
THEF-NIJM 09.05

Spinor Solutions and Massless limit for Spin 3/2

J.W. Wagenaar and Th.A. Rijken

Institute for Mathematics, Astrophysics, and Particle Physics,
University of Nijmegen, Nijmegen, the Netherlands

Abstract
In these notes we use the construction of a field theory for the spin 3/2 fields, using an extended

auxiliary-field formalism of the kind III. The present version is henceforth refered to as Model-V.

In order to impose sufficient constraints on the ψµ-fields one spinor auxiliary field χ(x) was needed.

Here, we solve the field equation for the one-particle states, i.e. we solve the inhomogeneous Dirac

equation for ψµ(x) and study the massless limit for its solutions. Using these solutions, we derive

again the one-particle propagator, both for the massive and the massless case. It is shown explicitly

that the ”wrong” helicities decouple for the massless case, when coupled to a conserved current.
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I. INTRODUCTION

In our work on the quantization of the spin-3/2 fields [1, 2] we described a formalism
for the spin-3/2 fields, employing the device of an auxiliary field-formalism to satisfy the
constraints. The Lagrangian reads

Lχ = L3/2 +M3/2χ̄γ
µψµ +M3/2ψ̄µγ

µχ+ bM3/2χ̄χ . (1.1)

with

L3/2 = −1

2
ǫµνρσψ̄µγ5γρ(∂σψν) +

1

2
ǫµνρσ(∂σψ̄µ)γ5γρψν −M3/2ψ̄µσ

µνψν . (1.2)

It turned out that a covariant spin-3/2 propagator in this formalism requires that the pa-
rameter b = 0. In this paper we restrict our discussion to that case. Furthermore, we denote
in the following the mass by M3/2 ≡M .

The main purpose of this paper is to demonstrate the massless limit of the spin-3/2
propagator by using the explicit solutions of the Dirac equation. This, in order to see the
conditions under which the ”wrong” helicities decouple in the massless limit. It is well

known [3] that the so-called ’little group’ L(
o
p) the four-vector pµ is different for the massive

case (L(
o
p) ∼= SO(3)) and for the massless case (L(

o
p) ∼= E(2)) and therefore have different

ireducible representations. In the massive- and massless- case the dimension is 2S + 1 and
2 respectively, where S denotes the spin of the particles. In appendix A we describe the Lie
algebra of these ”little groups”.

The contents of this paper is as follows. In section II we give the coupled Dirac equations
for the spin-3/2 spinors and the spin-1/2 auxiliary spinors. In section III we give the explicit
form of the solutions of the spinors on momentum-space. In section IV the massless limits are
described using the cartesian base, and in section V the same but now in the sperical-base.
In section VI the propagator in the massless limit is studied and the projection operators
Λµν(p) are described using the explicit forms of the Dirac spinors of the previous sections.
These are compared with those derived in [2] and shown to agree except for a so-called
”dipole-ghost” term. In section VII we show that the ”dipole-ghost” term can be eliminated
from the propagator exploiting the ”gauge-symmetry” which applies in the massless case.
Finally, we finish this paper by some conclusions in section VIII. In appendix A we describe
the group theoretical difference between the massive and massless case, showing that the
Lie algebra of the so-called ”little group” of the four-vector pµ gives the SO(3) algebra in
the massive case, and in the massless case the Lie algebra of the Euclidean group in two
dimensions E2. The latter has the consequences that for the massless case only the helicities
λ = ±J , where J is the spin of the particle.

II. ONE-PARTICLE SOLUTION

The one-particle wave-functions, corresponding to the ψµ- and χ-fields satisfy the follow-
ing Dirac equations:

(

p/op −M
)

ψµ(x) = −Mγµ χ(x) ,
(

p/op − 2M
)

χ(x) = 0 , (2.1)
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and the constraints

(i) γ · ψ(x) = 0 , (ii) pop · ψ(x) = −p/opχ(x) = −2Mχ(x) . (2.2)

In terms of the -space wave-functi ns we have for χ(x) the spectral representation

χ(x) =

∫

d4p

(2π)4
δ(p2 − 4M2) uχ(p) e−ip·x . (2.3)

with
(p/− 2M) uχ(p) = 0 (p2 = 4M2) . (2.4)

The solutions for ψµ can be written as

ψµ(x) = ψµ
0 (x) + ψ̂µ(x) ,

(

p/op −M
)

ψµ
0 (x) = 0 . (2.5)

Here, ψ̂µ is the special solution of the inhomogeneous Dirac equation for ψµ, see (2.1). The
special solution is easily found to be

ψ̂µ = −M
(

p/op −M
)−1

γµ χ(x) (2.6)

From the spectral representation (2.3) we get, writing

ψ̂µ(x) = û(p)e−ip·x , χ(x) = uχ(p)e−ip·x (p2 = 4M2) , (2.7)

the solution

ûµ(p; s) = −M (p/+M)

p2 −M2
γµuχ(p, s)

= − M

p2 −M2
(−γµp/+ 2pµ +Mγµ) uχ(p, s)

= − 1

3M
(−Mγµ + 2pµ) uχ(p, s) (p2 = 4M2) . (2.8)

One easily verifies that this special solution satisfies the constraints (2.2). Notice the special
notation û(p; s), which indicates that it is made from the spinor uχ(p, s). The latter has
sz = s, whereas s for û only serves as an index without such meaning. In passing we note
also that s must be independent of µ in order that (2.8) satisfies the constraints of (2.2).

III. SOLUTIONS HOMOGENEOUS DIRAC EQUATION

Since both ψµ and ψ̂µ satify the two constraints (2.2), it follows that ψµ
0 satisfies the two

homogeneous constraints

(i) γ · ψ0(x) = 0 , (ii) pop · ψ0(x) = 0 . (3.1)

This means that we can identify ψµ
0 (x) = ψµ

RS(x), i.e. the free Rarita-Schwinger spin-
3/2 spinor with mass M. In momentum space, we denote the Rarita-Schwinger spinor by
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Uµ(p, s) in the following. Using the stadard spin-1 polarization vectors for pµ = (Ep, 0, 0, p)
with p2 = M2 as

ǫµ(±1) =
1√
2

(0,∓1,−i, 0) , ǫµ(0) =
1

M
(p, 0, 0, Ep) , (3.2)

one has

Uµ(p,+3/2) = u(p,+1/2) ǫµ(+1) ,

Uµ(p,+1/2) =

√

1

3
u(p,−1/2) ǫµ(+1) +

√

2

3
u(p,+1/2) ǫµ(0) ,

Uµ(p,−1/2) =

√

2

3
u(p,−1/2) ǫµ(0) +

√

1

3
u(p,+1/2) ǫµ(−1) ,

Uµ(p,−3/2) = u(p,−1/2) ǫµ(−1) . (3.3)

For the spin-1/2 spinors we take (p2 = M2) [see e.g. Carruthers]

u(p, s) =
√

2M

(

cosh 1

2
ζ

2s sinh 1

2
ζ

)

⊗ ϕs (s = ±1/2) . (3.4)

We recall that

cosh ζ =
E

M
, sinh ζ =

p

M
,

cosh
1

2
ζ =

√

E +M

2M
, sinh

1

2
ζ =

√

E −M
2M

, (3.5)

so that the spinors in (3.4) can be written as

u(p, s) =

( √
E +M

2s
√
E −M

)

⊗ ϕs (s = ±1/2) , (3.6)

which differ by a factor
√

2M from those of Bjorken & Drell.

IV. THE MASSLESS LIMITS

(i) For the spin-1/2 spinors we get from (3.6) we have in the massless limit

u(p, s)|M=0 =
√
p

(

1
2s

)

⊗ ϕs (s = ±1/2) . (4.1)

(ii) In the case of the Rarita-Schwinger spinors we find for very small M

Uµ(p,+3/2)→ √p
(

1
1

)

⊗ ϕ+ · ǫµ(+1) , Uµ(p,−3/2)→ √p
(

1
−1

)

⊗ ϕ− · ǫµ(−1) ,

Uµ(p,+1/2)→
√

1

3

√
p

(

1
−1

)

⊗ ϕ− · ǫµ(+1) +
1

M

√

2

3

√
p

(

1
1

)

⊗ ϕ+ · [Mǫµ(p, 0)]M=0
.(4.2)
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We notice that
[Mǫµ(p, 0)]M=0

= (p, 0, 0, p) = pµ(M = 0) ,

which is useful in the following. For sz = +1/2, per component we have

U0(p,+1/2)→ 1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ ,

U1(p,+1/2)→ − 1√
6

√
p

(

1
−1

)

⊗ ϕ− ,

U2(p,+1/2)→ − i√
6

√
p

(

1
−1

)

⊗ ϕ− ,

U3(p,+1/2)→ 1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ . (4.3)

(iii) For the χ-spinors we have

uχ(p,+1/2) =
√

3/2
√

4M

(

cosh 1

2
ζ

sinh 1

2
ζ

)

⊗ ϕ+ →
√

3/2
√
p

(

1
1

)

⊗ ϕ+ ,

uχ(p,−1/2) =
√

3/2
√

4M

(

cosh 1

2
ζ

− sinh 1

2
ζ

)

⊗ ϕ− →
√

3/2
√
p

(

1
−1

)

⊗ ϕ− . (4.4)

Notice the particular normalization of the χ-spinors, which because of the E.T.A.C.-
relations has a factor

√

3/2.

(iv) For the special solution we analyze the following cartesian components

û0(p; +1/2) =
1

3

(

γ0 − 2
p0

M

)

uχ(p,+1/2) ,

û1(p; +1/2) =
1

3

(

γ1 − 2
p1

M

)

uχ(p,+1/2) =
1

3
γ1uχ(p,+1/2) ,

û2(p; +1/2) =
1

3

(

γ2 − 2
p2

M

)

uχ(p,+1/2) =
1

3
γ2uχ(p,+1/2) ,

û3(p; +1/2) =
1

3

(

γ3 − 2
p3

M

)

uχ(p,+1/2) , (4.5)

Then, we obtain in the massless limit

û0(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ −
1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ ,

û1(p; +1/2) → +
1√
6

√
p

(

1
−1

)

⊗ ϕ− ,

û2(p; +1/2) → +
i√
6

√
p

(

1
−1

)

⊗ ϕ− ,

û3(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ −
1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ . (4.6)
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Next we use these for the analysis of the massless limit for 1

uµ(p; +1/2) = Uµ(p,+1/2) + ûµ(p; +1/2) (4.10)

Using the results above, we find

u0(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ ,

u1(p; +1/2) → − 1√
6

√
p

(

1
−1

)

⊗ ϕ− +
1√
6

√
p

(

1
−1

)

⊗ ϕ− = 0 ,

u2(p; +1/2) → − i√
6

√
p

(

1
−1

)

⊗ ϕ− +
i√
6

√
p

(

1
−1

)

⊗ ϕ− = 0 ,

u3(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ . (4.11)

We notice that we can write this result in the form

uµ(p; +1/2)→ 1√
6

pµ

√
p

(

1
−1

)

⊗ ϕ+ . (4.12)

Similarly, we can write

uµ(p;−1/2)→ 1√
6

pµ

√
p

(

1
1

)

⊗ ϕ− . (4.13)

1 The addition of the two spinors in momentum space needs some comment. Starting from the Fourier

spectral representation

ψµ(x) =

∫

d4p

(2π)4
[

Uµ(p)δ(p2 −M2) + ûµ(p)δ(p2 − 4M2)
]

e−ip·x . (4.7)

the expression between brackets in the massless limit gives

[

. . .

]

→
[

Uµ(p) + ûµ(p)

]

M=0

δ(p2) +O(M) . (4.8)

Here, we use that the spinors contain terms going at most like O(1/M). Therefore, in the massless limit

ψµ(x) →
∫

d4p

(2π)4
uµ(p) δ(p2) e−ip·x with uµ(p) ≡ Uµ(p) + ûµ(p) . (4.9)
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V. THE SPHERICAL BASIS MASSLESS SPINORS

(i) Spherical Rarita-Schwinger spinors

U0(p,+1/2)→ 1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ ,

U+(p,+1/2) =
1

2

(

U1 + iU2
)

→ 0 ,

U−(p,+1/2) =
1

2

(

U1 − iU2
)

→ − 1√
6

√
p

(

1
−1

)

⊗ ϕ− ,

U3(p,+1/2)→ 1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ . (5.1)

(ii) For the spherical special solution spinors we analyze

û0(p; 1/2) =
1

3

(

γ0 − 2
p0

M

)

uχ(p,+1/2) ,

û±(p; 1/2) =
1

3

(

γ± − 2
p±

M

)

uχ(p,+1/2) =
1

3
γ±uχ(p,+1/2) ,

û3(p; 1/2) =
1

3

(

γ3 − 2
p3

M

)

uχ(p,+1/2) , (5.2)

where we introduced

γ± =
1

2

(

γ1 ± iγ2
)

=

(

0 σ±
−σ± 0

)

, (5.3)

with σ± = (σ1 ± iσ2)/2. Also, ǫ+(p,+1) = 0, ǫ+(p,−1) = 1/
√

2, ǫ−(p,+1) =
−1/
√

2, ǫ−(p,−1) = 0, and ǫ±(p, 0) = 0.

Then, we obtain in the massless limit

û0(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ −
1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ ,

û+(p; +1/2) → 0 ,

û−(p; +1/2) → +
1√
6

√
p

(

1
−1

)

⊗ ϕ− ,

û3(p; +1/2) → 1√
6

√
p

(

1
−1

)

⊗ ϕ+ −
1

M

√

2

3
p3/2

(

1
1

)

⊗ ϕ+ . (5.4)

(iii) Next we use these for the analysis of the massless limit for

uµ(p; 1/2) = Uµ(p,+1/2) + ûµ(p; +1/2) (5.5)
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Using the results above, we find

u0(p; +1/2) → +
1√
6

√
p

(

1
−1

)

⊗ ϕ+ ,

u+(p; +1/2) → 0

u−(p; +1/2) → 0

u3(p; +1/2) → +
1√
6

√
p

(

1
−1

)

⊗ ϕ+ . (5.6)

VI. THE MASSLESS PROJECTION/PROPAGATOR

The massless progagator was found to be

Sµν
F (p) =

[

−p/
(

gµν − 1

2
γµγν

)

+ γµpν

]

1

p2 + iǫ
− p/ 2pµpν

(p2 + iǫ)2

= −p/
(

gµν − 1

2
γµγν

)

1

p2 + iǫ
+ p/

p/γµpν − 2pµpν

(p2 + iǫ)2

= −
(

gµν − 1

2
γµγν

)

p/

p2 + iǫ
+
pµγνp/− 2pµpν

(p2 + iǫ)2
p/ . (6.1)

The pµpν-term is a dipole-ghost like term, and it is obvious that we can not reproduce this
term from our spinor solutions. So, in the following we concentrate on the ’regular’ part,
i.e.

Ŝµν
F (p) =

[

−p/
(

gµν − 1

2
γµγν

)

+ γµpν

]

1

p2 + iǫ
≡ Λµν(p)

p2 + iǫ
. (6.2)

Starting from

uµ(p; +1/2) = Uµ(p,+1/2) + ûµ(p; +1/2) (6.3)

we study the projection operator

Λµν(p) =

+3/2
∑

λ=−3/2

uµ(p;λ)ūν(p;λ) . (6.4)

Working with pµ = (p, 0, 0, p) we found the following spinors/components:

uµ(p,+3/2) → √p
(

1
1

)

⊗ ϕ+ · ǫµ(+1) ,

uµ(p,−3/2) → √p
(

1
−1

)

⊗ ϕ− · ǫµ(−1) ,

uµ(p; +1/2) → 1√
6

pµ

√
p

(

1
−1

)

⊗ ϕ+ ,

uµ(p;−1/2) → 1√
6

pµ

√
p

(

1
1

)

⊗ ϕ− . (6.5)
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1. Λ00(p): From the properties of the ǫµ(±1)-vectors it follows that there is no contribution
from the λ = ±3/2 helicities. From the helicities λ = ±1/2 we get

λ = −1/2 : Λ00(p) ← p

6

(

ϕ−

ϕ−

)

(

ϕ†
− −ϕ†

−

)

=
p

6









0
1
0
1









(

0 1 0 −1
)

=
p

6









0 0 0 0
0 1 0 −1
0 0 0 0
0 1 0 −1









λ = +1/2 : Λ00(p) ← p

6

(

ϕ+

−ϕ+

)

(

ϕ†
+ ϕ+−†

)

=
p

6









1
0
−1
0









(

1 0 1 0
)

=
p

6









1 0 1 0
0 0 0 0
−1 0 −1 0

0 0 0 0









,

which upon addition gives that

Λ00(p)⇒ p

6









1 0 1 0
0 1 0 −1
−1 0 −1 0

0 1 0 −1









⇒
[

−p/
(

gµν − 1

2
γµγν

)

+ γµpν

]

/3 , (6.6)

where the last identity is valid for pµ = (p, 0, 0, p) and µ = ν = 0.

The discrepancy factor 3 can be removed by changing the normalization of the χ-spinors by
a factor

√
3.

2. Λ33(p): Also here, only the λ = ±1/2 will contribute. Since the µ = 0 and µ = 3
components of uµ(p,±1/2) are the same, we get for Λ33(p) the same result as for Λ00(p).
This is also consistent with (6.2), which gives

Λ00(p) = Λ33(p) =
1

2

(

γ0 + γ3
)

. (6.7)

3. Λ11(p): In this case only λ = ±3/2 will contribute. A similar computation as for Λ00

above gives the result

Λ11(p)⇒ p

2









1 0 −1 0
0 1 0 1
1 0 −1 0
0 −1 0 −1









⇒ 1

2
p/ =

1

2
p(γ0 − γ3) , (6.8)

which is in full agreement with (6.2). Obviously, Λ22(p) = Λ11(p).

4. Λ03(p),Λ30(p): In equation (6.2) we have for these cases

Λ03 =
1

2
p/γ0γ3 + γ0p3 =

p

2

(

γ0 + γ3
)

= Λ00(p) ,

Λ30 =
1

2
p/γ3γ0 + p0γ3 =

p

2

(

γ0 + γ3
)

= Λ00(p) . (6.9)
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This is no surprise since as the uµ(p)(p,±1/2) is concerned there is no difference between
the zero’th and third component.

5. Λ12(p),Λ21(p): From (6.2) we expect to find

Λ12(p) =
1

2
p/γ1γ2 = i

p

2









−1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 −1









. (6.10)

From the massless solutions we expect

Λ12(p) =
∑

λ=±3/2

U1(p, λ)Ū2(p, λ)→ p

(

ϕ+

ϕ+

)

(

ϕ†
+ −ϕ†

+

)

ǫ1(+1)ǫ2(+1)∗

+p

(

ϕ−

−ϕ−

)

(

ϕ†
− ϕ†

−

)

ǫ1(−1)ǫ2(−1)∗

= −ip
2









1
0
1
0









(

1 0 −1 0
)

+ i
p

2









0
1
0
−1









(

0 1 0 1
)

= −ip
2









1 0 −1 0
0 0 0 0
1 0 −1 0
0 0 0 0









+ i
p

2









0 0 0 0
0 1 0 1
0 0 0 0
0 −1 0 −1









= i
p

2









−1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 −1









⇐ 1

2
p/γ1γ2 . (6.11)

which is indeed identical to (6.7). Obviously Λ21(p) = −Λ12(p).
This concludes the analysis of all components of Λµν(p) not equal to zero.

VII. GAUGE-SYMMETRY AND THE DIPOLE-GHOST TERM

For M = 0 one has the ’gauge-symmetry ’ (!?)

ψµ(x)→ ψ′,µ(x) = ψµ(x) + ic∂µη(x) , (7.1)

where η(x) is a massless spin-1/2 field (grassmann-variable), i.e. p/η(x) = 0. The corre-
sponding spinor, denoted by η(p,±1/2), adds to the projection operator the term

Λµν
η (p) =

∑

λ=±1/2

pµη(p, λ)η̄(p, λ)pν =
p

2

{(

ϕ+

ϕ+

)

(

ϕ†
+ −ϕ†

+

)

+

(

ϕ−

−ϕ−

)

(

ϕ†
− ϕ†

−

)

}

· pµpν

=
p

2

(

γ0 − γ3
)

pµpν ⇒ 1

2
p/ pµpν . (7.2)
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Therefore, we can ’gauge away’ the dipole-ghost term in the propagator (6.1) by choosing

c =

√

2

−� + iǫ
, (7.3)

which gives for the spinors of the ηµ(x) = ic∂µη(x) field the spinor

uµ
η(p, s) =

√

2

p2 + iǫ
pµη(p, s) . (7.4)

Then, the propagator for the gauged ψµ(x)-field becomes

S ′,µν
F (p) =

[

−p/
(

gµν − 1

2
γµγν

)

+ γµpν

]

1

p2 + iǫ
, (7.5)

i.e. a ’normal’ propagator without dipole-ghost term. We can take out a p/-factor and write
(7.5) in the form

S ′,µν
F (p) = p/

[

−
(

gµν − 1

2
γµγν

)

+
p/γµpν

p2 + iǫ

]

1

p2 + iǫ
≡ Λµν(p)

p2 + iǫ
, (7.6)

VIII. CONCLUSIONS

We found that the uµ-spinor consists of a massless purely spin-3/2 and a purely spin-1/2
part, i.e.

uµ(p;λ) = uµ
3/2

(p, λ) + uµ
1/2

(p;λ) (8.1)

where for uµ
3/2

the helicity λ = ±3/2, and for for uµ
1/2

the helicity λ = ±1/2. Moreover, since

the spin-1/2 spinor is proportional to pµ the spin-1/2 part will decouple from a concerved
current with ∂µJµ = 0. Last but not least, the dipole-ghost term in the massless propagator
can be ’gauged’ away.

APPENDIX A: GROUP THEORETICAL INTERMEZZO

In this appendix we describe the relation between the little groups SO(3) and E2

which are the invariance groups for the four-vectors
o
p

µ

= (p0 = M, 0, 0, 0) respectively
o
p

µ

= (p, 0, 0, p). The first denotes the 4-momentum of a particle of mass M in rest, and
the second one the 4-momentum of a massless particle with p2 = 0. To connect these two
cases, we consider the Lie-algebra pertinent to the 4-vector pµ = (p0, 0, 0, p). A basis for this
Lie-algebra if given by

L1 = J1 + tanhχp K2 , L2 = J2 − tanhχp K1 , J3 , (A1)

where coshχp = p0/M, sinhχp = p/M . The elementsK1, K2 are the generators of the special
Lorentz transformation along the x-, respectively the y-axis, and J3 for the rotations in the
xy-plane. The Lie-algebra for the Lorentz group are

[Ji, Jj] = iǫijk Jk , (A2a)

[Ji, Kj] = iǫijk Kk , (A2b)

[Ki, Kj] = iǫijk Jk . (A2c)
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Using this algebra, we derive that

[J3, L1] = [J3, J1] + tanhχp [J3, K2]

= i (J2 − tanhχpK1) = iL2 , (A3a)

[J3, L2] = [J3, J2]− tanhχp [J3, K1]

= −i (J1 + tanhχpK2) = −iL1 , (A3b)

[L1, L2] = [J1, J2]− tanh2 χp [K2, K1]

= i cosh−2 χpJ3 = i
M2

p2 +M2
J3 . (A3c)

We find from this algebra:

1. Massive case: For the particle at rest p = 0 and taking as a basis the elements

A1 = coshχp L1 , A2 = coshχp L2 , A3 = J3 , (A4)

which for p = 0 satify the Lie-algebra isomorphic to SO(3):

[Ai, Aj] = iǫijk Ak . (A5)

2. Massless case: For a massless particle M = 0, and the algebra in (A3c) reduces to a
Lie-algebra isomorphic to the Euclidean group in two dimensions E2

[L1, J3] = −iL2 , [L2, J3] = +iL1 , [L1, L2] = 0 . (A6)

The consequence of the abelian subalgebra, spanned by (L1, L2), is that the helicities λ for
massless particles of spin j can only assume the values λ = ±j.
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