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Abstract
In these notes we deal with several field theoretical topics in the framework of the Quantum Field

Theory as developed by Kadyshevsky. In the first part we cover the topics: Relation between the

Feynman and Kadyshevsky perturbation theory, and the Gross-Jackiw method in the Kadyshevsky

formalism. The latter method is applied to the Kadyshevsky formalism for interaction Lagrangians

with derivatives, in particularly for pion-nucleon interactions: (i) pseudo-vector NNπ-, (ii) vector

NNρ- and (iii) gauge-invariant ∆33Nπ-coupling.

In the second part we first construct the second-quantized quasi-particle formalism, which is em-

ployed to formulate the functional integral formalism. In the latter we develop the path-integral,

the Schwinger-Symanzik equations, generalized Wightman functions, and the Kadyshevky reduc-

tion formulas.
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I. INTRODUCTION

In these notes several field theoretical topics are treated in the framework of the
Quantum Field Theory as developed by Kadyshevsky. Apart from the topics based on the
functional integral formalism, these topics have also been discussed in [1–3], in particularly
the covariant formulation of (absolute) baryon-antibaryon pair-suppression on the level of
baryons and mesons.
In section II the Kadyshevky formalism is introduced and the relation and differences with
the Feynman formalism are indicated. We notice that the Kadyshevky-rules for covariant
perturbation theory are derived from the same standard formula for the S-matrix, which is
used to derive the Feynman rules. This demonstrates immediately the equivalence of the
Kadyshevsky- and Feynman-formalism.
In section III the Kadyshevsky formalism for interactions with derivatives is treated. Here
we introduce the covariant T∗- and R∗-product in order to arrive at a covariant and frame
independent S-matrix, both in the Feynman and Kadyshevsky formalism. In section IV we
apply the theory for several relevant interaction Lagrangians.
In section V we introduce the second quantization formalism for quasi-particles in momen-
tum space. This is e.g. a necessary step for the development of both the path-integral
formalism and the Kadyshevsky LSZ-type [4] of reduction formulas. In section VI a
functional integral formalism for the Kadyshevsky theory is given, which leads for example
to a path-integral formulation, Schwinger-Symanzik equations, the Kadyshevsky Wightman
functions related to a generating functional. Also, we derive Kadyshevsky reduction
formulas. For our main motivation for studying the Kadyshevsky formalism, we note that
in the Kadyshevsky-graphs, in contrast with the Feynman graphs, the particles remain
on-mass-shell.

Phenomenologically this can be exploited e.g. to introduce phenomenological vertex form
factors which suppress the transitions between the positive and the negative energy solu-
tions in a covariant way. These kind of form factors are easily handled in the Kadyshevsky-
formalism, and can be shown rigorously to be effective. This is impossible in the usual treat-
ment using Feynman graphs. Therefore, pair-suppression can be introduced phenomenolog-
ically and covariantly, and is accessible for an analysis using a fit to the meson-nucleon
data.

II. KADYSHEVSKY-BASICS IN CONFIGURATION- AND MOMENTUM-

SPACE

In this section the Kadyshevsky formalism is briefly introduced by using the S-matrix
formula in quantum-field-theory as a startpoint, and going from there to the rules for the
Kadyshevsky-diagrams [5–8]. We follow the set up of the appendices B in [9] where the rules
for the Feynman-graphs are given. The differences will then come to the surface in a most
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transparant manner. Starting from the expression of the S-operator, one has [10, 11]

S = 1 +
∞∑

n=1

(
i

~

)n ∫ +∞

−∞

. . .

∫ +∞

−∞

θ(x0
n − x0

n−1)θ(x
0
n−1 − x0

n−2) . . . θ(x
0
2 − x0

1) ·

×LI(xn) LI(xn−1) . . .LI(x1) · d4xn . . . d
4x1

≡ 1 +
∞∑

n=1

Sn , (2.1)

we follow [5] and introduce the time-like vector nµ with n2 = n2
0−n2 = 1, n0 > 0. Then (2.1)

can be brought into a completely 4-dimensional covariant form, although frame-dependent,
by the replacement

θ(x0) → θ(x · n) , n · x = n0x
0 − n · x . (2.2)

This gives (~ = 1)

Sn = in
∫ +∞

−∞

. . .

∫ +∞

−∞

θ[n · (xn − xn−1)]θ[n · (xn−1 − xn−2)] . . . θ[n · (x2 − x1)] ·

×LI(xn) LI(xn−1) . . .LI(x1) · d4xn . . . d
4x1 . (2.3)

The equivalence of Sn in equations (2.1) and (2.3) can be seen as follows. Assuming that
the S-matrix defined in (2.1) is Lorentz-invariant, and realizing that (2.1) and (2.3) are
identical in the frame where nµ = (1,0), it follows that they are equivalent in all frames
because the expression in (2.3) is manifest Lorentz-invariant. Also, it follows that the
S-matrix defined in (2.3) is independent of the four-vector nµ. A more explicit elaboration
on this issue and others is given in appendix A.

From the expression (2.3) one can work out the rules for the Kadyshevsky graphs in a way
which parallels the derivation of the Feynman rules. The differences come from the treatment
of the θ-functions. In the case of the Feynman graphs one includes the θ-functions into the
propagators by applying the Wick-expansion to the T -products of the field operators. In
the case of the Kadyshevsky graphs one employs a four-dimensional form of the θ-functions,
exploiting (2.2),

θ(n · x) = − 1

2πi

∫ +∞

−∞

dκ
exp [−iκ(n · x)]

κ+ iǫ
, (2.4)

and one applies the Wick-expansion to the ordinary products of the field operators. Then,
the propagators are given by

〈0|φ(x)φ(y)|0〉 = ∆(+)(x− y;µ2) =

∫
d4q

(2π)3
θ(q0)δ(q

2 − µ2) e−iq·(x−y)

〈0|Aµ(x)Aν(y)|0〉 = D(+)
µν (x− y) = −gµν

∫
d4q

(2π)3
θ(q0)δ(q

2) e−iq·(x−y)

〈0|ψ(x)βψ̄(y)α|0〉 = S
(+)
βα (x− y) =

∫
d4p

(2π)3
θ(p0) (p/+m)βα δ(p

2 −m2) e−ip·(x−y)

〈0|ψ̄(x)βψ(y)α|0〉 = S
(−)
βα (x− y) =

∫
d4p

(2π)3
θ(p0) (p/−m)βα δ(p

2 −m2) e−ip·(x−y) ,(2.5)
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which are the so called Wightman-functions for free-fields. For the massive vector field Vµ(x)
we have

〈0|Vµ(x)Vν(y)|0〉 = ∆(+)
µν (x− y;m2

V ) =

∫
d4q

(2π)3
θ(q0)δ

(
q2 −m2

V

)
e−iq·(x−y)

(
−gµν +

qµqν
m2

V

)
.(2.6)

In the Kadyshevsky-graph theory the considered Hilbert-space is enlarged by admitting
states containing ’quasi-particles’. The latter carry only 4-momentum, and serve to have
formally four-momentum conservation at each vertex. The quasi-particles refer to the κ-
variables in the Fourier transforms (2.4) of the θ-functions appearing in (2.3). These quasi-
particle states |κ1, . . .〉 are normalized by

〈κ′1 . . . |κ1, . . .〉 = δ(κ′1 − κ1) . . . (2.7)

The θ-functions in (2.3) connect only internal points of the graphs. In order to handle integral
equations, occurring in for example the Bethe-Salpeter- and Schwinger-Dyson-equations, one
needs to consider amplitudes with external quasi-particles as well as internal quasi-particles.
The external quasi-particle entering a vertex is included only into the four-momentum con-
servation rule of that vertex, including both the external and the internal quasi-particle
4-momentum.

issue and others is given in appendix A.
After these preliminary remarks we now list the momentum-space rules for the computation
of the −Mκ′,κ-amplitudes, defined by

Sκ′,κ = 1κ′,κ − (2π)4iδ4(Pf + κ′n− Pi − κn) Mκ′,κ . (2.8)

in appendix B.

III. KADYSHEVSKY FORMALISM FOR INTERACTIONS WITH DERIVA-

TIVES

In this section the Kadyshevsky formalism for interactions with derivatives is formulated.
In this the proper starting point for the S-matrix is the formula [10, 11] (~ = c = 1)

S =
∞∑

n=0

S(n) =
∞∑

n=0

(−i)n

n!

∫
d4x1 . . .

∫
d4xn T [HI(x1) . . . HI(xn)] , (3.1)

which is Lorentz-invariant and therefore frame-independent. Now, because of the
derivatives in LI one has

HI = −LI + ∆HI , (3.2)

where ∆HI contains in general non-covariant ”contact terms” (c.t.). The contributions from
these c.t.’s to the S-matrix in (3.1) cancel against the non-covariant terms occurring in the
S ′-matrix

S ′ =
∞∑

n=0

in

n!

∫
d4x1 . . .

∫
d4xn T [LI(x1) . . . LI(xn)] , (3.3)

arising from the feature that the T-product is not covariant when LI contains derivatives.
Then, the S-matrix (3.1) appears to be covariant.
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A. The covariant frame independent T∗-product

1. Following Gross and Jackiw [12] we employ the covariant T ∗-product such that

S =
∞∑

n=0

in

n!

∫
d4x1 . . .

∫
d4xn T

∗ [LI(x1) . . . LI(xn)] , (3.4)

Using the Kadyshevsky form of the T-products, i.e. with θ(x0
i − x0

j) → θ [n · (xi − xj)], one
has [12]

T ∗ [LI(x1) . . .LI(xn)] = T [LI(x1) . . .LI(xn)] + τ(x1, . . . , xn) . (3.5)

In a short hand notation we write (3.5) as

T ∗(x1, . . . , xn;n) = T (x1, . . . , xn;n) + τ(x1, . . . , xn;n) . (3.6)

Now, we require that T ∗-product is frame, i.e. nµ, independent. Then, this assures that the
S-matrix is Lorentz-invariant.
Considering variations δnµ such that δn2 = n · δn = 0, we have the following differential
equation for τ(x1, ..., xn;n)

Pαβ δ

δnβ
T ∗(x1, . . . , xn;n) = Pαβ δ

δnβ
T (x1, . . . , xn;n) + Pαβ δ

δnβ
τ(x1, . . . , xn;n) = 0 . (3.7)

Here, we introduced the projection operator

Pαβ = gαβ − nαnβ , (3.8)

from which follows that nαP
αβAβ = 0 for any vector Aµ.

2. Since in our applications we have to deal with S(2), we consider this case in detail. We
have

S(2) = (−i)2 1

2!

∫
d4x

∫
d4y T [LI(x)LI(y)] , (3.9a)

T [x− y;n] = θ[n · (x− y)] LI(x)LI(y) + θ[−n · (x− y)] LI(y)LI(x) , (3.9b)

and

Pαβ δ

δnβ
T (x− y;n) = Pαβ(x− y)βδ [n · (x− y)] [LI(x),LI(y)] . (3.10)

Now, in general one has that

δ[n · (x− y)] [LI(x),LI(y)] = C(n)δ4(x− y) + PαβSα(n)∂βδ
4(x− y)

+PαβP γδQαγ(n)∂β∂δδ
4(x− y) . . . , (3.11)

where the . . . stand for terms with higher order derivatives of the δ-function. The terms on
the r.h.s. with the derivatives are known in the literature as the ’Schwinger terms’. We will
refer to Sα and Qαγ as the ’dipole’ and ’quadrupole’ Schwinger term respectively. In the
following discussion we ignore possible higher-order derivatives on the r.h.s. of (3.11).
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(i) IF Sα(n) = 0 etc., i.e. no-derivatives terms on the r.h.s.:

Pαβ δ

δnβ
T (x− y;n) = 0 ⇒ τ(x− y;n) = 0 .

(ii) IF Sα(n) 6= 0, Qαγ(n) = 0, τ(x− y;n) satisfies the equation

Pαβ δ

δnβ
τ(x− y;n) = P αβ Sβ(n)δ4(x− y) , (3.12)

with the solution [12]

τ(x− y;n) =

∫ n

dn′β S
β(n′) δ4(x− y) + τ0(x− y) . (3.13)

In our applications it will appear that in this case Sα is such that the solution can be written
as

τ(x− y;n) = (S · n)δ4(x− y) + τ0(x− y) .

(iii) IF Sα(n), Qαγ(n) 6= 0, τ(x− y;n) satisfies the equation

Pαβ δ

δnβ
τ(x− y;n) = Pαβ Sβ(n)δ4(x− y)

+PαβP γδ (Qβγ +Qγβ) ∂δδ
4(x− y) , (3.14)

with the solution

τ(x− y;n) =

∫ n

dn′β
{
Sβ(n′) + P γδ(n′) (Qβγ +Qγβ) (n′)∂δ

}
·

×δ4(x− y) + τ0(x− y) . (3.15)

From this emerges the following scheme:

a) With T,LI ⇒ Covariant- + non-covariant (N.C.)- terms.

b) With T ∗,LI ⇒ Covariant- + N.C.- + τ -terms ⇒ Covariant terms.

B. The covariant frame independent Kadyshevsky formalism

Next, we consider the adaption of the Kadyshevsky formalism necessary to cope with
derivative interactions. From the analysis given above, it is clear that scheme b) is the
proper one in order to produce covariant S-matrix elements. Therefore, in order that the
Kadyshevsky formalism yields the same S-matrix as the Feynman formalism, we adapt the
former. Investigating the nµ-dependence we consider

Pαβ δ

δnβ
θ[n · (x− y)]LI(x)LI(y) = Pαβ(x− y)βδ[n · (x− y)]LI(x)LI(y) (3.16)
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Next we make the observation/conjecture that

δ[n · (x− y)]LI(x)LI(y) = N [LI(x)LI(y)] |0 +
1

2
C(n)δ(x − y) +

1

2
Si(n)∂iδ(x − y) ,(3.17a)

δ[−n · (x− y)]LI(y)LI(x) = N [LI(x)LI(y)] |0 −
1

2
C(n)δ(x − y) − 1

2
Si(n)∂iδ(x − y) .(3.17b)

Here,N [...] denotes the so-called normal-ordered product. We illustrate this for the following
elementary case:

φ(x)φ̇(y) = N [φ(x) ˙φ(y)] − ∂0∆
(+)(x− y;m2) ,

φ̇(y)φ(x) = N [φ(x) ˙φ(y)] + ∂0∆
(+)(x− y;m2) ,

which gives C(n)/2 = −δ(x − y) and Sm(n) = 0. Here, see [10] section 7c,

∆(+)(x− y;m2) =
1

2

[
∆(x− y;m2) − i∆(1)(x− y;m2)

]
, with

∂0∆(x− y;m2) |0 = −δ(x − y) , ∂0∆
(1)(x− y;m2) |0 = 0 .

Next, consider the important case

∂µφ(x)∂νφ(y) = N [∂µφ(x)∂νφ(y)] + ∂µ∂ν∆(+)(x− y;m2) , (3.18)

which leads to

δ[n · (x− y)]∂µφ(x)∂νφ(y) = N [∂µφ(x)∂νφ(y)] |0 − (δµ
mδ

ν
0 + δµ

0 δ
ν
m) ∂m

x δ(x − y) ,(3.19)

δ[n · (x− y)]∂µφ(x)∂νφ(y) = N [∂µφ(x)∂νφ(y)] |0 + (δµ
mδ

ν
0 + δµ

0 δ
ν
m) ∂m

x δ(x − y) ,(3.20)

which gives

C(n) = 0 ,
1

2
Sm(0) ⇐ + (δµ

mδ
ν
0 + δµ

0 δ
ν
m) . (3.21)

We note that the ’conjecture’ (3.16) is consistent with (3.11) .

After these preparations, the adaption of the Kadyshevsky formalism runs as follows:

a) We present the S-matrix formula (2.3) in the form

S(n) = in
∫
d4xn . . .

∫
d4x1 R [LI(xn) LI(xn−1) . . .LI(x1)] , (3.22)

where

R [LI(xn) LI(xn−1) . . .LI(x1)] = θ[n · (xn − xn−1)]θ[n · (xn−1 − xn−2)] . . . θ[n · (x2 − x1)] ·
× [LI(xn) LI(xn−1) . . .LI(x1)] . (3.23)

Similarly to the case for the T-product, we now introduce the covariant R∗-product,
which,restricting ourselves to the second order case, is related to the R-product by

R∗(x− y;n) = R(x− y;n) + ρ(x− y;n) , (3.24)
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similarly to the definition (3.6). Requiring now that the R∗-product is frame-independent
one obtains the equation that

Pαβ δ

δnβ
R∗(x1, . . . , xn;n) = Pαβ δ

δnβ
R(x1, . . . , xn;n) + Pαβ δ

δnβ
ρ(x1, . . . , xn;n) = 0 . (3.25)

which gives for the two-point functions

Pαβ δ

δnβ
ρ(x− y;n) =

1

2

[
PαβSβ(n) + PαβP γδ (Qβγ +Qγβ) ∂δ

]
δ4(x− y) . (3.26)

From this it follows that ρ(x− y;n) = τ(x− y;n)/2.

Then, similarly as in the Feynman formalism, the introduction of the R∗-product in
the Kadyshevsky formalism yields a covariant and frame independent S-matrix, and
S(Kadyshevky) = S(Feynman) for on-shell initial and final states.

IV. EXAMPLES INTERACTIONS WITH DERIVATIVES

1. Pseudo-vector Pion-Nucleon Interaction: The interaction Lagrangian reads

Lpv =
f

mπ

ψ̄(x)γ5γµψ(x)∂µφ(x) , (4.1)

where the fields are in the ’interaction representation’, for which we take the ’in’-fields.
This means they satisfy the free field commutation relations. The equal-time anti-
commutation (ETAC) and commutation (ETC) relation are, respectively

{ψa(x), ψ
∗
b (y)} |0 = δa,bδ(x − y) , (4.2a)[

φ(x), φ̇(y)
]
|0 = δ(x − y) , (4.2b)

and the other ETC’s etc.are zero. The ETC relation for the interaction Lagrangian is

[Lpv(x),Lpv(y)] |0 =
f 2

m2
π

(Γµ)
ab

(Γν)cd

[
ψ†aψb(x)∂

µφ(x), ψ†cψd(y)∂
νφ(y)

]
|0 (4.3)

Using the commutator

[ABF,CDG] = ABCD [F,G] + [AB,CD] GF , (4.4)

where is supposed that F and G commute with A,B,C,D. We identify A − D with the
nucleon- and (F,G) with the pion-operators. Furthermore, we have that

[AB,CD] = A {B,C}D − C {A,D}B (4.5)

which holds when {A,C} = {B,D} = 0. Then, we easily derive that

[
ψ†aψb(x), ψ

†
cψd(y)

]
|0 =

(
ψ†aδbcψd − ψ†cδadψb

)
δ(x − y) , (4.6a)

[∂µφ(x), ∂νφ(y)] |0 = i (δµ
mδ

ν
0 − δµ

0 δ
ν
n) δ(x − y) . (4.6b)
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Using these results we get that

[
ψ†aψb(x)∂

µφ(x), ψ†cψd(y)∂
νφ(y)

]
|0 =

i
(
ψ†aψb · ψ†cψd

)
|0 (δµ

mδ
ν
0 − δµ

0 δ
ν
n) δ(x − y) +

(
ψ†aδbcψd − ψ†cδadψb

)
∂νφ(y)∂µφ(x)δ(x − y) .

The second term in this commutator gives a term proportional to

ψ† (ΓµΓν − ΓνΓµ)ψ ⇒ ψ̄

(
γµγ0γν − γνγ0γµ

)
ψ ,

which on inspection vanishes for either µ = 0 or ν = 0. For µ = m, ν = n it becomes

ψ† (γnγm − γmγn)ψ ∂mφ(x)∂nφ(y)|0 δ4(x− y) ⇒ 0 .

Finally, we obtain for the commutator of the interaction Lagrangian

[Lpv(x),Lpv(y)] |0 =
f 2

m2
π

(
ψ†Γµψ

) (
ψ†Γνψ

)
[∂µφ(x), ∂νφ(y)] |0

i
f 2

m2
π

[
ψ†Γmψ · ψ†Γ0ψ + ψ†Γ0ψ · ψ†Γmψ∂

n
y

]
|0∂m

x δ(x − y) . (4.7)

Multiplying this result with δ(x0 − y0) we infer that the r.h.s contains a Schwinger term,
which leads to

Sµ(n) = i
f 2

m2
π

[
ψ†Γµψ · ψ†Γ0ψ + ψ†Γ0ψ · ψ†Γµψ

]
|0

= i
f 2

m2
π

[
ψ†Γµψ · ψ†(Γ · n)ψ + ψ†(Γ · n)ψ · ψ†Γµψ

]
|0 . (4.8)

Then, taking nµ = (1,0) we get

τ(x− y;n) = (S · n)δ4(x− y) = 2i
f 2

m2
π

(
ψ†γ5ψ

)2
δ4(x− y) . (4.9)

This is indeed the right τ(x − y;n) to cancel the non-covariant term produced by the
T-product in second order.

2. Vector-exchange in Pion-Nucleon: The interaction Lagrangian we take in this case
is

LI(x) = gψ̄γµψ V µ + fφ†
↔

∂µ φ V
µ ≡ L(1)

I (x) + L(2)
I (x) (4.10)

For the vector field we have the ETC

[V µ(x), V ν(y)] = i

(
−gµν − ∂µ∂ν

m2
V

)
∆(x− y;m2

V ) (4.11)

giving

[V µ(x), V ν(y)] |0 =
i

m2
V

(δµ
mδ

ν
0 + δµ

0 δ
ν
0 ) ∂mδ(x − y) . (4.12)
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This gives for the relevant Lagrangian commutator for πN
[
L(1)

I (x),L(2)
I (y)

]
|0 =

i
fg

m2
V

[
ψ̄γmψ · φ†

↔

∂ 0 φ+ ψ̄γ0ψ · φ†
↔

∂m φ
]
∂mδ(x − y) . (4.13)

This leads for nµ = (1,0) to the Schwinger term

Sα = i
fg

m2
V

[
ψ̄γαψ · φ†

↔

∂ 0 φ+ ψ̄γ0ψ · φ†
↔

∂α φ
]
. (4.14)

Then, for nµ = (1,0) we find

τ(x− y;n) = (S · n) = 2i
fg

m2
V

[
ψ̄(γ · n)ψ

] (
φ†(
↔

∂ ·n)φ
)
δ4(x− y) . (4.15)

This is indeed the correct term to cancel the non-covariant piece from the second-order.

Now, it is obvous that for a vector-baryon-baryon interaction of the form

LBBV (x) =
[
F V

1 ψ̄γµψ + iF V
2 ψ̄

↔

∂µ ψ
]
V µ , (4.16)

in (4.15) for the corresponding result one must make the substitution

g γ · n→
[
F V

1 γ · n+ iF V
2

↔

∂ ·n
]
. (4.17)

3. Gauge-invariant ∆33Nπ interaction: The gauge-invariant ∆33Nπ interaction La-
grangian reads

LI = gǫµναβ
[(
∂µψ̄ν

)
Γαψ · ∂βφ+ ψ̄Γα (∂µψν) · ∂βφ

]

≡ L(1)
I + L(2)

I , (4.18)

with, Γα = γ5γα and, of course,

L(2)†
I = L(1)

I . (4.19)

The equal-time (anti)commutation relations for the nucleon and pion fields are
{
ψa(x), ψ

†
b(y)

}
|0 = δabδ(x − y) ,

[
φ(x), φ̇(y)

]
|0 = iδ(x − y) . (4.20a)

For the (free) Rarita-Schwinger field [15] field one has [16]
{
ψν

a(x), ψ̄λ
b (y)

}
= (−i)Λνλ(−i∂) (iγ · ∂ +M) ∆(x− y;M) ,

Λνλ(−i∂) = gνλ −
1

3
γνγλ +

2

3M2
∂ν∂λ +

i

3M
(γν∂λ − γλ∂ν) . (4.21a)

In the following, we use the commutator formulas

[ABF,CDG] = ABCD [F,G] + [AB,CD] GF ,

[AB,CD] = A {B,C}D − C {A,D}B , (4.22)
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for the case where (i) F an G commute with the set (A,B,C,D), and (ii) {A,C} = {B,D} = 0.
Below we identify for example A = ∂µψ

†
ν(x), B = ψ(x), and C = ψ†(y), D = ∂ρψλ(y), and

F = ∂βφ(x), G = ∂δφ(y).

For πN -scattering in second order in g, we get only contributions from the cross-term com-

mutators [L(2)
I (x),L(1)

I (y)]. and [L(1)
I (x),L(2)

I (y)], henceforth referred to as the 21- and the
12-commutator respectively. The 21-commutator gives

[
L(2)

I (x),L(1)
I (y)

]
= g2ǫµναβǫρλγδ

[
ψ̄Γα (∂µψν) · ∂βφ(x),

(
∂ρψ̄λ

)
Γγψ · ∂δφ(y)

]
⇒

g2ǫµναβǫρλγδ (∂βφ(x) ∂δφ(y)) (Γα)ab (Γγ)cd
· ψ̄a(x)

{
∂µψν,b(x), ∂ρψ̄λ,c(y)

}
ψd(y) =

+ig2ǫµναβǫρλγδ (∂βφ(x) ∂δφ(y)) (Γα)ab (Γγ)cd
·

×ψ̄(x)
[
∂x

µ∂
x
ρΛνλ(−∂) (i∂/+M∆) ∆(x− y;M2

∆)
]
bc
ψd(y) =

+ig2ǫµναβǫρλγδ (∂βφ(x) ∂δφ(y)) (Γα)ab (Γγ)cd
·

×ψ̄(x)

[(
gνλ −

1

3
γνγλ

)
∂x

µ∂
x
ρ (i∂/+M∆) ∆(x− y;M2

∆)

]

bc

ψd(y) . (4.23)

Insertion of the Γα,γ gives

[
L(2)

I (x),L(1)
I (y)

]
= − i

3
g2ǫµναβǫρλγδ (∂βφ(x) ∂δφ(y)) ·

×ψ̄(x)γα

[
(gλν + γλγν) (i∂/−M∆) ∂x

µ∂
x
ρ∆(x− y;M2

∆)
]
γγψ(y) . (4.24)

Taking now equal times, i.e. x0 = y0, then only the time-derivatives operating on the
invariant ∆(x − y;M2

∆)-function survive. There will be four contributions: (i) iγ0∂0 from
the Dirac-operator, (ii) δ0

µ∂0∂ρ=r, (iii) δ0
ρ∂0∂µ=m, and (iv) for µ = ρ = 0 giving iγ0∂0 · ∂2

0 =

iγ0∂0 ·
∑

k=1,3 ∂k∂
k −M2

∆) iγ0∂0 ·
∑

k=1,3 ∂k∂
k. In the last step we skipped the M2

∆-term since
it will not give a Schwinger term and therefore can be ignored.

To write the spatial derivatives in a covariant form we use the nµ-vector, and write
∂m = Pµκ∂

κ. We find

δ [n.(x− y)]
[
L(2)

I (x),L(1)
I (y)

]
= − i

3
g2ǫµναβǫρλγδ ·

× (∂βφ(x) ∂δφ(y)) ·
[
ψ̄(x)γα (gλν + γλγν)

×
{
− i(γ · n) (PµκPρσ − nµnρPκσ) ∂κ∂σ

− (iγτPτω∂
ω −M∆) (nµPρσ + nρPµσ) ∂σ

}
δ4(x− y) ·

×γγψ(y)

]
. (4.25)

In order to exhibit the dipole- and quadrupole-type Schwinger terms, i.e. terms with re-
spectively one and two derivatives on the δ4(x− y)-function, we write the above expression
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as

δ [n.(x− y)]
[
L(2)

I (x),L(1)
I (y)

]
= − i

3
g2ǫµναβǫρλγδ ·

× (∂βφ(x) ∂δφ(y)) ·
[
ψ̄(x)γα (gλν + γλγν) ·

×
{
M∆ (nµPρσ + nρPµσ) ∂σδ4(x− y)

−i(γ · n) (PµκPρσ − nµnρPκσ) ∂κ∂σδ4(x− y)

−iγτPτω (nµPρσ + nρPµσ) ∂ω∂σδ4(x− y)

}
·

×γγψ(y)

]
. (4.26)

We recall that from (3.9b)

S(2) =
(+i)2

2!

∫
d4x

∫
d4y T [LI(x)LI(y)] ,

T [x− y;n] = θ[n · (x− y)] LI(x)LI(y) + θ[−n · (x− y)] LI(y)LI(x) ,

and (3.10)

Pαβ δ

δnβ
T (x− y;n) = Pαβ(x− y)βδ [n · (x− y)] [LI(x),LI(y)] .

that

Pωκ

δ

δnκ

S(2) ⇐ − 1

2!

∫
d4x

∫
d4y Pωκ(x− y)κ · δ [n.(x− y)]

[
L(2)

I (x),L(1)
I (y)

]

≡ Pωκ

δ

δnκ

S
(2)
c.t. . (4.28)

Then, a term Pρσ∂
σδ4(x− y) in the commutator of the interaction lagrangians gives

Pωκ(x− y)κ . . . Pρσ∂
σδ4(x− y)

p.i.⇒ −Pωκg
κσ . . . Pρσδ

4(x− y)

⇒ −PωκP
κ
ρ . . . δ

4(x− y) = −Pωρ . . . δ
4(x− y) .

Therefore, we have the recipe for dealing with one derivative of the δ4(x− y)- function:

Pρσ∂
σ ⇒ −Pωρ . (4.29)

Now, the strategy is to modify the T-product by including τ -terms, such as to cancel the so
called ’contact terms’. Let us define

Pωκ

δ

δnκ

τ (2) ⇐ +
1

2!

∫
d4x

∫
d4y Pωκ(x− y)κ · δ [n.(x− y)]

[
L(2)

I (x),L(1)
I (y)

]
. (4.30)

So, specializing to πN , the τ -terms have to satisfy

Pωκ

δ

δnκ

τ(p′, q′; p, q) = −Pωκ

δ

δnκ

S(2)(p′, q′; p, q) (4.31)
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and so they can be obtained from (4.26), using replacements like in (4.29). Moreover,
the factor 1/2! can be dropped because there is an identical contribution form the ’12-
commutator’.

We split the contributions to the τ(x− y;n)-function into two parts:

τ(x− y;n) = τ1(x− y;n) + τ2(x− y;n) , (4.32)

where now the τ1,2-functions satisfy

Pωσ

∂

∂σ

τ1(x− y;n) = +
i

3
M∆g

2ǫµναβǫρλγδ · (∂βφ(x) ∂δφ(y)) . ·

×
[
ψ̄(x)γα (gλν + γλγν) γγψ(y)

]
·

× (nµPρω + nρPµω) δ4(x− y) , (4.33)

and

Pωσ

∂

∂σ

τ2(x− y;n) = +
1

3
g2ǫµναβǫρλγδ · (∂βφ(x) ∂δφ(y)) ·

×
[
ψ̄(x)γα (gλν + γλγν) γ

ǫγγψ(y)
]
·

×
{

(PµωPρσnǫ + PǫωPρσnµ + PǫωPµσnρ) ∂
σ

+ (PµκPρωnǫ + PǫκPρωnµ + PǫκPµωnρ) ∂
κ

−nµnρnǫ

(
Pωσ∂

σ + Pωκ∂
κ

)}
δ4(x− y)

= +
1

3
g2ǫµναβǫρλγδ · (∂βφ(x) ∂δφ(y)) ·

×
[
ψ̄(x)γα (gλν + γλγν) γ

ǫγγψ(y)
]
·

×
{

(PǫωPρσ + PǫσPρω)nµ + (PǫωPµσ + PǫσPµω)nρ

+ (PµωPρσ + PµσPρω − 2nµnρPωσ)nǫ

}
∂σδ4(x− y) . (4.34)

Next, for the contribution to the πN -matrix elements we evaluate the derivative ∂σ. There
are two contributions:

(i) Factor

∂σ
[
ψ̄(x)ψ(y)

]
→ exp

i

2
[(p′ + p) · (x− y) + (p′ − p) · (x+ y)]

⇒ − i

2
(p′ + p)σ ,

(∂βφ(x) ∂δφ(y)) →
(
qβq
′
δ + q′βqδ

)
,

(ii) Factor

∂σ (∂βφ(x) ∂δφ(y)) → − i

2
(q′ + q)σ

(
qβq
′
δ − q′βqδ

)
.
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We now write

〈p′q′|τ (2)
c.t. |p, q〉 = (2π)4δ(p′ + q′ − p− q) τ̄(p′, q′; p, q) with

τ̄(p′, q′; p, q) = τ̄1(p
′, q′; p, q) + τ̄2(p

′, q′; p, q) , (4.35)

and find from (4.33) and (4.34) that

Pωσ

δ

δnσ

τ̄1(p
′, q′; p, q) = +

2i

3
M∆g

2ǫµναβǫρλγδ
(
qβq
′
δ + q′βqδ

)
·

× [ū(p′)γα (gλν + γλγν) γγu(p)] ·
× (nµPρω + nρPµω) , (4.36)

and

Pωσ

δ

δnσ

τ̄2(p
′, q′; p, q) = − i

3
g2ǫµναβǫρλγδ ·

×
[(
qβq
′
δ + q′βqδ

)
Qσ −

(
qβq
′
δ − q′βqδ

)
P σ
]
·

× [ū(p′)γα (gλν + γλγν) γ
ǫγγu(p)] ·

×
{

(PǫωPρσ + PǫσPρω)nµ + (PǫωPµσ + PǫσPµω)nρ

+ (PµωPρσ + PµσPρω − 2nµnρPωσ)nǫ

}
∂σδ4(x− y) , (4.37)

where P ≡ (p′ + p)/2 and Q ≡ (q′ + q)/2.

(i) Using FORM [13] we obtain for τ̄1:

Pµν

δ

δnν

τ̄1(p
′, q′; p, q) = +

i

3
M∆g

2

[
8(n · q)(n · q′) nµ − 4(n · q′)qµ − 4(n · q)q′µ

]
.(4.38)

To solve this we consider the equations

Pµνa
ν ≡ 8(n · q)(n · q′) nµ − 4(n · q′)qµ − 4(n · q)q′µ , where

aµ = a1 qµ + a2 q
′
µ + a3 nµ ,

which has as solution

a1 = −4(n · q′) , a2 = −4(n · q) , a3 = undetermined .

So,

aµ = −4(n · q′)qµ − 4(n · q)q′µ + a3nµ ,

which gives as solution for τ̄1

τ̄1(p
′, q′; p, q) = −4i(n · q′)(n · q) × 1

3
g2M∆ . (4.39)
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(ii) Using FORM [13] we obtain for τ̄2:

Pµν

δ

δnν

τ̄2(p
′, q′; p, q) = +

i

3
g2

{[
8n/

(
(n · q)(q′ · P ) + (n · q′)(q · P )

− 4(n · q)(n · q′)(n · P )

)
+ P/(n · q′)(n · q)

]
nµ

+

[
n/

(
8(n · q′)(n · P ) − 4(q′ · P )

)
− P/(n · q′)

]
qµ

+

[
n/

(
8(n · q)(n · P ) − 4(q · P )

)
− P/(n · q)

]
q′µ + 8n/(n · q′)(n · q) Pµ

+

[
8(n · q′)(n · q)(n · P ) − 4(n · q′)(q · P ) − 4(n · q)(q′ · P )

]
γµ

}
(4.40)

Repeating the procedure above, we write

Pµνδτ̄2/δnµ ∝ Pµνb
ν ≡

{
. . .

}
with

bµ = b1 qµ + b2 q
′
µ + b3 Pµ + b4γµ + b5nµ .

Then, we obtain the coefficients

b1 = 8n/(n · q′)(n · P ) − 4n/(q′ · P ) − 4P/(n · q′) ,
b2 = 8n/(n · q)(n · P ) − 4n/(q · P ) − 4P/(n · q′) ,
b3 = 8n/(n · q)(n · q′) ,
b4 = 8(n · q)(n · q′)(·P ) − 4(n · q)(q′ · P ) − 4(n · q′)(q · P ) ,

b5 = undetermined .

From this we get as a solution for τ̄2:

τ̄2(p
′, q′; p, q) = +

i

3
g2

[
− 4P/(n · q′)(n · q) − 4n/(n · q)(P · q′) − 4n/(n · q′)(P · q)

+ 8n/(n · q′)(n · q)(n · P )

]
. (4.41)

Again, these τ -functions cancel the non-covariant, i.c. the ’frame-dependent’, terms pro-
duced by the T-product in second order. Also, they are the right corrections to the
Kadyshevsky amplitudes such as to give agreement with the Feynman-amplitudes when
κ = κ′ = 0.

V. SECOND QUANTIZATION MOMENTUM QUASI-PARTICLES

For the inclusion of the θ[n · (xi−1 − xi)]-factors appearing in (2.3) one may proceed as
follows. Introducing τ ′ = n · x′, τ = n · x and consider the π-problem

(
i
∂

∂τ
+ iǫ

)
χκ(τ) = κ χκ(τ) . (5.1)
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The ortho-normal solutions of equation (5.1) are

χκ(τ) =
1√
2π
e−i(κ−iǫ)τ , −∞ < κ <∞ . (5.2)

The corresponding Green function satisfies the equation

(
i
∂

∂τ ′
+ iǫ

)
G(τ ′, τ) = −δ(τ ′ − τ) , (5.3)

which can be expressed as

G(τ ′, τ) = −
∫ ∞

−∞

dκ
χκ(τ

′)χ∗κ(τ)

κ+ iǫ
= iθ(τ ′ − τ) . (5.4)

This last expression follows from (5.2) and the representation (2.4). Notice that we can also
write for G the expression

G(τ ′, τ) = −
∫

CR

dκ

κ
χκ(τ

′)χ∗κ(τ) , (5.5)

where the contour CR in the complex κ-plane is CR = {−∞ < ℜκ <∞,ℑκ = iǫ}.
For the second quantization formalism we introduce auxiliary fields, henceforth called Kady-
shevsky fields, by the operators

χ(τ) =

∫
dκ

κ+ iǫ
a(κ) χκ(τ) ,

χ̄(τ) =

∫
dκ

κ+ iǫ
a†(κ) χ∗κ(τ) . (5.6)

In second quantization, we postulate the commutator

[χ(τ ′), χ̄(τ)] = −iθ(τ ′ − τ) ≡ −iθ[n · (x′ − x)] , (5.7)

which follows from the canonical commutation rules for the annihilation and creation oper-
ators for the quasi-particles

[
a(κ′), a†(κ)

]
= κδ(κ′ − κ) . (5.8)

We note that with these normalizations

|κ〉 = a†(κ)|0〉 , χ(τ)|κ〉 =
1√
2π
e−i(κ−iǫ)τ . (5.9)

Next we introduce the following addition to the free Lagrangian density

LK = iχ̄(τ)χ̇(τ) + iǫχ̄(τ)χ(τ) , (5.10)

where χ̇ := ∂χ/∂τ . To the interaction Lagrangians we add a factor χ†χ, for example for the
pseudo-scalar pion-nucleon interaction

Lps = gψ̄(x)γ5ψ(x) φ(x) → L̄ps = g
[
ψ̄(x)γ5ψ(x) φ(x)

]
· {χ̄(n · x)χ(n · x)} . (5.11)
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This additional factor will produce in the contractions between the vertices of a graph the
factor

〈0|χ(n · x′)χ̄(n · x)|0〉 = −iθ[n · (x′ − x)] . (5.12)

With these changes in the Lagrangian etc. one can formally incorporate the θ-functions
appearing in (2.3) in a second-quantization formalism as follows. First we write (2.3) in the
equivalent form

Sn =
in

n!

∑

P

∫ +∞

−∞

. . .

∫ +∞

−∞

θ[n · (xπ1
− xπ2

)]θ[n · (xπ2
− xπ3

)] . . . θ[n · (xπn−1 − xπn
)] ·

×LI(xπ1
) LI(xπ2

) . . .LI(xπn
) · d4x1 . . . d

4xn , (5.13)

where the sum P includes all permutation π(1, 2, . . . , n). Then, in the κ-space one next
defines the Sn-operator by

〈κ′|Sn|κ〉 =
in

n!

∑

P

∫ +∞

−∞

. . .

∫ +∞

−∞

〈κ′| L̄I(xπ1
) L̄I(xπ2

) . . . L̄I(xπn
)|κ〉 · d4x1 . . . d

4xn ,(5.14)

where the change LI(x) → L̄I(x) symbolizes the change in the interaction Lagrangians
similar to that in (5.9). Taking matrix elements of the expression in (5.12) generates all
Kadyshevsky-graphs as defined by the rules in Appendix V.
The matrix elements of the full S-operator can now be expressed as

〈κ′|S|κ〉 = S exp

{
i

~

∫ +∞

−∞

L̄I(x)d
4x

}
, (5.15)

where S stands for the symmetrizer

S
(
LI(x1) LI(x2) . . .LI(xn)

)
=
∑

P

LI(xπ1
) LI(xπ2

) . . .LI(xπn
) . (5.16)

VI. FUNCTIONAL INTEGRAL FORMALISM

A. Path Integral Formalism

We consider the scalar field theory. Then the Lagrangian including the Kadyshevsky
fields is

L(x) = L(x) + LK(n;x) = L0(x) + L̄I(x) + LK(n;x) , (6.1)

with

LK(χ†, χ) = iχ̄(τ)χ̇(τ) + iǫχ̄(τ)χ(τ) ,

L0(φ, ∂µφ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 ,

L̄I(φ, χ, χ̄) = −U(φ) · χ̄nχn , (6.2)

where τ = n · x. The path integral for the generating functional reads

〈κ′|Z(J, ηn, η
†
n)|κ〉 = N

∫
dφdχ̄dχ exp

{
i

~

∫
d4x

(
L(x) + LK(n, x) + J(x)φ(x)

+ χ̄n(x)ηn(x) + η̄n(x)χn(x)

)}
. (6.3)
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B. Schwinger-Symanzik Equations

In the following we omit 〈κ′| . . . |κ〉, unless explicitly needed. Writing (6.3) as

Z(J, ηn, η
†
n) = N

∫
dφdχ̄dχ Ẑ(φ, χ̄, χ) ·

× exp

{
i

~

∫
d4x

(
J(x)φ(x) + χ̄n(x)ηn(x) + η̄n(x)χn(x)

)}
, (6.4)

where Ẑ in terms of the action S[. . . ] of the fields is given by

Ẑ(φ, χ̄, χ) = N exp

{
(i/~) S [φ, χ̄, χ]

}
. (6.5)

One finds from the field equations δS[φ, χ̄, χ]/δφ(x) = 0 that Ẑ satisfies the functional
differential equation

i~
δẐ(φ, χ̄, χ)

δφ(x)
= (�x +m2)φ(x)Ẑ(φ, χ̄, χ) − L̄′I(φ, χ̄, χ)Ẑ(φ, χ̄, χ) , (6.6)

where the prime denotes differentiation w.r.t. φ. Multiplication (6.6) left and right with

exp

(
i

~

∫
d4x [J(x)φ(x) + η̄n(x)χn(x) + ηn(x)χ̄n(x)]

)

and integrating over the fields φ, etc. one arrives using partial integration at the Schwinger-
Symanzik equation

(�x +m2)
~

i

δZ[J, η̄, η]

δJ(x)
− L̄′I

(
~

i

δ

δJ(x)
,
1

i

δ

δη̄(x)
,
1

i

δ

δη(x)

)
Z[J, η̄, η] = J(x) Z[J, η̄, η] .(6.7)

Analogous equations are obtained by taking functional derivatives w.r.t. η(τ) and η̄(τ ′).

C. Generation Kadyshevsky graphs, Generalized Wightman-functions

The generating functional Z0[J ] for the scalar lines in the Kadyshevsky-graphs is given by

Z0[J ] = N exp

[
− i

2~

∫
J(x)∆(+)(x− y)J(y) d4x

]
, Z0[0] = 1 . (6.8)

The generating functional ZK [η̄, η] for the free Kadyshevsky fields, i.e. for the quasi-
particle lines in the Kadyshevsky graphs, is given by

ZK [η̄, η] = NK exp

[
i

∫
η̄(τ) θ(τ − τ ′) η(τ ′) dτdτ ′

]
, (6.9)

where NK is such that ZK [0, 0] = 1. One immediately verifies that

∂2ZK [η̄, η]

∂η̄(τ)∂η(τ ′)

∣∣∣∣
η̄=0,η=0

= iθ(τ − τ ′) . (6.10)
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Then, the conjecture would be something like: The perturbation expansion in Kadyshevsky
graphs is delivered by the functional

Z[J, η̄, η] = N̄ exp

[
i

~

∫
L̄I

(
~

i

δ

δJ(x)
,
1

i

δ

δη̄n(x)
,
1

i

δ

δηn(x)

)
d4x

]
Z0 [J, η̄n, ηn] ,(6.11)

with N̄ such that Z[0, 0, 0] = 1. Here,

Z0 [J, η̄n, ηn] := ZK [η̄n, ηn] · Z0[J ] . (6.12)

Then, by functional differentiation we obtain the Kadyshevky analogs of the Green functions

W(τ ;x1, . . . , xn; τ ′) :=
∂n+2Z[J, η̄, η]

∂J(x1) . . . ∂J(xn) ∂η(τ ′)∂η̄(τ)

∣∣∣∣
J=η̄=η=0

, (6.13)

which are a kind of generalized Wightman-functions.

D. Kadyshevsky Reduction Formulas

The Kadyshevsky amplitudes can be retrieved from these generalized Wightman-
functions as follows. First, we observe that

∆(+)(x− y) =

∫
d3p f (+)

p
(x) f (+)∗

p
(y) ,

f (+)
p

(x) =
1√

2ωp(2π)3
exp−i

(
ωpx

0 − p · x
)
. (6.14)

Here, (� +m2)f
(+)
p (x) = 0, the normalization is

∫
d3x f

(+)∗
p′ (x) i

↔

∂ 0 f
(+)
p

(x) = δ(p′ − p) . (6.15)

From (6.14) and (6.15) one has

−i
∫
d3x f

(+)
p′ (x) i

↔

∂ 0 ∆(+)(x− y) = f (+)
p

(y) ,

i

∫
d3x f

(+)∗
p′ (x) i

↔

∂ 0 ∆(+)(x− y) = f (+)∗
p

(y) . (6.16)

Using these relations we can define the operations for the reconstruction of the Kadyshevsky
amplitudes from the generalized Wightman-functions.

1. removal external scalar line: consider the external point x1 of W(τ ;x1, . . . , xn; τ ′),
which has the structure

W(τ ;x1, . . . , xn; τ ′) =

∫
d3y1 ∆(+)(x1 − y1) . . .

Then one can replace the on-shell propagator by the external wave-function by the
operation

i

∫
d3x1 f

(+)∗
p1

(x1) i
↔

∂ 0 W(τ ;x1, . . . , xn; τ ′) ⇒ f (+)∗
p1

(y1) . . . (6.17)
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2. removal external quasi-particle line: in this case W(τ ;x1, . . . , xn; τ ′), which has the
structure

W(τ ;x1, . . . , xn; τ ′) =

∫
dτ1 [iθ(τ − τ1)] . . .

and therefore the operation

−i
∫
dτ χκ(τ)

∂

∂τ
[iθ(τ − τ1)] . . .⇒ χκ(τ1) . . . (6.18)

Using these results, the general ’reduction’ formula, here meant is the procedure to extract
from the generalized Wightman-functions the scattering amplitude. A formula for this, akin
to the famous LSZ-formula, can indeed be written down. We get

M(κ, p1, . . . , pm; q1, . . . , qn, κ
′) =

(−)m−n

∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′ ·
m∏

i=1

∫
d3xi

n∏

j=1

∫
d3yj · χ∗κ(τ)

→

∂

∂τ
·f (+)∗

pi
(xi)

↔

∂0 ·

×W(τ ;x1, . . . , xm, y1, . . . , yn; τ ′)·
↔

∂0 f (+)
qj

(yj)·
←

∂

∂τ ′
χ′κ(τ

′) . (6.19)

E. The Tree-graph Functional

In this part we consider the φ3-theory in order to be more definite. The functional for
the connected graphs Zc[J, η̄, η] is defined by

Zc[J, η̄, η] =
i

~
lnZ[J, η̄, η] . (6.20)

Then, for the connected functional the Schwinger-Symanzik equation (6.7) reads

(�x +m2)
δZc[J, η̄, η]

δJ(x)
= J(x) +

g

2

{
~

i

δ2Zc

δJ(x) · δJ(x)
+

(
δZc

δJ(x)

)2
}

, (6.21)

which, together with the boundary condition δZc/δJ |J=η̄=η=0 = 0 gives by functional dif-

ferentiations differential equations for the connected n-point functions. Inspection of (6.21)
shows that neglecting the term δ2Zc/δJ(x) · δJ(x) is expected to generate the tree-graph
structure for this theory. So, for the tree-graphs the Schwinger-Symanzik equation reads

(�x +m2)
~

i

δZc
B[J, η̄, η]

δJ(x)
= J(x) +

g

2

(
δZc

B

δJ(x)

)2

, (6.22)

VII. DISCUSSION AND CONCLUSIONS

We have shown that frame independence in the Kadyshevsky formalism can be achieved
by following the approach of Gross-Jackiw [12]. Application, to the pion-nucleon ampli-
tudes shows that on-energy-shell, i.e. κ = κ′ = 0 leads to amplitudes identical to those
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with the Feynman-formalism, also for amplitudes where the ∆33-resonance is involved. Fur-
thermore, we have shown that a functional integral formulation can be formulated using a
second quantization texchnique, which leads to a path-integral, Schwinger-Symanzik equa-
tions, Kadyshevsky reduction formulas. Therefore, we conclude that also the Kadyshevky
formulation allows one to use all techniques which can be utilized in studies of field theories
like those in the Feynman formulation. For example, non-abelian theories like QCD and the
Electro-weak theories can be studied in the Kadyshevsky form.
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IV

IIII

III

III

x0 − y0

|x − y|

nµ

FIG. 1: Minkowski-plane. The dashed lines mark the points n · (x − y) = 0. In the regions I and

II (x − y)2 > 0, and in the regions III and IV (x − y)2 < 0.

APPENDIX A: KADYSHEVSKY T̃ -PRODUCTS AND WICK’S THEOREM

In this appendix we treat the free scalar fields. The Kadyshevsky T̃ -product we define as

T̃ [φ(x)φ(y)] = θ[n · (x− y)] φ(x)φ(y) + θ[n · (y − x)] φ(y)φ(x) . (A1)

We have the obvious identity

T̃ [φ(x)φ(y)] = φ(y)φ(x) + θ[n · (x− y)] [φ(x), φ(y)] , (A2)

and a similar expression for the ordinary T-product T [φ(x)φ(y)]. For the difference we
obtain

T̃ [φ(x)φ(y)] − T [φ(x)φ(y)] = +
{
θ[n · (x− y)] − θ(x0 − y0)

}
[φ(x), φ(y)] =

{
θ[n · (x− y)] − θ(x0 − y0)

}
∆(x− y;m2) . (A3)
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In Fig. 1 the areas I and II are respectively the forward and backward light-cone, where
(x− y)2 > 0. In the areas III and IV the distances are space-like, i.e. (x− y)2 < 0. Now, as
seen in Fig. 1 in the arched area light-cone,

{
θ[n · (x− y)] − θ(x0 − y0)

}
6= 0 , (A4)

which is outside the light-cone, where (x − y)2 < 0. But, for this region ∆(x − y;m2) = 0.
Therefore,

T̃ [φ(x)φ(y)] = T [φ(x)φ(y)] . (A5)

For the interaction Lagrangian micro-causality reads

[LI(x),LI(y)] = 0 , for (x− y)2 < 0 . (A6)

Therefore, from the above we can infer immediately that

T̃ [LI(x)LI(y)] = T [LI(x)LI(y)] , (A7)

a result that can be generalized immediately to a T-product of any number of interaction
Lagrangians, i.e.

T̃ [LI(x1) . . . LI(xn)] = T [LI(x1) . . . LI(xn)] . (A8)

From this one can cunclude to the complete equivalence of (2.1) and (2.3). (Q.E.D.)

Wick’s Theorem in the case of the Kadyshevsky T̃ -product reads (for n=even)

T̃ (φ(x1) . . . φ(xn)) =: φ(x1) . . . φ(xn) :

+
[
〈0|T̃ (φ(x1)φ(x2)) |0〉 : φ(x3) . . . φ(xn) : +permutations

]

+
[
〈0|T̃ (φ(x1)φ(x2)) |0〉 〈0|T̃ (φ(x3)φ(x4)) |0〉 : φ(x5) . . . φ(xn) :

+permutations]

+ . . .

+
[
〈0|T̃ (φ(x1)φ(x2)) |0〉 . . . 〈0|T̃ (φ(xn−1)φ(xn)) |0〉

+permutations] , (A9)

and a somewhat different form for n=uneven. This is the same as for the ordinary T-product,
see [9], section (17.4). To prove this, we consider first the case n=2. Then, in terms of the
positive and negative frequency parts of the field, we have

T̃ [φ(x)φ(y)] = : φ(x)φ(y) : +θ[n · (x− y)] 〈0|φ(+)(x)φ(−)(y)|0〉 +

θ[n · (y − x)] 〈0|φ(+)(y)φ(−)(x)|0〉
= : φ(x)φ(y) : +〈0|T̃ [φ(x)φ(y)] |0〉 , (A10)

where we used the fact that 〈0|φ(+)(x)φ(−)(y)|0〉 = 〈0|φ(x)φ(y)|0〉 etc. (Q.E.D.)
For the general case we could follow the usual proof, see [9], but we prefer to exploit here
Lorentz-transformation properties. Thereto, we consider the Lorentz-transformation U(a)
of the scalar field

U(a)φ(x)U−1(a) = φ(x′) where x′ = ax , (A11)
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leaving the vacuum invariant, i.e. U(a)|0〉 = |0〉. We now take a such that nµ = aµ
νn̂

ν ,
where n̂µ = (1,0). Also, φ(x) = U(a)φ(x̂)U−1(a) and θ[n · (x− y)] = θ(x̂0 − ŷ0). Then,

T̃ (φ(x1) . . . φ(xn)) = U(a) {T (φ(x̂1) . . . φ(x̂n))}U−1(a) , (A12)

and Wick’s Theorem for the Kadyshevsky T̃ -product follows linea recta from that for the
ordinary T-product. (Q.E.D)

The equivalence of the S-matrix expressions (2.1) and (2.3) can now be seen again also

in the following way. From the Wick-expansion we see that the Kadyshevsky T̃ -product for

any number of fields is equivalent to the ordinary T-product, if the Kadyshevsky T̃ -product
for two fields is the same. The latter has been demonstrated explicitly above in (A3)-(A5).
(Q.E.D.)

APPENDIX B: KADYSHEVSKY T̃ -PRODUCTS AND WICK’S THEOREM

The invariant amplitude −Mκ′,κ 2.8) is computed by drawing all connected Feynman
graphs for the considered process. The amplitude

−(2π)4δ(
∑

i

pi,out + κ′n−
∑

i

pi,in − κn)Mκ′,κ(G)

corresponding to graph G is built up by associating factors with the elements of the graph,
which we list below:

I. Those factors, independent of the specific details of the interactions, are given by the
following rules:

1. Draw the Feynman graph G. Arbitrarily number its vertices and orient each internal
particle line from the vertex with the smaller number to the vertex with the larger number,
assigning to it a 4-momentum p.

2. Connect with dotted lines the first vertex with the second, the second with the
third, etc. Orient them in the direction of increasing numbers and assign to them a 4-
momentum κsn, where s = 1, 2, . . . , n− 1 is the number of the vertex which a given dotted
line leaves. Attach to the first vertex an incoming external dotted line with 4-momentum
κin, and to the last vertex n an outgoing external dotted line with 4-momentum κfn.

3. For incoming (outgoing) boson and fermion lines: identical to the rules for Feynman
graphs [9].

4. For each internal dotted line with momentum κn a factor

G0(κ) = − 1

κ+ iǫ
. (B1)

5. For each internal boson line with momentum q a factor

∆(+)(q) = θ(q0)δ(q
2 − µ2) . (B2)
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6. For each internal fermion line with momentum p and positive energy a factor

S
(+)
βα (p) = (p/+m)βα θ(p0)δ(p

2 −m2) . (B3)

For each internal fermion line with momentum p and negative energy a factor

S
(−)
βα (p) = (p/−m)βα θ(p0)δ(p

2 −m2) . (B4)

7. For each internal photon line, using the Feynman gauge, a factor

D(+)(q)µν = −gµνθ(q0)δ(q
2) . (B5)

8a. For each vertex, number s, a factor

(2π)4δ4

(
∑

i

pi,out + κs+1 −
∑

i

pi,in − κs

)
, (B6)

where pi,out and pi,in are the outgoing respectively the incoming momenta
at the vertex with number s.

8b. Integrate over each internal particle line , momentum l:
∫
d4l/(2π)3.

9. Integrate over each internal quasi-particle (dotted) line

with momentum κsn:
∫ +∞

−∞
dκs/(2π).

10. Not a factor −1 for each closed loop.
11. A factor −1 between graphs which differ only by an interchange of two-external

fermions. This not only for the interchange of identical fermions in the final state, but also
the interchange of e.g. an initial fermion and a similar anti-fermion in the final state.

12. Repeat the operations (1)-(11) for all n! numberings of the vertices of the given
Feynman graph and sum.

II. Those factors coming from the structure and type of vertices are, given for each vertex by
the matrix element 〈. . . |LI(0)| . . .〉. Therefore, they are, apart from a factor (−i), identical
to that given in [9], appendices B.
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