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Abstract
The analysis of the πN -amplitudes described in these notes are based on the formulation of Rel-

ativistic Quantum Field Theory as developed by Kadyshevsky. Here, in contrast to the usual with

Feynman graphs, the particles in the Kadyshevsky-graphs remain on-mass-shell. This is exploited

by introducing phenomenological vertex form factors which for the matrix-elements suppress the

transitions between the positive and the negative energy solutions in a covariant way. These kind

of form factors are easily handled in the Kadyshevsky-formalism, and can be shown rigorously to

be effective. This is impossible in the usual treatment using Feynman graphs. Therefore, pair-

suppression can be introduced phenomenologically and covariantly, and is accessible for an analysis

using a fit to the meson-nucleon data. We apply these ideas to the πN -system and demonstrate

explicitly the covariance, frame-independence, crossing-symmetry, charge-conjugation invariance,

and causal properties of the system, even with ’absolute pair-suppression’.

We also examine the Kadyshevsky-integral-equation and show that the solutions are frame-

independent etc. when the interaction-kernel is.
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I. INTRODUCTION

In these notes we describe, see also [1–3], the Lorentz-invariant formulation of (absolute)
baryon-antibaryon pair-suppression on the level of baryons and mesons. The main pupose
is to give some additional background material to the references alluded to above. For the
readability of these notes and for pedagogical reasons, we include some parts which also
have been given in the references alluded to above.
We derive the soft-core meson-nucleon potentials in an alternative way as the derivation
given in [5, 6], henceforth referred to as I. The basis for this alternative is provided by us-
ing the formulation of relativistic quantum field theory (RQFT) as given by Kadyshevsky
[7–10]. In this formulation, in contrast to the usual one using Feynman propagators, the
particles stay always on the mass-shell. The consequence of this is that there is no four-
momentum conservation at the vertices. Besides non-conservation of energy, as happens in
the Lippmann-Schwinger equation for the intermediate states, there is also non-conservation
of three-momentum, in general. The motive for taking this formulation RQFT as the start-
ing point is that for meson-baryon we have composite particles and not elementary ones.
Therefore, a relativistic formulation of a theory using phenomenological form factors which
suppress the transition between positive and negative energy states for the matrix elements
is desirable. Below we will give an example of such form factors, the consequences of which
can be proved easily in the on-mass-shell formulation.

Phenomenologically, a covariant form of pair-suppression could be introduced in first
instance for example as follows: Consider the following πNN-vertex in momentum space

Γ′
5(p

′, p) = exp[a(γp′ −M)]Γ5(p
′, p) exp[a(γp−M)] , (1.1)

where a is a phenomenological parameter and Γ5(p
′, p) is the PV- or the PS-vertex. By

taking a large and positive, transition between positive and negative energy solutions can
be suppressed strongly in a covariant way to any degree 1

Since in the Kadyshevsky formulation of RQFT all particles, in particularly the nucleons,
are on the mass-shell in both the initial-, final-, and intermediate-states, this suppression is
clearly effective and covariant.
Note that factors like in (1.1) are beyond control in a general Feynman graph. In that case,
the pair-terms i.e. the so-called Z-diagrams can be neglected. Of course, the QCD and non-
relativistic quark-model arguments in favor of this, are quite general and hold also for the
vector-, scalar-, etc. mesons. In passing, we note that we propose to have pair-suppression
for all low energy hadronic processes, e.g. including nuclear Compton-scattering [11]. In that
situation, a calculation with the Thompson-equation, neglecting the coupling to negative-
energy states, becomes more physical than a calculation with the Bethe-Salpeter equation
without off-mass-shell suppression.

We view (1.1) as a genuine vertex factor, and not as originating from a suppression factor
on the full-baryon propagator, like in Bruckner and Gell-Mann [12]. From the point of
view of the 3P0- pair-creation model [13] one has for a triple meson vertex MMM and for
a meson-nucleon vertex NNM the creation of a single quark-antiquark pair which together

1 In fact the above form of the vertex is unsatisfactory, because it also suppresses v̄Γ5v matrix elements.

The deficiency is easily avoided, as we show in section IIA. Also, it appears that (1.1) is too complicated,

and so we have to resort to more simple forms, e.g. an approximate form in case a > 0 and large.
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with an overlap integral determines the strength of the vertices. Therefore, the MMM-
and NNM-vertex are of comparable strength. 2 In the case of the nucleon-antinucleon pair
vertex one needs a double quark-antiquark pair-creation, and the overlap integrals are more
complicated, which means small. This would be a natural explanation of ”pair-suppression”.

Since in the Kadyshevsky formalism each ’κ-ordered’ graph is by itself covariant, one can
assign a factor γ2 << 1 to each baryon-anti-baryon creating vertex, where γ denotes the
vacuum creation of a QQ̄-pair [14]. We emphasize once more that this does not destroy the
covariance and is in the spirit of the large 1/N -expansion picture as given by Witten [15].
However, this is not necessarily Lorentz-invariant, because it will be in general frame-
dependent. To analyze the frame-dependence of the amplitudes we employ here the method
of Gross and Jackiw [18]. This leads to the introduction of ’compensating’ interaction
Hamiltonians in order to obtain causal and Lorentz-invariant amplitudes. Such a procedure
is quite general and applies to any particle theory defined in terms of Feynman- or
Kadyshevsky-graphs.
An alternative is the application of the Takahashi-Umezawa(TU)-method [17], which uses
the Tomonaga-Schwinger formalism [16], and is described in these notes in Appendix E, see
also [1]. This general field-theoretical method of deriving the interaction Hamiltonian given
an interaction Lagrangian, which might involve derivatives of the fields, gives the same
’compensating’ interaction Hamiltonians. Therefore, the TU-method gives a very beautiful
confirmation of the results found with the Gross-Jackiw analysis.
Of course, the TU-method is based more heavily on the canonical formalism and the
introduction of the Dirac-interaction-picture than the Gross-Jackiw method.

The vertex of type (1.1) amounts in configuration space to the introduction of higher
order derivatives in field theory, i.e. non-local interactions, which notoriously poses several
difficult problems. As a fundamental Lagrangian this has not been possible, so far. However,
recently it appeared that string-theories contain non-local factors of the form exp(−αp2),
which cause loops to converge in Euclidean space. This fact is a good reason to look again
to non-local interactions. For a discussion of these matters, see e.g. Evens et al [19].

We find that strong pair-suppression requires such a non-local modification of the stan-
dard point vertices employed in phenomenological models. At the end of this note, we
include a discussion and brief review of the difficulties with non-local field theories.

The purpose of this note is to demonstrate that pair-suppression can be implemented in
a way which is covariant and frame-independent, i.e. Lorentz invariant. Also, we want to
derive the effective extra Hamiltonian ∆HI , which makes the second-order matrix elements

2 The typical overlap integral I0 in the 3P0-model [13] for meson-nucleon coupling is, for all particles at

rest,

I0(N,N ;M) = N
[

2π

3R2
N +R2

M

]3/2

, N =
(
3
√

6/4
)(R2

NRM

π3/2

)3/2

,

which gives for (”effective”) nucleon and meson radii RN = RM = 0.7 fm the overlap I0 = 0.87 (fm)3/2.

Combined with the pair-creation constant γ0 ≈ 1.5 (fm)−3/2 leads to an overall so-called ’rationalized’

pair-creation constant γ/
√

4π ∼ γ0I0/
√

4π ≈ 0.42 < 1.

If we put the ”effective pair-creation” radius as R0 ≈ RM ≈ RN , we have that I0 =

(3/4)[6/8π3/2]1/2R
3/2
0 = 0.275R

3/2
0 , showing that I0 is decreasing for R0 → 0.
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covariant and analytic, while maintaining the pair-suppression. 3 It will be shown that a
(strong) pair-suppression leads to a (strong) suppression of the transitions between positive
and negative energy states for the matrix elements . The meaning of this will become clear
in the course of these notes, and see4 also [1].

The contents of these notes is as follows. In section II we give the interaction Lagrangian
with pair-suppression, being hermitean and charge-conjugation invariant for any type of
vertex. In section III we review the JP = (1/2)+-resonance and exchange, with PS-coupling,
and find in an ad-hoc way a frame independent, i.e. Lorentz-invariant, expression for the
πN on-energy-shell amplitude. Then, by finding a correction term we make the amplitude
causal. In section IV we perform a Gross-Jackiw analysis for the 2nd-order R-product,
which accomplishes a derivation of the correction term found in section III. This procedure
leads to the establishment of a non-causal (n.c.) correction Hamiltonian ∆HI(n.c.), which
is used in section V to extend the amplitude corrections in sections III and IV to the
off-energy-shell amplitude. This ∆HI(n.c.) turns out to be non-local, i.e. of the type
∆H(n.c.)(x, y).
In section VI we make some remarks on baryon-exchange, and (off-energy-shell) su-crossing
symmetry. Next, in section VII, we apply the procedure to for the JP = (1/2)+-resonance
and exchange, with PV-coupling. In section VIII we examine our procedures to the
JP = (3/2)+ resonance and exchange amplitudes. Applying our prescription, found
in section V, to eliminate the non-causal part of the amplitudes. We find that only
subtractions of non-causal parts in the amplitudes is not sufficient in this case, but there

3 The same propagator emerges in the following, not charge-conjugation invariant, infinitely dense medium:

Imagine a medium where all anti-nucleon states are filled, i,e, the Fermi energy of the anti-nucleons

p̄F = ∞, and that for nucleons pF = 0. An example would be (symmetric) anti-nuclear matter of infinite

density. Then, in πN -scattering pair-production is Pauli-blocked. Denoting the ground-state by |Ω〉, one

has, see e.g. [20],

SF (x− y) = −i〈Ω|T [ψ(x)ψ̄(y)]|Ω〉 ,

which gives in momentum space [20]

SF (p; pF , p̄F ) =
p/+M

2Ep

{
1 − nF (p)

p0 − Ep + iǫ
+

nF (p)

p0 − Ep − iǫ

− 1 − n̄F (p)

p0 + Ep − iǫ
− n̄F (p)

p0 + Ep + iǫ

}
. (1.2)

At zero temperature T = 0 the non-interacting fermion functions nF , n̄F are defined by

nF =

{
1, |p| < pF

0, |p| > pf

, n̄F =

{
1, |p| < p̄F

0, |p| > p̄f

.

In the medium scetched above, clearly nF (p) = 0 and n̄F (p) = 1, which leads to a propagator

Sret(p; 0,∞)(x− y) like in (5.9).

This (academic) example may perhaps convince a sceptical reader that a perfect relativistic model with

’absolute pair-suppression’ is feasible indeed. For example, consider πN scattering in a medium back-

ground as described above. Then, when computing e.g. the nucleon-exchange contribution the amplitudes

are clearly Lorentz-invariant.

4



remain so-called ’contact-terms’ (c.t.’s). These c.t.’s are identified and related to the
remaining frame-dependence after eliminating the non-causal terms, again employing the
Gross-Jackiw analysis. We show that this analysis leads to a correction Hamiltonian
∆HI(c.t.), by which these c.t.’s can be removed. In section IX, armed with the knowledge
of the previous sections, we show that the on-energy-shell solutions of the Kadyshevsky
integral equation are frame independent, i.e. Lorentz-invariant, provided the interaction
kernel is. In section X we close with some discussion and outlook, and mention prospects
and problems of non-local field theories. In particularly, we formulate in retrospect of the
material in these notes the main motivations for the use of the Kadyshevsky formalism.

In Appendix A we state, for completeness, the Kadyshevsky rules for the computation of
the Kadyshevsky graphs. In Appendix B we describe the second quantization for the Kady-
shevsky quasi-particles. In Appendix C the relativistic off-enegy-shell invariant amplitudes
for baryon-exchange and baryon-resonance graphs with JP = 1/2+, 3/2+ are given. In
Appendix D we list some kinematic identities. In Appendix E the Takahashi-Umezawa in-
teraction theory is described and applied to e.g. the case with ”absolute pair-suppression”.
It is shown to result in the same interaction Hamiltonian as obtained via the Gross-Jackiw
method. In Appendix H the Takahashi-Umezawa interaction theory is described within the
BMP-framework [21] of Axiomatic S-matrix theory.
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FIG. 1: JP = 1
2

+
Baryon-exchange

II. PAIR-SUPPRESSION

A. Effective Vertex Pair-suppression

Consider the Kadyshevsky graph (b) of Fig. 1 which, because of the intermediate baryon,
has a matrix element of the form

M (b)(pf , pi) ∼ ū(p′) [Γ0 (−P/+MB) Γ0]u(p) , (2.1)

which comes from the S(−)(P )-propagator. We write

−P/+MB = −2MB

∑

s

V (P, s) V̄ (P, s) (2.2)
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where V (P, s) denotes the Dirac-spinor for baryon B.
The inclusion of ’strong-pair-suppression’ is effectuated by making the substitution

Γ0 → Γ(pf , pi) =
g

2

{
exp

[
ã
(
p/f −Mf

)]
Γ0 exp [ã (p/i −Mi)]

+ exp
[
−ã
(
p/f +Mf

)]
Γ0 exp [−ã (p/i +Mi)]

}
, ã =

a

2M
> 0 .(2.3)

where the subscripts i and f denote respectively the incoming and outgoing baryon at the
vertex, and the ’bare-vertex’ satisfies γ0Γ†

0γ0 = Γ0.
Then, in (2.3) one gets, for on-shell fermions, and large a > 0 pair-suppression 4

ū(pf ) Γ(pf , pi) u(pi) =
g

2

(
1 + e−2a

)
ū(pf ) Γ0(pf , pi) u(pi) ,

v̄(pf ) Γ(pf , pi) v(pi) =
g

2

(
1 + e−2a

)
v̄(pf ) Γ0(pf , pi) v(pi) ,

v̄(pf ) Γ(pf , pi) u(pi) = g e−a v̄(pf ) Γ0(pf , pi) u(pi) ,

ū(pf ) Γ(pf , pi) v(pi) = g e−a ū(pf ) Γ0(pf , pi) v(pi) . (2.6)

Then, for the matrix element M (b)(pf , pi) we get

M (b)(pf , pi) ∼ e−2a [ū(p, sf )Γ0V (P, s)]
[
V̄ (P, s)Γ0u(P, si)

]
. (2.7)

ie. the result of the substitution (2.3) is simply a strong pair-suppression factor for large
positive a for the contribution of graph (b).

From the perspective of charge-conjugation invariance it is easily seen that the vertex (2.3)
is a good choice. Under charge-conjugation C one has

C : ψ → C ˜̄ψ , ψ̄ → −ψ̃ C−1 , C−1γµ C = −γ̃µ . (2.8)

4 An alternative form would be

Γ0 → Γ(p′, p) =
g

2

{(
1

ãp/
′
+ b

)n

Γ0

(
1

ãp/+ b

)n

+

(
1

−ãp/′ + b

)n

Γ0

(
1

−ãp/+ b

)n}
. (2.4)

Requiring that a+ b = 1, and −a+ b = X, with large X > 0, one gets

ūΓu =
g

2

(
1 +X−2n

)
· ūΓ0u , v̄Γv =

g

2

(
1 +X−2n

)
· v̄Γ0v ,

v̄Γu = g X−n · v̄Γ0u , ūΓv = g X−n · ūΓ0v , (2.5)

which means again pair-suppression for largeX and n >> 1. We note that with n = N−1, and interpreting

x = 1/X < 1 as the probability of qq̄-pair creation, the vertex (2.4) models SUc(N) pair-suppression for

large N [15].
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Then, one has that

ψ̄f p/ ψi → −ψ̃f C
−1p/ C ˜̄ψi = +ψ̄i p/ ψf ,

ψ̄f Γ0 p/ ψi → −ψ̃f C
−1Γ0 p/ C

˜̄ψi = +ψ̄i p/ (Γ0)c ψf , (2.9)

with (Γ0)c = C̃−1Γ0C
5. From this it is clear that (2.3) gives C-invariance.

For a proper representation in x-space we have to split the fermion field in a positive and
negative frequency part, like in the normal-ordering products. We write

ψ(x) = ψ(+)(x) + ψ(−)(x) , (2.10)

which splitting is obviously invariant under orthochronous Lorentz transformations L↑
+.

Then,

exp (ãp/) → ψ(x|a) ≡ exp [ + iã∂/ ]ψ(+)(x) + exp [ − iã∂/ ]ψ(−)(x) . (2.11)

So, with this prescription we can write down an effective interaction Lagrangian correspond-
ing to the vertex (2.3). We write

LI(x) =
g

2

[
ψ̄(x|a)Γ0 ψ(x|a) + ψ̄(x| − a)Γ0 ψ(x| − a)

]
· e−a . (2.12)

Now, in perturbation theory the fields are free fields, ”in”- or ”out”-fields with mass M , so
that for e.g. absolute pair-suppression, i.e. a = ∞,

LI(x) ⇒
g

2

[
ψ(+)(x)Γ0 ψ

(+)(x) + ψ(−)(x)Γ0 ψ
(−)(x)

]
, (2.13)

where ψ(±)(x) ≡ ψ(±)†(x)γ0.

Strong-pair suppression: For a < ∞, and large, we have ’strong-pair-suprresion’. For this
we could try to develop the non-local theory described by e.g. the interaction Lagrangian
(2.12), which however seems rather complicated. Instead, we can indroduce next and similar
to (2.13) also a ’pair-production’ Lagrangian L′

I by

L′
I(x) ⇒

g′

2

[
ψ(+)(x)Γ0 ψ

(−)(x) + ψ(−)(x)Γ0 ψ
(+)(x)

]
, (2.14)

where for example the pair-creation coupling g′ = exp(−a) g, with a > 0 and large.
For the rest of these notes we restrict ourselves in working only out the consequences for the
interaction (2.12).

5 Such relations also hold in momentum-space, which follows from the properties of the Dirac-spinors [22]

eiφ(p,s)v(p, s) = C ˜̄u(p, s) , eiφ(p,s)u(p, s) = C ˜̄v(p, s) ,

where e.g. C = iγ2γ0 = −C−1, in the Pauli-Dirac representation. and where the phase factors are unity.
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FIG. 2: Baryon-resonance s-channel graphs.

III. JP = 1
2

+
- RESONANCE, PS-COUPLING

This section deals with the baryons like N(940) and the P11-resonance N∗(1470), i.e. the
Roper resonance. The two Kadyshevsky graphs are shown in figure 2. The ps-vertex means
that Γ0 = γ5

6. Then, from the Kadyshevsky rules given in Appendix A one finds for graph
(a) and graph (b) [16]

M
(a)
κ′,κ = −1

4
g2
(
1 + e−2a

)2
ū(p′)

[{
−1

2
(Mf +Mi) +MB

}
−Q/+ {∆E,s − As}n/

]
u(p) ·

× 1

2As

1
1
2
(κ′ + κ) + ∆E,s − As + iǫ

,

M
(b)
κ′,κ = −g2e−2a ū(p′)

[{
−1

2
(Mf +Mi) +MB

}
−Q/+ {∆E,s + As}n/

]
u(p) ·

× 1

2As

1
1
2
(κ′ + κ) − ∆E,s − As + iǫ

. (3.1)

Here,

∆s =
1

2
[(p′ + p) + (q′ + q)] , ∆E,s = ∆s · n . (3.2)

and
As =

{
M2

B − ∆2
s + (∆s · n)2

}1/2
(3.3)

A. Absolute Pair-suppression, a→ ∞

In this case one has for the on-energy-shell amplitudes, i.e. κ′ = κ = 0, M
(b)
0,0 = 0, and

M
(a)
0,0 becomes

M
(a)
0,0 ⇒ −1

4
g2 ū(p′)

[
(MB −M) −Q/

2As (∆s · n− As)
+

n/

2As

]
u(p) . (3.4)

6 This means that g ≡ igπN , otherwise the interaction Lagrangian (2.13) is not hermitean! So, these notes

have to be updated in the final version!
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In order to make this amplitude frame-independent, i.e. nµ independent, we have to subtract
from (3.4) the piece

∆M (a) = −1

4
g2 ū(p′)

{
[(MB −M) −Q/ ]

∆s · n
2As (s−M2

B)
+

n/

2As

}
u(p) . (3.5)

This gives

M̄
(a)
0,0 = M

(a)
0,0 − ∆M (a) = −1

4
g2 ū(p′) [(MB −M) −Q/]u(p) ·

× 1

2As

{
1

∆s · n− As

− ∆s · n
s−M2

B

}

= −1

8
g2 ū(p′) [(MB −M) −Q/ ]u(p)

1

s−M2
B

. (3.6)

Here we used the identity s−M2
B = (∆s · n)2 − A2

s.

One sees that by rescaling the coupling g → 2
√

2g, one obtains the same amplitudes as
usual !!?

In the next section, we derive the subtraction terms using the Gross-Jackiw scheme [18],
by an adaption of the R-product in the Kadyshevsky field theory.

IV. GROSS-JACKIW R-PRODUCT ANALYSIS FOR PS-COUPLING

In reference [23] the perturbation formalism in the case of interaction Lagrangians with
derivatives is discussed. The interaction (2.3) is such a case with derivatives of any order.
Therefore, one may expect many contributions to ∆HI , and it seems a very complicated
affair to evaluate these. However, in the perturbation formalism the fields are ’free-fields’,
namely ”in”- or ”out”-fields with mass M .

In the situation with pair-suppression, the R-product formulation is the right starting point
in perturbation theory. For example in case of ’absolute pair-suppression’, the contractions
in the Wick-expansion do not lead to SF (x, y)-functions. This can be seen as follows. The
Feynman green function is

SF (x− y)βα = −iθ(x0 − y0)〈0|ψβ(x)ψ̄α(y)|0〉 + iθ(y0 − x0)〈0|ψ̄α(y)ψβ(x)|0〉 , (4.1)

where

〈0|ψβ(x)ψ̄α(y)|0〉 = 〈0|ψ(+)
β (x)ψ(+)

α(y)|0〉 ,
〈0|ψ̄α(y)ψβ(x)|0〉 = 〈0|ψ(−)

α(y)ψ
(−)
β (x)|0〉 . (4.2)

But, the negative-frequency terms never occur in the Wick-expansion for ’absolute pair-
suppression.

For the analysis of the frame-dependent terms in the Kadyshevsky formalism we consider,
see [23] section III.B,

Pαβ ∂

∂nβ
θ[n · (x− y)]LI(x)LI(y) = Pαβ(x− y)βδ[n · (x− y)]LI(x)LI(y) (4.3)
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For πN we have that

LI(x) =
g

2

(
¯ψ(+)(x)Γ0ψ

(+)(x) + ¯ψ(−)(x)Γ0ψ
(−)(x)

)
φ(x)

∼ g

2

[
¯ψ(+)Γ0ψ

(+)(x)
]
φ(x) . (4.4)

Then, for the evaluation of (4.3) we get 7

δ[n · (x− y)]LI(x)LI(y) ∼ δ(x0 − y0) ψ(+)
α(x)ψ

(+)
β (x) · ψ(+)

γ(y)ψ
(+)
δ (y) =

δ(x0 − y0)N

[
. . .

]
+ δ(x0 − y0)ψ(+)

α(x)
{
ψ

(+)
β (x), ψ(+)

γ(y)
}
ψ

(+)
δ (y) =

δ(x0 − y0)N

[
. . .

]
+ δ(x0 − y0)ψ(+)

α(x) · (+i∂/x +M)βγ ∆(+)(x− y) · ψ(+)
δ (y) , (4.5)

where [24]

∆(+)(x− y) =
1

2

[
i∆(x− y) + ∆(1)(x− y)

]
, (4.6)

with
∂0∆(x− y) |x0=y0 = −δ(x − y) , ∂0∆

(1)(x− y) |x0=y0 = 0 . (4.7)

Therefore,

δ(x0 − y0) (+i∂/x +M)βγ ∆(+)(x− y) =

1

2
δβγδ

4(x− y) +
1

2
δ(x0 − y0) (+i∂/x +M)

βγ
∆(1)(x− y) (4.8)

From this we get, for Γ0 = γ5, that

∫
d4x

∫
d4y P αβ(x− y)βδ[n · (x− y)]LI(x)LI(y) ⇒ +

g2

8

∫
d4x

∫
d4y P αβ(x− y)β ·

×
{
ψ(+)(x) · (−i∂/x +M) ∆(1)(x− y) · ψ(+)(y)

}
δ(x0 − y0) =

Pαβ ∂

∂nβ

{
+
g2

8

∫
d4x

∫
d4y θ[n · (x− y)]·

× ψ(+)(x)
[
(−i∂/x +M) ∆(1)(x− y)

]
· ψ(+)(y)

}
. (4.9)

7 The anti-commutator for free fields and the positive frequency components is given by

{
ψ(+)

α (x), ψ(+)
β(y)

}
=
∑

s

∫
d3p

(2π)3
M

Ep
[uα(p, s)ūβ(p, s)] e−ip·(x−y) =

∫
d3p

(2π)32Ep
(p/+M)αβ e

−ip·(x−y) = (+i∂/+M)αβ

∫
d3p

(2π)32Ep
e−ip·(x−y) =

(+i∂/+M)αβ ∆(+)(x− y;M2) .
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Notice the appearance of the non-causal ∆(1)(x − y)-function. So, such terms have to be
removed from the M (2)-matrix. These non-causal terms are typical for non-local interactions
as we analyze here in connection with pair-suppression.

Application to πN -scattering, and restricting ourselves to the s-channel resonance contribu-
tion, we have to evaluate the matrix element

(2π)4δ (p′ + q′ − p− q) ∆M
(2)
0,0 = 〈|∆HI |〉 ≡ − i

8
g2 〈p′q′|

∫
d4x

∫
d4y θ[n · (x− y)] ·

× (φ(x)φ(y)) · ψ(+)(x)
[
(−i∂/x +M) ∆(1)(x− y)

]
· ψ(+)(y)|pq〉

= − i

8
g2

∫
d4x

∫
d4y · − 1

2πi

∫
dκ

exp [−iκn · (x− y)]

κ+ iǫ
ei(p′+q′)·x e−i(p+q)·y ·

×ū(p′)
[∫

d4P

(2π)3
(−P/+M) δ

(
P 2 −M2

)
e−iP ·(x−y)

]
u(p)

= (2π)4δ (p′ + q′ − p− q) · g
2

8

∫
dκ

κ+ iǫ
[ū(p′) (−P/+M)u(p)] δ

(
P 2 −M2

)
, (4.10)

where

P = ∆s − κn , ∆s =
1

2
(p′ + q′ + p+ q) . (4.11)

The solutions for κ are

κ± = −∆s · n± As , P±
0 = ∆s − κ± . (4.12)

This gives

δ
(
P 2 −M2

)
⇒ δ

(
(∆s − κn)2 −M2

)
=

1

2As

[
δ(κ− κ+) + δ(κ− κ−)

]
. (4.13)

Performing now the κ-integral, we get for (4.10)

∆M
(2)
0,0 = +

g2

8
ū(p′)

[

1

2As

{
(−∆/s + (∆s · n− As)n/+M)

−∆s · n+ As

+
(−∆/s + (∆s · n+ As)n/+M)

−∆s · n− As

}]
u(p) =

g2

16As

ū(p′)

{
[(MB −M) −Q/ ]

[
1

−∆s · n+ As

− 1

∆s · n+ As

]
− 2n/

}
u(p) =

g2

4
ū(p′)

{
[(MB −M) −Q/ ]

(∆s · n)

2As (M2
B − s)

− n/

2As

}
u(p) . (4.14)

This indeed explains the ’compensation terms’ (3.5) we had to introduce in order to make
the Kadyshevsky amplitude for ’absolute pair-suppression’ Lorentz invariant!
We note that for baryon-exchange the analysis runs in a completely analogous way.

In view of the results so far in this section, we can now identify the effective extra

Hamiltonian This ∆HI has to be such that (2π)4δ(Pf − Pi)∆M
(2)
0,0 = +〈 |∆HI | 〉. Then,

from (4.10) we infer that the corrective interaction Hamiltonian has to be

∆HI ≡ −ig
2

8

∫
d4x

∫
d4y θ[n · (x− y)] · φ(x)φ(y)

× ¯ψ(+)(x)
[
(−i∂/x +M) ∆(1)(x− y)

]
· ψ(+)(y) . (4.15)
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Of course, a similar term has to be added for πN̄ -scattering.

We note that, although non-local as expected, the extra Hamiltonian exhibits again ’absolute
pair-suppression’!

V. OFF-ENERGY-SHELL MATRIX ELEMENTS

The explicit form of ∆HI in (4.15) enables us to analyze properly the off-energy-shell
behavior of the corrections to the πN matrix elements. We will demonstrate that for the
spin-1/2 baryon graphs, and subsequently extract the rule to derive the result by a rather
simple substitution prescription for the ’covariantization’ of the second-order amplitudes.

A. Off-energy-shell subtraction

As an example, we treat here again the spin-1/2 resonance amplitude with PS-coupling.
Then, considering the off-energy-shell matrix πN matrix elements of ∆HI , we get

(2π)4δ (p′ + q′ + κ′n− p− q − κn) ∆M
(2)
κ′,κ ≡

− i

8
g2 〈p′q′κ′|

∫
d4x

∫
d4y θ[n · (x− y)] · φ(x)φ(y)

× ¯ψ(+)(x)
[
(−i∂/x +M) ∆(1)(x− y);M2

B

]
· ψ(+)(y)|pqκ〉 =

− i

8
g2

∫
d4x

∫
d4y · − 1

2πi

∫
dκ1

exp [−iκ1n · (x− y)]

κ1 + iǫ
ei(p′+q′+κ′n)·x e−i(p+q+κn)·y ·

×ū(p′)
[∫

d4P

(2π)3
(−P/+MB) δ

(
P 2 −M2

B

)
e−iP ·(x−y)

]
u(p) =

(2π)4δ (p′ + q′ + κ′n− p− q − κn) · g
2

8

∫
dκ1

κ1 + iǫ
[ū(p′) (−P/+MB)u(p)] δ

(
P 2 −M2

B

)
,(5.1)

where now

P =
1

2
(κ′ + κ) + ∆s − κ1n , (5.2)

and ∆s = 1
2
(p′ + q′ + p+ q) which is the same as for κ′ = κ = 0, and the solutions for κ1 are

κ± =
1

2
(κ′ + κ) + ∆s · n± As , P (κ(±)) = ∆s − κ±n = ∆s − [(∆s · n) ± As]n . (5.3)

Again using

δ
(
P 2 −M2

B

)
⇒ δ

(
(∆s − κ1n)2 −M2

B

)
=

1

2As

[
δ(κ1 − κ+) + δ(κ1 − κ−)

]
, (5.4)
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we can perform the κ1-integral. With the short-hand notation κ̄ = (κ′ + κ)/2, we get for
(5.1)

∆M
(2)
κ′,κ =

g2

8
ū(p′)

[

1

2As

{
(−∆/s + (∆s · n+ As)n/+MB)

1
2
(κ′ + κ) + ∆s · n+ As

+
(−∆/s + (∆s · n− As)n/+MB)

1
2
(κ′ + κ) + ∆s · n− As

}]
u(p) =

g2

16As

ū(p′)

{
[(MB −M) −Q/ ]

[
1

κ̄+ ∆s · n+ As

+
1

κ̄+ ∆s · n− As

]

+

[
(∆s · n+ As)

κ̄+ ∆s · n+ As

+
(∆s · n− As)

κ̄+ ∆s · n− As

]
n/

}
u(p) (5.5)

Reminding that for a = ∞ the off-energy-shell matrix element is, see (3.1),

M
(a)
κ′,κ = −1

4
g2 ū(p′) {[(MB −M) −Q/] + ((∆s · n) − As)n/}u(p) ·

× 1

2As

1

κ̄+ (∆s · n) − As + iǫ
, (5.6)

Then,

M̄
(2)
κ′,κ ≡M

(a)
κ′,κ + ∆M

(2)
κ′,κ = −1

8
g2 · ū(p′)

{
[(MB −M) −Q/ ] − κ̄n/

}
u(p) ·

× 1

(κ̄+ ∆s · n)2 − A2
s

, (5.7)

which in the limit κ′, κ→ 0 agrees with (3.6).

This settles the off-energy-shell behavior of the amplitudes!

B. Prescription ’covariantization’ second-order amplitudes

From the foregoing analysis we have found for ’absolute pair-suppression’ the following
recipe for the ’covariantization’ of the Kadyshevsky amplitudes:

Subtraction Non-causal parts: Make in the amplitude from graph’s of type (a) the substitu-

tion 8

∆(+)(x− y;M2) → i

2
∆(x− y;M2) (5.8)

8 We remind here the spectral representation of the invariant singular functions:

∆(+)(x) =

∫
d4P

(2π)3
θ(P0)δ(P

2 −M2) e−iP ·x ,

∆(1)(x) =

∫
d4P

(2π)3
δ(P 2 −M2) e−iP ·x ,

∆(x) = −i
∫

d4P

(2π)3
ǫ(P0)δ(P

2 −M2) e−iP ·x .
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With the substitution (5.8) the amplitude M
(2)
κ′,κ contains the propagator factor

θ[n · (x− y)] ∆(x− y;M2) = −∆ret(x− y;M2) =

∫
d4p

(2π)4

e−ip·(x−y)

p2 −M2 + i0p0

=

∫
d4p

(2π)4

1

2Ep

[
1

p0 − Ep + iǫ
− 1

p0 + Ep + iǫ

]
. (5.9)

The same (retarded) factor emerges in the (symmetric) anti-nuclear matter of infinite density,
described in an footnote above. See SF (p; pF , p̄F ) in (1.2), which for nF (p) = 0 and n̄F (p) =
1, indeed corresponds with (5.9).
Sofar, we have seen that in the cases where the interaction LI does not contain derivatives
of the fermion fields the substitution (8.9) works for πN . Here, we have to subtract out
the non-causal part to arrive at Lorentz invariant expressions for pair-suppression. When
dealing with the JP = (3/2)+-resonance in section VIII, using the gauge-invariant coupling,
this will not be the complete story. Because, in that case apart from the non-causal parts
we also have to remove the non-invariant ’contact terms’.

VI. JP = 1
2

+
- BARYON-EXCHANGE, PS-COUPLING

We note that the case of Baryon-exchange can be handled in a completely analogous fashion.
We get

M̄
(2)
κ′,κ ≡M

(a)
κ′,κ + ∆M

(2)
κ′,κ = −1

8
g2 · ū(p′)

{
[(MB −M) +Q/ ] − κ̄n/

}
u(p) ·

× 1

(κ̄+ ∆u · n)2 − A2
u

, (6.1)

where

∆u =
1

2
(p′ + p− q′ − q) , Au =

√
M2

B − ∆2
u + (∆u · n)2 . (6.2)

Two remarks:

(i) Crossing symmetry: under the transformation

q′ → −q , q → −q′ (6.3)

the amplitude in (6.1) goes over into the amplitude (5.7), i.e. su-crossing symmetry,

So, one sees that although there are no positive and negative energy transitions, in the ∆(x)-functions

both positive and negative energies occur. However, in contrast to the Feynman function, the positive as

well as the negative energies propagate forward in time. Although ’internally’ negative energies contribute

to the propagator there will never be non-zero matrix elements between positive and negative energy states

in case of ’absolute’ pair suppression.

Furthermore, we note that after the substitution (5.8) we have effectively in the Kadyshevsky graphs the

’retarded propagator’ ∆R = −θ(x0)∆(x).
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(ii) The partial-wave expansion of (6.1) is simple!!

Off-energy-shell su-crossing symmetry is very convenient in checking explicit expressions
for spin-1/2 and spin-3/2 resonce and exchange amplitudes!

VII. JP = 1
2

+
- RESONANCE, PV-COUPLING

In this case the basic interaction, with no-pair-suppression, reads

LPV =
f

mπ

ψ̄(x)γ5γµψ(x) · ∂µφ(x) . (7.1)

In this case we get, as is easily seen from the derivations above,

∆H
(2)
I ≡ − f 2

8m2
π

∫
d4x

∫
d4y θ[n · (x− y)] · ∂µφ(x)∂νφ(y)

×ψ(+)(x)γ5γµ

[
(−i∂/x +M) ∆(1)(x− y)

]
· γ5γνψ

(+)(y) . (7.2)

In [16] the amplitude for graph (a) is given:

M
(a)
κ′,κ = − f 2

4m2
π

∫
dκ1

κ1 + iǫ
∆(+)(Pa) · ū(p′)

[
q/′
{
P/a +MB

}
q/

]
u(p) . (7.3)

Applying the prescription, given section V B, we make in (7.3) the substitution

∆(+)(P ) ⇒ ∆(P ) = − i

2
ǫ(P0)δ

(
P 2 −M2

B

)
. (7.4)

The solutions for κ±1 = −∆s · n ± As, and Pa → P± = ∆s − κ±1 n have been given above,
when dealing with the PS-coupling. Therefore, we find

M
(2)
κ′,κ ⇒ − f 2

8m2
π

ū(p′) q/′ · 1

2As

[ −P+/ +MB

κ̄+ ∆s · n+ As

− −P−/ +MB

κ̄+ ∆s · n− As

]
q/ u(p) , (7.5)

where as before κ̄ = (κ′ +κ)/2. Working this out by combining the denominators, we arrive
at

M
(2)
κ′,κ ⇒ − f 2

8m2
π

ū(p′) q/′ ·
[

∆/s −MB + κ̄n/

(κ̄+ ∆s · n)2 − A2
s

]
q/ u(p) , (7.6)

which is clearly nµ-independent on-enegy-shell (κ̄ = 0).
Again, the case of Baryon-exchange can be handled in a completely analogous fashion, and
the expression for this case can be derived by applying the crossing-symmetry transformation
(6.3) to (7.6).

VIII. JP = 3
2

+
- RESONANCE, GAUGE-INVARIANT COUPLING

For πN the gauge-invariant (GI) interaction with ’absolute pair-suppression’, reads

LI ⇒
g

2

[(
∂µΨ(+)

ν

)
Γαψ

(+) · ∂βφ+ ψ(+)Γα

(
∂µΨ(+)

ν

)
· ∂βφ

]
, (8.1)
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where Γα = γ5γα. From [16] we have for the graph of type (a) the matrix element

M
(a)
κ′,κ = −g

2

4
ǫµ

′ν′α′β′

ǫµναβ q′β′qβ ·
∫ +∞

−∞

dκ1

κ1 + iǫ
Pa,µ′Pa,µ ·

×ū(p′, s′)
[
Γα′

{
θ(P 0

a )δ(P 2
a −M2) (P/a +M)

(
gν′ν −

1

3
γν′γν

)}
Γα

]
u(p, s) . (8.2)

where we used the (simple) RS-propagator. The δ-function constraint in (8.2) gives

Pa = P(κ
+
1 ) = +∆s − (∆s · n)n− As , ∆s =

1

2
[(p′ + p) + (q′ + q)] . (8.3)

A. Removal Non-causal Parts

Following the prescription, given before, we make in (8.2) the substitution

∆(+)(Pa,M
2) = θ(P 0

a )δ2(P 2
a −M2) ⇒ i

2
∆(Pa,M

2) =
i

2
ǫ(P 0)δ(P 2

a −M2) , (8.4)

so that now both the solutions P± for Pa contribute with opposite sign,

P± = +∆s − ((∆s · n)n± As) . (8.5)

Then, the amplitude (8.2) becomes

Mκ′,κ ⇒ − i

8
g2 ǫµ

′ν′α′β′

ǫµναβ q′β′qβ ·
{
ū(p′, s′) Γα′ ·

× 1

2As

[
P+

µ′P
+
µ

P/+ +M

κ̄+ ∆s · n+ As

− P−
µ′P

−
µ

P/− +M

κ̄+ ∆s · n− As

]

×
(
gν′ν −

1

3
γν′γν

)}
Γα u(p, s) . (8.6)

For the further evaluation, we note that

P±
µ′P

±
µ = ∆s,µ′∆s,µ − (∆s · n± As) (∆s,µ′nµ + ∆s,munµ′) + (∆s · n± As)

2 nµ′nµ .

Then, we get for the expression between the square-bracket in (8.6)

1

2As

[
. . .

]
=

{
−
(

∆/s +M + κ̄n/

) (
∆s,µ′ + κ̄nµ′

)(
∆s,µ + κ̄nµ

)
·

×
(

(κ̄+ ∆s · n)2 − A2
s

)−1

+

(
∆/s +M + κ̄n/

)
nµ′nµ + n/

(
∆µ′nµ + ∆µnµ′

)
− 2(∆s · n)n/ nµ′nµ

}
(8.7)

κ̄→0
=⇒

{
−
(

∆/s +M

)
∆s,µ′∆s,µ ·

(
∆2

s −M2

)−1

+

(
∆/s +M

)
nµ′nµ + n/

(
∆µ′nµ + ∆µnµ′

)
− 2(∆s · n)n/ nµ′nµ

}
, s = ∆2

s .(8.8)

From this expression it is clear that there remain ’contact-terms’, which we eliminate by an-
alyzing the equal time contributions from the time-derivatives of the ∆(x−y;M2)-function.
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B. Removal Contact-terms

We now analyze the on-energy-shell contact terms, i.e. κ̄ = 0. From above we have for
the ’contact-terms’ in the square-bracket (8.6)

1

2As

[
. . .

]∣∣∣∣
c.t.

= (∆/s +M) nµ′nµ +

[
∆s,µ′nµ + ∆s,munµ′ − 2(∆s · n)nµ′nµ

]
n/ . (8.9)

We noticed the following identities:

(i) Pωρ
∂

∂ρ

(nµ′nµ) = nµ′Pµω + nµPµ′ω . (8.10)

This expression occurred in [23], Eq. (4.31), in the expression for Pωρ∂τ1(x− y;n)/∂ρ, and 9

(ii) Pωρ
∂

∂nρ

{[(
∆s,µ′nµ + ∆s,µnµ′ − 2(∆s · n)nµ′nµ

)
n/

]
+ ∆/s nµ′nµ

}
=

{(
PµωPµ′σ + PµσPµ′ω − 2nµnµ′Pωσ

)
n/

+γτ

(
PτωPµ′σ + PτσPµ′ω

)
nµ + γτ

(
PτωPµσ + PτσPµω

)
nµ′

}
∆σ

s , (8.11)

the validity we checked by FORM [27]. This expression occurred in [23], Eq. (4.32), in the
expression for Pωρ∂τ2(x − y;n)/∂ρ. For the effected interaction Lagrangian needed for the
elemination of the nµ-dependense, both ’contact’- and ’non-causal’-terms, we have

Pωρ
∂

∂nρ

∆LI ∼ Pωρ
∂

∂nρ

∫
dx

∫
dy θ [n · (x− y)] LI(x)LI(y)

⇒ g2

4
ǫµ

′ν′α′β′

ǫµναβ

∫
d4x

∫
d4y (∂β′φ(x)∂βφ(y)) ·

×ψ(+)(x)Γα′

(
gνν′ − 1

3
γν′γν

)
·
[
Pωρ

∂

∂nρ

{
θ [n · (x− y)] ·

× (i∂/x +M) ∂x
µ′∂x

µ∆(+)(x− y;M2)

}]
· Γαψ

(+)(y) . (8.12)

Now, as already mentioned before ∆(+)(x,M2) = i∆(x,M2)/2+∆(1)(x,M2)/2 which terms
lead, when inserted in (8.12), to ∆Lc.t. and ∆Ln.c. respectively. Focussing here on the first
one, we note that because

∂

∂nρ

θ [n · (x− y)] = (x− y)ρδ [n · (x− y)]

9 In terms of projection operators Pµν there is also the relation

nµ′∂µ + nµ∂µ′ − 2nµ′nµ(n · ∂) =

(
nµ′Pµσ + nµPµ′σ

)
∂σ .
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we have in this case essentially ’equal-time derivatives’, and only terms with a derivative
on the δ-function will survive. Therefore, in (8.12) the expression between curly-brackets
becomes

{
. . .

}

x0=y0

⇒ i

2

{
− i(γ · n) (Pµ′κPµσ − nµ′nµPκσ) ∂κ∂σ

− (iγτPτκ∂
κ +M) (nµ′Pµσ + nµPµ′σ) ∂σ

}
× δ3(x − y) . (8.13)

Then,

(x− y)ρδ [n · (x− y)]

{
. . .

}

x0=y0

p.i.→

− i

2

[
−i(γ · n)

(
Pµ′ρPµσ + Pµ′σPµρ − 2nµ′nµPρσ

)

−iγτ

(
Pτσ (nµ′Pµρ + nµPµ′ρ) + Pτρ (nµ′Pµρ + nµPµ′ρ)

]
∂σδ4(x− y)

+
i

2
M (nµ′Pµρ + nµPµ′ρ) δ

4(x− y) =

−1

2
γτ

[
nτ

(
Pµ′ρPµσ + Pµ′σPµρ − 2nµ′nµPρσ

)

+nµ′

(
PτσPµρ + PτρPµσ

)
+ nµ

(
PτσPµ′ρ + PτρPµσ

)]
∂σδ4(x− y)

+
i

2
M (nµ′Pµρ + nµPµ′ρ) δ

4(x− y) (8.14)

Now, using P ρ
ωPρχ = Pωχ we obtain, applying the identities in (8.10) and (8.11),

Pωρ(x− y)ρδ [n · (x− y)]

{
. . .

}

x0=y0

⇒
{
−1

2
Pωρ

∂

∂nρ

{[
nµ′∂µ + nµ∂µ′ − 2nµ′nµ(n · ∂)

]
n/+ nµ′nµ∂/

}
+
i

2
M Pωρ

∂

∂nρ

nµ′nµ

}
δ4(x− y) =

Pωρ
∂

∂nρ

{
− 1

2

[
nµ′∂µ + nµ∂µ′ − 2nµ′nµ(n · ∂)

]
n/+

i

2
(i∂/+M)nµ′nµ

}
δ4(x− y) . (8.15)

From these results, we infer that

−∆Hc.t. ∼ +
g2

8
ǫµ

′ν′α′β′

ǫµναβ

∫
d4x

∫
d4y (∂β′φ(x)∂βφ(y)) · ψ(+)(x)Γα′

(
gνν′ − 1

3
γν′γν

)
·

×
{
[nµ′∂x

µ + nµ∂
x
µ′ − 2nµ′nµ(n · ∂x)] n/− i (i∂/x +M)nµ′nµ

}
·

×δ4(x− y) · Γαψ
(+)(y) . (8.16)
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Taking now the off-energy-shell πN matrix element of (8.16) we get

〈p′, q′;κ′| − i∆Hc.t.|p, q;κ〉 = +i
g2

8
ǫµ

′ν′α′β′

ǫµναβ(q′β′qβ) ·
∫

d4K

(2π)4

[

∫
d4x

∫
d4y ei(p′+q′+κ′n)·x)e−i(p+q+κn)·y)e−iK·(x−y) · ū(p′, s′) Γα′ ·

×
{

[nµ′Kµ + nµKµ′ − 2nµ′nµ(n ·K)]n/+ (K/+M)nµ′nµ

}
·

×
(
gνν′ − 1

3
γν′γν

)
· Γαu(p, s)

]
. (8.17)

Writing

〈p′, q′;κ′| − i∆Hc.t.|p, q;κ〉 = (2π)4δ (p′ + q′ + κ′n− p− q − κn) (∆Mκ′,κ)c.t. ,(8.18)

we obtain from (8.17) the expression

(∆Mκ′,κ)c.t. = +i
g2

8
ǫµ

′ν′α′β′

ǫµναβ(q′β′qβ) · ū(p′, s′)
[
Γα′

×
{

[nµ′Kµ + nµKµ′ − 2nµ′nµ(n ·K)]n/+ (K/+M)nµ′nµ

} ∣∣∣∣
K=∆s+κ̄n

·

×
(
gνν′ − 1

3
γν′γν

)
· Γα

]
u(p, s) . (8.19)

This matrix element cancels the c.t.-terms in (8.6) and (8.8)! (CHECK!!)
So, cancellation of the contact terms leads from (8.6) to the final (off-energy-shell) am-

plitude

Mκ′,κ ⇒ +(?)
g2

8
ǫµ

′ν′α′β′

ǫµναβ q′β′qβ ·

×
(

∆s,µ′ + κ̄nµ′

)(
∆s,µ + κ̄nµ

)
·

×ū(p′, s′)
{

Γα′ ·
(

∆/s +M + κ̄n/

)
·
(
gν′ν −

1

3
γν′γν

)}
· Γα u(p, s) ·

×
[(

∆s · n+ κ̄

)2

− A2
s

]−1

. (8.20)

One sees that for κ̄→ 0 the amplitude becomes nµ-independent, i.e. Lorentz-invariant, and
the PW-expansion is similar to that for baryon-exchange, see above, and therefore simple!.

In passing we note that

[
+ ∆s,µ′∆s,µ + κ̄ (∆s,µ′nµ + ∆s,µnµ′) + κ̄2nµ′nµ

]
=

+

(
∆s,µ′ + κ̄nµ′

)(
∆s,µ + κ̄nµ

)
≡ +P̄µ′P̄µ , (8.21)
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from which one can see the resemblance with expressions on this matter in for example [16].
Using FORM [27], and the short-hand notation

Kµ = ∆s,µ + κ̄ nµ , (8.22)

we get for the numerator in (8.20)

Mκ′,κ ⇒ 1

3
ū(p′, s′)

[
M∆

{
−
(
q/ q/′ + (q′ · q)

)
K2 + (q′ ·K)q/ K/+ (q ·K)K/ q/′

}

+

(
− (q ·K) q/′ − (q′ ·K) q/ + q/ K/′ q/− (q′ · q) K/

)
K2

+2(q′ ·K)(q ·K) K/

]
u(p, s)

=
1

3
ū(p′, s′)

[
M∆

{(
+

1

2

(
q/′ q/− q/ q/′

)
− 2(q′ · q)

)
K2 +

1

2
(q′ ·K) (q/ K/−K/ q/)

−1

2
(q ·K)

(
q/′ K/−K/ q/′

)
+ 2(q′ ·K)(q ·K)

}

+

{
−1

2

(
q/′ K/ q/− q/ K/ q/′

)
− 2(q′ · q)K/

}
K2 + 2(q′ ·K)(q ·K) K/

]
u(p, s) ,(8.23)

where in the last expression the symmetry under the interchange q′ ↔ q is exhibited.
For later it will be usefull to exhibit the terms independent, linear, quadratic, and cubic in
κ̄. Writing

Mκ′,κ = M
(0)
κ′,κ + κ̄ M

(1)
κ′,κ + κ̄2 M

(2)
κ′,κ + κ̄3 M

(3)
κ′,κ , (8.24)
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and using (8.22), we get from (8.23)

M
(0)
κ′,κ ⇒ 1

3
ū(p′, s′)

[
M∆

{
−
(
q/ q/′ + (q′ · q)

)
∆2

s + (q′ · ∆s)q/ ∆/s + (q · ∆s)∆/s q/
′

}

+

(
− (q · ∆s) q/

′ − (q′ · ∆s) q/ + q/ ∆/s q/
′ − (q′ · q) ∆/s

)
∆2

s

+2(q′ · ∆s)(q · ∆s) ∆/s

]
u(p, s) , (8.25)

M
(1)
κ′,κ ⇒ 1

3
ū(p′, s′)

[
M∆

{
− 2

(
q/ q/′ + (q′ · q)

)
(∆s · n) + (q′ · n)q/ ∆/s + (q′ · ∆s)q/ n/

+ (q · n)∆/sq/
′ + (q · ∆s)n/ q/

′

}

+

(
− (q′ · n) q/ − (q · n) q/′ + q/ n/ q/′ − (q′ · q) n/

)
∆2

s

+2

(
− (q′ · ∆s) q/ − (q · ∆s) q/

′ + q/x′ ∆/sq/i
′ − (q′ · q) ∆/s

)
(∆s · n)

+2(q · n)(q′ · ∆s) ∆/s + 2(q · ∆s)(q
′ · n) ∆/s + 2(q′ · ∆s)(q · ∆s) n/

]
u(p, s) ,(8.26)

M
(2)
κ′,κ ⇒ 1

3
ū(p′, s′)

[
M∆

{
−
(
q/ q/′ + (q′ · q)

)
+ (q′ · n)q/ n/+ (q · n)n/ q/′

}

+2

(
− (q′ · n) q/ − (q · n) q/′ + q/ n/ q/′ − (q′ · q) n/

)
(∆s · n)

+

(
− (q′ · ∆s) q/ − (q · ∆s) q/

′ + q/ ∆/s q/
′ − (q′ · q) ∆/s

)

+2(q′ · n)(q · n) ∆/s + 2(q · n)(q′ · ∆s) n/+ 2(q · ∆s)(q
′ · n) n/

]
u(p, s) , (8.27)

M
(3)
κ′,κ ⇒ 1

3
ū(p′, s′)

[
+ 2(q′ · n)(q · n) n/

]
u(p, s) . (8.28)

IX. KADYSHEVSKY INTEGRAL EQUATION

In this section we give a proof that the on-energy-shell solution of the Kadyshevsky
integral equation is frame indenpendent, see also [1].

We restrict ourselves to the meson-baryon states, e.g the pion-nucleon etc. states. The
Kadyshevsky analog of the Bethe-Salpeter equation, see [16] sections IX and X, reads

Mκ′,κ(q
′
a, p

′
b; qa, pb) = Iκ′,κ(q

′
a, p

′
b; qa, pb) +

∫
d4q′′a

∫
d4p′′b

∫
dκ′′ ·

×Iκ′,κ′′(q′a, p
′
b; q

′′
a , p

′′
b )Gκ′′(q′′a , p

′′
b )Mκ′′,κ(q

′′
a , p

′′
b ; qa, pb) ·

×δ(q′′a + p′′b + κ′′n− qa − pb − κn) , (9.1)

where the propagation of the meson, baryon, and of the quasi-particle is described by

G(qa, pb, κ) =
−1

(2π)2
δ+(q2

a −m2
a)δ+(p2

b −M2
b ) ·G0(κ) , (9.2)
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and the propagator G0(κ) for the quasi-particles is given by [8]

G0(κ) = (1/2π) [1/(κ+ iǫ)] . (9.3)

With ’strong(absolute) pair-suppression’ only positive energy nucleons are involved, both
in the initial/final but also in the intermediate states.

Introducing the momenta

P = pa + pb , P ′ = p′a + p′b , P ′′ = p′′a + p′′b ,

p =
1

2
(pa − pb) , p′ =

1

2
(p′a − p′b) , p′′ =

1

2
(p′′a − p′′b ) , (9.4)

we bring Eq. (9.1) in the form

Mκ′,κ(P
′, p′;P, p) = Iκ′,κ(P

′, p;P, p) +

∫
d4P ′′

∫
d4p′′

∫
dκ′′ ·

×
[
Iκ′,κ′′(P ′, p;P ′′, p′′)Gκ′′(P ′′, p′′)Mκ′′,κ(P

′′, p′′;P, p)

]
|P ′′=P+(κ−κ′′)n . (9.5)

This equation we write schematically, for the on-energy-shell case, i.e. κ = κ′ = 0, as

M0,0 = I0,0 +

∫
dκ I0,κ Gκ Mκ,0 . (9.6)

Then,

Pαβ ∂

∂β
M0,0 = Pαβ

∫
dκ

[
∂I0,κ

∂nβ
Gκ Mκ,0 + I0,κ Gκ

∂Mκ,0

∂nβ

]
. (9.7)

Next we observe that
∂I0,κ

∂nβ
∝ κ ,

∂Mκ,0

∂nβ
∝ κ . (9.8)

For the kernel I0,κ we have seen examples in the previous sections, and for Mκ,0 one may
invoke the Born-series based on the integral equation (9.6). Furthermore,

Gκ ∝ 1

κ+ iǫ
= P

1

κ
− iπδ(κ) . (9.9)

From (9.8), and the absence of a pole at κ = 0, it follows that the δ(κ)-term gives zero when
used in (9.7).

For the P (1/κ)-term, we note that the singularities in the complex κ-plane from the
amplitude denominators

D =

[(
κ̄+ ∆s · n

)2

− A2
s

]−1

, (9.10)

are, because of their retarded character, in the lower half-plane. Namely at

κ± = −∆s · n±
√
M2 − ∆2

s + (∆s · n)2 − iǫ , (9.11)
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as can be seen from Eq. (5.9). Then, we can close the intergration contour in the
the upper-half complex κ-plane, and the contribution of P (1/κ) ∝ −iπRes[. . .]κ=0 and
consequently vanishes also.

Important for the proof is the behavior at infinity in the complex κ-plane. To fulfill the
necessary requirement in general a phenomenological cut-off is needed in κ-space. As an
example we suggest a ’form-factor’

F (κ) =

(
Λ2

κ

Λ2
κ − κ2 − i0ǫ(κ)

)Nκ

, (9.12)

for a large Λκ and some power Nκ. Note that the poles in the κ-plane have a retarded
character and are below the real axis. Of course, above κ ≡ ∆κ = κf − κi.
This finishes the proof that the on-energy-shell solution of the Kadyshevsky equation is frame-
, i.e. nµ-independent.

X. DISCUSSION AND OUTLOOK

A. Absolute and Strong Pair-suppression and Green-functions

The interaction (2.3) describes also for a = ∞ both πN and πN̄ scattering. However,
in working out the Feynman rules for the interaction Lagrangian with a = ∞ there does
not appear the Feynman propagator between two interaction vertices. For the Feynman
propagator to appear one needs ‘ in the product of two interaction Lagrangians terms like

¯ψ(+)(x)Γ
{
ψ(−)(x), ¯ψ(−)(y)

}
Γψ(−)(y) , (10.1)

which are lacking for absolute pair-suppression. Therefore, the analysis of Lagrangians with
pair-suppression is most easily done in the Kadyshevsky formalism.
Now in reality there will be ”strong pair-suppression, i.e. a large but finite. It is clear that
then we have to take into account, in principle, also the pair-terms and the Kadyshevsky
equation becomes a coupled integral equation. Although more complicated and more
laborious, in essence there are no extra problems to deal with this situation as compared to
’absolute pair-suppression dealt with in these notes.

We stress that it was found that absolute pair-suppression leads to a relativistic theory
where the transitions between positive and negative energy state matrix elements are absent.
However, to make the theory frame-independent we had to introduce extra non-local inter-
action Hamiltonians ∆HI , leading to extra effective vertices where internally the negative
energy solutions of the free Dirac-equation are important. However, there are only non-zero
matrix elements of ∆HI for positive energy states. This justifies the statements in the In-
troduction about the suppression of the positive negative energy transitions in the matrix
elements.

B. Motivation for the Kadyshevsky Formalism

The usefulness of the Kadyshevsky formalism for our purpuses is twofold:
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(i) Particles, in particularly baryons, stay on-mass-shell. This makes it possible to control
pair-suppression in arbitrary complicated graph’s. This feature made it possible to construct
a relativistic interaction theory where for matrix elements the positive-negative energy
transitions are absolutely) suppressed.

(ii) This formalism leads to 3-dimensional integral equations which partly justifies and
explains the succes of such equations, e.g. the Thompson-equation [37], in phenomenological
low-energy hadron-scattering models [5, 6].

(iii) In this formalism we can treat the higher spin particles, both for mesons (J=1,2) and
baryons (J=3/2).

C. Prospects and Problems with Non-local Field Theories

Recently non-local regularizations of gauge theories have been reviewed and studied
[19]. Historically, one has tried to cure the ultraviolet divergences by constructing non-local
cut-off’s. As mentioned in the introduction, interest has been revived because of the
non-locality of string theories. One was able to achieve a finite, unitary, and Lorentz
invariant perturbative S-matrix. A price for these advantages: off-shell non-causality, as well
as instability. Furthermore, there is the problem of how to formulate a canonical formalism
for non-local interactions. However, it is claimed recently that a general procedure exists
for the canonical formulation of any perturbatively localizable interaction.

In [19] the cut-off

Em = exp

[
∂2 −m2

2Λ2

]
(10.2)

has been studied. Note the similarity with our vertex factors, which contain the square
root in the exponential instead. Also, cut-off’s of the type (10.2) were used in the Nijmegen
soft-core baryon-baryon potentials [28], momentum-space πN -potentials [6], and in the
study of the renormalization group equations [30].

Finally, we mention the possible applications of the formalism developed in these notes:
(i) Analogous systems: First, of course, the extension to Kaon-Nucleon scattering, and the
application to photo-production. (ii) Baryon-baryon systems: the derivation of new two-
meson-exchange potentials. (ii) Application to Few-body systems: the suppression of the
positive-negative energy transition matrix elements seems to cure problems with these in
e.g. the Bethe-Salpeter and/or relativistic Faddeev formalisms.
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APPENDIX A: KADYSHEVSKY-RULES IN MOMENTUM-SPACE

In this section the Kadyshevsky formalism is briefly introduced by using the S-matrix
formula in quantum-field-theory as a startpoint, and going from there to the rules for the
Kadyshevsky-diagrams [7–10]. We follow the set up of the appendices B in [22] where the
rules for the Feynman-graphs are given. The differences will then come to the surface in a
most transparant manner. Starting from the expression of the S-operator, one has [25, 26]

S = 1 +
∞∑

n=1

(
i

~

)n ∫ +∞

−∞

. . .

∫ +∞

−∞

θ(x0
n − x0

n−1)θ(x
0
n−1 − x0

n−2) . . . θ(x
0
2 − x0

1) ·

×LI(xn) LI(xn−1) . . .LI(x1) · d4xn . . . d
4x1

≡ 1 +
∞∑

n=1

Sn , (A1)

we follow [7] and introduce the time-like vector nµ with n2 = n2
0−n2 = 1, n0 > 0. Then (A1)

can be brought into a completely 4-dimensional covariant form, although frame-dependent,
by the replacement

θ(x0) → θ(x · n) , n · x = n0x
0 − n · x . (A2)

This gives (~ = 1)

Sn = in
∫ +∞

−∞

. . .

∫ +∞

−∞

θ[n · (xn − xn−1)]θ[n · (xn−1 − xn−2)] . . . θ[n · (x2 − x1)] ·

×LI(xn) LI(xn−1) . . .LI(x1) · d4xn . . . d
4x1 . (A3)

The equivalence of Sn in equations (A1) and (A3) can be seen as follows. Assuming that the
S-matrix defined in (A1) is Lorentz-invariant, and realizing that (A1) and (A3) are identical
in the frame where nµ = (1,0), it follows that they are equivalent in all frames because the
expression in (A3) is manifest Lorentz-invariant. Also, it follows that the S-matrix defined
in (A3) is independent of the four-vector nµ. A more explicit elaboration on this issue and
others is given in appendix A of [4].
From the expression (A3) one can work out the rules for the Kadyshevsky graphs in a way
which parallels the derivation of the Feynman rules. The differences come from the treatment
of the θ-functions. In the case of the Feynman graphs one includes the θ-functions into the
propagators by applying the Wick-expansion to the T -products of the field operators. In
the case of the Kadyshevsky graphs one employs a four-dimensional form of the θ-functions,
exploiting (A2),

θ(n · x) = − 1

2πi

∫ +∞

−∞

dκ
exp [−iκ(n · x)]

κ+ iǫ
, (A4)

and one applies the Wick-expansion to the ordinary products of the field operators. Then,
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the propagators are given by

〈0|φ(x)φ(y)|0〉 = ∆(+)(x− y;µ2) =

∫
d4q

(2π)3
θ(q0)δ(q

2 − µ2) e−iq·(x−y)

〈0|Aµ(x)Aν(y)|0〉 = D(+)
µν (x− y) = −gµν

∫
d4q

(2π)3
θ(q0)δ(q

2) e−iq·(x−y)

〈0|ψ(x)βψ̄(y)α|0〉 = S
(+)
βα (x− y) =

∫
d4p

(2π)3
θ(p0) (p/+m)βα δ(p

2 −m2) e−ip·(x−y)

〈0|ψ̄(x)βψ(y)α|0〉 = S
(−)
βα (x− y) =

∫
d4p

(2π)3
θ(p0) (p/−m)βα δ(p

2 −m2) e−ip·(x−y) ,(A5)

which are the so called Wightman-functions for free-fields. For the massive vector field Vµ(x)
we have

〈0|Vµ(x)Vν(y)|0〉 = ∆(+)
µν (x− y;m2

V ) =

∫
d4q

(2π)3
θ(q0)δ

(
q2 −m2

V

)
e−iq·(x−y)

(
−gµν +

qµqν
m2

V

)
.(A6)

In the Kadyshevsky-graph theory the considered Hilbert-space is enlarged by admitting
states containing ’quasi-particles’. The latter carry only 4-momentum, and serve to have
formally four-momentum conservation at each vertex. The quasi-particles refer to the κ-
variables in the Fourier transforms (A4) of the θ-functions appearing in (A3). These quasi-
particle states |κ1, . . .〉 are normalized by

〈κ′1 . . . |κ1, . . .〉 = δ(κ′1 − κ1) . . . (A7)

The θ-functions in (A3) connect only internal points of the graphs. In order to handle integral
equations, occurring in for example the Bethe-Salpeter- and Schwinger-Dyson-equations, one
needs to consider amplitudes with external quasi-particles as well as internal quasi-particles.
The external quasi-particle entering a vertex is included only into the four-momentum con-
servation rule of that vertex, including both the external and the internal quasi-particle
4-momentum.

After these preliminary remarks we now list the momentum-space rules for the compu-
tation of the −Mκ′,κ-amplitudes, defined by

Sκ′,κ = 1κ′,κ − (2π)4iδ4(Pf + κ′n− Pi − κn) Mκ′,κ . (A8)

The invariant amplitude −Mκ′,κ is computed by drawing all connected Feynman graphs
for the considered process. The amplitude

−(2π)4δ(
∑

i

pi,out + κ′n−
∑

i

pi,in − κn)Mκ′,κ(G)

corresponding to graph G is built up by associating factors with the elements of the graph,
which we list below:

I. Those factors, independent of the specific details of the interactions, are given by the
following rules:
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1. Draw the Feynman graph G. Arbitrarily number its vertices and orient each internal
particle line from the vertex with the smaller number to the vertex with the larger number,
assigning to it a 4-momentum p.

2. Connect with dotted lines the first vertex with the second, the second with the
third, etc. Orient them in the direction of increasing numbers and assign to them a 4-
momentum κsn, where s = 1, 2, . . . , n− 1 is the number of the vertex which a given dotted
line leaves. Attach to the first vertex an incoming external dotted line with 4-momentum
κin, and to the last vertex n an outgoing external dotted line with 4-momentum κfn.

3. For incoming (outgoing) boson and fermion lines: identical to the rules for Feynman
graphs [22].

4. For each internal dotted line with momentum κn a factor

G0(κ) = − 1

κ+ iǫ
. (A9)

5. For each internal boson line with momentum q a factor

∆(+)(q) = θ(q0)δ(q
2 − µ2) . (A10)

6. For each internal fermion line with momentum p and positive energy a factor

S
(+)
βα (p) = (p/+m)βα θ(p0)δ(p

2 −m2) . (A11)

For each internal fermion line with momentum p and negative energy a factor

S
(−)
βα (p) = (p/−m)βα θ(p0)δ(p

2 −m2) . (A12)

7. For each internal photon line, using the Feynman gauge, a factor

D(+)(q)µν = −gµνθ(q0)δ(q
2) . (A13)

8a. For each vertex, number s, a factor

(2π)4δ4

(∑

i

pi,out + κs+1 −
∑

i

pi,in − κs

)
, (A14)

where pi,out and pi,in are the outgoing respectively the incoming momenta
at the vertex with number s.

8b. Integrate over each internal particle line , momentum l:
∫
d4l/(2π)3.

9. Integrate over each internal quasi-particle (dotted) line

with momentum κsn:
∫ +∞

−∞
dκs/(2π).

10. Not a factor −1 for each closed loop.
11. A factor −1 between graphs which differ only by an interchange of two-external

fermions. This not only for the interchange of identical fermions in the final state, but also
the interchange of e.g. an initial fermion and a similar anti-fermion in the final state.

12. Repeat the operations (1)-(11) for all n! numberings of the vertices of the given
Feynman graph and sum.

II. Those factors coming from the structure and type of vertices are, given for each vertex by
the matrix element 〈. . . |LI(0)| . . .〉. Therefore, they are, apart from a factor (−i), identical
to that given in [22], appendices B.
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APPENDIX B: SECOND QUANTIZATION MOMENTUM QUASI-PARTICLES

For the inclusion of the θ[n · (xi−1 − xi)]-factors appearing in (A3) one may proceed as
follows. Introducing τ ′ = n · x′, τ = n · x and consider the π-problem

(
i
∂

∂τ
+ iǫ

)
χκ(τ) = κ χκ(τ) . (B1)

The ortho-normal solutions of equation (B1) are

χκ(τ) =
1√
2π
e−i(κ−iǫ)τ , −∞ < κ <∞ . (B2)

The corresponding Green function satisfies the equation

(
i
∂

∂τ ′
+ iǫ

)
G(τ ′, τ) = −δ(τ ′ − τ) , (B3)

which can be expressed as

G(τ ′, τ) = −
∫ ∞

−∞

dκ
χκ(τ

′)χ∗
κ(τ)

κ+ iǫ
= iθ(τ ′ − τ) . (B4)

This last expression follows from (B2) and the representation (A4). Notice that we can also
write for G the expression

G(τ ′, τ) = −
∫

CR

dκ

κ
χκ(τ

′)χ∗
κ(τ) , (B5)

where the contour CR in the complex κ-plane is CR = {−∞ < ℜκ <∞,ℑκ = iǫ}.
For the second quantization formalism we introduce auxiliary fields, henceforth called Kady-
shevsky fields, by the operators

χ(τ) =

∫
dκ

κ+ iǫ
a(κ) χκ(τ) ,

χ̄(τ) =

∫
dκ

κ+ iǫ
a†(κ) χ∗

κ(τ) . (B6)

In second quantization, we postulate the commutator

[χ(τ ′), χ̄(τ)] = −iθ(τ ′ − τ) ≡ −iθ[n · (x′ − x)] , (B7)

which follows from the canonical commutation rules for the annihilation and creation oper-
ators for the quasi-particles

[
a(κ′), a†(κ)

]
= κδ(κ′ − κ) . (B8)

We note that with these normalizations

|κ〉 = a†(κ)|0〉 , χ(τ)|κ〉 =
1√
2π
e−i(κ−iǫ)τ . (B9)
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Next we introduce the following addition to the free Lagrangian density

LK = iχ̄(τ)χ̇(τ) + iǫχ̄(τ)χ(τ) , (B10)

where χ̇ := ∂χ/∂τ . To the interaction Lagrangians we add a factor χ†χ, for example for the
pseudo-scalar pion-nucleon interaction

Lps = gψ̄(x)γ5ψ(x) φ(x) → L̄ps = g
[
ψ̄(x)γ5ψ(x) φ(x)

]
· {χ̄(n · x)χ(n · x)} . (B11)

This additional factor will produce in the contractions between the vertices of a graph the
factor

〈0|χ(n · x′)χ̄(n · x)|0〉 = −iθ[n · (x′ − x)] . (B12)

With these changes in the Lagrangian etc. one can formally incorporate the θ-functions
appearing in (A3) in a second-quantization formalism as follows. First we write (A3) in the
equivalent form

Sn =
in

n!

∑

P

∫ +∞

−∞

. . .

∫ +∞

−∞

θ[n · (xπ1
− xπ2

)]θ[n · (xπ2
− xπ3

)] . . . θ[n · (xπn−1 − xπn
)] ·

×LI(xπ1
) LI(xπ2

) . . .LI(xπn
) · d4x1 . . . d

4xn , (B13)

where the sum P includes all permutation π(1, 2, . . . , n). Then, in the κ-space one next
defines the Sn-operator by

〈κ′|Sn|κ〉 =
in

n!

∑

P

∫ +∞

−∞

. . .

∫ +∞

−∞

〈κ′| L̄I(xπ1
) L̄I(xπ2

) . . . L̄I(xπn
)|κ〉 · d4x1 . . . d

4xn ,(B14)

where the change LI(x) → L̄I(x) symbolizes the change in the interaction Lagrangians
similar to that in (B9). Taking matrix elements of the expression in (B12) generates all
Kadyshevsky-graphs as defined by the rules in Appendix B.
The matrix elements of the full S-operator can now be expressed as

〈κ′|S|κ〉 = S exp

{
i

~

∫ +∞

−∞

L̄I(x)d
4x

}
, (B15)

where S stands for the symmetrizer

S
(
LI(x1) LI(x2) . . .LI(xn)

)
=
∑

P

LI(xπ1
) LI(xπ2

) . . .LI(xπn
) . (B16)

APPENDIX C: RELATIVISTIC INVARIANT AMPLITUDES

In this appendix the contribution from the Kadyshevsky diagrams to the relativistic
amplitudes Aκ′,κ(s, t, u), A

′
κ′,κ(s, t, u), Bκ′,κ(s, t, u), and B′

κ′,κ(s, t, u) are listed in the case of
’absolute pair-suppression’. We give the results for the general mass case, so that the results
apply to the elastic and the inelatic meson-baryon reactions.
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1. Momentum space baryon-exchange diagrams

(i) JP = 1
2

+
baryon-exchange

(a) pseudoscalar coupling:

Afi(PS) = −1

8
g

(ps)
14 g

(ps)
23

{
− 1

2
(Mf +Mi) +MB

}
Du (∆u, n, κ̄) ,

Bfi(PS) = −1

8
g

(ps)
14 g

(ps)
23 Du (∆u, n, κ̄) , B′

fi(PS) = 0 ,

A′
fi(PS) = +

1

8
g

(ps)
14 g

(ps)
23 Du (∆u, n, κ̄) , (C1)

where the denominator function is

Du (∆u, n, κ̄) =

[
(κ̄+ ∆u · n)2 − A2

u

]−1

, Au =
√
M2

B − ∆2
u + (∆u · n)2 . (C2)

(b) pseudovector coupling:

Afi(PV ) = +
1

8

f
(pv)
14 f

(pv)
23

m2
π

[{
1

2
(Mf +Mi) +MB

} {
1

4
(sp′q′ + spq − up′q − upq′) +

1

4
(tp′p + tq′q)

−1

2

(
m2

f +m2
i

)
− 1

2
(κ′ − κ)(q′ − q) · n− 1

2
(κ′ − κ)2

}
+

1

4
(Mi −Mf ) ·

×
(
M2

f −M2
i − up′q + upq′

)
− κ̄

(
1

2
(Mi −Mf )(q

′ − q) · n
)]

·Du (∆u, n, κ̄) ,

Bfi(PV ) = +
1

8

f
(pv)
14 f

(pv)
23

m2
π

[
−
{

1

2
(Mf +Mi) +MB

}
(Mi +Mf ) +

1

2

(
M2

f +M2
i − up′q − upq′

)

− 2κ̄∆u · n
]
·Du (∆u, n, κ̄) ,

A′
fi(PV ) = +

1

8

f
(pv)
14 f

(pv)
23

m2
π

[
κ̄

{
1

4
(sp′q′ + spq − up′q − upq′) +

1

4
(tp′p + tq′q) −

1

2

(
m2

f +m2
i

)

− 1

4
(κ′ − κ)2

}
− 1

4
(κ′ − κ)

(
M2

f −M2
i − up′q + upq′

)]
·Du (∆u, n, κ̄) ,

B′
fi(PV ) = +

1

8

f
(pv)
14 f

(pv)
23

m2
π

[
−1

2
(κ′ − κ)

{
1

2
(Mf +Mi) +MB

}
− 1

2
κ̄ (Mi −Mf )

]
·Du (∆u, n, κ̄) ,(C3)

where κ̄ = (κ′ + κ)/2.

(ii) JP = 1
2

+
baryon-resonance

Using su-crossing symmetry, the results for the baryon-resonance (s-channel) contribu-
tion can be obtained from those of baryon-exchange (u-channel) by the replacements (i)
q → −q′ and q′ → −q, which means the substitutions ∆u ↔ ∆s,mf ↔ mi, (ii) add a minus
sign to the B- and B’-invariant amplitude, and (iii) in the coupling suffixes: (14) → (12),
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(23) → (34). Furthermore ∆s ↔ ∆u, spq ↔ upq′ , and sp′q′ ↔ up′q.

(a) pseudoscalar coupling:

Afi(PS) = −1

8
g

(ps)
12 g

(ps)
34

{
− 1

2
(Mf +Mi) +MB

}
Ds (∆s, n, κ̄) ,

Bfi(PS) = +
1

8
g

(ps)
12 g

(ps)
34 Ds (∆s, n, κ̄) , B′

fi(PS) = 0 ,

A′
fi(PS) = +

1

8
g

(ps)
12 g

(ps)
34 Ds (∆s, n, κ̄) , (C4)

where now the denominator function is

Ds (∆s, n, κ̄) =

[
(κ̄+ ∆s · n)2 − A2

s

]−1

, As =
√
M2

B − ∆2
s + (∆s · n)2 . (C5)

(b) pseudovector coupling:

Afi(PV ) = +
1

8

f
(pv)
12 f

(pv)
34

m2
π

[{
1

2
(Mf +Mi) +MB

} {
1

4
(up′q + upq′ − sp′q′ − spq) +

1

4
(tp′p + tq′q)

−1

2

(
m2

f +m2
i

)
+

1

2
(κ′ − κ)(q′ − q) · n− 1

2
(κ′ − κ)2

}
+

1

4
(Mi −Mf ) ·

×
(
M2

f −M2
i − sp′q′ + spq

)
+ κ̄

(
1

2
(Mi −Mf )(q

′ − q) · n
)]

·Ds (∆s, n, κ̄) ,

Bfi(PV ) = −1

8

f
(pv)
12 f

(pv)
34

m2
π

[
−
{

1

2
(Mf +Mi) +MB

}
(Mi +Mf ) +

1

2

(
M2

f +M2
i − sp′q′ − spq

)

− 2κ̄∆s · n
]
·Ds (∆s, n, κ̄) ,

A′
fi(PV ) = +

1

8

f
(pv)
12 f

(pv)
34

m2
π

[
κ̄

{
1

4
(up′q + upq′ − sp′q′ − spq) +

1

4
(tp′p + tq′q) −

1

2

(
m2

f +m2
i

)

− 1

4
(κ′ − κ)2

}
− 1

4
(κ′ − κ)

(
M2

f −M2
i − sp′q′ + spq

)]
·Ds (∆s, n, κ̄) ,

B′
fi(PV ) = −1

8

f
(pv)
12 f

(pv)
34

m2
π

[
−1

2
(κ′ − κ)

{
1

2
(Mf +Mi) +MB

}
− 1

2
κ̄ (Mi −Mf )

]
·Ds (∆s, n, κ̄) .(C6)

Here again, su-crossing symmetry relates the resonance amplitudes to those of baryon-
exchange.

We note that ’on-energy-shell’, i.e. κ = κ′ = κ̄ = 0, the scalar variables become

spq = sp′q′ = s , upq′ = up′q = u , ∆2
s = s , ∆2

u = u , (C7)

and the denominators have the limit

Ds (∆s, n, κ̄) →
[
s−M2

B

]−1

, Du (∆u, n, κ̄) →
[
u−M2

B

]−1

. (C8)

Then, in this limit one can compare, after the redefinition of the couplings g → 2
√

2g, f →
2
√

2f , the expressions for the invariant amplitudes here with those in [5, 6].
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(iv) JP = 3
2

+
baryon-resonance

These are the invariant amplitudes with absolute pair-suppression, in the Kadyshevsky
formalism, using the gauge-invariant (GI) coupling.

a. M
(0)
κ′,κ invariant amplitudes:

A
(0)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

[{
1

2
(Mf +Mi) +M∆

}
·

×
{

1

2

(
m2

i +m2
f − tq′q

)
+

1

4
(sp′q′ + spq − up′q − upq′)

}
∆2

s

−M∆

{
1

2

(
m2

i +m2
f − tq′q

)
− 1

4
(up′q + upq′ − sp′q′ − spq)

}
·

×
{

1

2

(
3m2

i + 3m2
f − tq′q

)
− 1

2
(sp′q′ + spq − up′q − upq′)

}

−3

{
1

2
(Mf +Mi) +M∆

} {(
m2

f +m2
i

)
− tq′q

}
∆2

s

+
M∆

2

{
1

4

(
upq′ − sp′q′ −M2

i +M2
f

)
− 1

4
tq′q +m2

i +
1

2
m2

f

}
·

×
{
up′q − tq′q −M2

f +m2
f +m2

i + (Mi −Mf )
2
}

+
M∆

2

{
1

4

(
up′q − spq +M2

i −M2
f

)
− 1

4
tq′q +m2

f +
1

2
m2

i

}
·

×
{
upq′ − tq′q −M2

i +m2
f +m2

i + (Mi −Mf )
2
}

+ (Mf +Mi)

{
1

4

(
up′q − spq +M2

i −M2
f

)
− 1

4
tq′q +m2

f +
1

2
m2

i

}
·

×
{

1

4

(
upq′ − sp′q′ −M2

i +M2
f

)
− 1

4
tq′q +m2

i +
1

2
m2

f

}

+
1

8
(Mi −Mf )

(
upq′ − up′q + sp′q′ − spq + 6m2

f − 6m2
i

)]
·Ds (∆s, n, κ̄) ,(C9)

B
(0)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

[{
1

2
(Mf +Mi) +M∆

} (
Mf +Mi

)
∆2

s·

−M∆Mf

[
1

4

(
upq′ − sp′q′ −M2

i +M2
f

)
− 1

4
tq′q +

1

2
m2

f +m2
i

]

−M∆Mi

[
1

4

(
up′q − spq +M2

i −M2
f

)
− 1

4
tq′q +m2

f +
1

2
m2

i

]

+
1

2

(
m2

f +m2
i − tq′q

)(
− (up′q + upq′ − sp′q′ − spq) +

1

2

(
m2

f +m2
i

)

− 3

4

(
M2

f +M2
i

)
+

1

4
tp′p

)
+

1

8

[
up′q −M2

f +M2
i

] [
upq′ +M2

f −M2
i

]

+

[
−1

2
(up′q + upq′) + sp′q′ + spq −

1

2

(
M2

f +M2
i

)
+ 5

(
m2

f +m2
i

)]
∆2

s

]
·Ds (∆s, n, κ̄) ,(C10)
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A
′ (0)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

· 1

2
(κ′ − κ)

[
− (Mi −Mf )M∆

{
− 1

2
(sp′q′ + spq − up′q − upq′) +

3

2

(
m2

f +m

− 1

2
tq′q

}
+

{
− 1

4
(sp′q′ − spq − up′q + upq′) + 6

(
m2

i −m2
f

)}]
·Ds (∆s, n, κ̄) , (C11)

B
′ (0)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

· 1

2
(κ′ − κ)

[{
M∆ +

1

2
(Mf +Mi)

}
∆2

s

−M∆

{
− 1

2
(sp′q′ + spq − up′q − upq′) +

3

2

(
m2

f +m2
i

)
− 1

2
tq′q

}]
·Ds (∆s, n, κ̄) .(C12)

b. M
(1)
κ′,κ invariant amplitudes: Next we list the invariant amplitudes linear in κ̄, from

M
(1)
κ′,κ. We first give them in an intermediate form, that is with innerproducts of the involved

four-vectors, q, q′, Q, and ∆s. For the following, we use the short-hands

A0 = Q2 + (p′ + p) ·Q− 1

4
tp′p −

1

2
(κ′ − κ)(p′ − p) · n

=
1

2

(
m2

f +m2
i − tq′q

)
+

1

4
(sp′q′ + spq − up′q − upq′) , (C13a)

A1 = Q2 + (p′ + p) ·Q− 1

4
tp′p +

1

4
(κ′ − κ)2

=
1

4
(tp′p + tq′q) +

1

4
(sp′q′ + spq − up′q − upq′) +

1

4
(κ′ − κ)2 . (C13b)

A
(1)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

[
(∆s · n)

{(
M∆ +

1

2
(Mf +Mi)

)
(−6(q′ · q) + 2A0) − (q · ∆s) − (q′ · ∆s)

}

−(q′ · n)

{
− p′ · q + q′ · q +

1

2
m2

f −
1

2
q · ∆s +

1

2
q′ · ∆s

}
·M∆

−(q · n)

{
− p · q′ + q′ · q +

1

2
m2

i +
1

2
q · ∆s −

1

2
q′ · ∆s

}
·M∆

+ (Mf +Mi)

(
(q′ · ∆s)(q · n) + (q · ∆s)(q

′ · n)

)
+

1

2
A0 M∆

(
(q · n) + (q′ · n)

)

+
1

2
(Mi −Mf )

{
+ 2(∆s · n)

(
p′ · q − p · q′ + 1

2
m2

i −
1

2
m2

f + 2q′ · ∆s − 2q · ∆s

)

+ 2∆2
s(q · n) − 2∆2

s(q
′ · n)

}

−1

4
(Mi −Mf )

2

{
M∆(q · n) +M∆(q′ · n)

}]
·Ds (∆s, n, κ̄) . (C14)

B
(1)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

[
(∆s · n)

{
2

(
M∆ +

1

2
(Mf +Mi)

)
(Mf +Mi) + 4(Q · ∆s) + 2∆2

s

+2

(
−p′ · q − p · q′ + 1

2
m2

f +
1

2
m2

i

)}
− (q′ · n)

{
−M∆Mf − 2(q · ∆s) − ∆2

s

}

−(q · n)
{
−M∆Mi − 2(q′ · ∆s) − ∆2

s

}]
·Ds (∆s, n, κ̄) . (C15)
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A
(1) ′

fi (GI) = +(?)
1

24

g
(∗)
12 g

(∗)
34

m4
π

[
(∆s · n)

{
A1∆

2
s − 3(q′ · q)∆2

s +M∆ (Mf +Mi) (Q · ∆s)

+ 2(q′ · ∆s)(q · ∆s)

}
+

1

2
(κ′ − κ)

{
2(∆s · n)

(
q · ∆s − q′ · ∆s − p′ · q + p · q′

+
1

2
m2

f −
1

2
m2

i

)
− (q · n)∆2

s + (q′ · n)∆2
s

}]
·Ds (∆s, n, κ̄) . (C16)

B
(1) ′

fi (GI) = +(?)
1

24

g
(∗)
12 g

(∗)
34

m4
π

[
1

2
M∆

(
(q′ · ∆s − (q · ∆s)

)
+

1

2
(Mi −Mf ) +

1

2
(κ′ − κ)·
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{

2

(
M∆ +

1

2
(Mf +Mi)

)
(∆s · n) +

1

2
M∆

(
(q · n) + (q′ · n)

)}]
·Ds (∆s, n, κ̄) .(C17)

c. M
(2)
κ′,κ invariant amplitudes:

A
(2)
fi (GI) = +(?)

1

24

g
(∗)
12 g

(∗)
34

m4
π

[(
M∆ +

1

2
(Mf +Mi)

)
(−3(q′ · q) + A0)

+2(q′ · n)(q · n)

(
M∆ +

1

2
(Mf +Mi)

)
− 2(Q · n)2M∆ − 2(Q · n)(∆s · n) M∆

+
1

2
(Mi −Mf )
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1

2
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i −
1

2
m2
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·Ds (∆s, n, κ̄) .(C18)

B
(2)
fi (GI) = +(?)

1
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(∗)
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(∗)
34

m4
π
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M∆ +

1

2
(Mf +Mi)

)
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2
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i −
1

2
m2

f

−(q · ∆s) + 2(Q · ∆s) + 4(∆s · n)2 + 4(∆s · n)(Q · n)
]
·Ds (∆s, n, κ̄) . (C19)

A
(2) ′

fi (GI) = +(?)
1

24

g
(∗)
12 g

(∗)
34

m4
π

[
2(∆s · n) (A1 − 3q′ · q) +M∆ (Mf +Mi) (Q · n)

−2(q · n)(∆s · n) − 2(q′ · n)(∆s · n) − 1

2
(κ′ − κ)·

×
{

+ 2(∆s · n)(q · n) − 2(∆s · n)(q′ · n) − p · q′ + p′ · q +
1

2
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i −
1

2
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f

+ (q′ · ∆s) − (q · ∆s)

}]
·Ds (∆s, n, κ̄) . (C20)

B
(2) ′

fi (GI) = +(?)
1

24

g
(∗)
12 g

(∗)
34

m4
π

[
(Mi −Mf ) (∆s · n) − 1

2
M∆(q · n) +

1

2
M∆(q′ · n)

]
·

×Ds (∆s, n, κ̄) . (C21)
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(iii) JP = 3
2

+
baryon-exchange

Application of su-crossing symmetry enables one to derive the invariant amplitudes for the
s-channel, using the u-channel amplitudes.
We repeat the su-crossing rules: (i) q → −q′ and q′ → −q, which means the substitutions
∆u ↔ ∆s,mf ↔ mi, (ii) add a minus sign to the B- and B’-invariant amplitude, and (iii)
in the coupling suffixes: (14) → (12), (23) → (34). Furthermore ∆s ↔ ∆u, spq ↔ upq′ , and
sp′q′ ↔ up′q.
From the baryon-exchange formulas (C9)-(C21) we obtain

APPENDIX D: MISCELLANEOUS IDENTITIES

We consider general meson-baryon scattering, the topic of this paper, and list a number
of useful identities which are valid when sandwiched between the Dirac-spinors ū(p′, s′) and
u(p, s), and for particles on-mass-shell. Also, we assume ’quasi four momentum’ conserva-
tion, i.e.

p+ q + κn = p′ + q′ + κ′n . (D1)

q/ = −1

2
(Mi −Mf ) +Q/+

1

2
(κ′ − κ) n/ , (D2a)

q/′ = +
1

2
(Mi −Mf ) +Q/− 1

2
(κ′ − κ) n/ , (D2b)

q/q/′ =

[
Q2 − (p′ + P ) ·Q− 1

4
tp′p −

1

2
(κ′ − κ) · n

]

+ (Mf +Mi)Q/+
1

2
(κ′ − κ) [n/,Q/ ]− , (D2c)

q/n/q/′ = −1

2
(Mi −Mf ) (q′ − q) · n+

[
2n ·Q− (p′ + p) · n

]
Q/

−
[
Q2 − (p′ + p) ·Q− 1

4
tp′p +

1

4
(κ′ − κ)2

]
n/

−1

2
(Mi −Mf ) [n/,Q/ ]− . (D2d)

q/′∆/s = +
1

2
(Mi −Mf ) q/

′ − 1

2
q/ q/′ + p′ · q′ + q′ · q +

1

2
m2

f , (D3a)

∆/′q/s = −1

2
(Mi −Mf ) q/−

1

2
q/ q/′ + p′ · q + q′ · q +

1

2
m2

i . (D3b)

Some kinematic relations are

spq = (p+ q)2 = M2
i +m2

i + 2p · q , (D4a)

sp′q′ = (p′ + q′)2 = M2
f +m2

f + 2p′ · q′ , (D4b)

upq′ = (p− q′)2 = M2
i +m2

f − 2p · q′ , (D4c)

up′q = (p′ − q)2 = M2
f +m2

i − 2p′ · q , (D4d)

tp′p = (p′ − p)2 = M2
f +M2

i − 2p′ · p , (D4e)

tq′q = (q′ − q)2 = m2
f +m2

i − 2q′ · q . (D4f)
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and the inverse relations

p · q =
1

2

[
spq −M2

i −m2
i

]
, (D5a)

p′ · q′ =
1

2

[
sp′q′ −M2

f −m2
f

]
, (D5b)

p · q′ =
1

2

[
M2

i +m2
f − upq′

]
, (D5c)

p′ · q =
1

2

[
M2

f +m2
i − up′q

]
, (D5d)

p′ · p =
1

2

[
M2

f +M2
i − tp′p

]
, (D5e)

q′ · q =
1

2

[
m2

f +m2
i − tq′q

]
. (D5f)

Miscellaneous combinations

Q2 − (p′ + p) ·Q− 1

4
tp′p = −1

4

(
sp′q′ + spq − up′q − upq′

)
− 1

4

(
tp′p + tq′q

)
, (D6a)

Q2 − (p′ + p) ·Q− 1

4
tp′p −

1

2
(κ′ − κ)(p′ − p) · n = q′ · q − 1

2
(p′ + p) · (q′ + q) =

−1

4

(
sp′q′ + spq − up′q − upq′

)
+

1

2

(
m2

f +m2
i − tq′q

)
≡ A0 . (D6b)

∆2
s =

1

4
(p′ + p)2 +

1

4
(q′ + q)2 +

1

2
(p′ + p) · (q′ + q)

=
1

2

(
M2

f +M2
i +m2

f +m2
i

)
− 1

4
tp′p −

1

4
tq′q +

1

4

(
sp′q′ + spq − up′q − upq′

)
,(D7a)

q · ∆s =
1

2

(
p′ · q + p · q +m2

i + q′ · q
)

=
1

4

(
spq − up′q −M2

i +M2
f

)
− 1

4
tq′q +m2

i +
1

2
m2

f , (D7b)

q′ · ∆s =
1

2

(
p′ · q′ + p · q′ +m2

f + q′ · q
)

=
1

4

(
sp′q′ − upq′ +M2

i −M2
f

)
− 1

4
tq′q +m2

f +
1

2
m2

i , (D7c)

Q · ∆s =
1

2

(
sp′q′ + spq − upq′ − up′q

)
+m2

f +m2
i + q′ · q . (D7d)

APPENDIX E: TAKAHASHI-UMEZAWA THEORY INTERACTION REPRE-

SENTATION

In this section we describe the method of Takahashi and Umezawa in the canonical treat-
ment of interaction in local field theory [17, 31, 32]. In these notes, for pedagogical purposes,
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we deal with a set of independent local fields Φα(x), so that the relation between the fields
in the Heisenberg- and the (Tomanaga-Schwinger) Interaction-representation, henceforth
refered to as H.R. and I.R. respectively, reads 10

Φα(x) = U−1[σ] Φα(x) U [σ]

∣∣∣∣
x/σ

, (E1)

where σ = σ(x) is a space-like surface and x/σ indicates that the point x lies on the surface
σ. U(σ) is the unitary transformation between the H.R. and I.R. in the Tomonaga-Schwiger
[33, 34] generalization of the Schrödinger equation, see e.g. [26] section 13a.

Let the interaction Lagrangian in the Heisenberg representation be

LI(x) = L′

(
Φα(x), ∂µΦα(x), . . .

)
, (E2)

and the equations of motion
Λαβ(∂) Φβ(x) = Jα(x) , (E3)

where

Jα(x) =
∂L′

∂Φα

− ∂µ
∂L′

∂Φα;µ

+ . . . ≡
∞∑

n=0

Dµ1...µn
jα;µ1 ... µn

(x) , (E4)

with

Dµ1 ... µn
≡ (−1)n∂µ1

. . . ∂µn
≡ Da ,

jα;µ1 ... µn
(x) ≡ ∂L′

∂Φα;µ1 ...µn

≡ jα;a(x) .

Furtheron, we will symbolically denote (E4) as

Jα(x) ≡ Dajα;a(x) , (E5)

The fields in the Interaction-representation, free field quantities, e.g. in-fields, Φα(x) are
assumed to satisfy the field equations 11

Λαβ(∂) Φβ(x) = 0 , (E6)

10 In the following, most equations are weak-equations in the LSZ-sense [35].
11 (i) For bosons: Φα(x) = φ(x), and

Λαβ(∂) =
(
� −m2

)
δαβ , Rαβ = δαβ .

(ii) For fermions: Φα(x) = ψ(x), and

Λαβ(∂) = (i∇/−M) δαβ , Rαβ(∂) = (−i∇/−M) δαβ .
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which can be reduced to satisfying the Klein-Gordon equations

(
� −m2

α

)
Φα(x) = 0 . (E7)

Using the operator Rβγ(∂) defined by

Λαβ(∂) Rβγ(∂) =
(
� −m2

α

)
δαγ , (E8)

the commutation relations read
[
Φα(x),Φβ(x′)

]

±

= i~Rαβ(∂) ∆(x− x′) . (E9)

In terms of the Green functions ∆G(x− x′) equation (E3) reads in integral form [36]

Φβ(x) = Φα(x) +

∫
d4x′ Rαβ(∂) Da ∆G(x− x′) jβ;a(x

′) . (E10)

Here, ∆G(x) is linear combination of ∆,∆(1) etc. satisfying

Λαβ(∂)Rβγ(∂)∆G(x− x′) =
(
� −m2

α

)
∆G(x− x′)δαγ = δ(x− x′)δαγ , (E11)

and Φα(x) is the free field solution for equation (E6).

1. Derivation of the Interaction Hamiltonian

In order to find the unitary transformation U [σ] connecting equations (E3) and (E6) one
introduces the following auxiliary (Heisenberg) field operator

Φα[x, σ] ≡ Φα(x) + a

∫ σ

−∞

d4x′ Rαβ(∂) D′
a ∆(x− x′) jβ;a(x

′) , (E12)

where x not necessarily lies on the surface σ, i.e. x and σ are considered as independent
variables. The constant a in front of the integral in (E12) is determined from the requirement
on the field commutator, see (E18) below, and it turns out that a = 1 (see Appendix F).
Hence the constant a is omitted in the following.
As is easily seen, Φα[x, σ] satisfies the free field equation (E6)

Λαβ(∂) Φβ[x, σ] = 0 , (E13)

because Φα(x) etc. satisfy this equation.

This does not hold for the Heisenberg fields, because in the transformation x and σ are not
independent, instead one has

Φα(x) = U−1[σ]Φα(x)U [σ]

∣∣∣∣
x/σ

,

Πα(x) = U−1[σ]Πα(x)U [σ]

∣∣∣∣
x/σ

, (E14)
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for the set of canonically conjugated pair of variables (Φα(x),Πα(x)).

Also, from (E12) it is clear that by the choice of the lower limit in the integral in (E12)

Φα[x,−∞] ≡ Φα(x) (E15)

i.e. Φ[x,−∞] = Φin(x). This choice also implies that the Heisenberg field is given by

Φα(x) = Φα(x) +

∫
d4x′ {Rαβ(∂) Da ∆ret(x− x′)} · jβ;a(x

′) , (E16)

with

∆ret(x− x′) = θ(x0 − x′0)∆(x− x′) =
1

2
[1 + ǫ(x− x′)] ∆(x− x′) .

From (E12) and (E16) one obtains

Φα(x) = Φα[x/σ] +
1

2

∫
d4x′

[
Rαβ(∂) D′

a , ǫ(x− x′)

]
∆(x− x′) jβ;a(x

′) , (E17)

Next one requires the commutation relation
[
Φα[x, σ] , Φβ[x′, σ]

]

±

= i~ Rαβ(∂) ∆(x− x′) , (E18)

since, after all, also Φα(x) satisfy such commutation relations, and because this would follow
directly from the existence of U [σ].

This requirement can be satisfied only if a unitary transformation U [σ] exists for which

Φα[x, σ] = U−1[σ] Φα(x) U [σ] , (E19)

with U [σ] ≡ U(σ,−∞), connecting Φα[x, σ] with (E12). Here, we used the transformation
between surfaces, i.e.

Φα(x, σ) = U−1(σ;σ′)Φα(x, σ′) U(σ;σ′) , (E20)

If now, U [σ] is determined by 12

i~
δU(σ)

δσ(x)
= HI(x : n)U [σ]

∣∣∣∣
x/σ

= U [σ] HI(x/σ;n) , (E27)

12 In fact, we can prove this for a broad class of LI ’s as follows. First, from (E19) we derive that

U [σ]
δΦα[x, σ]

δσ(x′)
U−1[σ] =

[
Φα(x),

δU [σ]

δσ(x′)
U−1[σ]

]
, (E21)

and second, from (E12) we find that

U [σ]
δΦα[x, σ]

δσ(x′)
U−1[σ] = ∆(x− x′) j(x′) . (E22)

Combining these two relations gives

[
Φα(x),

δU [σ]

δσ(x′)
U−1[σ]

]
= ∆(x− x′) j(x′) . (E23)
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where HI , which will in general depend on the vector nµ(x) locally normal to the surface
σ(x), i.e. nµ(x)dσµ = 0, is hermitean because of the unitarity of U(σ). Then, from (E19)
one gets that

i~
δΦα(x, σ)

δσ(x′)
= U−1[σ]

[
Φα(x), HI(x

′ : n)

]
U [σ] . (E28)

On the other hand, from (E12)

i~
δΦα[x, σ]

δσ(x′)
= i~ jβ;a(x

′)

{
D′

a Rαβ(∂) ∆(x− x′)

}
. (E29)

Comparing (E28) and (E29) gives the relation

[
Φα(x), HI(x

′ : n)

]
= i~

(
U(σ)jβ;a(x

′)U−1(σ)

) {
D′

a Rαβ(∂) ∆(x− x′)

}
. (E30)

This is the fundamental equation by which the interaction Hamiltonian H ′(x : n) must be
determined [31]. The existence of H ′(x : n) is necessary for the feasibility of the connection
between (E12) and (E19).

The unitary transformation U(σ) connecting the Heisenberg and Interaction representation
is subsequently obtained by solving Eq. (E27).
However, see appendix F for comments on the question of the existence or non-existence of
this connection!

2. Application Takahashi-Umezawa HI [x : n]-construction I

Via (E30) H ′[x : n] can be obtained, as a power series in the coupling constants, by
rewriting the Heisenberg current jβ;a(x

′) as a function of the fields Φ[x, σ]. Given any

Now, in the case that the interaction Lagrangian is proportional to some power p of the field Φα(x), and

consider the case with no derivatives, one has that

[
Φα(x),HI(x

′)

]
= i∆(x− x′) j(x′) , j(x′) = −∂HI(x

′)

∂Φα(x′)
. (E24)

Then, from (E23) it follows that

δU [σ]

δσ(x′)
U−1[σ] = −iHI(x

′) , or i~
δU [σ]

δσ(x′)
= HI(x

′) U [σ] . (E25)

Q.E.D.

Corollary: the commutation relations for Φα[x, σ] are identical to those for Φα(x) (E9):

[
Φα[x, σ] , Φβ [x′, σ]

]

±

= U−1(σ)

[
Φα(x) , Φα(x′)

]

±

U(σ)

= i~ ∆(x− x′) , (E26)
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differential operator M(∂), this can be done, exployting (E17), by the formula

M(∂)Φα(x, σ) = (M(∂)Φα[x, σ])x/σ

+
1

2

∫
d4x′ jβ;a(x

′)

[
M(∂)Rαβ(∂) D′

a , ǫ(x− x′)

]
∆(x− x′) .(E31)

(1) The pseudo-vector pion-nucleon interaction: Here the set of Heisenberg fields is Φα =
{ψ,Φ}, and the interaction Lagrangian density

Lpv(x) =
f

mπ

ψ̄(x)γµγ5ψ(x) · ∂µφ(x) . (E32)

Then, equation (E30) implies the relations
[
φ(x) , HI [x

′ : n]

]
= −i(f/mπ) U [σ] ∂′µ

(
ψ̄(x′)γµγ5 ψ(x′)

)
U−1[σ] ∆(x− x′) ,

[
ψ(x) , HI [x

′ : n]

]
= −(f/mπ) γµγ5 U [σ] ψ(x′) · ∂′µφ(x′) U−1[σ] S(x− x′) , (E33)

Then, from (E31) one obtains

ψ(x) = ψ[x/σ] , (E34a)

φ(x) = φ[x/σ] − f

2mπ

∫
d4y ψ̄(y)γνγ5ψ(y)

[
∂ν , ǫ(x− y)

]
∆(x− y)

= φ[x/σ] , (E34b)

∂µφ(x) = (∂µφ[x, σ])x/σ − f

2mπ

∫
d4y ψ̄(y)γνγ5ψ(y)

[
∂µ∂ν , ǫ(x− y)

]
∆(x− y)

= (∂µφ[x, σ])x/σ +
f

mπ

(
ψ̄[x/σ]γνγ5ψ[x/σ)

)
nµ(x) nν(x) . (E34c)

Here, we used the identities, see e.g. [17],

F µν(x)nµ(x)nν(x) = −1

2

∫
d4y F µν(y)

(
∂µǫ(x− y)

) (
∂ν∆(x− y)

)
, (E35a)

[
∂ν , ǫ(x− y)

]
∆(x− y) = ∂ν

[
ǫ(x− y)∆(x− y)

]
− ǫ(x− y) · ∂ν∆(x− y) =

∆(x− y) ∂νǫ(x− y) = 0 , (E35b)[
∂µ∂ν , ǫ(x− y)

]
∆(x− y) = −2nµnν δ

4(x− y) . (E35c)

Substituting the last results into (E33) gives
[
φ(x) , HI [x

′ : n]

]
= −i(f/mπ) ∂′µ

(
ψ̄(x′)γµγ5 ψ(x′)

)
∆(x− x′) , (E36a)

[
ψ(x) , HI [x

′ : n]

]
= −(f/mπ) γµγ5 ψ(x′) · ∂′µφ(x′) · S(x− x′)

−
(
f

mπ

)2

γµγ5ψ(x′) ·
(
ψ̄(x′)γνγ5ψ(x′)

)
S(x− x′) nµ(x′)nν(x′) .(E36b)
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From these results one infers that

HI [x : n] = − f

mπ

ψ̄(x)γµγ5ψ(x) · ∂µφ(x) +
1

2

(
f

mπ

)2 [
ψ̄(x)γµγ5ψ(x) · nµ(x)

]2

.(E37)

3. Application Takahashi-Umezawa HI [x : n]-construction II

Here we consider the positive frequency part of the interaction Lagrangian with ’absolute
pair-suppresion’ for the pseudo-scalar coupling (2.13), written in the Heisenberg representa-
tion 13 :

LI(x) ⇒
g

2

[
ψ(+)(x) γ5 ψ

(+)(x)
]
· φ(x) . (E38)

Then, in order to apply the Umezawa-Takahashi formalism of the foregoing subsections, we
have to adapt this formalism at several points. First, with ’absolute-pair suppression’ we can
split the fields into its posituive and negative enegy imply because they never mix. Then,

in the formalism of this section we have Φα(x) → Φ
(+)
α (x) etc. So, the auxiliary fields are

given by

Φ(+)
α [x, σ] ≡ Φ(+)

α (x) − i

∫ σ

−∞

d4x′ Rαβ(∂) D′
a ∆(+)(x− x′) jβ;a(x

′) . (E39)

Here, the factor −i in front of the integral is choosen so that when a similar formula is

written down for Φ
(−)
α [x, σ] the sum of the formulas leads to (E12). Now, for (E38) D′

a = 1,
i.e. no derivatives in the interaction Lagrangian, and for the ψ- and φ-field

ψ : Rαβ(∂) = − (i∇/+M) , φ : Rαβ = 1 , (E40)

and

ψ : jβ;a(x) ⇒
g

2
γ5 ψ

(+)(x) φ(x) , (E41a)

φ : jβ;a(x) ⇒
g

2
ψ(+)(x) γ5 ψ

(+)
α (x) . (E41b)

For the Heisenberg field we take again, see (E16)

Φ(+)
α (x) = Φ(+)

α (x) +

∫
d4x′ {Rαβ(∂) Da ∆ret(x− x′)} · jβ;a(x

′) , (E42)

Subsequently, equation (E17) becomes

Φ(+)
α (x) = Φ(+)

α [x/σ] +

∫
d4x′

{[
1

4
Rαβ(∂) D′

a , ǫ(x− x′)

]
∆(x− x′)

− i

2
θ(x− x′) Rαβ(∂) D′

a ∆(1)(x− x′)

}
· jβ;a(x

′)

≡ Φ(+)
α [x/σ] + gH(x;n) + g

(1)
H (x;n) , (E43)

13 Like in (2.13) the coupling is imaginary, g ≡ igπN , in order that the interaction Lagrangian is hermitean.

Of course, in the final version we should make the replacement g → ig everywhere.
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where we used [24]

∆(+)(x− y) =
1

2

[
i∆(x− y) + ∆(1)(x− y)

]
,

∆(−)(x− y) =
1

2

[
i∆(x− y) − ∆(1)(x− y)

]
, (E44)

and

gH(x;n) =
1

4

∫
d4x′

{[
Rαβ(∂) D′

a , ǫ(x− x′)

]
∆(x− x′)

}
jβ;a(x

′) , (E45a)

g
(1)
H (x;n) = − i

2

∫
d4x′

{
θ(x− x′) Rαβ(∂) D′

a ∆(1)(x− x′)

}
· jβ;a(x

′) . (E45b)

Then, because of

[∂µ, ǫ(x− x′)] ∆(x− x′) = 0 , [∂µ∂ν , ǫ(x− x′)] ∆(x− x′) = −2nµnν δ
4(x− x′) , (E46)

and we get for the ψ-field

gH(x;n) = −1

4

∫
d4x′

{[
i∇/+M , ǫ(x− x′)

]
∆(x− x′)

}
jβ;a(x

′) = 0 , (E47)

and

g
(1)
H (x;n) =

ig

4

∫
d4y θ[nx · (x− y)] ·

{
(i∇/x +M) ∆(1)(x− y)

}
γ5 ψ

(+)
H (y) φH(y)

= −ig
4

∫
d4y θ[nx · (x− y)] · S(1)(x− y) γ5 ψ

(+)
H (y) φH(y) , (E48)

where we introduced the standard notation, see e.g. [22],

S(1)(x− y) ≡ − (i∇/x +M) ∆(1)(x− y) ,

and similarly for S(+)(x− y).
The determining equation (E30) becomes for the ψ-field

[
ψ(x), HI(x

′ : n)

]
=

1

2
g S(+)(x− x′) γ5 U(σx)

{
ψ

(+)
H (x′) φH(x′)

}
U−1(σx) , (E49)

and because gH(x;n) = 0 we have for the Heisenberg field (E42)

U(σx) ψ
(+)
H (x′) U−1(σx) = U(σ, σ′) ψ(x′/σ′)U−1(σ, σ′) +

−ig
4

∫
d4y θ[n′

x · (x′ − y)] S(1)(x− y) γ5 U(σ′, σ′′) ψ(+)(y/σ′′) φ(y/σ′′) U−1(σ′, σ′′) ,(E50)

where we used the notations σ′ = σx′ and σ′′ = σy. From the Dyson-solution of (E27)

U(σ1, σ0) = 1 +
∞∑

n=1

(−i)n

n!

∫ σ1

σ0

. . .

∫ σ1

σ0

d4y1 . . . d4yn ·

×T
[
HI(y1 : n1) . . . HI(yn : nn)

]
, (E51)
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and so, neglecting higher-order terms in the coupling g one has the approximation

U(σx) ψ
(+)
H (x′) U−1(σx) = ψ(x′/σ′) +

+
g

4

∫
d4y θ[n′

x · (x′ − y)] S(1)(x− y) γ5 ψ
(+)(y/σ′′) φ(y/σ′′) +O

(
g2
)
, (E52)

and then we get for (E49)
[
ψ(x), HI(x

′ : n)

]
≈ 1

2
g S(+)(x− x′) γ5 {ψ(+)(x′) φ(x′)} +

+
g2

8

∫
d4y θ[n′

x · (x′ − y)] S(1)(x− y) γ5 ψ
(+)(y) φ(y) . (E53)

Then, using

〈0|ψ(+)(x)ψ(+)(y)|0〉 = 〈0|
[
ψ(+)(x), ψ(+)(y)

]
|0〉 = −iS(+)(x− y) , (E54)

we infer from these results the interaction Hamiltonian

HI(x) ⇒ −g
2

[
ψ(+)(x)γ5 ψ

(+)(x)
]
− i

g2

8

∫
d4y θ[n · (x− y)] ·

×ψ(+)(x)
[
γ5 S

(1)(x− y) γ5

]
ψ(+)(y) · (φ(x)φ(y)) . (E55)

Notice that the second term on the right hand side in (E54) agrees with ∆HI in (4.15).

APPENDIX F: ADDITIONAL NOTES ON THE TAKAHASHI-UMEZAWA FOR-

MALISM

In this appendix we collect some comments and additional background material on the
Takahashi-Umezawa (TU) theory of interactions.

1. On the existence of the Interaction-representation

According to Haag’s theorem [38] in general there does not exist a unitary transformation
which relates the in(out)-fields Φα(x) to the Heisenberg fields as conjectured in (E14)

Φα(x) = U−1[σ]Φα(x)U [σ]

∣∣∣∣
x/σ

,

Πα(x) = U−1[σ]Πα(x)U [σ]

∣∣∣∣
x/σ

. (F1)

On the other hand there does exist a unitary U [σ] such that

Φα[x, σ] = U−1[σ] Φα(x) U [σ] , (F2)

with U [σ] ≡ U(σ,−∞), connecting Φα[x, σ] with (E12). This because both fields are free
fields with equal mass. Since different surfaces σ and σ′ are connected by

Φα(x, σ) = U−1(σ;σ′)Φα(x, σ′) U(σ;σ′) , (F3)
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the flat surfaces σ = −∞ and σ′ = +∞ are connected, the transformation U(+∞,−∞)
connects the in- and out-fields, and hence provides the S-matrix. Therefore, we can derive
the perturbation formulas without using the Heisenberg fields and its ETCR’s.

Remark F.1 Conclusion: In the TU-theory the transformation between the
Heisenberg and the asymptotic in-, or out-fields is actually never used in the
derivation of the interaction hamiltonian, and therefore not sensitive to the
Haag-theorem. (See also section H on the BMP-theory.)

However, in the LSZ-formalism the Heisenberg fields are essential for the Green-functions.
So, we have to find the connection with the Green-functions:

2. Commutation relations for auxiliary fields Q[x, σ]

In this section we evaluate the commutation relation for the auxiliary fields up to and
including the second order in the coupling, in the Takahashi-Umezawa scheme [17, 31, 32].
The auxiliary (Heisenberg) field is defined by (E12)

Φα[x, σ] ≡ Φα(x) + a

∫ σ

−∞

d4x′ Rαβ(∂) D′
a ∆(x− x′) jβ;a(x

′) , (F4)

where x not necessarily lies on the surface σ, i.e. x and σ are considered as independent
variables.
In (F4) we introduced the parameter a, which we determine in this section by checking to
second order in the coupling the requirement

[
Φα[x, σ] , Φβ[x′, σ]

]

±

=

[
Φα(x) , Φβ(x′)

]

±

= iRαβ(∂) ∆(x− x′) . (F5)

since, after all, also Φα(x) satisfy such commutation relations, and because this would follow
directly from the existence of U [σ] (E19), which gives the relation between the Heisenberg-,
denoted with the subscript H, and the Interaction-representation

ΦH(x) = U−1[σ] Φ(x) U [σ] . (F6)

3. Example with trilinear interaction scalar fields

For this exercise, we choose

LI =
1

2
g χ2φ = −HI , (F7)

where χ and χ are scalar fields with in principle unequal masses. The corresponding currents
are

jχ,H(x) = −gχ(x)φ(x) , jφ,H(x) = −1

2
gχ2(x) . (F8)
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Then,

U [σ] = U(σ,−∞) = 1 − i

∫ σ

−∞

d4x HI(x) . . .

= 1 +
i

2
g

∫ σ

−∞

d4x χ2(x)φ(x) +O(g2) . (F9)

In the following we use the notation jH ≡ jχ,H , and

[χ(x), χ(x′)] = i∆(x− x′) , [φ(x), φ(x′)] = i∆φ(x− x′) . (F10)

Then,

χ[x, σ] = χ(x) + a

∫ σ

−∞

d4x′ ∆(x− x′) jH(x′) , (F11a)

χ[y, σ] = χ(y) + a

∫ σ

−∞

d4y′ ∆(y − y′) jH(y′) , (F11b)

and
[
χ[x, σ], χ[y, σ]

]
=

[
χ(x), χ(y)

]
+

+a

[
χ(x),

∫ σ

−∞

d4y′ ∆(y − y′) jH(y′)

]

+a

[ ∫ σ

−∞

d4x′ ∆(x− x′) jH(x′), χ(y)

]

+a2

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′) ∆(y − y′) ·
[
jH(x′), jH(y′)

]
.(F12)

In the field-current commutator
[
χ(x), jH(y)

]
= −g

[
χ(x), U−1[σ]χ(y)φ(y)U [σ]

]
(F13)

1. The first-order g-term:

+a

[
χ(x),

∫ σ

−∞

d4y′ ∆(y − y′) j(y′)

]

−a
[
χ(y),

∫ σ

−∞

d4x′ ∆(x− x′) j(x′)

]

= −iag
[ ∫ σ

−∞

d4y′ ∆(y − y′) ∆(x− y′) φ(y′)

−
∫ σ

−∞

d4x′ ∆(x− x′) ∆(y − x′) φ(x′)

]

= 0 . (F14)
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2. The second-order g2-term: The g2-term in this commutator is given by
[
χ(x),

i

2
g2

∫ σx′

−∞

[
χ2(x′)φ(x′), χ(y′)φ(y′)

]]
=

i

2
g2

∫ σy′

−∞

d4x′
{
− 2∆(x− x′)∆(x′ − y′)φ(x′)φ(y′)

−2∆(x− x′) ∆φ(x
′ − y′) χ(y′)χ(x′)

− ∆(x− y′) ∆φ(x
′ − y′) χ2(x′)

}
. (F15)

a) The g2-terms linear in the parameter a are

−iag2

∫ σ

−∞

d4y′
∫ σy′

−∞

d4x′ ∆(y − y′)

{

∆(x− x′) ∆(x′ − y′) φ(x′) φ(y′) + ∆(x− x′) ∆φ(x
′ − y′) χ(y′) χ(x′)

+
1

2
∆(x− y′) ∆φ(x

′ − y′) χ2(x′)

}

+iag2

∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′ ∆(x− x′)

{

∆(y − y′) ∆(y′ − x′) φ(y′) φ(x′) + ∆(y − y′) ∆φ(y
′ − x′) χ(x′) χ(y′)

+
1

2
∆(y − x′) ∆φ(y

′ − x′) χ2(y′)

}
(F16)

Here, for flat space-like surfaces σx = x′0 and σy = y′0. So, both are not equal to σ!
Note that the terms with χ2(x′) and χ2(y′) cancel against each other.

Next, it is important to realize that
∫ σ

−∞

d4y′
∫ σy′

−∞

d4x′ =

∫ σ

−∞

d4y′
∫ σ

−∞

d4x′ θ(σy′ − σx′) ,

∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′ =

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ θ(σx′ − σy′) , (F17)

which gives for (F16) the result

= −iag2

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′) ∆(y − y′)

{

∆(x′ − y′)

(
θ(σy′ − σx′) φ(x′) φ(y′) + θ(σx′ − σy′) χ(y′) χ(x′)

)

∆φ(x
′ − y′)

(
θ(σy′ − σx′) χ(y′) χ(x′) + θ(σx′ − σy′) χ(x′) χ(y′)

)}

= −iag2

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′) ∆(y − y′)

{

∆(x′ − y′)

[
φ(x′) φ(y′) + iθ(σx′ − σy′) ∆φ(y

′ − x′)

]

+∆φ(x
′ − y′)

[
χ(y′) χ(x′) + iθ(σx′ − σy′) ∆(x′ − y′)

]}
. (F18)
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b) The g2-terms quadratic in the parameter a are

ia2g2

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′
{

+ ∆(x− x′)∆(y − y′)∆(x′ − y′) φ(x′)φ(y′)

+ ∆(x− x′)∆(y − y′)∆φ(x
′ − y′) χ(y′)χ(x′)

}
. (F19)

c) Case a = 1: Now for a = 1 one sees that the sum of the linear and quadratic terms in
a from (F18) and (F19) cancel! This demonstrates that the choice of the integral term in
(E12) is fixed by the requirement of the comutation relation (E18!

4. Scalar Fields with General Interaction Hamiltonian

We repeat the basic formulas with a = 1 for the starting point of the demonstration:

χ[x, σ] = χ(x) +

∫ σ

−∞

d4x′ ∆(x− x′) jH(x′) , (F20a)

χ[y, σ] = χ(y) +

∫ σ

−∞

d4y′ ∆(y − y′) jH(y′) , (F20b)

and
[
χ[x, σ], χ[y, σ]

]
=

[
χ(x), χ(y)

]
+

+

[
χ(x),

∫ σ

−∞

d4y′ ∆(y − y′) jH(y′)

]

+

[ ∫ σ

−∞

d4x′ ∆(x− x′) jH(x′), χ(y)

]

+

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′) ∆(y − y′) ·
[
jH(x′), jH(y′)

]
.(F21)

We check the second-order in the interaction. Then

jH(y′) = U−1[σy′ ]χ(y)φ(y)U [σy′ ] ⇒ −i
∫ σy′

−∞

d4x′
[
HI(x

′), j(y′)

]
(F22)

Furthermore, we need the commutators

[
χ(x),HI(x

′)j(y′)

]
=

[
χ(x),HI(x

′)

]
j(y′) + HI(x

′)

[
χ(x), j(y′)

]

= −i∆(x− x′) j(x′) j(y′) + HI(x
′)

[
χ(x), j(y′)

]
,

[
χ(x), j(y′) HI(x

′)

]
=

[
χ(x), j(y′)

]
HI(x

′) − i∆(x− x′) j(y′) j(x′) . (F23a)
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This gives
[
χ(x), jH(y′)

]
⇒ −i

∫ σy′

−∞

d4x′
(
−i∆(x− x′)

[
j(x′), j(y′)

]
+

[
HI(x

′), [χ(x), j(y′)]

])
,(F24)

and leads to
[
χ(x),

∫ σ

−∞

d4y′ ∆(y − y′) jH(y′)

]
⇒ −i

∫ σ

−∞

d4y′
∫ σy′

−∞

d4x′ ∆(y − y′) ·

×
(
−i∆(x− x′)

[
j(x′), j(y′)

]
+

[
HI(x

′), [χ(x), j(y′)]

])
≡ I1 , (F25)

Similarly,
[
χ(y),

∫ σ

−∞

d4x′ ∆(x− x′) jH(x′)

]
⇒ −i

∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′ ∆(x− x′) ·

×
(
−i∆(y − y′)

[
j(y′), j(x′)

]
+

[
HI(y

′), [χ(y), j(x′)]

])
≡ I2 , (F26)

Again, like in (F17), it is important to realize that
∫ σ

−∞

d4y′
∫ σy′

−∞

d4x′ =

∫ σ

−∞

d4y′
∫ σ

−∞

d4x′ θ(σy′ − σx′) ,

∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′ =

∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ θ(σx′ − σy′) , (F27)

so that

I1 + I2 = −
∫ σ

−∞

d4x′
∫ σ

−∞

d4y′
{

∆(x− x′) ∆(y − y′)

[
j(x′), j(y′)

]

−iθ(σy′ − σx′) ∆(y − y′)

[
HI(x

′),

[
χ(x), j(y′)

]]

+iθ(σx′ − σy′) ∆(x− x′)

[
HI(y

′),

[
χ(y), j(x′)

]]}
. (F28)

Now, it is easy to see that
[
χ(x), j(y′)

]
= i∆(x− y′) f(y′) , (F29a)

[
χ(y), j(x′)

]
= i∆(y − x′) f(x′) , (F29b)

which leads to the cancellation of the 2nd and 3rd term in (F28), as can be seen by making
the interchange x′ ↔ y′ in one of these terms. Also, the 1st term in (F28) is seen to cancel
the current comutator term in (F21). So, we demonstrated that

[
χ[x, σ], χ[y, σ]

]
=

[
χ(x), χ(y)

]
, (F30)

which we set out to prove.
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APPENDIX G: MISCELLANEOUS COMMUTATION RELATIONS

1.

[
χ2(x′) φ(x′), χ(y′) φ(y′)

]
=

[
χ2(x′), χ(y′)

]
φ(x′) φ(y′) + χ(y′) χ2(x′)

[
φ(x′), φ(y′)

]

= 2i ∆(x′ − y′) χ(x′) φ(x′) φ(y′) + i ∆φ(x
′ − y′) χ(y′) χ2(x′) ,

2.

[
χ(x), χ(y′) χ2(x′)

]
=

[
χ(x), χ(y′)

]
χ2(x′) + χ(y′)

[
χ(x), χ2(x′)

]

= i∆(x− y′) χ2(x′) + 2i∆(x− x′) χ(y′) χ(x′) . (G1a)

APPENDIX H: S-MATRIX FORMULATION OF THE TAKAHASHI-

UMEZAWA METHOD, BMP-THEORY

According to Haag’s theorem [38] in general there does not exist a unitary transformation
which relates the in(out)-fields φas(x) to the Heisenberg fields Φ(x) as conjectured in (E14).
On the other hand there is no objection against the existence of a unitary U [σ] relating the
TU-auxiliary fields and the asymptotic fields

Φ[x, σ] = U−1[σ] φas(x) U [σ] , (H1)

with U [σ] ≡ U(σ,−∞), connecting Φ[x, σ] with (E12). This because both fields are free
fields with equal mass.
In this section we will establish these matters, derive the relation between the TU interaction
Hamiltonian, the U [σ], and a perturbative formula of the S-matrix in the context of the
axiomatic S-matrix theory. We follow here the framework of Bogoliubov and collaborators
[21, 39, 40], see also [26], section 18b. We refer in the following to this as the BMP-theory.

1. Asymptotic completeness, Yang-Feldman equations

In the context of axiomatic field theory, Lehmann, Symanzik, and Zimmermann (LSZ)
[35] formulated an asymptotic condition utilizing the notion of weak convergence in the
Hilbert space of state vectors. See e.g. [22] for an detailed exposition of the LSZ-formalism.
Here, the Heisenberg field operator Φ(x) and the asymptotic fields φas with as = −in,−out
satisfy the equations 14

(� +m2)Φ(x) = j(x) , (� +m2)φas = 0 , (H2)

where j(x) is the Heisenberg current, and the asymtotic fields are free fields. Then, the
relation between these fields is given by the Yang-Feldman (YF) [36] equations

Φ(x) = φin(x) +

∫
∆ret(x− y) j(y) d4y

= φout(x) +

∫
∆adv(x− y) j(y) d4y . (H3a)

14 In the following paragraphs we use for the Heisenberg current the notation: j(x) ≡ j(x).
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Upon subtraction we get the relation

φout(x) = φin(x) −
∫

∆(x− y) j(y) d4y . (H4)

Next one assumes the completeness of both the asymtotic fields, i.e. for the corresponding
Hilbert spaces and vacuum states one has

Hin = Hout = H , |0〉in = |0〉out = |0〉 . (H5)

It can be shown that on a certain dense set of Has the LSZ asymptotic consditions and the
YF-equations are valid, cmfr. [40], chapter 14.

2. Scattering Matrix, Unitarity, Microcausality, Commutators

In order to bypass the use of a unitary operator U as a mediator between the asymptotic
and the (interacting) Heisenberg fields, we follow here the method of Bogoliubov and
collaborators, see [39, 40].

Assume that the S-operator is a functional of the asymptotic fields χρ(x). In the following
we use in-fields, i.e. χρ(x) = φin,ρ(x). Then, the assumption of asymptotic completeness
implies the existence of the expansion

S = 1 +
∞∑

n=1

∫
d4x1 . . . d

4xn Sn(x1α1, . . . , xnαn) ·

× : χα1
(x1) . . . χαn

(xn) : . (H6)

This is no restriction, because any e.g. ordinary product of fields can be expanded in
normal-ordered ones by Wick’s theorem. Also, the use of the normal-ordered products here
ensures the stability of the vacuum, i.e. 〈0|S|0〉 = 1

1. Then, functional derivatives of the S-operator have the form

δS

δχα(x)
=
∑

n

∑

j

δααj

∫
d4x1 . . . d̂4xj . . . d

4xn Sn(x1α1, . . . , xj = xαj = α, . . . xnαn) ·

× : χα1
(x1) . . . χ̂αj

(xj) . . . χαn
(xn) : . (H7)

2. Unitarity S† S = 1 gives upon functional differentiation

δS†

δχρ(x)
S = −S† δS

δχρ(x)
, (H8)

and a similar relation starting from S S† = 1.
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3. The Heisenberg current is defined as 15

jρ(x) = iS† δS

δχρ(x)
(H9)

4. Then microcausality takes the form, see [39], chapter 17 16,

δjρ(x)

δχλ(y)
= 0 , for x ≤ y . (H10)

Theorem H.1 Let H(x) be a (local) function of the asymptotic fields χα(x), which is defined
even when χα(x) do not satisfy free field equations. Let the S-operator be defined as the time-
ordered exponential

S = T

[
exp

{
− i

∫
d4x HI(x)

}]
. (H11)

Then, the microcausility condition

δ

δχβ(y)

{
S† δS

δχα(x)

}
= 0 for x ≤ y . (H12)

This illustrates that the intuitive notion of causality is reflected in the expression of the
S-matrix as the time-ordered exponential. See [39] for the details on this point of view.
Furthermore, it follows from (H9) and (H11) that

jρ(x) =
∂HI(x)

∂χρ(x)
. (H13)

For example in QED HI(x) = eψ̄(x)γµψ(x)Aµ(x), and we get that the electromagnetic
current operator is jµ(x) = eψ̄(x)γµψ(x), which is correct [22].

5. It can be shown that with the current (H9) the asymptotic fields χin/out,ρ(x) satisfy the
Yang-Feldman equation

χout,ρ(x) = χin,ρ(x) −
∫
d4y ∆(x− y) jρ(y) . (H14)

For the demonstration see section I.

15 Note that in [40] the out-field is used. Then

jρ(x) = i
δS

δχρ(x)
S† .

16 Here x ≤ y: or (x − y)2 ≥ 0, x0 < y0, or (x − y)2 < 0. So, the point x is in the past of or is spacelike

separated from the point y.
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3. Correspondence with the LSZ Theory

The correspondence is obtained by the identification

jρ(x) = iS† δS

δχρ(x)
≡
(
� +m2

)
χρ(x) , (H15)

where χρ(x) denotes the (interacting) Heisenberg field. We note that for a hermitean field
χρ(x) the current is also hermitean, due to the relation (H8)

j†ρ(x) = −i δS†

δχρ(x)
S = jρ(x) . (H16)

Functionally differentiating the current gives the equations

δjρ(x)

δχσ(y)
= iS† δ2S

δχσ(y)δχρ(x)
+ i

δS†

δχσ(y)
SS† δS

δχρ(x)

= iS† δ2S

δχσ(y)δχρ(x)
+ ijσ(y) jρ(x) , (H17a)

δjσ(y)

δχρ(x)
= iS† δ2S

δχρ(x)δχσ(y)
+ ijρ(x) jσ(y) . (H17b)

Subtraction gives

δjρ(x)

δχσ(y)
− δjσ(y)

δχρ(x)
= −i

[
jρ(x) , jσ(y)

]
. (H18)

Note that for spacelike separations, i.e. (x − y)2 < 0, causality and (H18) imply that the
current commutators vanish. Moreover, the application of the causality condition (H12) to
equations (H17b) for x 6= y gives the following important relation

H2(xρ, yσ) ≡ S† δ2S

δχρ(x)δχσ(y)
= −T

[
jρ(x)jσ(y)

]
. (H19)

It follows that for all x and y

H2(xρ, yσ) = −T
[
jρ(x)jσ(y)

]
− iΛρσ(x, y) , (H20)

where Λρσ is a quasilocal operator

Λρσ(x, y) = Λσρ(y, x) = 0 if x 6= y . (H21)

Theorem H.2 If χρ(x) is hermitean, then the quasilocal operator Λρσ is hermitean.

This can be proven by differentiating functionally (H8) w.r.t. χσ(y), using the definition of
the currents (H9), and comparing the result with (H20) and its hermitean conjugate.

Substitution of (H19) into equation (H17b) gives

δjρ(x)

δχσ(y)
= −iθ(x0 − y0)

[
jρ(x), jσ(y)

]
+ Λρσ(x, y) . (H22)

Now we are prepared to derive the locality properties assumed in the LSZ theory. Above,
the local commutivity of the currents has been shown to follow from microcausality. Using
the YF-equations (H3a) one can show the following theorem
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Theorem H.3 For spacelike separations the Heisenberg fields commute with the currents
and among themselves

[
Φρ(x), jσ(y)

]
= 0 for (x − y)2 < 0 , (H23a)

[
Φρ(x),Φσ(y)

]
= 0 for (x − y)2 < 0 . (H23b)

This theorem can be shown as follows: From the expansion of j(x) in asymptotic fields, like
that for the S-matrix in (H6), and the commutation relations for asymtotic fields χρ(x) one
has 17 [

χρ(x), jσ(y)

]
= +i

∫
d4x′ ∆(x− x′)

δjσ(y)

δχρ(x′)
. (H24)

Using (H22), (H24) and the relation

∆(x) = ∆ret(x) − ∆adv(x) , (H25)

one gets with the Yang-Feldman equation (H3a) that (CHECK!!)
[
Φρ(x), jσ(y)

]
= +i

∫
d4x′ ∆(x− x′)Λρσ(x′, y)

−
∫ {

∆ret(x− x′)θx′y − ∆adv(x− x′)θyx′

}[
jρ(x

′), jσ(y)

]
⇒ 0 . (H26)

Here θxy ≡ θ(x0 − y0). The vanishing of the first term on the r.h.s. is due to the quasi-local
character of Λρσ and the properties of ∆(x− x′). As for the term with ∆ret(x− x′) we note
that for (x − y)2 < 0 the points x and y are outside each others lightcones. Now because
of θx′y the point x′ can not be in the lightcone of both x and y, and therefore there is no
contribution to the integral. In the same way one can reason that the same is the case for
the temr with ∆adv(x− x′). This concludes the proof.

Similarly one can prove the second commutator of this theorem.

In [40] the following is shown: Let be given (i) the locality condition (H26), (ii) the current
jρ(x) defined by the operation of the Klein-Gordon operator on the Heisenberg field Φρ(x),
(iii) the asymptotic condition in the form of the Yang-Feldman equations, and (iv) the
current expressed as a functional derivative of the S-matrix, which is given as functional
series similar to (H6). Then, under these hypotheses it is possible to exploit the arbitrariness
in the extrapolation of the S-matrix off-mass-shell so as to fulfill the microcausality condition
(H10).

17 From χout = S−1 χin S follows

χout(x) = χin(x) + S−1

[
χin(x), S

]
,

which means for any operator Q(y), so also for χout(y), expressible as a series similar to (H6) in χin that

[
χin(x), O(y)

]
= i

∫
d4x′ ∆(x− x′)

δO(y)

δχ(x′)
.

Here, we used δχin(y)/δχin(x′) = δ(x′ − y).
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4. Perturbation series, Interaction Hamiltonian, U-transformation

From equation (H20), using (H9) for the current, one derives a defining equation for the
S-operator in terms of Λρσ(x, y), namely

δ2S

δχρ(x)δχσ(y)
= igΛ(ρx, σy) +

+θxy
δS

δχρ(x)
S† δS

δχσ(y)
+ θyx

δS

δχσ(y)
S† δS

δχρ(x)
, (H27)

where
igΛ(ρx, σy) ≡ −S Λρσ(x, y) . (H28)

A solution as a power series in the coupling g

S = 1 +
∞∑

n=1

(ig)n Sn , (H29)

leads to a system of recursive relations for the coefficients Sn. The first order suggests the
introduction of the ineraction Hamiltonian by

δ2S

δχρ(x)δχσ(y)
= Λ(ρx, σy ≡ − δ2H ′

I

δχρ(x)δχσ(y)
. (H30)

Namely, assuming for this Hamiltonian the expansion in asymptotic fields of the form

HI ≡ gH ′
I =

∑

n,ρi

∫
Hρ1...ρn

: χρ1
(x) . . . χρn

(x) : d4x1 . . . d
4xn , (H31)

and utilizing
δχρ(x)/δχσ(y) = δρσδ(x− y) , (H32)

indeed leads to

S1 = −iHI = −i
∫
d4x HI(x) . (H33)

Conjecture H.1 The time ordered exponential

S = T

{
exp

[
− i

∫
d4x HI(x)

]}
(H34)

satisfies the functional differential equations (H27), together with the auxiliary conditions

〈0|S|0〉 = 1 , 〈1|S|0〉 = 0 , (H35)

if Λρσ(x, y) has the form (H30).
The operator (H34) is a solution of equation (H27) which coincides with the solution from
the recursion relations.
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One notices that the S-matrix is determined by the interaction Hamiltonian. To determine
HI we follow Takahashi-Umezawa [17, 31]. Using their auxiliary field

χ[x, σ] ≡ χ(x) +

∫ σ

−∞

d4x′ ∆(x− x′) j(x′) , (H36)

which like χ(x) ≡ χin(x) satisfies the free KG-equation with mass m.
First, we prove the following theorem

Conjecture H.2

[
χ[x, σ], χ[y, σ]

]
=

[
χ(x), χ(y)

]
= i∆(x− y;m) . (H37)

Proof: H.1 Using (H36) gives

[
χ[x, σ], χ[y, σ]

]
−
[
χ(x), χ(y)

]
= +

∫ σ

−∞

d4y′ ∆(y − y′)

[
χ(x), j(y′)

]

−
∫ σ

−∞

d4x′ ∆(x− x′)

[
χ(y), j(x′)

]

+

∫ σ

−∞

∫ σ

−∞

d4x′d4y′ ∆(x− x′)∆(y − y′)

[
j(x′), j(y′)

]
.

Now, we use (H18) and (H24) to rewrite the above expression:

[
χ[x, σ], χ[y, σ]

]
−
[
χ(x), χ(y)

]
= −i

∫ σ

−∞

d4y′
∫ ∞

−∞

d4x′∆(x− x′)∆(y − y′)
δj(y′)

δj(x′)

+i

∫ σ

−∞

d4x′
∫ ∞

−∞

d4y′ ∆(x− x′)∆(y − y′)
δj(x′)

δj(y′)

−i
∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′)∆(y − y′)

(
δj(x′)

δj(y′)
− δj(y′)

δj(x′)

)

⇒ 0 ,

which follows from the microcausality condition that annihilates the possibly contributions
from the difference in boundary values in the integrals. (Q.E.D.)

This justifies the conjecture of the existence of a unitary operator U [σ] such that

χ[x, σ] = U−1[σ] χ(x) U [σ] . (H38)

Functional differentiation of (H36) and (H38) gives

δχ[x, σ]

δσ(x′)
= U−1[σ]

[
χ(x),

δU [σ]

δσ(x′)
U−1[σ]

]
U [σ] = ∆(x− x′) j(x′) . (H39)

defining the interaction hamiltonian density by the equation

i
δU [σ]

δσ(x′)
= HI(x, σ) U [σ] , (H40)
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which has as solution the time ordered exponential

U [σ] = T

{
exp

[
−i
∫ σ

−∞

d4x HI(x, n)

]}
. (H41)

With these results we arrive at the fundamental equation of Takahashi-Umezawa: for the
determination of the interaction hamiltonian:

[
χ(x),HI(x, n)

]
= i∆(x− x′) U [σ]j(x)U−1[σ] . (H42)

Finally, we notice that the field χ[x, σ] provides a free field interpolation between χin(x) and
χout(x): see (H3a) and (H36). Therefore

χout = χ[x,∞] = U−1[∞] χin U [∞] , (H43)

with χin(x) ≡ χ(x). One sees that

S = U [+∞] = U [+∞,−∞] , U [−∞] = 1 , (H44)

which brings (H43) into the familiar form

χout(x) = S−1 χin(x) S . (H45)

This establishes the relation of the U -matrix, and ipso facto the interaction hamiltonian, to
the S-matrix.

We conclude that we have established the Takahashi-Unezawa-method in the framework of
the axiomatic S-matrix theory, but without the defect indicated by the Haag-theorem.

5. Application TU-scheme in BMP-Theory

It is clear from above that in the BMP-theory the TU-equations for the Heisenberg fields
(E17), and the determining equation for the interaction Hamiltonian (E30) are valid. Next
we give two examples of application of the formalism described above.

1. PV-Coupling Nucleons: Then, starting with the interaction Lagrangian

Lpv(x) =
f

mπ

ψ̄(x)γµγ5ψ(x) · ∂µφ(x) . (H46)

Then, like in equation (E33) one gets that
[
φ(x) , HI [x

′ : n]

]
= −i(f/mπ) U [σ] ∂′µ

(
ψ̄(x′)γµγ5 ψ(x′)

)
U−1[σ] ∆(x− x′) ,

[
ψ(x) , HI [x

′ : n]

]
= −(f/mπ) γµγ5 U [σ] ψ(x′) · ∂′µφ(x′) U−1[σ] S(x− x′) , (H47)

and similarly to (E34c)

ψ(x) = ψ[x/σ] , φ(x) = φ[x/σ] , (H48a)

∂µφ(x) = (∂µφ[x, σ])x/σ +
f

mπ

(
ψ̄[x/σ]γνγ5ψ[x/σ)

)
nµ(x) nν(x) . (H48b)
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So, in this case there was no problem with the handling of the operators involving the
Heisenberg fields ψ and φ, which occur in

U [σ] j(x′) U−1[σ] .

This, because of the identity of the U [σ]-transformed free fields ψ[x/σ] and φ[x/σ] as
expressed in the first two identities in (H48b). Therefore, the construction of the interaction
Hamiltonian can be done and is the same as that found previously in this case: expression
(E37).

2. Vector-Coupling Nucleons:

6. BPM-theory and Haag-theorem

There still seems to be a problem: considering the PV-coupling example above, the
equality ψ(x) = ψ[x/σ] in (H48b) implies for the ETCR

[
ψ[x/σ], ψ[y/σ]

]

+

= U [σ]

[
ψ[x/σ], ψ[y/σ]

]

+

U−1[σ] = iS(x− y;M) ,

which is identical to that of the free field ψ(x). How to reconcile this result with Haag’s
theorem [38]?

First we remark that the Heisenberg fields are not kinematically independent fields [41]. This
because ∂µφ(x) contains ψ(x), and so does πφ(y). Therefore one has that

[
πφ(x),ψ(y)

]
6= 0 . (H49)

So, not all of the ETCR’s are those of the corresponding free fields, and therefore the Haag
theorem does not apply, i.e. the theory is non-trivial. Moreover, the ETCR’s between the
Heisenberg fields will in general not be of the most simple type, but may have Schwinger
terms etc. on the rh.s. [41]. Therefore, the operator ring of the Heisenberg fields P

{
χρ

}
is

not isomorf with the operator ring of the asymptotic (free) fields P {χρ}.
When in a field model for all fields one has the identity χρ = χρ[x/σ] it is clear
that because of Haag’s theorem the Heisenberg fields describe a free field and
the S-matrix is the unit operator in Hilbert-space.
The same applies to the Vector-coupling model, see e.g. [17]. Calling theories equivalent to
free field theories trivial [42] we come to the following conclusions 18:

Conjecture H.3 The following interaction models are non-trivial:

(i) Pseudo-vector pseudoscalar interactions (e.g. non-linear chiral-models),

18 These conclusions do not mean that the trivial theories/couplings are not usefull as effective theo-

ries/couplings. It only means that they are unsuitable as fundamental theories. Noteworthy though

is that the non-trivial theories/couplings are those that are the most succesful experimentally.
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(ii) Gauge-theories (QED, QCD, Standard-model),

(iii) Interactions with Pair-suppression.

Conjecture H.4 The following interaction models are trivial:

(i) Pseudo-scalar pseudoscalar interactions,

(ii) Scalar interactions without Pair-suppression,

(iii) φ4, φ6, . . .-theories.

This concludes our description of a TU-theory within the framework of the
axiomatic BMP-theory, which does not require the existence of a unitary trans-
formation between the Heisenberg- and the asymptotic-fields. (In retrospect,
the same holds for the TU-method, see section F 1.)

APPENDIX I: RECONSTRUCTION FIELDS FROM S-MATRIX

As for the literature and more references, we refer here to [41], chapter 7, where this topic
is discussed. One makes the following assumptions 19:

(i) There exist asymptotic fields φas with as = in, out, which operators form an irreducible
operator ring (in the absence of bound states), and obey

(
� +m2

)
φas = 0 , (I1)

and
[φas(x), φas(y)] = −i∆(x− y) . (I2)

(ii) There exists a Poincaré invariant and unitary S-matrix defined by

φout(x) = S−1φin(x) S . (I3)

The program of this section is the deduction of the scalar field theory from these two
assumptions.

Starting point: because of the irreducibility of the operator ring φin(x), one can express S
in the form

S = 1 +
∞∑

n=1

1

n!

∫
dx1 . . .

∫
dnx cn(x1, . . . , xn) N

(
φin(x1) . . . φ

in(xn)
)
. (I4)

Of course, this serves merely as a definition of the c-number coefficients cn. The normal
product is chosen in order to have the stability of the vacuum, i.e. 〈0|S|0〉 = 1. Since

Nn ≡ N
(
φin(x1) . . . φ

in(xn)
)

(I5)

is symmetric in the xi, one may take also the cn coefficients as symmetric in the xi.

19 As for the literature and more references, we refer here to [41], chapter 7, where this topic is discussed.
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1. Source operator and Yang-Feldman equation

First, one defines the source from the S-matrix, see also our exposition of the BMP-theory,
as follows

j(y) ≡ iS−1 δS

δφin(y)
. (I6)

Then,

Theorem I.1 The Yang-Feldman equation holds

φout(x) = φin(x) −
∫

∆(x− y)j(y)d4y . (I7)

Proof: I.1 Introducing the abbreviation

Nn,k ≡ N
(
φin(x1) . . . φ

in(xk−1)φ
in(xk+1) . . . φ

in(xn)
)
, (I8)

it follows by induction and elementary properties of the normal products that

[
φin(x), Nn

]
=

n∑

k=1

[
φin(x), φin(xk)

]
Nn,k = −i

n∑

k=1

∆(x− xk) Nn,k . (I9)

Then, from (I4) and (I9)

[
φin(x), S

]
=

∞∑

n=1

−i
n!

∫ n∑

k=1

∆(x− xk) cn(x1, . . . , xk, . . . , xn) Nn,k dx1 . . . dxn . (I10)

Now, using the symmetry of cn and Nn, and denoting xk by y, equation (I10) can be rewritten
as

[
φin(x), S

]
=

∞∑

n=2

−i
(n− 1)!

∫
dy∆(x− y)

∫
dx2 . . . dxn ·

×cn(y, x2, . . . , xn) N
(
φin(x2) . . . φ

in(xn)
)

=
∞∑

m=1

−i
m!

∫
dy∆(x− y)

∫
dx1 . . . dxm ·

×cm+1(y, x1, . . . , xm) N
(
φin(x1) . . . φ

in(xm)
)
. (I11)

Because of
δφin(xk)

δφin(y)
= δ(xk − y) , (I12)

one can write

∞∑

m=1

1

m!

∫
dx1 . . . dxm cm+1(y, x1, . . . , xm) N

(
φin(x1) . . . φ

in(xm)
)

=

δ

δφin(y)

∞∑

m=1

1

(m+ 1)!

∫
dx1dx2 . . . dxm+1 cm+1(x1, x2, . . . , xm+1)

N
(
φin(x1)φ

in(x2) . . . φ
in(xm+1)

)
.
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Comparison of the r.h.s. with (I4) shows that

∞∑

m=1

1

m!

∫
dx1 . . . dxm cm+1(y, x1, . . . , xm) N

(
φin(x1) . . . φ

in(xm)
)

=
δS

δφin(y)
. (I13)

Hence, equation (I11) assumes the the form

[
φin(x), S

]
= −i

∫
dy∆(x− y)

δS

δφin(y)
. (I14)

Furthermore, the definition(I3) of S can be rewritten as

φout(x) = φin(x) + S−1
[
φin(x), S

]
, (I15)

so that using (I14) yields

φout(x) = φin(x) −
∫
dy∆(x− y)

{
iS−1 δS

δφin(y)

}
. (I16)

In view of the definition of the source (I6) the Yang-Feldman equation (I7) follows, Q.E.D.

2. Derivation interpolating field from the S-matrix

For details, we refer again to [41]. One introduces the definition

Definition I.1 The interpolating field is defined by the Yang-Feldman equation

φ(x) = φin(x) +

∫
dy ∆R(x− y) j(y) , (I17)

with j(y) given by (I6).

Application of the K.G. operator shows immediately that
(
� +m2

)
φ(x) = j(x) , (I18)

which is the usual property of the interacting Heisenberg field.

Now one show that φ(x) (i) is a scalar field, and (ii) that it satifies the LSZ asymptotic
condition [35] rigorously. One introduces first the smeared-out fields

φα(t) = i

∫

x0=t

f ∗
α(x)

↔

∂ 0 φ(x)d3x , (I19)

and the one-particle annihilation operator is given by

ain
α = i

∫

x0=t

f ∗
α(x)

↔

∂ 0 φ
in(x)d3x , (I20)

Then, it can be shown, using the Riemann-Lebesque lemma on Fourier transforms that

lim
t→−∞

〈A|φα(t)|B〉 = 〈A|ain
α |B〉 . (I21)

For questions concerning the uniqueness of φ(x) we refer again to the discussion given in
[41], chapter 7.
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