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I. INTRODUCTION

Hadronic interactions are in principle explained by quantum chromodynamics (QCD).
Such a first-principles description of the hadron-hadron interaction, however, is highly com-
plicated, particularly at low energy, where QCD is a nonperturbative theory. In practice,
therefore, effective hadronic Lagrangians are often used. The coupling constants at the
hadronic vertices are then among the most fundamental quantities that should be computed
from QCD.

There is a long history of successful approaches of describing the two-baryon interaction
using meson-exchange potentials. The values of the meson-baryon coupling constants have
been empirically determined so as to reproduce the nucleon-nucleon (NN) [1, 2], hyperon-
nucleon (YN) [3–5] and hyperon-hyperon (YY) interactions in terms of e.g. one-boson
exchange (OBE) models. The scalar mesons play significant roles in such phenomenological
potential models. In early OBE models for the NN interaction the exchange of an isoscalar-
scalar “σ” meson with a mass of about 500 MeV was needed to obtain enough medium-range
attraction and a sufficiently strong spin-orbit force. It was only later understood that the
exchange of a broad isoscalar-scalar meson, the ε(760) [6, 7], simulates the exchange of such
a low-mass “σ” [8].

Existence of the “σ” meson is expected also from chiral symmetry of QCD. The σ meson
appears as a chiral partner of the Nambu-Goldstone boson, π, and thus plays the role of
the “Higgs boson” in chiral symmetry breaking. Recent analyses of π − π scattering have
revealed a broad resonance at the mass around 600 MeV, called f0(600) by the Particle Data
Group [9], which is considered to play the role of ε(760) in the boson exchange potential of
the baryonic interactions.

In terms of OBE models for two-baryon interactions, the dominant contribution to ΛΛ
interaction comes from the scalar ε(760) meson exchange [10, 11]. The recent identification
of 6

ΛΛHe and the measurement of the ΛΛ pair suggest that the binding energy of ΛΛ (∆BΛΛ '
1.0 MeV) is considerably smaller than the binding energy of NN [12]. This is in contrast
to the outcome of the earlier measurement which is ∆BΛΛ ' 4.7 MeV [13]. This issue
has also been examined within the framework of Nijmegen OBE potential model D (NHC-
D) [14]. In this model, the pseudoscalar octet π, η, η′, K, the vector octet ρ, φ, ω, K∗

and the scalar singlet ε are the exchanged mesons and the coupling constants are fitted
to data while other physical properties of the particles are taken from experiment. The
estimated value of ∆BΛΛ in this model implies a rather strong attractive ΛΛ. However, in
the Nijmegen soft-core (NSC) potential models [4, 5], where there is a scalar nonet instead
of a scalar singlet, we have much weaker attractive potentials than in the case of NHC-D in
the ΛΛ systems. In this framework, since the scalar ε(760) exchange plays the most crucial
role in ΛΛ interactions, it is necessary to determine the ΛΛε coupling constant in a model
independent way in order to understand the role of ε exchange in the strangeness S = −2
sector.

The structure and even the status of the scalar mesons, however, have always been
controversial [15, 16]. In the quark model, the simplest assumption for the structure of the
scalar mesons is the 3P0 qq̄ states. In this case, the scalar mesons might form a complete
nonet of dressed qq̄ states, resulting from e.g. the coupling of the P -wave qq̄ states to meson-
meson channels [17]. Explicitly, the unitary singlet and octet states, denoted respectively
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by ε1 and ε8, read

ε1 = (uū + dd̄ + ss̄)/
√

3 ,

ε8 = (uū + dd̄− 2ss̄)/
√

6 . (1)

The physical states are mixtures of the pure SU(3)-flavor states, and are written as

ε = cos θs ε1 + sin θs ε8 ,

f0 = − sin θs ε1 + cos θs ε8 . (2)

For ideal mixing holds that tan θs = 1/
√

2 or θs ' 35.3◦, and thus one would identify

ε(760) = (uū + dd̄)/
√

2 ,

f0(980) = −ss̄ . (3)

The isotriplet member of the octet is a±,0
0 (980), where

a0
0(980) = (uū− dd̄)/

√
2 . (4)

An alternative and arguably more natural explanation for the masses and decay properties
of the lightest scalar mesons is to regard these as cryptoexotic q2q̄2 states [18]. In the MIT
bag model, the scalar qq̄ states are predicted around 1250 MeV, while the attractive color-
magnetic force results in a low-lying nonet of scalar q2q̄2 mesons [18, 19]. This nonet contains
a nearly degenerate set of I = 0 and I = 1 states, which are identified as the f0(980) and
a±,0

0 (980) at the K̄K threshold, where

a0
0(980) = (sds̄d̄− sus̄ū)/

√
2 ,

f0(980) = (sds̄d̄ + sus̄ū)/
√

2 , (5)

with the ideal-mixing angle tan θs = −√2 or θs ' −54.8◦ in this case. The light isoscalar
member of the nonet is

ε(760) = udūd̄ . (6)

The nonet is completed by the strange member κ(880), which like the ε(760) is difficult to
detect because it is hidden under the strong signal from the K∗(892) [15, 16]. We shall use
in this paper the nomenclature (a±,0

0 , f0, σ, κ) for the scalar-meson nonet, where one should
identify σ = ε(760).

One way to make progress with the scalar mesons is to study their role in the various
two-baryon reactions (NN, YN, YY). Our aim in this paper is to calculate the ΛΛσ, ΞΞσ
and ΣΣσ coupling constants, using the QCD Sum Rules (QCDSR) method. The QCDSR
method [20] is a powerful tool to extract qualitative and quantitative information about
hadron properties [21, 22]. In this framework, one starts with a correlation function, which
is constructed in terms of hadron interpolating fields. On the theoretical side, the correlation
function is calculated using the Operator Product Expansion (OPE) in the Euclidian region.
This correlation function is matched with an Ansatz which is introduced from the hadronic
degrees of freedom on the phenomenological side, and this matching provides a determination
of the hadronic parameters like baryon masses, magnetic moments, coupling constants of
hadrons and so on.

3



There are different approaches in constructing the QCDSR (see e.g. Ref. [22] for a review).
One usually starts with the vacuum-to-vacuum matrix element of the correlation function
that is constructed with the interpolating fields of two baryons and one meson. However,
this three-point function method has as a major drawback that at low momentum transfer
the OPE fails. Moreover, when the momentum of the meson is large, it is plagued by
problems with higher resonance contamination [23]. The other method that is free from
the above problems is the external-field method. There are two formulations that can be
used to construct the external-field sum rules: In the vacuum-to-meson method, one starts
with a vacuum-to-meson transition matrix element of the baryon interpolating fields, where
some other transition matrix elements should be evaluated [21]. (This is also the starting
point of the light-cone QCDSR method.) In Ref. [24], pion-nucleon coupling constant was
calculated in the soft meson limit using this approach. Later it was pointed out that the
sum rule for pion-nucleon coupling in the soft-meson limit can be reduced to the sum rule
for the nucleon mass by a chiral rotation so the coupling was calculated again with a finite
meson momentum [25]. These calculations were improved considering the coupling schemes
at different Dirac structures and beyond the chiral limit contributions [26–28]. In this paper,
we calculate the baryon-sigma meson coupling constants, using the external field QCDSR
method [29]. We evaluate the vacuum to vacuum transition matrix element of two baryon
interpolating fields in an external sigma field and construct the sum rules. This method has
been used to determine the magnetic moments of baryons [29–32], the nucleon axial coupling
constant [32, 33], the nucleon sigma term [34], and baryon isospin mass splittings [35]. It has
also been shown that at low momentum transfer, this method is very successful in evaluating
the hadronic coupling constants. Recently, the NNσ coupling constant, gNNσ, was calculated
using this method [36]. It has also been applied, previously, to the calculations of the strong
and weak parity violating pion-nucleon coupling constants [37–39] and the coupling constants
of the vector mesons ρ and ω to the nucleon [40].

In the SU(3) flavor symmetric one can classify the meson-baryon coupling constants in
terms of two parameters, the NNa0 coupling constant, gNNa0 and the F/(F + D) ratio of
the scalar octet, αs [41]:

gNNa0 = g , gNNε8 =
1√
3

g (4αs − 1) , gΛΛε8 = − 2√
3

g (1− αs) , (7)

gΞΞε8 = − 1√
3

g (1 + 2αs) , gΣΣε8 =
2√
3

g (1− αs) , gΞΞa0 = g (2αs − 1) ,

gΣΣa0 = 2 g αs , gΛΣa0 =
2√
3

g (1− αs) , gΛNκ = − 1√
3

g (1 + 2αs) ,

gΣNκ = g (1− 2αs) .

Considering the mixing between the singlet and the octet members of the scalar nonet, one
obtains for gBBσ and gBBf0 ,

gBBσ = cos θsg1 + sin θsgBBε8 ,

gBBf0 = − sin θsg1 + cos θsgBBε8 , (8)

where g1 = gBBε1 is the flavor singlet coupling, and θs is the scalar mixing angle.
We shall first consider the sum rules in the SU(3) flavor symmetric limit to see if the

predicted values for the meson baryon coupling constants from the sum rules are consistent
with the SU(3) relations. We show that this is indeed the case which leads to a determination
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of the F/(F + D) ratio of the scalar octet. Furthermore, keeping track of these coupling
constants with the SU(3) relations, we obtain the values of the other scalar meson-baryon
coupling constants. For this purpose, we assume ideal mixing and make the analysis in both
qq̄ and q2q̄2 pictures for the scalar mesons. As we move from the S = 0 to the S = −1 and
S = −2 sectors, the flavor SU(3) breaking occurs as a result of the s-quark mass and the
physical masses of the baryons and mesons. We also consider the SU(3) breaking effects for
the sum rules to estimate the amount of breaking, individually for each coupling.

We have organized our paper as follows: in Section II, we present the formulation of
QCDSR with an external scalar field and construct the sum rules for the ΛΛσ, ΞΞσ and ΣΣσ
coupling constants. We give the numerical analysis and discuss the results in Section III.
Finally, we arrive at our conclusions in Section IV.

II. BARYON SUM RULES IN AN EXTERNAL SIGMA FIELD

A. Construction of the Sum Rules

In the external-field QCDSR method one starts with the correlation function

ΠBσ(q) = i

∫
d4x eiq·x

〈
0
∣∣∣T [ηB(x)η̄B(0)]

∣∣∣0
〉

σ
, (9)

ηΞ = εabc[(s
T
a Cγµsb)γ5γ

µuc] , (10)

ηΣ = εabc[(u
T
a Cγµub)γ5γ

µsc] ,

ηΛ = (2/3)1/2εabc[(u
T
a Cγµsb)γ5γ

µdc − (dT
a Cγµsb)γ5γ

µuc] .

for Ξ, Σ and Λ, respectively. Here a, b, c denote the color indices, and T and C denote
transposition and charge conjugation, respectively. For the interpolating field of each octet
baryon, there are two independent local operators, but the ones in Eq. (10) are the optimum
choices for the lowest-lying positive parity baryons (see e.g. Ref [42] for a discussion on
negative-parity baryons in QCDSR).

The external sigma field contributes the correlation function in Eq. (9) in two ways:
first, it directly couples the quark field in the baryon current and second, it modifies the
condensates by polarizing the QCD vacuum. In the presence of the external scalar field
there are no correlators that break the Lorentz invariance; however, the correlators already
existing in the vacuum are modified by the external field:

〈q̄q〉σ ≡ 〈q̄q〉+ gσ
q χσ〈q̄q〉 , (11)

〈gcq̄σ ·Gq〉σ ≡ 〈gcq̄σ ·Gq〉+ gσ
q χGσ〈gcq̄σ ·Gq〉 ,

where only the responses linear in the external-field are taken into account. Here, gσ
q is

the quark-σ coupling constant and χ and χG are the susceptibilities corresponding to quark
and quark-gluon mixed condensates, respectively. In Eq. (11), 〈q̄q〉 represents either 〈ūu〉 or
〈d̄d〉, as we have assumed that 〈ūu〉 ' 〈d̄d〉 and the responses of the up and the down quarks
to the external isoscalar field are the same. Note that, here we assume ideal mixing in the
scalar sector, that is, we take the sigma meson without a strange-quark content. Therefore,
the sigma meson couples only to the u- or the d-quark in the baryon, where we take gσ

u = gσ
d

and gσ
s = 0.
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In the Euclidian region, the OPE of the product of two interpolating fields can be written
as follows:

ΠBσ(q) =
∑

n

Cσ
n(q)On , (12)

where Cσ
n(q) are the Wilson coefficients and On are the local operators in terms of quarks

and gluons. In order to calculate the Wilson coefficients, we need the quark propagator in
the presence of the external sigma field. In coordinate space the full quark propagator takes
the form:

Sq(x) = S(0)
q (x) + S(σ)

q (x) , (13)

where,

i S(0)ab
q ≡ 〈0|T [qa(x)q̄b(0)|0〉0 (14)

=
i δab

2π2x4
x̂− i λn

ab

32π2

gc

2
Gn

µν

1

x2
(σµν x̂ + x̂σµν)− δab

12
〈q̄q〉 − δabx2

192
〈gcq̄σ ·Gq〉

−mqδ
ab

4π2x2
− mq

32π2
λn

abgcG
n
µνσ

µν ln(−x2)− δab〈g2
cG

2〉
29 × 3π2

mqx
2 ln(−x2)

+
i δabmq

48
〈q̄q〉x̂ +

i mqδ
abx2

27 × 32
〈gcq̄σ ·Gq〉x̂ + O(α2

s , m2
q) ,

and

i S(σ)ab
q ≡ 〈0|T [qa(x)q̄b(0)|0〉σ (15)

= gσ
q σ

[
− δab

4π2x2
− 1

32π2
λn

abgcG
n
µνσ

µν ln(−x2)− δab〈g2
cG

2〉
29 × 3π2

x2 ln(−x2)

+
i δab

48
〈q̄q〉x̂− δabχ

12
〈q̄q〉+

i δabx2

27 × 32
〈gcq̄σ ·Gq〉x̂

− δabx2

192
χG〈gcq̄σ ·Gq〉

]
+ O(σ2) .

Here, Gµν is the gluon tensor and g2
c = 4παs is the quark-gluon coupling constant squared.

Note that, in the quark propagator above, we have included the terms that are proportional
to the quark masses, mq, since these terms give non-negligible contributions to the final
result as far as the strange quark mass is considered.

Using the quark propagator in Eq. (13), one can compute the correlation function ΠBσ(q).
The Lorentz covariance and parity implies the following form for ΠBσ(q):

ΠBσ(q) = (Π1
B0 + Πq

B0 q̂) + (Π1
Bσ + Πq

Bσ q̂)σ + O(σ2) , (16)

where q̂ = qµγµ is the four momentum of the baryon. Here Π1
B0 and Πq

B0 represent the
invariant functions in the vicinity of the external field, which can be used to construct the
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mass sum rules for the relevant baryons, and Π1
Bσ and Πq

Bσ denote the invariant functions in
the presence of the external field. Using these invariant functions, one can derive the sum
rules at the structures 1 and q̂. In Ref. [36] it was found that the sum rule at the structure
q̂ for the NNσ coupling constant is more stable than the other sum rule at the structure 1,
with respect to variations in the Borel mass. Motivated with this, we here present only the
sum rules at the structure q̂ and use these for the determination of the coupling constants.

B. Λ Sum Rules and ΛΛσ Coupling Constant

We shall first present the sum rules calculations for ΛΛσ coupling constant in detail and
in the next subsection, we shall give the sum rules for ΞΞσ and ΣΣσ couplings. At the
quark level, we have for Λ:

〈
0
∣∣∣T [ηΛ(x)η̄Λ(0)]

∣∣∣0
〉

σ
=

2i

3
εabcεa′b′c′

(
Tr{Saa′

u (x)γνC[Sbb′
s (x)]T Cγµ}γ5γ

µScc′
d (x)γνγ5

+Tr{Scc′
d (x)γνC[Sbb′

s (x)]T Cγµ}γ5γ
µSaa′

u (x)γνγ5

−γ5γµS
cc′
d (x)γνC[Sbb′

s (x)]T CγµSaa′
u (x)γνγ5

−γ5γµS
aa′
u (x)γνC[Sbb′

s (x)]T CγµScc′
d (x)γνγ5

)
. (17)

Using the quark propagator in Eq. (13), the invariant function at the structure q̂ in the
presence of the external field, Πq

Λσ, is calculated as:

Πq
Λσ(q) = gσ

q

1

(2π)4

[
4

3
aq (1− f) ln(−q2)− 4

9q2
χa2

q(1 + 2f)− (χ + χG)
m2

0

18q4
a2

q(1 + 2f)

+
5

12q2
m2

0 aq − 2

3
(2ms −mq)q

2 ln(−q2)− 2

3
χaq (2ms −mq) ln(−q2)

+
1

9q4

[
(5ms − 3mq) + 8(ms −mq)f

]
a2

q

]
, (18)

where we have defined f = 〈s̄s〉
〈q̄q〉 − 1, aq = −(2π)2〈q̄q〉 and 〈gcq̄σ ·Gq〉 = m2

0〈q̄q〉.
In order to construct the hadronic side, we saturate the correlator in Eq.(9) with Λ states

and write,

ΠΛσ(q) =
〈0|ηΛ|Λ〉
q2 −M2

Λ

〈Λ|σΛ〉 〈Λ|η̄Λ|0〉
q2 −M2

Λ

, (19)

where MΛ is the mass of the Λ. The matrix element of the current ηΛ between the vacuum
and the Λ state is defined as,

〈0|ηΛ|Λ〉 = λΛυ , (20)

where λΛ is the overlap amplitude and υ is the Dirac spinor for the Λ, which is normalized
as ῡυ = 2MΛ. Inserting Eq. (20) into Eq. (19) and making use of the isoscalar scalar
meson-baryon interaction Lagrangian density

L = −gΛΛσ ῡυ σ , (21)
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we obtain the hadronic part as:

−|λΛ|2 q̂ + MΛ

q2 −M2
Λ

gΛΛσ
q̂ + MΛ

q2 −M2
Λ

. (22)

We have also contributions coming from the excitations to higher Λ states which are
written as,

−λΛλΛ∗
q̂ + MΛ

q2 −M2
Λ

gΛΛ∗σ
q̂ + MΛ∗

q2 −M2
Λ∗

, (23)

and the ones coming from the intermediate states due to σ-Λ scattering i.e. the continuum
contributions. Note that the term that corresponds to the excitations to higher Λ states
also has a pole at the Λ mass, but a single pole instead of a double one like in Eq. (22). This
single pole term is not damped after the Borel transformation and should be included in the
calculations. There is another contribution that comes from the response of the continuum
to the external field, which is given as:

∫ ∞

0

−∆s0 b(s)

s− q2
δ(s− s0)ds , (24)

where s0 is the continuum threshold, ∆s0 is the response of the continuum threshold to the
external field and b(s) is a function that is calculated from OPE. When ∆s0 is large, this
term should also be included in the hadronic part [43].

Matching the OPE side with the hadronic side and applying the Borel transformation,
the sum rule for ΛΛσ coupling at the structure q̂ is obtained as:

{
−4

3
M4 aq (1− f) EΛ

0 +
4M2

9
χa2

q(1 + 2f) L4/9 − 5

12
M2 m2

0 aq L−14/27 (25)

− (χ + χG)
m2

0

18
a2

q(1 + 2f) L−2/27 +
2

3
(2ms −mq)M

6 EΛ
1 L−8/9

+
2

3
χaq (2ms −mq) M4 EΛ

0 L−4/9 +
1

9

[
(5ms − 3mq) + 8(ms −mq)f

]
a2

q

}
eM2

Λ/M2

= −λ̃2
Λ

MΛ

gσ
q

gΛΛσ + B̃Λ
M2

gσ
q

+
∆sΛ

0

2gσ
q

[
(sΛ

0 )2 − 4 ms f aq

]
M2 L−4/9e(M2

Λ−sΛ
0 )/M2

,

where we have defined λ̃2
Λ = 32π4λ2

Λ and M is the Borel mass. The continuum contributions
are included by the factors

EΛ
0 ≡ 1− e−sΛ

0 /M2

,

EΛ
1 ≡ 1− e−sΛ

0 /M2
(
1 +

sΛ
0

M2

)
, (26)

where sΛ
0 is the continuum threshold. In the sum rule above, we have included the single

pole contribution with the factors B̃Λ. The third term on the right hand side (RHS) of
Eq. (25) denotes the contribution that is explained in Eq. (24). Note that this term is

suppressed by the factor e−(si
0−M2

Λ)/M2
as compared to the single pole term. We have in-

corporated the effects of the anomalous dimensions of various operators through the factor
L = ln(M2/Λ2

QCD)/ ln(µ2/Λ2
QCD), where µ is the renormalization scale and ΛQCD is the

QCD scale parameter.
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C. Ξ and Σ Sum Rules and ΞΞσ and ΣΣσ Coupling Constants

One can apply the method explained in the previous subsection for the ΞΞσ and ΣΣσ
couplings and derive the corresponding sum rules. Using the interpolating fields in Eq. (10),
we obtain

〈
0
∣∣∣T [ηΞ(x)η̄Ξ(0)]

∣∣∣0
〉

σ
= 2iεabcεa′b′c′Tr{Saa′

s (x)γνC[Sbb′
s (x)]T Cγµ}γ5γ

µScc′
u (x)γνγ5 , (27)

〈
0
∣∣∣T [ηΣ(x)η̄Σ(0)]

∣∣∣0
〉

σ
= 2iεabcεa′b′c′Tr{Saa′

u (x)γνC[Sbb′
u (x)]T Cγµ}γ5γ

µScc′
s (x)γνγ5 ,

at the quark level for Ξ and Σ, respectively. Using the quark propagator in Eq. (13), the
invariant functions at the structure q̂ are calculated as:

Πq
Ξσ(q) = gσ

q

1

(2π)4

[ m2
0

6 q2
aq + aq ln(−q2)

]
, (28)

Πq
Σσ(q) = gσ

q

1

(2π)4

[ m2
0

3 q2
aq − (χg + χ)

m2
0

6 q4
a2

q −
4χ

3 q2
a2

q − 2mq q2 ln(−q2)

−2mq χaq ln(−q2) +
2mq

3q4
a2

q

]
. (29)

The sum rules are obtained by matching the OPE side with the hadronic side and applying
the Borel transformation. As a result of this operation, we obtain:

[
−m2

0

6
aq M2 L−14/27 − aq M4 EΞ

0

]
eM2

Ξ/M2

= −λ̃2
Ξ

MΞ

gσ
q

gΞΞσ + B̃Ξ
M2

gσ
q

+
(sΞ

0 )2

2gσ
Ξ

∆sΞ
0 M2 L−4/9e(M2

Ξ−sΞ
0 )/M2

, (30)

and

[
−m2

0

3
aq M2 L−14/27 − (χG + χ)

m2
0

6
a2

q L−2/27 +
4

3
χa2

q M2 L4/9 + 2 mq M6 EΣ
1 L−8/9

+2 χmq aq M4 EΣ
0 L−4/9 +

2

3
mq a2

q

]
eM2

Σ/M2

(31)

= −λ̃2
Σ

MΣ

gσ
q

gΣΣσ + B̃Σ
M2

gσ
q

+
∆sΣ

0

2gσ
q

[(sΣ
0 )2 − 2 ms(f + 1)aq] M

2 L−4/9e(M2
Σ−sΣ

0 )/M2

,

for ΞΞσ and ΣΣσ couplings, respectively.
We would like to note that the sum rule for ΞΞσ coupling constant at the structure q̂ is

independent of the susceptibilities χ and χg. Another feature of the sum rules above is that
up to the dimension we consider, the terms involving the s-quark mass do not contribute to
the OPE side. The contributions that come from the excited baryon states and the response
of the continuum threshold are taken into account by the second and the third terms on the
right-hand side (RHS) of the sum rules, respectively.
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For the sake of completeness, here we also give the sum rule for NNσ coupling constant
at the structure q̂ [36]:

[
−M4 aq EN

0 +
4

3
χM2 a2

q L4/9 − m2
0

2
M2 aq L−14/27 − (χ + χG)

m2
0

6
a2

q L−2/27

+2 mq M6 EN
1 L−8/9 + 2 χmq aq M4 EN

0 L−4/9 +
2

3
mq a2

q

]
eM2

N/M2

= −λ̃2
N

MN

gσ
q

gNNσ + B̃N
M2

gσ
q

+
(sN

0 )2

2gσ
q

∆sN
0 M2 L−4/9e(M2

N−sN
0 )/M2

, (32)

which follows from a choice of the interpolating field [44]

ηN = εabc[u
T
a Cγµub]γ5γ

µdc . (33)

Note that, in Eq. (32), the NNσ sum rule in Ref. [36] has been improved including the quark
mass terms.

Comparing the left-hand sides (LHS) of the sum rules in Eq. (30), Eq. (31) and Eq. (32)
one can derive a basic relation between the ΞΞσ, ΣΣσ and NNσ coupling constants in the
SU(3) limit, which is

gNNσ = gΞΞσ + gΣΣσ . (34)

This relation is quite natural because for the ΞΞσ coupling only the u-quark propagator
outside of the trace and for the ΣΣσ coupling the u-quark propagators inside the trace
involve the terms that are proportional to the external field. For the NNσ coupling all the
three quark propagators involve such terms and this implies that in the SU(3) and isospin
symmetric limit, the relation in Eq. (34) holds. It is interesting to note that this relation
can also be derived from Eq. (7) and Eq. (8) assuming the ideal mixing for the qq̄ picture
where the NNf0 coupling vanishes.

III. ANALYSIS OF THE SUM RULES AND DISCUSSION

In this section we analyze the sum rules derived in the previous section in order to
determine the values of the ΛΛσ, ΞΞσ and ΣΣσ coupling constants. To proceed to the
numerical analysis, we arrange the RHS of the sum rules in the form

f(M2) = AB + BBM2 + CBM2L−4/9e(M2
B−sB

0 )/M2

, (35)

and fit the LHS to f(M2). Here we have defined

AB ≡ −λ̃2
B

MB

gσ
q

gBBσ ,

BB ≡ B̃B

gσ
q

, (36)
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together with

CΛ ≡ ∆sΛ
0

2gσ
q

[(sΛ
0 )2 − 4 ms f aq] , (37)

CΞ ≡ (sB
0 )2

2gσ
q

∆sB
0 ,

CΣ ≡ ∆sΣ
0

2gσ
q

[(sΣ
0 )2 − 4 ms(f + 1)aq] ,

for ΛΛσ, ΞΞσ and ΣΣσ sum rules, respectively.
For the vacuum parameters, we adopt aq = 0.51±0.03 GeV3, and m2

0 = 0.8 GeV2 [45]. We
take the renormalization scale µ = 0.5 GeV and the QCD scale parameter ΛQCD = 0.1 GeV.
The value of the susceptibility χ has been calculated in Ref. [36] as χ = −10 ± 1 GeV−1.
The value of the susceptibility χG is less certain. Therefore, we consider χG to change in a
wider range.

A. Scalar Meson-Baryon Coupling Constants in the SU(3) Symmetric Limit

We shall first consider the sum rules in the SU(3) flavor symmetric limit, where we take
mq = ms = 0 and f = 0. In this limit we also set the physical parameters of all the baryons

equal to the ones of the nucleon; MB = MN = 0.94 GeV, λ̃B = λ̃N = 2.1 GeV6 [29], sB
0 = sN

0 .
In Figs. 1-3 we present the Borel mass dependence of the LHS and the RHS of the sum

rules for ΛΛσ, ΣΣσ and ΞΞσ, respectively, for sB
0 = 2.3 and χG ≡ χ = −10 GeV−1. As

stressed above, in the SU(3) limit we choose the Borel window 0.8 GeV2 ≤ M2 ≤ 1.4 GeV2

which is commonly identified as the fiducial region for the nucleon mass sum rules [29]. It is
seen from these figures that the LHS curves (solid) overlie the RHS curves (dashed). In order
to estimate the contributions that come from the excited baryon states and the responses
of the continuum threshold, we plot each term on the RHS individually. We observe that
the single-pole terms (dotted) give very small contributions to the sum rules except to the
one for ΞΞσ coupling. The responses of the continuum thresholds (dot-dashed) for all the
couplings are quite sizable.

In order to see the sensitivity of the coupling constants on the continuum threshold and
the susceptibility χ, we plot in Figs. 4 and 5 the dependence of gΛΛσ/g

σ
q and gΣΣσ/g

σ
q on

χ for three different values of the continuum thresholds, sB
0 = 2.0, 2.3, and 2.5 GeV2, and

taking χ ≡ χG. One sees that these coupling constants change by approximately 10%
in the considered region of the susceptibility χ. The values of the coupling constants are
not very sensitive to a change in the continuum threshold, which gives an uncertainty of
approximately 7% to the final values.

Taking into account the uncertainties in χ, sB
0 , and aq, the predicted values for NNσ,

ΛΛσ, ΞΞσ and ΣΣσ coupling constants in terms of quark-σ coupling constant read 1:

gNNσ/g
σ
q = 3.9± 1.0 , gΛΛσ/g

σ
q = 1.9± 0.5 , gΞΞσ/g

σ
q = 0.4± 0.1 , gΣΣσ/g

σ
q = 3.8± 1.0 .(38)

To determine the coupling constants, one next has to assume some value for the quark-σ
coupling constant gσ

q . Adopting the value gσ
q = 3.7 as estimated from the sigma model [46],

1 We refer the reader to Ref. [36] for a detailed analysis of NNσ coupling constant in QCDSR.
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we obtain

gNNσ = 14.4± 3.7 , gΛΛσ = 7.0± 1.9 , gΞΞσ = 1.5± 0.4 , gΣΣσ = 14.1± 3.7 . (39)

Note that, the coupling constants in Eq. (39) are defined at t = 0, i.e. gBBσ ≡ gBBσ(t = 0).
As stressed above, the value of the susceptibility χG is less certain than the value of χ. If
we let χG change in a wider range, say 6 GeV−1 ≤ −χG ≤ 14 GeV−1, this brings an
additional 15% uncertainty to the values of ΛΛσ and ΣΣσ coupling constants but the ΞΞσ
coupling constant remains intact because the sum rule is independent of the susceptibilities
as stressed above. In order to keep consistent with the analysis in Ref. [36], here we also
have taken ΛQCD = 0.1 GeV. A change in the value of this parameter, say an increase to
ΛQCD = 0.2 GeV, does not have any considerable effect on ΞΞσ coupling constant, but the
NNσ and ΣΣσ coupling constants are increased by approximately 8%, while the increase in
the value of ΛΛσ coupling constant is by 5%.

Our next concern is to investigate the SU(3) relations for the scalar meson-baryon inter-
actions and see if the coupling constants above as obtained from QCDSR are consistent with
these relations. The values of three coupling constants as determined from QCDSR together
with the first equation in Eq. (8) are sufficient to determine the three parameters of flavor
SU(3) structure of scalar meson-baryon couplings; namely g1, g, and αs. For this purpose,
we calculate the coupling constants in Eq. (39) with the average values of the parameters;
χ ≡ χg = −10 GeV−1, aq = 0.51 GeV2 and sB

0 = 2.3 GeV2 where we obtain:

gNNσ/g
σ
q = 4.0, gΛΛσ/g

σ
q = 1.7 , gΞΞσ/g

σ
q = 0.3 , gΣΣσ/g

σ
q = 3.6 . (40)

We first assume qq̄ structure with the ideal mixing angle θs ' 35.3◦, and use gNNσ, gΞΞσ and
gΣΣσ in Eq. (40). The F/(F + D) ratio, αs, can directly be calculated via the relation,

(gΞΞσ − gNNσ)/(gΣΣσ − gNNσ) =
−2αs

1− 2αs

. (41)

With straightforward algebra, the values of the F/(F + D) ratio, and the octet and the
singlet couplings for the qq̄ picture are determined as,

αs = F/(F + D) = 0.55 , g/gσ
q = gNNa0/g

σ
q = 3.3 , g1/g

σ
q = 3.2 . (42)

Inserting αs and g into the SU(3) relations in Eq. (7) and using the mixing scheme for the
singlet and the octet couplings as in Eq. (8) with the value of g1 in Eq. (42), we observe that
the coupling constants as determined from QCDSR in Eq. (40) are consistent with the SU(3)
relations. This also gives gNNf0 = 0 with the second equation in Eq. (8), which is justified
by the non-strange content of the nucleon and by the ideal mixing scheme. In Table I we
give all the scalar meson-baryon coupling constants, obtained from these relations, assuming
gσ

q = 3.7.

In the case of the q2q̄2 picture, we have a quite distinct ideal mixing scheme for the scalar
mesons from that for the qq̄ picture. The ideal mixing angle corresponds to θs ' −54.8◦ in
this case. In this picture, we assume that the u- or the d-quark in the baryon couples to the
qq̄ component in the scalar meson but not to the ss̄ component and the 〈q̄q〉 condensates
are modified in the same way. Accordingly, the s-quark only couples to the ss̄ component.
Applying the same procedure as in the qq̄ case with θs = −54.8◦, we obtain the values of
F/(F + D) ratio, and the octet and the singlet couplings for the q2q̄2 picture as:

αs = F/(F + D) = 0.55 , g/gσ
q = gNNa0/g

σ
q = −2.3 , g1/g

σ
q = 4.6 . (43)
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TABLE I: The scalar meson-baryon coupling constants in the SU(3) limit where the qq̄ picture for
the scalar mesons with the ideal mixing is assumed.

M NNM ΛΛM ΞΞM ΣΣM ΛΣM ΣNM ΛNM

σ 14.6 6.2 1.3 13.3
f0 0 −12.0 −18.9 −1.8
a0 12.0 1.3 13.3 6.2
κ −1.3 −14.7

TABLE II: Same as Table I but for the q2q̄2 picture for the scalar mesons.

M NNM ΛΛM ΞΞM ΣΣM ΛΣM ΣNM ΛNM

σ 14.6 6.2 1.3 13.3
f0 10.3 16.2 19.7 11.3
a0 −8.5 −0.9 −9.4 −4.4
κ 0.9 10.3

Inserting these values into the SU(3) relations in Eq. (7), we observe that the scalar meson-
baryon coupling constants as found from QCDSR are consistent with the SU(3) relations,
as in the qq̄ picture.

In Table II, we present the scalar meson-baryon coupling constants g1, g8 and αs in the
q2q̄2 picture, assuming gσ

q = 3.7. Comparing what we have found for the scalar meson-baryon
couplings in the two pictures, the value of the F/(F + D) ratio remains intact, as apparent
from Eq. (41), however, the values of g and g1 in the two pictures are quite different from
each other. On the other hand, the BBf0 couplings differ very much with regard to the
structure of the scalar mesons. In the q2q̄2 picture for the scalar mesons, in contrary to the
qq̄ picture, f0 strongly couples to the nucleon due to ūu and d̄d components it has. The
strengths of the I = 1 couplings in the two pictures differ by a factor of

√
2.

B. Sigma Meson-Baryon Coupling Constants with SU(3) Breaking Effects

Now we turn to the effect of SU(3) breaking, where we allow ms = 0.15 GeV and
f = −0.2, keeping mq = 0. We also restore the physical values for the parameters of
baryons [32, 47]:

MΛ = 1.1 GeV , MΞ = 1.3 GeV , MΣ = 1.2 GeV , (44)

λ̃2
Λ = 3.3 GeV6 , λ̃2

Ξ = 4.6 GeV6 , λ̃2
Σ = 3.3 GeV6 ,

sΛ
0 = 3.1± 0.3 GeV2 , sΞ

0 = 3.6± 0.4 GeV2 , sΣ
0 = 3.2± 0.3 GeV2 .

The corresponding Borel windows are chosen as:

for Λ , 1.0 GeV2 ≤ M2 ≤ 1.4 GeV2 , (45)

for Ξ , 1.5 GeV2 ≤ M2 ≤ 1.9 GeV2 ,

for Σ , 1.2 GeV2 ≤ M2 ≤ 1.6 GeV2 ,
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In Figs. 6-8 we present the Borel mass dependence of the LHS and the RHS of the sum
rules for ΛΛσ, ΣΣσ and ΞΞσ, respectively, with the SU(3) breaking effects. We plot each
term on the RHS individually as we did in the SU(3) limit. We observe that the responses
of the continuum thresholds for all the couplings are quite sizable. The contributions of the
single pole terms to the ΞΞσ and ΣΣσ sum rules are large and opposite in sign to the third
terms on the RHS. Therefore the contributions of these two terms tend to cancel each other
which leads to a very stable sum rule for these couplings. The contribution of the single
pole term for the ΛΛσ coupling is very small.

Taking into account the uncertainties in χ, sB
0 , and aq, the predicted values for ΛΛσ, ΞΞσ

and ΣΣσ coupling constants in terms of quark-σ coupling constant with the SU(3) breaking
effects read:

gΛΛσ/g
σ
q = 2.0± 0.5 , gΞΞσ/g

σ
q = 0.5± 0.1 , gΣΣσ/g

σ
q = 5.7± 1.4 . (46)

Adopting again the value gσ
q = 3.7 as estimated from the sigma model [46], we obtain

gΛΛσ = 7.4± 1.9 , gΞΞσ = 1.9± 0.4 , gΣΣσ = 21.1± 5.2 . (47)

A few remarks are in order now. Comparing the values obtained from the sum rules
in the SU(3) symmetric limit and the ones beyond the SU(3)-limit, we observe that the
introduction of the SU(3) breaking effects does not change the ΛΛσ coupling constant, while
the ΞΞσ and ΣΣσ couplings are modified by approximately %30 and %50, respectively. We
also note that, the obtained value of ΛΛσ coupling constant is small as compared to the
NNπ and NNσ coupling constants. Since the σ exchange gives the dominant contribution
in the ΛΛ system, this suggests that the ΛΛ interaction is weak, in accordance with the
recent experimental result.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the ΛΛσ, ΞΞσ and ΣΣσ coupling constants which play significant
roles in OBE models of YN and YY interactions, employing the external field QCDSR
method. The coupling constants can be determined in terms of quark-σ coupling constant
in this method. In order to compare our results with the others in the literature and keep as
model-independent as possible, we find it useful to give the ratios of the coupling constants
in the SU(3) limit for the average values of the vacuum parameters,

gΛΛσ

gNNσ

= 0.43,
gΞΞσ

gNNσ

= 0.08,
gΣΣσ

gNNσ

= 0.91 . (48)

We observe that the ΞΞσ coupling constant is more than one order small as compared
to NNσ coupling constant. The ΣΣσ coupling constant is at the same order with NNσ
coupling constant and twice as large as the ΛΛσ coupling constant. We have shown that
these coupling constants as determined from QCDSR satisfy the SU(3) relations which
lead to a determination of the F/(F + D) ratio for the scalar octet. Although the scalar
meson-baryon coupling constants depend on the picture assumed for the structure of the
scalar mesons (qq̄ or q2q̄2), the F/(F + D) ratio remains intact in the two pictures. We
would like to also note that the third terms on the RHS’s of the sum rules which represent
the responses of the continuum thresholds, affect only the values of the individual coupling
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constants, which receive contribution by the same factor. Therefore the ratios of the coupling
constants and the value of αs remain unchanged if this term is omitted.

All the Nijmegen soft-core OBE potential models have θs > 30◦, which points to almost
ideal mixing angles for the scalar qq̄ states. Since the ideal mixing angle for the scalar mesons
has been assumed in our QCDSR calculations as well, it is convenient to compare our results
with the ones from NSC potential models. Our result for the ratio gΛΛσ/gNNσ is half of the
value found in Ref. [11], however, it qualitatively agrees with the one from NSC89 [4], which
is gΛΛσ/gNNσ = 0.58. The value we have obtained for the ΛΛσ coupling constant is small as
compared to NNσ coupling constant and this implies that ΛΛ interaction is weak, since the
sigma exchange gives the dominant contribution to this interaction in terms of OBE models.
The value of the F/(F + D) ratio, which is 0.55 as obtained from QCDSR is about half of
the values given in NSCa-f [5], which is F/(F + D) ' 1.1 .

In order to estimate the SU(3) breaking in the couplings, we have restored the physical
values of the parameters like the strange quark mass and the physical baryon masses. We
observe that the SU(3) breaking effects do not change the ΛΛσ coupling, while the ΞΞσ and
ΣΣσ couplings are modified largely. It is also desirable to derive the sum rules for the BBf0

and BBa0 couplings in order to estimate the SU(3) breaking in these coupling constants.
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FIG. 1: The Borel mass dependence of LHS and the fitted RHS of the sum rule for ΛΛσ coupling
in Eq. (25) for sΛ

0 = 2.3 GeV2 and χG ≡ χ = −10 GeV−1. We also present the terms on the RHS
individually. Note that the LHS curve (solid) overlies the RHS curve (dashed).
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FIG. 2: Same as Fig. 1 but for the sum rule for ΞΞσ coupling in Eq. (30).
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FIG. 3: Same as Fig. 1 but for the sum rule for ΣΣσ coupling in Eq. (31).
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FIG. 4: The dependence of gΛΛσ/gσ
q on the susceptibility χ for three different values of sq

0 = 2.0,
2.3, and 2.5 GeV2; here we take χ ≡ χG.
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FIG. 5: Same as Fig. 4 but for the sum rule for the gΣΣσ/gσ
q coupling constant.
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FIG. 6: The Borel mass dependence of LHS and the fitted RHS of the sum rule for ΛΛσ coupling
in Eq. (25) with the SU(3) breaking effects and for χG ≡ χ = −10 GeV−1. We also present the
terms on the RHS individually. Note that the LHS curve (solid) overlies the RHS curve (dashed).
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FIG. 7: Same as Fig. 6 but for the sum rule for ΞΞσ coupling in Eq. (30).
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FIG. 8: Same as Fig. 6 but for the sum rule for ΣΣσ coupling in Eq. (31).
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