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I. INTRODUCTION

An important ingredient of the baryon-baryon interactions is the exchange of the mem-
bers of vector-meson nonet (ρ, φ, ω, K∗). Vector mesons play also a special role in the
electromagnetic interactions of hadrons. The Vector-Meson Dominance (VMD) model [1]
relates the hadronic electromagnetic current to the neutral vector-meson fields Vµ = ρ0

µ, ωµ,
and φµ. In this context, the vector-meson–baryon coupling constants are fundamental quan-
tities that one would like to compute from QCD. The Lagrangian density for the interaction
of a vector meson with a spin-1/2 baryon is given by

LV BB = −igV
B ψ̄ γµ ψV

µ − fV
B

4m
ψ̄σµν ψ (∂µV ν − ∂νV µ) , (1)

where σµν = i[γµ, γν ]/2. The first term (gV
B) is called the vector (electric) coupling and the

second one (fV
B ) the tensor (magnetic) coupling; m is a scaling mass to make fV

B dimension-
less, conventionally taken to be equal to the proton mass.

The physical states φ and ω are mixtures of the unitary singlet and octet states. We will
assume ideal mixing with the mixing angle θv = 35.3◦, which is close to the experimental
value θv = 37.5◦ [2]. This means that the φ-meson is a pure s̄s state, and hence does not
couple to the nucleon (in the absence of a strangeness content). The couplings of the vector
mesons to the baryon octet can be written in terms of the NNρ coupling constant and
αv,m [3], where αv (αm) is the F/(F +D) ratio of the vector (magnetic) coupling constants.
VMD predicts αv = 1 via the universal coupling of the ρ-meson to the isospin current [4].

Our aim in this paper is to calculate the vector and the tensor coupling constants of
the vector mesons ρ and ω to the N , Λ, Ξ, and Σ baryons using the external-field QCD
Sum Rules (QCDSR) [5], which is a powerful tool [6, 7] to extract qualitative and quanti-
tative information about hadron properties [8, 9]. For this purpose, we assume a constant
background tensor field Zµν and evaluate the vacuum-to-vacuum transition matrix element
of the two-baryon interpolating fields to construct the sum rules. We define the external
vector-meson field as

Zµ = −1

2
Zµν x

ν . (2)

This background field can be decomposed into symmetric (ZS
µν) and antisymmetric (ZA

µν)
parts. The antisymmetric part has been used to calculate the baryon magnetic mo-
ments [5, 10–12], while the symmetric part was used in Ref. [13] to determine the vector-
meson couplings gρ

N and fω
N . In this work, we use a similar method to calculate the vector-

meson–baryon coupling constants. The sum rules for the antisymmetric part of the external
field can be obtained from the sum rules for the baryon magnetic moments in Refs. [5, 10–
12], but the numerical results for the couplings cannot be obtained trivially, since they need
an independent analysis that takes the sum rules for the symmetric part of the external field
into account as well. This analysis was made in Ref. [13] with the aim to calculate the NNρ
and NNω couplings. We find it useful to revisit these calculations for a couple of reasons.
First, we make a more systematic analysis of the sum rules that includes the single-pole
contributions, which were not taken into account in Ref. [13]. Moreover, we extend the
calculations to hyperons as well by calculating terms involving the quark mass in the sum
rules. We compare our results with VMD and with a successful one-boson-exchange (OBE)
model of the NN and YN interaction, the Nijmegen soft-core potential (NSC) [14–19], which
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was originally derived from Regge-pole theory. The coupling constants obtained from the
external-field QCDSR method are defined at t = 0, and therefore the comparison to the
OBE model is appropriate.

We follow an analysis similar to the one in our earlier work on scalar-meson–baryon cou-
pling constants [20, 21]. We shall first consider the sum rules in the SU(3)-flavor symmetric
limit to see if the predicted values for the meson-baryon coupling constants from the sum
rules are consistent with SU(3) relations. We show that this is indeed the case, which leads
to a determination of the F/(F +D) ratio of the vector-meson octet. Furthermore, keeping
track of these coupling constants with the SU(3) relations, we obtain the values of the other
vector-meson–baryon coupling constants, where we assume ideal mixing. When we extend
the calculations from the S = 0 to the S = −1 and S = −2 sectors, flavor-SU(3) breaking
occurs due to the s-quark mass and the physical masses of the baryons and mesons. We also
consider the SU(3)-breaking effects for the sum rules to estimate the amount of breaking,
individually for each coupling.

We have organized our work as follows: in section II we present the formulation of QCDSR
with an external tensor field and construct the relevant sum rules. We give the numerical
analysis of the sum rules and discuss the results in section III. Finally, we arrive at our
conclusions for this chapter in section IV.

II. CONSTRUCTION OF THE SUM RULES

We start with the correlation function of the baryon interpolating fields in the presence
of a constant background tensor field Zµν , defined by

i

∫
d4x eiq·x

〈
0
∣∣∣T [ηB(x)η̄B(0)]

∣∣∣0
〉

Z
= Π(q) + gV

q Zµν Πµν
Z (q) , (3)

where gV
q is the vector-meson–quark coupling constant and ηB are the baryon interpolating

fields which are chosen as [8]

ηN = εabc[(u
T
aCγµub)γ5γ

µdc] , (4)

ηΞ = εabc[(s
T
aCγµsb)γ5γ

µuc] , (5)

ηΣ = εabc[(u
T
aCγµub)γ5γ

µsc] , (6)

ηΛ = (2/3)1/2εabc[(u
T
aCγµsb)γ5γ

µdc − (dT
aCγµsb)γ5γ

µuc] , (7)

for N , Ξ, Σ, and Λ, respectively; a, b, c are color indices, and T and C denote transposition
and charge conjugation, respectively.

The external field contributes to the correlation function in Eq. (3) in two ways: First,
it directly couples to the quark field in the baryon current. Second, it induces the following
vacuum condensates:

〈q̄σµνq〉Z = gV
q χZ

A
µν 〈q̄q〉 , (8)

gc〈q̄Gµνq〉Z = gV
q κZ

A
µν 〈q̄q〉 , (9)

g εµναβ〈q̄γ5Gαβq〉Z = i gV
q ξZ

A
µν 〈q̄q〉 , (10)

〈q̄1

2
(γµ∇ν + γν∇µ)q〉Z = gV

q ζZ
S
µν 〈q̄q〉 , (11)

〈q̄1

2
(∇µ∇ν +∇ν∇µ)q〉Z = −g

V
q

8
〈q̄σ ·Gq〉 gµν + gV

q

i

2
ZS

µν 〈q̄q〉+ i gV
q φZ

S
µν〈q̄q〉 , (12)
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where (χ, κ, ξ) and (ζ, φ) are the susceptibilities related to ZA
µν and ZS

µν , respectively. These

susceptibilities are defined in terms of the vector-meson–quark coupling constants gV
q , where

we assume

gω
u = gω

d = gV
q , (13)

for the isospin I = 0 ω-current, and

gρ
u = −gρ

d = gV
q , (14)

for the isospin I = 1 ρ-current. For the couplings of the external field to the s-quark we
assume

gω
s = gρ

s = 0 . (15)

Eq. (13) and Eq. (14) can be justified from the degeneracy and the equal decay constants
of the ρ- and the ω-mesons [6–8] by using the Current Field Identities and VMD.

At the quark level, we obtain for the correlation functions:

〈
0
∣∣∣T [ηN(x)η̄N(0)]

∣∣∣0
〉

Z
= 2iεabcεa

′b′c′Tr{Saa′
u (x)γνC[Sbb′

u (x)]TCγµ}γ5γ
µScc′

d (x)γνγ5 ,(16)

〈
0
∣∣∣T [ηΞ(x)η̄Ξ(0)]

∣∣∣0
〉

Z
= 2iεabcεa

′b′c′Tr{Saa′
s (x)γνC[Sbb′

s (x)]TCγµ}γ5γ
µScc′

u (x)γνγ5 , (17)

〈
0
∣∣∣T [ηΣ(x)η̄Σ(0)]

∣∣∣0
〉

Z
= 2iεabcεa

′b′c′Tr{Saa′
u (x)γνC[Sbb′

u (x)]TCγµ}γ5γ
µScc′

s (x)γνγ5 , (18)

〈
0
∣∣∣T [ηΛ(x)η̄Λ(0)]

∣∣∣0
〉

Z
=

2i

3
εabcεa

′b′c′
(
Tr{Saa′

u (x)γνC[Sbb′
s (x)]TCγµ}γ5γ

µScc′
d (x)γνγ5

+Tr{Scc′
d (x)γνC[Sbb′

s (x)]TCγµ}γ5γ
µSaa′

u (x)γνγ5

−γ5γµS
cc′
d (x)γνC[Sbb′

s (x)]TCγµSaa′
u (x)γνγ5

−γ5γµS
aa′
u (x)γνC[Sbb′

s (x)]TCγµScc′
d (x)γνγ5

)
, (19)

where Sq represents the quark propagator in the presence of the external field and we use
the quark propagator given in Ref. [13].

Lorentz covariance and parity conservation implies that the correlation function can be
written in terms of different Lorentz-Dirac structures, viz.

gV
q Πµν

Z (q) = ΠS
1 (pµγν + pνγµ) + ΠS

2 p̂pµpν + ΠS
3 pµpν + ΠS

4 p̂(pµγν + pνγµ)

+ ΠA
1 (p̂σµν + σµν p̂) + ΠA

2 p̂(pµγν − pνγµ) + ΠA
3 σµν , (20)

where ΠS
1 , ΠS

2 , ΠS
3 , and ΠS

4 are related to the symmetric part of the external field, and ΠA
1 ,

ΠA
2 , and ΠA

3 are related to the antisymmetric part of the external field. For the antisymmetric
part of the external field, we construct the sum rules at the structure p̂σµν +σµν p̂, which have
also been used for the determination of the baryon magnetic moments [5, 10–12]. For the
symmetric part of the external field, we construct the sum rules at the structures pµγν +pνγµ
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(hereafter structure I) and p̂pµpν (hereafter structure II), for reasons that will become clear
below.

In order to construct the hadronic side, we saturate the correlator in Eq.(3) with baryon
states,

Πµν
Z (q) =

〈0|ηB|B〉
q2 −m2

B

〈B|V B〉 〈B|η̄B|0〉
q2 −m2

B

, (21)

and define the vector-meson–baryon interaction by the following vertices:

ΓωBB ≡ 〈B|ωB〉 = ῡ
(
gω

B γµ + fω
B

i

2m
σµν q

ν
)
υ · ωµ , (22)

ΓρBB ≡ 〈B|ρB〉 = ῡ
(
gρ

B γµ + fρ
B

i

2m
σµν q

ν
)
τυ · ρµ , (23)

where υ is the Dirac spinor for the baryon, which is normalized as ῡυ = 2mB. In Eq. (21)
we defined the overlap amplitude of the baryons as λB = 〈0|ηB|B〉.

The sum rules are obtained by matching the operator product expansion (OPE) side with
the hadronic side and applying the Borel transformation. The sum rules for N , Σ, Ξ, and
Λ are given as follows at structure I:

[
M6EN

1 L−4/9(2gV
u + gV

d ) +
8M4

3
EN

0 L2/9 ζ aq (4gV
u + gV

d ) +
4

3
a2

q L
4/9(2gV

u + gV
d )

]em2
N/M2

λ̃2
N

=

gV
N + CN M

2 , (24)

gV
u

[
2M6EΣ

1 L
−4/9 +

32M4

3
EN

0 L2/9 ζ aq g
V
u +

8

3
a2

q L
4/9 − 4ms (f + 1) aq M

2
]em2

Σ/M2

λ̃2
Σ

=

gV
Σ + CΣM

2 , (25)

gV
u

[
M6EΞ

1 L
−4/9 +

8M4

3
EN

0 L2/9 ζ aq g
V
d +

4

3
(f + 1)2a2

q L
4/9

]em2
Ξ/M2

λ̃2
Ξ

= gV
Ξ + CΞM

2 ,(26)

(gV
u + gV

d )
[
M6EΛ

1 L
−4/9 +

32

9
M4EN

0 L2/9 ζ aq +
4

9
(4f + 3)a2

q L
4/9

+
2

3
ms (1− 3f) aq M

2
]em2

Λ/M2

λ̃2
Λ

= gV
Λ + CΛM

2 , (27)

and at structure II:

[
M6EN

0 L−4/9(2gV
u + gV

d ) +
8M4

3
ζ L2/9 aq (gV

u + gV
d ) +

4

3
a2

q L
4/9(2gV

u + gV
d )

]em2
N/M2

λ̃2
N

= gV
N + CN M

2 ,(28)

gV
u

[
2M6EΣ

0 L
−4/9 +

8M4

3
ζ L2/9 aq g

V
u +

8

3
a2

q L
4/9 + 4ms (f + 1) aq M

2
]em2

Σ/M2

λ̃2
Σ

= gV
Σ + CΣM

2 ,(29)
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gV
u

[
M6EΞ

0 L
−4/9 +

8M4

3
ζ L2/9 aq g

V
d +

4

3
(f + 1)2a2

q L
4/9

]em2
Ξ/M2

λ̃2
Ξ

= gV
Ξ + CΞM

2 ,(30)

(gV
u + gV

d )
[
M6EΛ

0 L
−4/9 +

10

9
M4 L2/9ζ aq +

4

9
(4f + 3)a2

q L
4/9

+
2

3
ms (1− 3f) aq M

2
]em2

Λ/M2

λ̃2
Λ

= gV
Λ + CΛM

2 , (31)

where aq = −(2π)2〈q̄q〉, M is the Borel mass, and we incorporated the effects of the anoma-
lous dimensions of various operators through the factor L = ln(M2/Λ2

QCD)/ ln(µ2/Λ2
QCD),

where µ is the renormalization scale and ΛQCD is the QCD scale parameter. We have de-
fined f = 〈q̄q〉/〈s̄s〉−1 , which is a parameter that quantifies SU(3) breaking in the vacuum
condensates. We use these sum rules for the determination of the vector couplings, g.

The sum rules involving the antisymmetric part of the external field can easily be derived
from the magnetic-moment sum rules in Refs. [5, 10–12]. We use Eqs. (13)-(15) with the
sum rules at the structure p̂σµν + σµν p̂, which were also used for the determination of the
magnetic moments. We obtain:

{
4M6EN

1 L−4/9gV
u +

4

9
a2

q L
4/9[−(2gV

u + 3gV
d ) + gV

u (2κ− ξ)] +
b

6
M2 L−4/9(4gV

u + gV
d )

− 8

3
χa2

q L
−4/27gV

u

[
M2 − m2

0L
−4/9

8

]}em2
N/M2

λ̃2
N

= (gV
N + fV

N ) + C ′N M
2 , (32)

gV
u

{
4M6EΣ

1 L
−4/9 +

4

9
a2

q L
4/9[−(2 + (2κ− ξ)] +

2b

3
M2 L−4/9

− 8

3
χa2

q L
−4/27

[
M2 − m2

0L
−4/9

8

]}em2
Σ/M2

λ̃2
Σ

= (gV
Σ + fV

Σ ) + C ′ΣM
2 , (33)

gV
u

{
− 4

3
a2

q L
4/9 +

b

6
M2 L−4/9 + 24ms aq(1 + f)M2

}em2
Ξ/M2

λ̃2
Ξ

= (gV
Ξ + fV

Ξ ) + C ′ΞM
2 ,(34)

(gV
u + gV

d )
{2

3
M6EΛ

1 L
−4/9 − 4

27
a2

q L
4/9[7 + 8f − 1

2
(2κ− ξ)(1 + 2f)]− 4

9
χa2

q L
−4/27

[
M2 − m2

0L
−4/9

8

]
(1 + 2f)

+
2b

9
M2 L−4/9 − 2

9
msM

2 aq [19L−4/9 − 8(2κ− ξ)]
}em2

Λ/M2

λ̃2
Λ

= (gV
Λ + fV

Λ ) + C ′ΛM
2 . (35)

In the above sum rules, the continuum contributions are included by the factors

EB
n ≡ 1− (1 + xB + ...+

xn
B

n!
)e−xB , (36)

with xB = sB
0 /M

2, where sB
0 is the continuum threshold. We have included the single-pole

contributions with the factors C
(′)
B .
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III. ANALYSIS OF THE SUM RULES

In order to proceed to the numerical analysis, we arrange the RHS of the sum rules in
the form

f(M2) ≡ F + C
(′)
B M2 , (37)

and fit the LHS to f(M2). We determine the g couplings from the sum rules in Eqs. (24)-
(27), while we subtract these sum rules from the ones in Eqs. (32)-(35) to obtain the sum
rules for the f couplings. For the vacuum parameters, we adopt standard values that have
been used in QCDSR; for a review and discussion of QCD parameters see e.g. Refs. [22, 23].
The quark condensate aq can be estimated using the Gell-Mann–Oakes–Renner relation,

m2
πf

2
π = −(mu +md) 〈q̄q〉 , (38)

which gives 〈q̄q〉 = −(0.243)3 GeV3 for pion mass mπ = 138 MeV, pion decay constant
fπ = 93 MeV, and quark masses mu = 4.2 MeV and md = 7.5 MeV. Taking into account
the uncertainties in the quark masses, we adopt

aq = 0.51± 0.03 GeV3 . (39)

For the gluon condensate, we use the value

b = 0.47 GeV4 , (40)

as determined from the charmonium sum rules [6, 7]. The value of the parameter m2
0 has

been taken in early baryon sum rules [24, 25] and heavy-light quark system analyses [26] as

m2
0 = 0.8 GeV2 . (41)

The commonly accepted value of the overlap amplitude of the nucleon as λ̃2
N = 2.1 GeV6 is

taken from Ref. [5] and the continuum threshold for the nucleon case is taken in the region
2.0 GeV2 ≤ sN

0 ≤ 2.5 GeV2. The values of the susceptibilities have been estimated in early
magnetic-moment calculations [5, 10]. In this work, we adopt the average values of these
susceptibilities as χ = −4.5 GeV−2, κ = 0.4 and ξ = −0.8 [27]. Finally, we use µ = 0.5 GeV
for the renormalization scale and ΛQCD = 0.1 GeV for the QCD scale parameter.

We shall first consider the sum rules in the SU(3)-flavor symmetric limit, where we take
mq = ms = 0 and f = 0. In this limit we also set the physical parameters of all the baryons

equal to the ones of the nucleon: mB = mN = 0.94 GeV, λ̃2
B = λ̃2

N = 2.1 GeV6, sB
0 ≡ sN

0 . In
this SU(3) limit we choose the Borel window 0.8 GeV2 ≤M2 ≤ 1.4 GeV2 which is commonly
identified as the fiducial region for the nucleon mass sum rules. For the vector-meson–quark
coupling constant we adopt the value

gV
q = gρ

q = 3.7 , (42)

as estimated from Nambu-Jona-Lasinio model of Ref. [28], which was used to successfully
reproduce the ρππ coupling constant.

In order to determine the values of the vector couplings from the sum rules in Eqs. (24)-
(31), one needs to know the value of the susceptibility ζ, which is unknown. We note,
however, that if ζ is negligibly small, then the sum rules at structures I and II are consistent
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TABLE I: The vector-meson–baryon coupling constants in the SU(3) limit for the average values
of the vacuum parameters.

M NNM ΛΛM ΞΞM ΣΣM ΛΣM ΣNM ΛNM

ω g 6.9 4.6 2.3 4.6
f −2.2 −5.7 −4.9 2.7

φ g 0 −3.3 −6.5 −3.3
f 0 −4.8 −3.8 6.9

ρ g 2.3 2.3 4.6 0
f 7.6 −4.9 2.7 6.7

K∗ g −2.3 −4.0
f 4.9 −5.9

with each other and have the nice feature that gρ
N/g

ω
N = 1/3, which agrees well with the

OBE potential model [29] and the VMD model [1] results. Therefore, we first analyze the
sum rules for ζ = 0 and then discuss the deviations for arbitrary ζ values. We present the
Borel mass dependence of vector and tensor coupling constants of ρ and ω to the nucleon
in Fig. 1 and to the hyperons in Fig. 2, for the average values of the vacuum parameters.
The single-pole contributions (cf. the slopes in Figs. 1 and 2) are quite important especially
in the case of the sum rules for the tensor couplings. Taking into account the uncertainties
in sB

0 and aq, the predicted values for the coupling constants of the ρ- and ω-mesons to the
baryons read:

gω
N = 7.2± 1.8,

gω
Σ ≡ gρ

Σ ≡ gω
Λ = 4.8± 1.2,

gρ
N ≡ gω

Ξ ≡ gρ
Ξ = 2.4± 0.6,

gρ
Λ ≡ fρ

Λ = 0,

fρ
N = 7.7± 1.9,

fω
N = −2.2± 0.6,

fρ
Σ ≡ fω

Σ = 2.3± 0.4,

fρ
Ξ ≡ fω

Ξ = −5.0± 1.0,

fω
Λ = −5.7± 1.0. (43)

Our next concern is to investigate the SU(3) relations for the vector-meson–baryon in-
teractions and see if the coupling constants above as obtained from QCDSR are consistent
with these relations. For this purpose, we calculate the coupling constants in Eq. (43) with
the central values of the parameters: aq = 0.51 GeV2 and sB

0 = 2.3 GeV2. We assume the
ideal mixing angle θs ' 35.3◦. The F/(F +D) ratios, αv and αm, can directly be calculated
via the relations

gω
Ξ − gω

N

gω
Σ − gω

N

=
−2αv

1− 2αv

, (44)

fω
Ξ − fω

N

fω
Σ − fω

N

=
−2αm

1− 2αm

. (45)

With straightforward algebra, the values of the F/(F +D) ratios αv,m, and the octet, gv,m,
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and the singlet couplings, gv,m
1 , are then determined as

αv = 1 , αm = 0.18 , gv ≡ gρ
N = 2.3 , gm ≡ fρ

N = 7.6 , gv
1 = 5.6 , gm

1 = −1.8 . (46)

Inserting αv,m, gv,m and gv,m
1 into the SU(3) relations we observe that the coupling constants

as determined from QCDSR are consistent with SU(3). This also gives gφ
N = fφ

N = 0, which
is justified by the zero strangeness content of the nucleon and by the ideal-mixing scheme.
In Table I we give all the vector-meson–baryon coupling constants, obtained from these
relations.

In Fig. 3, we present the dependence of αv = F/(F +D) on the susceptibility ζ for the
sum rules at structures I and II, at M2 = 1 GeV2 and for the average values of the other
vacuum parameters. The sum rules are rather sensitive to a change in the value of ζ, since
it appears in the coefficient of a dimension-3 operator. The sum rule at structure I shows a
more reliable behavior. In Fig. 4, the dependence of gρ

N/g
ω
N on the susceptibility ζ for the

sum rules at structures I and II is given. For |ζ| > 1, the terms in the sum rules involving
ζ dominate. In order to avoid the pole in αv (for structure I) on the negative ζ-plane,
we concentrate on the region 0 ≤ ζ ≤ 1 GeV−1, where we obtain 5.2 ≤ gω

N ≤ 12.7 and
1.7 ≤ gρ

N ≤ 5.2. This implies that away from ζ = 0, gρ
N/g

ω
N tends to increase for the sum

rules at structure I, and gets as high as 0.5, while the value of αv gets as low as 0.8 . These
results disagree with the ones from the OBE potential model [29] and the VMD model [1],
which give gρ

N/g
ω
N = 1/3 and αv = 1.

Next, we turn to the effect of SU(3)-flavor breaking, where we allow ms = 0.15 GeV and
f = −0.2, keeping mu = md ≡ 0. We also restore the physical values for the masses and the
other parameters of the baryons [30, 31]:

λ̃2
Λ = 3.3 GeV6 , λ̃2

Ξ = 4.6 GeV6 , λ̃2
Σ = 3.3 GeV6 ,

sΛ
0 = 3.1± 0.3 GeV2 , sΞ

0 = 3.6± 0.4 GeV2 , sΣ
0 = 3.2± 0.3 GeV2 . (47)

The corresponding Borel windows are chosen as follows:

for Λ , 1.0 GeV2 ≤M2 ≤ 1.4 GeV2 , (48)

for Ξ , 1.5 GeV2 ≤M2 ≤ 1.9 GeV2 ,

for Σ , 1.2 GeV2 ≤M2 ≤ 1.6 GeV2 .

We follow a procedure similar to the one in the SU(3)-flavor conserving case and fit the LHS’s
of the sum rules to the function in Eq. (37) in the Borel windows specified in Eq. (48). Taking
into account the uncertainties in sB

0 and aq, the predicted values for the coupling constants
of the ρ- and ω-mesons to Λ, Ξ, and Σ with the SU(3)-flavor breaking effects read:

gω
Λ = 2.9± 1.1 , gω

Ξ ≡ gρ
Ξ = 1.1± 0.7 , gω

Σ ≡ gρ
Σ = 3.1± 1.2 ,

fω
Λ = −4.0± 0.8 , fω

Ξ ≡ gρ
Ξ = 2.4± 0.6 , fω

Σ ≡ gρ
Σ = 7.0± 1.6 . (49)

We observe that the SU(3)-breaking effects modify the couplings by 30-50%, which indicates
a large breaking. While the ΣΣω and ΣΣρ coupling constants increase with SU(3)-breaking
effects, the other coupling constants tend to decrease.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have calculated the vector-meson–baryon coupling constants, which are
important quantities in OBE models of the YN and YY interactions, employing the external-
field QCDSR method. The main uncertainties in the results stem from the undetermined

9



QCD parameters. Although the values of the susceptibilities χ, ξ, and κ are relatively
better-known from magnetic-moment calculations, ζ is undetermined. We have first made
the analysis by taking ζ negligibly small, which produces couplings in agreement with the
ones from the literature. Then, we have analyzed the sum rules for arbitrary ζ and observed
that the results are sensitive to a change in this susceptibility. In this respect, an independent
determination of the susceptibility ζ is desirable.

The coupling constants can be determined in terms of vector-meson–quark coupling con-
stant in this method. In order to compare our results with the others in the literature and
to remain as model-independent as possible, we find it useful to give the following ratios of
the coupling constants in the SU(3) limit for the average values of the vacuum parameters,

fρ
N

gρ
N

= 3.8 ,
fω

N

gω
N

= −0.3 , (50)

which compares well with the results from VMD,

fρ
N

gρ
N

≡ F v
2

F v
1

= 3.3 ,
fω

N

gω
N

≡ F s
2

F s
1

= −0.1 , (51)

where F s
1 (F v

1 ) and F s
2 (F v

2 ) are the isoscalar (isovector) electric and magnetic form factors of
the nucleon, respectively, at zero momentum transfer. This result is not totally surprising,
since a similar scheme to the one of electromagnetic coupling has been assumed for vector-
meson–baryon interaction. These ratios are close to the ones from the NSC NN potential
model [29], which are fρ

N/g
ρ
N = 4.2 and fω

N/g
ω
N = 0.3. Our value for the vector NNρ coupling

constant, with the choice of the quark-ρ coupling constant in Eq. (42), agrees with the one
from the recent Nijmegen extended-soft-core (ESC) potential model [19], which is gρ

N = 2.8.
The ESC model gives gρ

N/g
ω
N = 1/4, that is, a value for the NNω coupling constant larger

than what we have obtained from QCDSR. Since from SU(3) symmetry, ideal mixing, and
αv = 1 it follows that

gω
N +

√
2gφ

N = 3gρ
N , (52)

the main reason for this is the sizable NNφ coupling in NSC potential models, which is
simply gφ

N = 0 in the QCDSR. Such a large value for the NNω coupling constant as in the
ESC or 3P0 models [19] requires a quark-ω coupling constant that is about 50% larger than
what we have adopted in Eq. (42). Our value of the F/(F +D) ratio for the vector coupling,
which is αv = 1, agrees with the value given in NSC89 [17]. Our value for αm, which is
αm = 0.18, is about half of the values obtained in NSCa-f [18] and NSC89 [17], which are
0.37 ≤ αm ≤ 0.45 and αm = 0.28, respectively.
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FIG. 1: The Borel mass dependence of the vector and tensor coupling constants of ρ and ω to the
nucleon for average values of the vacuum parameters and the susceptibilities.
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FIG. 2: Same as Fig. 1 but for the vector and tensor coupling constants of ρ and ω to the hyperons
in the SU(3) limit.
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FIG. 3: The dependence of αv = F/(F + D) on the susceptibility ζ for the sum rules at structures
I and II, at M2 = 1 GeV2 and for the average values of the other vacuum parameters.
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FIG. 4: Same as Fig. 3 but for the dependence of gρ
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