophisticated
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constructions of coordinate-space G-matrices are not necessary under our poor knowledge
on Ξ hypernuclei, we adopt here the following simple method: Our G-matrix interaction in
each isospin- and spin-state is given in a two-range Gaussian form

G
(±)
IS (r, kF ) = (C

(±)
1 + C

(±)
2 kF + C

(±)
3 k2

F ) ·
× exp (−(r/0.8)2) + C0 exp (−(r/1.6)2) ,

C
(±)
i =

3∑
j=1

c
(±)
ij αj−1 for i = 1, 2, 3 (6.1)

where the density-dependence is represented as a function of a Fermi momentum kF . The

suffices (+) and (−) specify even and odd states, respectively. Parameters C
(±)
i are de-

termined as follows: First, the outer-range part is fixed so as to simulate the tail part of
the bare interaction. The adopted values of C0 are −3.73 MeV (11E, 11O), −5.29 MeV
(13E, 13O), −3.34 MeV (31E, 31O) and −4.93 MeV (33E, 33O). Next, the strengths of the
inner-range parts are determined so as to reproduce the partial-wave contributions to UΞ

in (ISL) states. The kF dependence is determined by using the results for the three values

of kF = 1.35, 1.00, 0.80 fm−1. For convenience, the coefficients C
(±)
i (i = 1, 2, 3) in each

(IS) state are given as a quadratic function of α, which represents all together the G-matrix

interactions for ESC04d with various values of α. The parameters c
(±)
ij for ESC04d(α) are

listed in Table XIV.

VII. APPLICATIONS TO Ξ HYPERNUCLEI

A. A folding-model

Ξ-nucleus potentials in finite systems are constructed by folding our G-matrix interactions

G
(±)
IS (r, kF ) into nuclear-core density distributions with a local density approximation (LDA).

Taking into account the Lane term, our potential UΞ is given by

UΞ(r, r′) = U0(r, r
′) + U1(r, r

′) tΞ ·Tc/Ac ,

Ui(r, r
′) = δ(r− r′)

∫
dr′′ρ(r′′)

[
V

(+)
i (|r− r′′|; kF )+

V
(−)
i (|r− r′′|; kF )

]
/2 + ρ(r, r′)

[
V

(+)
i (|r− r′|; kF )−

V
(−)
i (|r− r′|; kF )

]
/2 , (i = 0, 1) , (7.1)

with kF (r, r′) = [3π2/2·(ρ(r)+ρ(r′))/2]1/3. The terms V
(±)
i are expressed by combinations

of G
(±)
IS as

V
(±)
0 = (3G

(±)
10 + 3G

(±)
01 + G

(±)
00 + 9G

(±)
11 )/16,

V
(±)
1 = (G

(±)
10 − 3G

(±)
01 −G

(±)
00 + 3G

(±)
11 )/4, (7.2)

where Tc and tΞ are isospins of a core nucleus and a Ξ particle, respectively, and Ac is
a mass number of a core nucleus. Spin-dependent parts of Ξ−nucleus potentials are not
considered in our present studies.
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Here, we study only the diagonal part of the tΞ · Tc term, though the Ξ− − Ξ0 mixing
effect induced by its non-diagonal part is important to specify some feature of an underlying
ΞN interaction [30]. Nuclear cores are assumed to be spherically symmetric, and density
ρ(r) and mixed density ρ(r, r′) are constructed from nuclear wave functions given by the
density-dependent Hartree-Fock (DDHF) calculations with the Skyrme-III interaction [31].
It should be noted here that the ΞN space-exchange parts are treated accurately in our
treatment. In the present modeling, the difference between Ξ−− and Ξ0−nucleus potentials
comes from the Lane term, when the Coulomb interactions are switched off.

First, let us show the results for simple systems composed of spin- and isospin-saturated
nuclear cores attached by a Ξ− particle; 12C+Ξ−, 16O+Ξ−, 28Si+Ξ−, 40Ca+Ξ−, 90Zr+Ξ−,
where Coulomb interactions between Ξ− and nuclear cores are taken into account. In these
systems, there is no contribution from the Lane term except the case of 90Zr core. In the left
and right sides of Fig.1, full circles connected by solid lines show the single particle (s.p.)
energies of Ξ−-bound states calculated with G-matrix interactions derived from ESC04d(α =

.18) and NHC-D, respectively, as a function of Ac
−2/3. The “error bars” in the figure present

the calculated values of conversion widths ΓΞ, though they are not visible in the case of
NHC-D. The conversion widths for ESC04d are found to be remarkably larger than those
for NHC-D, because the ΞN -ΛΛ coupling interaction in the 11S0 state in the former is far
stronger than that in the latter. This feature can be seen in our result for the double-Λ
nucleus 6

ΛΛHe: As shown in Table XXIV of Ref.[2], ESC04d brings about a large value of
the ΞN admixture probability PΞN in 6

ΛΛHe due to the strong ΛΛ-ΞN coupling interaction.
If this coupling is switched off in this case, no reasonable ΛΛ bound state can be obtained.

The open circles connected by dotted lines give the s-state energies of Ξ0. It is noted
that the Coulomb contributions to Ξ− binding energies are substantial in large mass-number
systems. Hereafter, when a Ξ particle can be bound without an assist from a Ξ-nucleus
Coulomb interaction, we call it a Ξ-nuclear bound state. In the figure, p-states in 12C and
16O, d-states in 28Si and 40Ca, f - and g-states in 90Zr are so-called Coulomb-assisted states.
Namely, these Ξ states become unbound when Coulomb interactions are switched off, though
their wave functions deviate substantially from pure Coulomb ones. On the other hand, the
f -state in 90Zr for NHC-D is a Ξ-nuclear bound state.

ESC04d and NHC-D give rise to similar values of Ξ− s.p. energies in the 12C core. In
the large mass-number region, however, the Ξ− s.p. energies for NHC-D are far deeper than
those for ESC04d(α = .18), the reason why is because the Ξ-nucleus interaction for NHC-D
is dominated by contributions from odd-state attractions. There is no space-exchange term
in OBE parts, because strangeness −2 cannot be carried by a single boson. This is the
reason why the odd-state interactions in NHC-D are so attractive.

In the case of 90Zr+Ξ−, the contributions from the Lane terms are +1.3 and +0.2 MeV
for ESC04d(α = .18) and NHC-D, respectively. It should be noted that the lane term in
ESC04d is far stronger than that in NHC-D.

Next, we study more realistic Ξ hypernuclei produced by p(K−, K+)Ξ− reactions on
available nuclear targets. In Table XV, our results for ESC04d(α = .18) and ESC04d(α = 0)
are listed in some cases of N = Z targets (6Li, 12C, 16O, 28Si, 40Ca) and N > Z targets
(11B, 27Al, 48Ca), Z and N being proton and neutron numbers, respectively. Here, we show
the calculated values of Ξ− s.p. energies EΞ− , contributions ∆EL and ∆EC from Lane
terms and Coulomb interactions, respectively, and conversion widths ΓΞ− . The obtained
values of Ξ− s-state energies in 12

Ξ−Be, being −4.1 and −5.5 MeV for ESC04d(α = .18)
and ESC04d(α = 0), respectively, are comparable to the corresponding value −4.9 MeV
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for WS14. The S-state interactions in ESC04d are rather attractive in average owing to
the strong attraction in the 13S1 state. This feature is demonstrated by the fact that there
appear Ξ hypernuclear states such as 5

Ξ−H even in light p-shell systems. In the other hand,
there appears no Ξ-hypernuclear state in the light p-shell region in the case of using NHC-D.

In the above cases, the Lane terms are in proportion to (N−Z+1)/4, and work repulsively.
Their contributions are found to be more repulsive in the cases of N > Z targets. Especially,
the Ξ− s.p. energies in 48

Ξ−Ar are noted to be shallower than those in 40
Ξ−Ar because of the

large repulsive contributions of the Lane term. On the other hand, the Lane term derived
from NHC-D is far smaller than that from ESC04d. In the largest case of the Ξ− state in
48
Ξ−Ar, for instance, we obtain the value of ∆EL = 0.27 MeV for NHC-D, which should be
compared to the values 2.03 MeV (α = .18) and 2.16 MeV (α = 0) ESC04d in Table XV.
The strong Lane term in ESC04d is understood from the strong isospin dependence of the
partial wave contribution, as seen in Table XIII.

If (K−, K0) reactions are realized in future, we can expect to observe peculiar Ξ hypernu-
clear states predicted by ESC04d. As an example, the result for 12

Ξ−B is given in the bottom
of Table XV, which can be produced by the n(K−, K0)Ξ− reaction on 12C target. Here,
the Lane terms are found to work attractively. It is interesting that there appears the large
difference between Ξ− s.p. energies of 12

Ξ−Be and 12
Ξ−B produced by (K−, K+) and (K−, K0)

reactions on 12C target, respectively.
Thus, the Ξ hypernuclear states produced by ESC04d turn out to be of peculiar features:

The attractive Ξ-nucleus interactions are realized by the strong ΞN attraction in the 13S1

state, which brings about the strong Lane terms and produces Ξ-nuclear bound states in s-
and light p-shell regions. The strong ΞN -ΛΛ coupling interaction, which is responsible to a
reasonable ΛΛ attraction, leads to rather large values of ΓΞ.

B. A four-body Ξ0 − Ξ− mixed state

The strong 13S1 attraction in ESC04d makes it possible that there appear peculiar bound
Ξ states in a few body systems. As an example, let us study the features of the Ξ four-body
system on the basis of ESC04d, which is observable in principle through 4He(K−, K0) reac-
tions. We adopt here the coupled-channel model in the charge space, which was formulated
for the 4

ΣHe system [32]. In our present case, the mixing is taken into account between
[Ξ0+3H] and [Ξ−+3He] channels. The basic coupled-channel equation given by Eq.(3.5) in
Ref.[32] is solved variationally in the Gaussian base. The folding potential between Ξ and
3N cluster (3H or 3He) is given as

7UΞ−3N(R) = U0(R) + Uτ (R)(tΞ · t3N) +

7Uσ(R)(sΞ · s3N) + Uτσ(R)(tΞ · t3N)(sΞ · s3N) (7.3)

which is derived from our ΞN G-matrix interaction under the LDA. Here, it should be
noted that the spin dependence is taken into account exactly. For the 3N core part we use
the theoretical density distribution ρ(r) obtained from the three-body calculation [33]. The
space-exchange terms are taken into account by using some approximated expression for the
mixed density ρ(r, r′) [34].

Because the LDA seems to be rather problematic in our four-body system, let us in-
vestigate its reliability in the cases of light Λ hypernuclei. The ΛN G-matrix interaction
is obtained from ESC04d(α = 0.1), and the Λ-nucleus potentials are derived by folding
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FIG. 11: Ξ− single particle energies for 12C+Ξ−, 16O+Ξ−, 28Si+Ξ−, 40Ca+Ξ− and 90Zr+Ξ− are
shown by full circles in the cases of ESC04d(α = .18) (left side) and NHC-D (right side). Horizontal
axes are for Ac

−2/3, Ac being a mass number of a core nucleus. The “error bars” show calculated
values of conversion widths. Open circles show Ξ0 s-state energies.

them into phenomenological density distributions of core nuclei. Then, the experimental
value of BΛ(13

Λ C) can be reproduced well under the above LDA. When the same treatments
are applied to lighter Λ hypernuclei such as 5

ΛHe, the LDA turns out to underestimate
the BΛ values. We find that the experimental values are reproduced well by introducing
the following correction factor R(Ac) into the LDA: The local values of kF , included in
our G-matrix interactions, are taken as kF (r, r′) = R(Ac) [3π2/2 · (ρ(r) + ρ(r′))/2]1/3 with
R(Ac) = 1.0−0.016 (12−Ac). In the region of Ac < 12, this correction makes the Λ-nucleus
interactions more attractive than those in the simple LDA case. For instance, the calculated
values of BΛ(5

ΛHe) are 3.0 MeV and 1.8 MeV, respectively, with and without this correction
factor. Thus, it is reasonable to use the same correction factor R(Ac) in our calculations for
the Ξ four-body system.

In Table XVI, our results are given in the cases of ESC04(α = 0) and ESC04(α = .18),
T being sum of isospins of Ξ and 3N clusters. Here, the conversion widths are calculated in
perturbation. The values in parentheses here are obtained without introducing the correction
factor R(Ac = 3): Even in this case, our following conclusions are not changed qualitatively.
First, let us remark on the fact that Ξ-nuclear bound states are obtained clearly in the case
of pure T = 0 states, where the Coulomb interactions are not taken into account. The reason
can be understood as follows: The Ξ− 3N folding interaction in the (T, Jπ) = (0, 0+) state
is related to the ΞN interaction GIS through 3 · (G01 + G10)/2. Then, the strong attraction
G01 in ESC04d gives rise to the substantial Ξ − 3N attraction. The Ξ − 3N interaction in
the (0, 1+) state given by 3 · (3G11 + 2G01 + G00)/6, is less attractive than that in the 0+

state because of the smaller weight of G01. On the other hand, the conversion width ΓΞ is

30



TABLE XV: Calculated values of Ξ− single particle energies EΞ− and conversion widths ΓΞ. ∆EL

and ∆EC are contributions from Lane terms and Coulomb interactions, respectively. All entries
are in MeV.

ESC04d(α = .18) ESC04d(α = 0)
Target EΞ− ∆EL ∆EC ΓΞ− EΞ− ∆EL ∆EC ΓΞ−
6Li [5Ξ−H] s −0.6 0.45 −0.57 1.4 −0.8 0.56 −0.69 1.8
12C [12

Ξ−Be] s −4.1 0.51 −2.35 4.3 −5.5 0.62 −2.58 5.2
16O [16

Ξ−C] s −6.1 0.46 −3.30 5.5 −8.0 0.54 −3.60 6.4
28Si [28

Ξ−Mg] s −10.6 0.34 −5.83 5.6 −13.8 0.38 −6.28 6.3
p −5.7 0.22 −4.74 2.7 −7.4 0.26 −5.20 3.4

40Ca [40
Ξ−Ar] s −14.0 0.26 −7.94 5.7 −17.8 0.28 −8.44 6.3

p −9.2 0.19 −6.80 3.2 −11.5 0.22 −7.34 3.8
d −4.4 0.12 1.7 −5.7 0.15 2.1

11B [11
Ξ−Li] s −2.7 1.01 −1.75 3.6 −3.7 1.23 −1.96 4.5

27Al [27
Ξ−Na] s −9.6 0.70 −5.37 5.4 −12.7 0.78 −5.83 6.2

p −4.9 0.44 −4.29 2.6 −6.4 0.53 −4.74 3.3
48Ca [48

Ξ−Ar] s −12.7 2.03 −7.64 5.3 −16.7 2.16 −8.21 5.9
p −8.4 1.50 −6.46 2.8 −10.9 1.74 −7.09 3.5
d −4.2 0.99 1.4 −5.6 1.24 1.9

12C [12
Ξ−B] s −5.7 −0.55 −2.97 5.0 −7.2 −0.65 −3.21 5.7

determined dominantly by the imaginary part of G00. The reason why the obtained value
of ΓΞ in (0, 0+) state is very small is because the G00 component has no contribution to the
Ξ− 3N interaction in the this state.

Next, let us solve the [Ξ0+3H]⊗ [Ξ−+3He] coupled-channel problem in the charge-space,
where the mass difference between [Ξ0+3H] and [Ξ−+3He] states and the Ξ−−3He Coulomb
interaction are taken into account. In the single-channel treatment for Ξ0+3H (Ξ−+3He), we
obtain no Ξ0-bound state (only a Ξ− Coulomb-bound state). When the [Ξ0+3H]− [Ξ−+3He]
coupling interaction is switched on, we obtain Ξ-nuclear bound state both in the 0+ and 1+

channels. As shown by the value of the Ξ0 mixing probability PΞ0 , this state is dominated
by the lower Ξ0+3H component. Then, Ξ−-dominated states are found in continuum.

It is confirmed that the above T = 0 bound-state solutions are reproduced by the coupled-
channel equation in the charge base, when the mass difference ∆ is taken to be zero and
the coulomb interaction is switched off. The probabilities of T = 0 components in our
coupled-channel solutions are also given in the Table. Our solutions turn out to be deviated
considerably from isospin eigenstates. This situation is contrastive to the fact that the
bound 4

ΣHe system is of almost pure T = 1/2 component. The reason is mainly because the
mass difference 5.9 MeV between [Ξ0+3H] and [Ξ−+3He] states is considerably larger than
the mass difference 2.6 MeV between [Σ++3H] and [Σ0+3He] states.
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TABLE XVI: Energies EΞ and conversion widths ΓΞ in the pure T = 0 states and the
[Ξ0+3H] − [Ξ−+3He] mixed states are shown together with probabilities of Ξ0 components and
T = 0 components. Results are given in both cases of Jπ = 0+, 1+. The values in parentheses are
obtained without the correction to the LDA (R(Ac)=1).

Jπ = 0+ Jπ = 1+

EΞ ΓΞ PΞ0 PT=0 EΞ ΓΞ PΞ0 PT=0

(MeV) (MeV) (%) (%) (MeV) (MeV) (%) (%)
ESC04d(α = 0)
pure T = 0 −4.7 0.0 — — −2.4 6.7 — —

(−2.9) (0.0) — — (−1.0) (4.1) — —
Ξ0-Ξ− mixed −2.9 0.1 70.5 94.2 −1.4 4.7 93.2 73.6

(−1.3) (0.2) (77.6) (88.5) (−0.4) (2.1) (98.1) (61.3)
ESC04d(α = .18)
pure T = 0 −3.9 0.0 — — −1.6 5.5 — —

(−2.0) (0.0) — — (−0.3) (2.5) — —
Ξ0-Ξ− mixed −2.2 0.2 73.5 92.1 −0.7 3.4 95.1 69.0

(−0.6) (0.2) (84.3) (81.3) (−0.0) (0.6) (99.6) (53.3)

VIII. SUMMARY AND CONCLUSION

The ESC04 models potentials presented here are a major step in constructing the baryon-
baryon interactions for scattering and hypernuclei in the context of broken SU(3)F symmetry
using, apart from an extremely simple gaussian repulsion from the Pomeron, only meson-
exchange for the dynamics. The potentials are based on (i) One-boson-exchanges, where the
coupling constants at the baryon-baryon-meson vertices are restricted by the broken SU(3)
symmetry, (ii) Two-pseudoscalar exchanges, (iii) Meson-Pair exchanges. Each type of meson
exchange (pseudoscalar, vector, axial-vector, scalar) contains five free parameters: a singlet
coupling constant, an octet coupling constant, the F/(F +D) ratio α, a meson-mixing angle,
and for ESC04a-b a ∆FSB-parameter, which describes an SU(3)-symmetry breaking of the
meson couplings. The potentials are regularized with gaussian cut-off parameters, which
provide a few additional free parameters.

Although we performed truly simultaneous fits to the NN and YN data, effectively most of
these parameters are determined in fitting the rich and accurate NN scattering data, while the
remaining ones are fixed by fitting also the (few) YN scattering data. This still leaves enough
freedom to construct the different models, ESC04a through ESC04d. The distinction being
using the different options w.r.t. ∆FSB and aPV (see [2] for the definitions). These options
are: (i) ∆FSB 6= 0 (ESC04a,b), or ∆FSB = 0 (ESC04c,d); and (ii) aPV = 0.5 (ESC04a,c),
or aPV = 1.0 (ESC04b,d). They all describe the NN and YN data equally well, but differ on
a more detailed level. The assumption of SU(3) symmetry then allows us to extend these
models to the higher strangeness channels (i.e., YY and all interactions involving cascades),
without the need to introduce additional free parameters. Like the NSC97 models, the
ESC04 models are very powerful models of this kind, and the very first realistic ones.

In order to illustrate the basic properties of these potentials, we have presented results
for scattering lengths, possible bound states in S-waves, and total cross sections.
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Although the four versions ESCa,b,c,d reproduce the NN and Y N data equally well, there
appear considerable differences in hypernuclear structures, especially in S = −2 systems.
A typical example can be seen in their ΞN sectors: The derived Ξ-nucleus potentials are
different from each other even qualitatively. Then, it is quite important that one of the
solutions (ESC04d) in the ESC modeling predicts the existence of Ξ-hypernuclei consistently
with the indication given by the BNL-E885 experiment. The Ξ-nucleus attraction derived
from ESC04d is owing to the situation that the ΞN interaction in the 3S1 (33S1) state is
substantially attractive (not strongly repulsive). This feature is intimately related to its
strong Lane term. The mass dependence of Ξ hypernuclei predicted by ESC04d is rather
different from that by the OBE model such as NHC-D. The most striking is that the peculier
ΞN hypernuclear states are obtained by ESC04d even in s- and light p-shell regions.

We finally mention that these ESC04 potentials also provide an excellent starting point
for calculations on multi-strange systems. For that purpose it is necessary that we extend
this work to the S = −3, 4-systems, i.e. comprising all {8} ⊗ {8} baqryon-baryon states.
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TABLE XVII: SU(3)-contents of the various potentials on the isospin basis.

Space-spin antisymmetric states 1S0,
3P, 1D2, ...

ΛΛ → ΛΛ I = 0 VΛΛ,ΛΛ = 1
40 (27V27 + 8V8s + 5V1)

ΛΛ → ΞN ,, VΛΛ,ΞN = −1
40 (18V27 − 8V8s − 10V1)

ΛΛ → ΣΣ ,, VΛΛ,ΣΣ =
√

3
40 (−3V27 + 8V8s − 5V1)

ΞN → ΞN ,, VΞN,ΞN = 1
40 (12V27 + 8V8s + 20V1)

ΞN → ΣΣ ,, VΞN,ΣΣ =
√

3
40 (2V27 + 8V8s − 10V1)

ΣΣ → ΣΣ ,, VΣΣ,ΣΣ = 1
40 (V27 + 24V8s + 15V1)

ΞN → ΞN I = 1 VΞN,ΞN = 1
5 (2V27 + 3V8s)

ΞN → ΛΣ ,, VΞN,ΛΣ =
√

6
5 (V27 − V8s)

ΛΣ → ΛΣ ,, VΛΣ,ΛΣ = 1
5 (3V27 + 2V8s)

ΣΣ → ΣΣ I = 2 VΣΣ,ΣΣ = V27

TABLE XVIII: SU(3)-contents of the various potentials on the isospin basis.

Space-spin symmetric states 3S1,
1P1,

3D, ...

ΞN → ΞN I = 1 VΞN,ΞN = 1
3 (V10 + V10∗ + V8a)

ΞN → ΛΣ , , VΞN,ΛΣ =
√

6
6 (V10 − V10∗)

ΞN → ΣΣ , , VΞN,ΣΣ =
√

2
6 (V10 + V10∗ − 2V8a)

ΛΣ → ΛΣ , , VΛΣ,ΛΣ = 1
2 (V10 + V10∗)

ΛΣ → ΣΣ , , VΛΣ,ΣΣ =
√

3
6 (V10 − V10∗)

ΣΣ → ΣΣ , , VΣΣ,ΣΣ = 1
6 (V10 + V10∗ + 4V8a)

ΞN → ΞN I = 0 VΞN,ΞN = V8a

APPENDIX A: BARYON-BARYON CHANNELS AND SU(3)-IRREPS

In Table XVII and Table XVIII we give the relation between the potentials on the isospin
basis and the potentials in the SU(3)-irreps.
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TABLE XIX: Pair coupling constants for model ESC04a, divided by
√

4π. I(M) refers to the
isospin of the pair M with quantum-numbers JPC .

Pair JPC Type I(M) NNM ΣΣM ΣΛM ΞΞM I(M) ΛNM ΛΞM ΣNM ΣΞM

πη 0++ g 1 –0.1860 –0.3720 0.0000 –0.1860 1/2 0.3222 –0.3222 0.1860 0.1860
0 –0.3222 0.0000 0.0000 0.3222

ππ 1−− g 1 –0.0024 –0.0049 0.0000 –0.0024 1/2 0.0042 –0.0042 0.0024 0.0024
0 –0.0042 0.0000 0.0000 0.0042

ππ 1−− f 1 0.1310 0.1048 0.0908 –0.0262 1/2 –0.1361 0.0454 0.0262 –0.1310
0 0.0454 –0.0908 0.0908 –0.1361

πρ 1++ g 1 0.8864 1.1404 0.3651 0.2540 1/2 –1.1702 0.8051 –0.2540 –0.8864
0 0.8051 –0.3651 0.3651 –1.1702

πσ 1++ g 1 –0.0241 –0.0310 –0.0099 –0.0069 1/2 0.0318 –0.0219 0.0069 0.0241
0 –0.0219 0.0099 –0.0099 0.0318

πω 1+− g 1 –0.1722 –0.1608 –0.1060 0.0114 1/2 0.1923 –0.0862 –0.0114 0.1722
0 –0.0862 0.1060 –0.1060 0.1923

TABLE XX: Pair coupling constants for model ESC04d, divided by
√

4π. I(M) refers to the isospin
of the pair M with quantum-numbers JPC .

Pair JPC Type I(M) NNM ΣΣM ΣΛM ΞΞM I(M) ΛNM ΛΞM ΣNM ΣΞM

πη 0++ g 1 –0.0971 –0.1942 0.0000 –0.0971 1/2 0.1682 –0.1682 0.0971 0.0971
0 –0.1682 0.0000 0.0000 0.1682

ππ 1−− g 1 0.0303 0.0607 0.0000 0.0303 1/2 –0.0526 0.0526 –0.0303 –0.0303
0 0.0526 0.0000 0.0000 –0.0526

ππ 1−− f 1 0.1390 0.1112 0.0963 –0.0278 1/2 –0.1444 0.0481 0.0278 –0.1390
0 0.0481 –0.0963 0.0963 –0.1444

πρ 1++ g 1 0.8344 0.9567 0.4111 0.1224 1/2 –1.0341 0.6230 –0.1224 –0.8344
0 0.6230 –0.4111 0.4111 –1.0341

πσ 1++ g 1 –0.0411 –0.0471 –0.0202 –0.0060 1/2 0.0509 –0.0307 0.0060 0.0411
0 –0.0307 0.0202 –0.0202 0.0509

πω 1+− g 1 –0.1690 –0.1685 –0.0978 0.0005 1/2 0.1948 –0.0970 –0.0005 0.1690
0 –0.0970 0.0978 –0.0978 0.1948

APPENDIX B: MESON-PAIR COUPLING CONSTANTS

In Table XIX and Table XX we give the MPE-couplings for model ESC04a and ESC04d
respectively.
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APPENDIX C: BKS-PHASE PARAMETERS

In Tables XXI-XXX we display the BKS-phase parameters for model ESC04a and
ESC04d.

TABLE XXI: 1S0(ΛΛ → ΛΛ) BKS-phase parameters in [degrees] as a function of the laboratory
momentum pΛ in [MeV]

ESC04a ESC04d
pΛ δ(1S0) ρ(1S0) δ(1S0) ρ(1S0)
10 5.49 — 2.25 —
50 24.12 — 10.64 —

100 36.27 — 18.11 —
200 39.70 — 22.80 —
300 34.47 — 21.53 —
350 31.45 7.71 24.64 15.02
400 25.89 12.58 16.73 24.05
500 16.11 14.40 2.47 27.48
600 6.38 14.81 –10.52 28.69
700 –2.97 14.82 –20.94 29.42
800 –7.43 14.63 –27.66 30.01
900 –19.45 14.20 –29.86 30.80

1000 –26.26 14.99 –27.15 30.39
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TABLE XXII: 1S0(ΞN → ΞN, I = 0 BKS-phase parameters in [degrees] as a function of the
laboratory momentum pΛ in [MeV]

ESC04a ESC04d
pΞ δ(1S0) ρ(1S0) δ(1S0) ρ(1S0)
10 –0.86 2.93 –0.86 5.78
50 –4.31 6.49 –4.32 12.68

100 –8.74 8.98 –8.62 17.42
200 –17.84 11.91 –16.90 22.83
300 –26.52 13.47 –24.08 25.67
350 –30.23 13.95 –26.90 26.57
400 –33.09 14.29 –28.96 27.25
500 –34.57 14.69 –30.33 28.21
600 –30.11 14.84 –27.75 28.69
700 –22.54 14.83 –22.00 29.39
800 –13.98 14.71 –14.36 29.84
900 –5.30 14.47 –6.25 30.30

1000 3.02 14.20 –2.65 30.39

TABLE XXIII: 1S0(ΞN → ΞN, I = 1) BKS-phase parameters in [degrees] as a function of the
laboratory momentum pΞ in [MeV]

ESC04a ESC04d
pΞ δ(1S0) ρ(1S0) δ(1S0) ρ(1S0)
10 –3.65 — –0.17 —
50 –17.88 — –0.87 —

100 –34.00 — –1.80 —
200 –31.27 — –3.91 —
300 –14.37 — –6.34 —
400 –2.23 — –8.60 —
500 6.48 — –9.23 —
600 8.45 14.50 3.28 25.85
700 19.43 23.36 –19.59 31.54
800 26.84 25.98 –27.01 30.59
900 30.22 27.37 –29.78 29.25

1000 29.77 28.19 –30.40 27.65
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TABLE XXIV: 1S0(ΣΛ → ΣΛ, I = 1) BKS-phase parameters in [degrees] as a function of the
laboratory momentum pΣ in [MeV]

ESC04a ESC04d
pΣ δ(1S0) ρ(1S0) δ(1S0) ρ(1S0)
10 –1.14 4.85 0.30 9.46
50 –5.74 10.68 1.43 20.08

100 –11.69 14.73 2.58 26.15
200 –22.84 19.76 3.41 30.81
300 –29.83 22.96 0.86 31.57
400 –30.97 25.13 –4.86 31.06
500 –27.57 26.63 –12.01 30.09
600 –21.67 27.65 –19.01 28.82
700 –14.72 28.35 –24.85 27.20
800 –7.58 28.79 –29.05 25.12
900 –0.76 29.06 –31.60 22.40

1000 5.37 29.20 –32.89 18.92

TABLE XXV: ESC04a 3S1 −3 D1(ΞN → ΞN, I = 1) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΞ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 –0.43 0.00 0.00 — — —
50 –2.14 0.01 0.00 — — —

100 –4.30 0.03 0.00 — — —
200 –8.70 0.15 –0.03 — — —
300 –13.18 0.26 –0.09 — — —
400 –17.65 0.29 –0.20 — — —
500 –21.92 0.18 –0.36 — — —
600 –24.93 –0.13 –0.59 0.97 0.00 1.00
700 –30.37 –0.66 –0.87 0.93 0.02 1.00
800 –34.95 –1.24 –1.22 0.91 0.04 1.00
900 –39.29 –1.76 –1.72 0.89 0.06 0.98

1000 –42.88 –2.58 –2.14 0.92 0.09 0.97
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TABLE XXVI: ESC04d 3S1 −3 D1(ΞN → ΞN, I = 1) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΞ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 0.48 0.00 0.00 — — —
50 2.36 0.00 0.00 — — —

100 4.39 0.00 0.00 — — —
200 6.65 –0.03 0.02 — — —
300 6.37 –0.14 0.10 — — —
400 4.26 –0.40 0.32 — — —
500 1.27 –0.88 0.74 — — —
600 –1.76 –1.66 1.40 1.00 0.06 1.00
700 –4.26 –2.58 2.02 0.99 0.09 0.99
800 –4.88 –3.93 2.86 0.98 0.17 0.98
900 2.81 –6.27 3.81 0.95 0.22 0.97
950 38.03 –8.72 3.57 0.78 0.29 0.95

1000 –34.79 –2.95 4.33 0.49 0.07 0.98

TABLE XXVII: ESC04a 3S1 −3 D1(ΣΛ → ΣΛ, I = 1) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΣ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 0.40 0.00 0.00 1.00 0.00 1.00
50 1.90 0.00 0.00 0.98 0.00 1.00

100 3.17 0.00 –0.03 0.97 –0.01 1.00
200 3.31 0.02 –0.28 0.94 –0.04 1.00
300 0.99 0.10 –0.63 0.93 –0.05 1.00
400 –2.39 0.27 –0.75 0.92 –0.03 1.00
500 –5.01 0.59 –0.35 0.91 0.02 1.00
600 9.74 1.73 2.79 0.81 0.32 0.93
700 –22.23 1.60 –1.17 0.76 –0.08 0.98
800 –25.56 0.94 0.13 0.76 0.00 0.94
900 –29.18 1.05 0.49 0.74 0.07 0.88

1000 –32.87 1.78 –0.17 0.72 0.13 0.81
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TABLE XXVIII: ESC04d 3S1 −3 D1(ΣΛ → ΣΛ, I = 1) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΣ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 0.38 0.00 0.00 1.00 0.00 1.00
50 1.78 0.00 0.00 1.00 0.00 1.00

100 2.86 0.00 –0.02 1.00 –0.01 1.00
200 2.16 0.00 –0.22 0.99 –0.04 1.00
300 –1.69 –0.02 –0.42 0.99 –0.05 1.00
400 –7.31 –0.08 –0.28 0.99 –0.05 1.00
500 –13.56 –0.16 0.51 0.99 –0.03 0.99
600 –19.45 0.08 2.96 1.00 0.02 0.93
650 –22.61 1.47 –3.08 0.98 –0.02 0.90
700 –25.59 0.86 –1.29 0.98 –0.01 0.96
800 –31.15 0.47 0.43 0.97 0.03 0.98
900 –36.15 0.32 1.67 0.95 0.07 0.96

1000 -40.75 0.56 2.33 0.92 0.12 0.91

TABLE XXIX: ESC04a 3S1 −3 D1(ΞN → ΞN, I = 0) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΞ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 2.02 0.00 0.00 1.000 0.000 1.000
50 9.75 0.00 0.00 1.000 0.000 1.000

100 17.71 0.00 0.00 1.000 0.004 1.000
200 25.97 0.00 0.06 1.000 0.011 1.000
300 26.67 0.00 0.19 1.000 0.010 1.000
400 23.53 0.00 0.32 1.000 0.001 1.000
500 18.63 0.00 0.31 1.000 –0.010 1.000
550 15.85 0.00 0.21 1.000 –0.015 1.000
600 12.95 0.00 0.04 1.000 –0.020 1.000
700 6.97 0.00 –0.59 1.000 –0.027 1.000
800 0.89 0.00 –1.61 0.999 –0.032 0.999
900 –5.16 0.00 –3.01 0.999 –0.034 0.999

1000 –11.11 0.00 –4.71 0.999 –0.033 0.999
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TABLE XXX: ESC04d 3S1 −3 D1(ΞN → ΞN, I = 0) BKS-phase parameters in [degrees] as a
function of the laboratory momentum pΞ in [MeV]

pΞ δ(3S1) ε1 δ(3D1) η11 η12 η22

10 110.06 0.00 0.00 1.000 0.000 1.000
50 88.14 0.00 0.00 1.000 0.000 1.000

100 79.61 0.00 0.00 1.000 0.002 1.000
200 66.14 0.00 0.02 1.000 0.006 1.000
300 53.94 0.00 0.14 1.000 0.015 1.000
400 42.57 0.00 0.42 1.000 0.028 1.000
500 31.96 0.00 0.87 0.999 0.046 0.999
550 26.91 0.00 1.13 0.998 0.057 0.998
600 22.04 0.00 1.38 0.998 0.068 0.998
700 12.73 0.00 1.78 0.996 0.092 0.996
800 3.96 0.00 1.92 0.993 0.117 0.993
900 –4.36 0.00 1.69 0.990 0.140 0.990

1000 –12.27 0.00 1.07 0.987 0.161 0.987
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