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Abstract
In this article we quantize (massive) higher spin (1 ≤ j ≤ 2) fields by means of Dirac’s Constrained

Hamilton procedure both in the situation were they are totally free and were they are coupled to

(an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and

discussing all constraints and Lagrange multipliers and by giving all equal times (anti) commutation

relations. Also we construct the relevant propagators. In the free case we obtain the well-known

propagators and show that they are not covariant, which is also well known. In the coupled case we

do obtain covariant propagators (in the spin-3/2 case this requires b = 0) and show that they have

a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice

that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved

currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in

the massive case.
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I. INTRODUCTION

This article is about the quantization of higher spin (1 ≤ j ≤ 2) fields and their propa-
gators. Besides the interest in their own, the physical interest in these various fields comes
from very different areas in (high energy) physics. The massive spin-1 field is extremely
important in the electro-weak part of the Standard Model and in phenomenological One-
Boson-Exchange (OBE) models. Needless to mention the physical interest in the photon.

As far as the spin-3/2 field is concerned, ever since the pioneering work of [1] and [2] it has
been considered by many authors for several reasons. The spin-3/2 field plays a significant
role in low energy hadron scattering, where it appears as a resonance. Also in supergravity
(for a review see [3]) and superstring theory the spin-3/2 field plays an important role, since
it appears in these theories as a massless gravitino. Besides the role it plays in the tensor-
force in OBE-models the spin-2 field mainly appears in (super-) gravity and string theories
as the massless graviton.

The quantization of such fields can roughly be divided in three areas: free field quanti-
zation, the quantization of the system where it is coupled to (an) auxiliary field(s) and the
quantization of an interacting field. The latter area in the spin-3/2 case is known to have
problems and inconsistencies (see for instance [4], [5] and [6]). Although very interesting, in
this article we will focus our attention on the first two areas.

In section II we start with the quantization of the massive, free fields. We do this for all
spin cases (j = 1, 3/2, 2) at the same time using Dirac’s prescription [7]. The inclusion of
the spin-1 field case is merely meant to demonstrate Dirac’s procedure in a simple case and
to have a complete description of higher spin field quantization.

The free spin-3/2 field quantization is in the same line as in references [8–11]. In [8] the
massless free spin-3/2 field was quantized in the transverse gauge. The authors of [9, 10]
quantize the massive free theory, which is also what we do. We will follow Dirac’s prescription
straightforwardly by first determining all Lagrange multipliers and constraints. Afterwards
the Dirac bracket (Db) is introduced and we calculate the equal time anti commutation
(ETAC) relations among all components of the field. In both [9] and [10, 11] the step to the
Dirac bracket is made earlier, without determining all Lagrange multipliers and constraints.
In [9] it is mentioned that this involves ”technical difficulties and much labor” and in [10, 11]
the focus is on the number of constraints and therefore not so much on their specific forms.
As a result [9] and [10, 11] both calculate only the ETAC relations between the spatial
components of the spin-3/2 field, whereas we obtain them all.

A Dirac constraint analysis of the free spin-2 field can be found for instance in [12–14].
In these references the massless ([12, 13]) case and massive ([14]) case is considered. We
stress, however, that our description of the quantization not only differs from [14] in the
sense that the nature of one of the obtained constraints is different, which we will discuss
below, also we obtain all constraints and Lagrange multipliers by applying Dirac’s procedure
straightforward. We present a full analysis of the constrained system. After introducing the
Dirac bracket (Db) we give all equal time commutation (ETC) relations between the various
components of the spin-2 field.

Having quantized the free theories properly we make use of a free field expansion identity
and with these ingredients we obtain the propagators. We notice that they are not explicitly
covariant, as is mentioned for instance in [15] for general cases j ≥ 1.

To cure this problem we are inspired by [16] and allow for auxiliary fields in the free La-
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grangian in section III. To be more specific we couple gauge conditions of the massless cases
to auxiliary fields and also allow for mass terms of these auxiliary fields, with which free
(gauge) parameters are introduced. As in for instance [16], we obtain a covariant vector field
propagator, independently of the choice of the parameter.

In the spin-3/2 case several systems of a spin-3/2 field coupled to auxiliary fields are con-
sidered in [17–19]. In [18, 19] are for several of such systems four dimensional commutation
relations obtained. In the only massive case which the authors of [19] consider, two auxiliary
fields are introduced to couple (indirectly) to the constraint equations 1 of a spin-3/2 field.
The authors of [17] use the Lagrange multiplier 2 method, where this multiplier is coupled
to the covariant gauge condition of the massless spin-3/2 field in the Rarita-Schwinger (RS)
framework (to be defined below). They notice that the Lagrange multiplier has to be a
spinor and in this sense it can also be viewed as an auxiliary field. We follow the same line
by coupling our auxiliary field to the above mentioned gauge condition. In [17] the quan-
tization is performed outside the RS framework in order to circumvent the appearance of
singularities. We remain within the RS framework and deal with these singularities relying
on Dirac’s method. Therefore we stay in line with the considerations of section II. A covari-
ant propagator is obtained for one specific choice of the parameter (b = 0). This propagator
is the same as the one obtained in [17]. We notice that also in [20] a covariant propagator is
obtained, but these authors make use of two spin-1/2 fields.

Coupled systems of spin-2 and auxiliary fields were for various reasons considered in for
instance [21–25]. In [22] an auxiliary boson field is coupled to the ”De Donder” gauge
condition in the Lagrangian which also contains Faddeev-Popov ghosts. In [23] an auxiliary
field is coupled to the divergence of the tensor field in such a way that the auxiliary field
can be viewed as a Lagrange multiplier. These authors mention that if an other auxiliary
field is introduced, coupled to the trace of the tensor field in order to get the other spin-2
condition, four dimensional commutation relations for the tensor field can not be written
down. We present a description in which this is possible relying on Dirac’s procedure. Also
in the tensor field case we obtain a covariant propagator, independently of the choice of the
parameter.

Having obtained all the various covariant propagators we discuss several choices of the
parameters (if possible) and the massless limits of these propagators. We show that the
propagators do not only have a smooth massless limit but that they also connect to the ones
obtained in the massless case (including (an) auxiliary field(s)).

When coupled to conserved currents we see that it is possible to obtain the correct massless
spin-j propagators carrying only the helicities λ = ±jz. This does not require a choice of
the parameter in the spin-1 case, but in the spin-3/2 and in the spin-2 case we have to make
the choices b = 0 3 and c = ±∞. As far as these last two cases is concerned, it is a different
situation then taking the massive propagator, couple it to conserved currents and putting
the mass to zero as noticed in [26] and [27], respectively. A discussion on the latter matter
in (anti)-de Sitter spaces can be found in [28–30]. We stress however, that in the spin-3/2
and the spin-2 case this limit is only smooth if the massive propagator contains ghosts.

1 i∂ψ = 0 is a constraint in the sense that it reduces the number of degrees of freedom of a general ψµ field.

It is not a constraint in the sense of Dirac, since it is a dynamical equation.
2 These Lagrange multipliers are the ones used in the original sense and are therefore different then the ones

used in Dirac’s formalism.
3 This choice we already made in order to obtain a covariant propagator.
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II. FREE FIELDS

As mentioned in the introduction we deal with the free theories in this section. We start
in section II A with the Lagrangians and the equations of motion that can be deduced from
them. We explicitly quantize the theories in section II B and calculate the propagators in
section II C.

A. Equations of Motion

As a starting point we take the Lagrangian for free, massive fields (j = 1, 3/2, 2). In
case of the spin-3/2 there is, according to [11, 31–34], a class of Lagrangians describing
the particularities of a spin-3/2 field. Also in the spin-2 case several authors ([23, 35–
37]) describe a class of Lagrangians (with one or more free parameters) which give the
correct Euler-Lagrange equations for a spin-2 field. By taking this spin-2 field to be real and
symmetric from the outset only one parameter remains

L1 = −1

2
(∂µAν∂

µAν − ∂µAν∂
νAµ) +

1

2
M2

1A
µAµ , (1a)

L3/2,A = ψ̄µ

[

(i∂/−M3/2)gµν + A(γµi∂ν + γνi∂µ) +Bγµi∂/γν + CM3/2γµγν

]

ψν , (1b)

L2,A =
1

4
∂αhµν∂αhµν −

1

2
∂µh

µν∂αhαν −
1

4
B ∂νh

β
β∂

νhα
α −

1

2
A∂αh

αβ∂βh
ν
ν

−1

4
M2

2h
µνhµν +

1

4
CM2

2h
µ
µh

ν
ν , (1c)

where B = 1
2
(3A2 + 2A+ 1), C = 3A2 + 3A+ 1 and A 6= −1

2
, but arbitrary otherwise. We

improperly 4 refer to (1b) as the RS case.
Since we do not need to be so general we choose A = −1 and end-up with a particular

spin-3/2 Lagrangian also used in [3, 8–11, 19] and in case of the spin-2 field we get the
well-know Fierz-Pauli Lagrangian [1] also used in for instance [38–40]

L3/2 = −1

2
ǫµνρσψ̄µγ5γρ (∂σψν) +

1

2
ǫµνρσ

(

∂σψ̄µ

)

γ5γρψν −M3/2ψ̄µσ
µνψν , (2a)

L2 =
1

4
∂αhµν∂αhµν −

1

2
∂µh

µν∂αhαν −
1

4
∂νh

β
β∂

νhα
α +

1

2
∂αh

αβ∂βh
ν
ν

−1

4
M2

2h
µνhµν +

1

4
M2

2h
µ
µh

ν
ν . (2b)

Although we have picked particular Lagrangians we can always go back to the general case
by redefining the fields in the following sense

ψ′
µ = Oα

µ(A)ψα , Oα
µ(A) = gα

µ − A+1
2
γµγ

α ,
h′µν = Oαβ

µν (A)hαβ , O
αβ
µν (A) = 1

2

(

gα
µg

β
ν + gβ

µg
α
ν − (A+ 1)gµνg

αβ
)

.
(3)

4 Although the authors of [2] mention a general class, they expose one specific Lagrangian which would

correspond to the choice A = − 1

3
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The transformation in the first line of (3) was also mentioned in [11]. Requiring that the
transformation matrices in (3) are non-singular (detO 6= 0) gives again the constraint A 6=
−1

2
.
The Euler-Lagrange equations following from the free field Lagrangians lead to the correct

equations of motion (EoM)

(� +M2
1 )Aµ = 0 , ∂ · A = 0 ,

(i∂/−M3/2)ψµ = 0 , γ · ψ = 0 , i∂ · ψ = 0 ,

(� +M2
2 )hµν = 0 , ∂µh

µν = 0 , hµ
µ = 0 . (4)

The massless versions of the Lagrangians L1, L3/2 and L2
5 exhibit a gauge freedom: they

are invariant under the transformations Aµ → Aµ′ = Aµ + ∂µΛ, ψµ → ψ′
µ = ψµ + ∂µǫ and

hµν → hµν ′ = hµν + ∂µην + ∂νηµ as well as hµν → hµν ′ = hµν + ∂µ∂νΛ, respectively. Here, Λ,
ǫ and ηµ are scalar, spinor and vector fields, respectively.

In the spin-1 case a popular gauge is the Lorentz gauge ∂ · A = 0. Imposing this gauge
conditions automatically ensures the EoM �Aµ = 0 and puts the constraint �Λ = 0. This
last constraint is used to eliminate the residual helicity state λ = 0.

A popular gauge in the spin-3/2 case is the covariant gauge γ ·ψ = 0, which causes similar
effects, namely the correct EoM i∂/ψ = 0 and i∂ · ψ = 0 and the constraint i∂/ǫ. Since the
ǫ-field is a free spinor, it is used to transform away the helicity states λ = ±1/2 of the free
ψµ field.

Since the spin-2 Lagrangian has two symmetries, two gauge conditions need to be imposed.
The gauge conditions hα

α = 0 and ∂αh
αβ = 0 give the correct EoM. From the effects these

gauge conditions have on the auxiliary fields (�ηµ = 0, ∂ · η = 0 and �Λ = 0) we see that
these equations describe a massless spin-1 field and a massless spin-0 field. Therefore these
fields can be used to ensure that the tensor field hµν only has λ = ±2 helicity states.

In our case the mass terms in the Lagrangian break the gauge symmetry. Although, the
correct EoM (4) are obtained the freedom in the choice of the field can not be exploited to
transform away helicity states. Therefore, the massive fields contain all helicity states, as is
of course well known.

B. Quantization

For the quantization of our systems we use Dirac’s Hamilton method for constrained sys-
tems [7]. In case of the (real) vector and tensor fields the accompanying canonical momenta
are defined in the usual way. Since we use complex fields in case of the spin-3/2 field we
consider ψµ and ψ†

µ as independent fields being elements of a Grassmann algebra. For the
definition of the accompanying canonical momenta we rely on [42]. Although, the authors
of [42] use spin-1/2 fields, the prescription for the canonical momenta does not change. The
canonical momenta are defined as

πν
a =

∂rL
∂ψ̇a,ν

, πν
a
‡ =

∂rL
∂ψ̇∗

a,ν

, (5)

5 The massless version of (2b) is the linearized Einstein-Hilbert Lagrangian discussed in many textbooks as

for instance [41]
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where r means that the differentiation is performed from right to left. We use the ‡-notation
to distinguish the canonical momentum coming from the complex conjugate field from the
one coming form the original field, since they need not (and in fact will not) be the same.

Using this prescription (5) we obtain the canonical momenta from our Lagrangians (1a),
(2a) and (2b)

π0
1 = 0 , πn

1 = −Ȧn + ∂nA0 ,

π0
3/2 = 0 , π0

3/2
‡
= 0 ,

πn
3/2 = i

2
ψ†

kσ
kn , πn

3/2
‡ = i

2
σnkψk ,

π00
2 = −1

2
∂nh

n0 , π0m
2 = −∂nh

nm + 1
2
∂mh00

πnm
2 = 1

2
ḣnm − 1

2
gnmḣk

k + 1
2
gnm∂kh

k0 , + 1
2
∂mhn

n ,

(6)

from which the velocities can be deduced

Ȧn = −πn
1 + ∂nA0 ,

ḣnm = 2πnm
2 − gnmπ2

k
k +

1

2
gnm∂kh

k0 ,

ḣk
k = −π2

k
k +

3

2
∂kh

k0 , (7)

and the primary constraint equations

θ0
1 = π0

1 ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn
3/2 = πn

3/2 − i
2
ψ†

kσ
kn , θn

3/2
‡ = πn

3/2
‡ − i

2
σnkψk ,

θ00
2 = π00

2 + 1
2
∂nh

n0 , θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 − 1

2
∂mhn

n .

(8)

They vanish in the weak sense, to which we will come back below.
If we want these constraints to remain zero we impose the time derivative of these con-

straints to be zero. We find it most easily to define the time derivative via the Poisson
bracket (Pb) θ̇ = {θ,H}P + ∂θ/∂t 6. We, therefore, need the Hamiltonians.

Dirac has shown [7] that the Hamiltonian obtained in the usual way is a weak equation 7

and does not give the correct EoM. This can be repaired by adding the primary constraints
(8) to the Hamiltonian by means of Lagrange multipliers in order to make it a so-called
strong equation. What we get is

Hw =

∫

d3x Hw(x) =

∫

d3x

(

∑

i

πiq̇i − L
)

,

6 In practice it will turn out that the constraints do not explicitly depend on time t
7 In constructing the usual Hamiltonian explicit use can be made of the constraints, since these are also

weak equations
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H1,S = −1

2
πn

1π1,n + πn
1∂nA0 +

1

2
∂mAn∂

mAn − 1

2
∂mAn∂

nAm − 1

2
M2

1A
0A0

−1

2
M2

1A
nAn + λ1,0θ

0
1 ,

H3/2,S =
1

2
ǫµνρkψ̄µγ5γρ (∂kψν)−

1

2
ǫµνρk

(

∂kψ̄µ

)

γ5γρψν +M3/2ψ̄µσ
µνψν

+λ3/2,0θ
0
3/2 + λ3/2,nθ

n
3/2 + λ‡3/2,0θ

0
3/2

‡
+ λ‡3/2,nθ

n
3/2

‡ ,

H2,S = πnm
2 π2,nm −

1

2
π2

n
nπ2

m
m +

1

2
π2

n
n∂

mhm0 −
1

2
∂khn0∂khn0 −

1

4
∂khnm∂khnm

+
1

8
∂nh

n0∂mhm0 +
1

2
∂nh

nm∂khkm +
1

2
∂mh

00∂mhn
n +

1

4
∂mh

n
n∂

mhk
k

−1

2
∂nh

nm∂mh00 −
1

2
∂nh

nm∂mh
k
k +

1

2
M2

2h
n0hn0 +

1

4
M2

2h
nmhnm

−1

2
M2

2h
00hm

m −
1

4
M2

2h
n
nh

m
m + λ2,00θ

00
2 + λ2,0mθ

0m
2 . (9)

For the definition of the Pb we rely on [8] and [42]. There, it is defined as

{E(x), F (y)}P =

[

∂rE(x)

∂qa(x)

∂lF (y)

∂pa(y)
− (−1)nEnF

∂rF (y)

∂qa(y)

∂lE(x)

∂pa(x)

]

δ3(x− y) , (10)

where nE, nF is 0 (1) in case E(x), F (x) is even (odd). With this form of the Pb (10) we
already anticipate that bosons satisfy commutation relations and fermions anti-commutation
relations in a quantum theory.

Now, we can impose the time derivatives of the constraints (8) to be zero using (9) and
(10)

{

θ0
1(x), H1,S

}

P
= ∂nπ

n
1 +M2

1A
0 = 0 ≡ Φ0

1(x) , (11a)

{

θ0
3/2(x), H3/2,S

}

P
= ǫµ0ρk

(

∂kψ̄µ

)

γ5γρ −M3/2ψ̄µσ
µ0 = 0 ≡ −Φ0

3/2
‡
(x) , (11b)

{

θ0
3/2

‡
(x), H3/2,S

}

P
= −ǫµ0ρkγ0γ5γρ (∂kψµ) +M3/2γ

0σ0µψµ = 0 ≡ −Φ0
3/2(x) , (11c)

{

θn
3/2(x), H3/2,S

}

P
= ǫµnρk

(

∂kψ̄µ

)

γ5γρ −M3/2ψ̄µσ
µn + iλ‡3/2,kσ

kn = 0 , (11d)
{

θn
3/2

‡(x), H3/2,S

}

P
= −ǫµnρkγ0γ5γρ (∂kψµ) +M3/2γ

0σnµψµ + iσnkλ3/2,k = 0 , (11e)

{

θ00
2 (x), H2,S

}

P
=

1

2

[(

∂k∂k +M2
2

)

hm
m − ∂n∂mh

nm
]

= 0 ≡ 1

2
Φ0

2(x) , (11f)
{

θ0m
2 (x), H2,T ot

}

P
= 2∂kπ

km
2 −

(

∂k∂k +M2
2

)

h0m = 0 ≡ Φm
2 (x) . (11g)

8 In two cases ((11d) and (11e)) Lagrange multipliers are determined. In all other cases new,
secondary, constraints are obtained. We also impose the time derivatives of these secondary
constraints to be zero

{

Φ0
1(x), H1,S

}

P
= M2

1 (∂nA
n + λ0

1) = 0 , (12a)

8 If Φ is a constraint, then so is aΦ. The constants in front of the constraints in (11) are chosen for

convenience and have no physical meaning.
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{

Φ0
3/2(x), H3/2,S

}

P
= σnki∂nλ3/2,k +M3/2γ

kλ3/2,k = 0 , (12b)
{

Φ0
3/2

‡
(x), H3/2,S

}

P
= i∂kλ

‡

3/2,nσ
nk +M3/2λ

‡

3/2,kγ
k = 0 , (12c)

{

Φ0
2(x), H2,S

}

P
= −2∂n∂mπ

nm
2 −M2π2

n
n +

(

∂k∂k +
3

2
M2

2

)

∂nhn0 = 0

≡ −Φ
(1)
2 (x) , (12d)

{Φm
2 (x), H2,S}P = −M2

2

[

λ0m
2 + ∂kh

km − ∂mh00 − ∂mhn
n

]

= 0 . (12e)

The first line (12a) determines the Lagrange multiplier λ0
1. Since this was the only Lagrange

multiplier in the spin-1 case all Lagrange multipliers of this case are determined and therefore
all constraints are second class.

Equation (12e) determines the Lagrange multiplier λ0m
2 and equation (12d) brings about

yet another (tertiary) constraint. Its vanishing time derivative yields

{

Φ
(1)
2 (x), H2,S

}

P
= M2

2

[(

2∂k∂k +
3

2
M2

2

)

h00 +

(

3

2
∂k∂k +M2

2

)

hn
n

− 3

2
∂n∂mh

nm − 2∂nλ
n0
2

]

= 0 . (13)

We see that we have in the spin-3/2 case as well as in the spin-2 case two equations involving
the same Lagrange multipliers. In the spin-3/2 case these are (11e) and (12b) for λ3/2,k and

(11d) and (12c) for λ‡3/2,k. In the spin-2 case these are (12e) and (13) for λn0
2 . Combining

these equations for consistency, and using Φ0
3/2, Φ0

3/2
‡

as well as Φ0
2 as weakly vanishing

constraints, yields the last constraints

Φ
(1)
3/2 = γ0ψ0 + γkψk , (14a)

Φ
(1)
3/2

‡
= −ψ†

0γ
0 + ψ†

kγ
k , (14b)

Φ
(2)
2 = h0

0 + hn
n , (14c)

It is important to note that these constraints are only obtained when combining other results,

as describes above. This is not done in [14]. Therefore these authors do not find Φ
(2)
2 , leaving

θ00
2 as a first class constraint. Imposing vanishing time derivatives of these constraints ((14a)-

(14c))

{

Φ
(1)
3/2(x), H3/2,S

}

P
= −γ0λ3/2,0 − γkλ3/2,k = 0 ,

{

Φ
(1)
3/2

‡
(x), H3/2,S

}

P
= λ‡3/2,0γ

0 − λ‡3/2,kγ
k = 0 ,

{

Φ
(2)
2 (x), H2,S

}

P
= λ00

2 − π2
k
k +

3

2
∂kh

k0 = 0 , (15)

determines the last Lagrange multipliers λ3/2,0, λ
‡

3/2,0 and λ00
2 .
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In the massless spin-1 case the vanishing of the time-derivative of Φ0
1(x) would automat-

ically be satisfied as can be seen from (12a). In this case λ0
1 would not be determined which

means that both constraints are first class.
We notice that in combining the equations that involve λ3/2,k ((11e), (12b)) and λ‡3/2,k

((11d), (12c)) we obtain the constraints Φ
(1)
3/2 and Φ

(1)
3/2

‡
being proportional to M2

3/2. This

means that in the massless case these equations are already consistent with each other and

that λ3/2,0 and λ‡3/2,0 can not be determined leaving θ0
3/2 and θ0

3/2
‡
to be a first class constraint

([8])9.
The situation in the massless spin-2 case is even more clear. From (12e) and (13) it is

evident that the time derivatives of Φm
2 and Φ

(1)
2 will already be zero and that λ0k

2 can not be

determined. Therefore Φ
(2)
2 will not be obtained from which λ00

2 also can not be determined,
leaving θ00

2 and θ0n
2 to be first class constraints ([12, 13]) 10.

The fact that there are first class constraints (or undetermined Lagrange multipliers) in
the massless cases is a reflection of the gauge symmetry. In the spin-1 and the spin-3/2 case
only one Lagrange multiplier is undetermined meaning there’s only one gauge symmetry (of
course the massless spin-3/2 action is also invariant under the hermitian gauge transforma-

tion, that’s why λ‡3/2,k is also undetermined). In the massless spin-2 case, however, there

are two Lagrange multipliers undetermined, meaning that there are two gauge symmetries
as we have mentioned before.

In the massive cases all Lagrange multipliers can be determined, which means that all con-
straints are second class. Therefore every constraint has at least one non-vanishing Pb with
another constraint. The complete set of constraints (primary, secondary, . . . ) is

θ0
1 = π0

1 , Φ0
1 = ∂nπ

n
1 +M2

1A
0 ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0‡ ,

Φ
(1)
3/2 = γ · ψ , Φ

(1)
3/2

‡
= −ψ†

0γ
0 + ψ†

kγ
k ,

θn
3/2 = πn

3/2 − i
2
ψ†

kσ
kn , θn

3/2
‡ = πn‡ − i

2
σnkψk ,

Φ0
3/2 = −i∂kσ

klψl −M3/2γ
kψk , Φ0

3/2
‡
= −ψ†

nσ
nki
←−
∂k −M3/2ψ

†
kγ

k ,

θ00
2 = π00

2 + 1
2
∂nh

n0 , Φ0
2 =

(

∂k∂k +M2
2

)

hm
m − ∂n∂mh

nm ,
θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 Φm

2 = 2∂kπ
km − (∂k∂k +M2

2 )h0m ,

− 1
2
∂mhn

n , Φ
(2)
2 = h0

0 + hn
n ,

Φ
(1)
2 = 2∂n∂mπ

nm
2 +M2

2π2
n
n

−
(

∂k∂k + 3
2
M2

2

)

∂nhn0 ,

(16)

We want to make linear combinations of constraints in order to reduce the number of non-
vanishing Pb among these constraints. In the end we will arrive at a situation where every
constraint has only one non-vanishing Pb with another constraint. Therefore, we make the

9 In this case also ∂nθ
n
3/2

and ∂nθ
n
3/2

‡ become first class.
10 Actually all constraints become first class.
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following linear combinations

θ̃n
3/2 = θn

3/2 − θ0
3/2γ0γ

n ,

Φ̃0
3/2 = Φ0

3/2 +

(

−∂m +
i

2
M3/2γm

)

θ̃m
3/2 ,

θ̃n‡ = θn
3/2

‡ + γnγ0θ0
3/2

‡
,

Φ̃0‡
3/2 = Φ0

3/2
‡
+ θ̃m‡

3/2

(

−←−∂ m +
i

2
M3/2γm

)

,

Φ̃n
2 = Φn

2 − 2∂nθ00
2 ,

Φ̃0
2 = Φ0

2 + 2∂nθ
n0
2 ,

Φ̃
(1)
2 = Φ

(1)
2 − (2∂k∂k + 3M2

2 )θ00
2 − 2∂nΦ̃n

2 . (17)

The remaining non-vanishing Pb’s are

{

θ0
1(x),Φ

0
1(y)

}

P
= −M2

1 δ
3(x− y) ,

{

θ̃n
3/2(x), θ̃

m‡

3/2(y)
}

P
= −iσmnδ3(x− y) ,

{

Φ̃0
3/2(x), Φ̃

0‡
3/2(y)

}

P
= −3i

2
M2

3/2δ
3(x− y) ,

{

θ0
3/2(x),Φ

(1)
3/2

‡
(y)
}

P
= γ0δ3(x− y) ,

{

θ00
2 (x),Φ

(2)
2 (y)

}

P
= −δ3(x− y) ,

{

Φ̃0
2(x), Φ̃

(1)
2 (y)

}

P
= 3M4

2 δ
3(x− y) ,

{

θ0n
2 (x), Φ̃m

2 (y)
}

P
= M2

2 g
nm δ3(x− y) . (18)

In a proper (quantum) theory we want the constraint to vanish. Although, here, they vanish
in the weak sense there still exist non-vanishing Pb relations among them. This means in a
quantum theory that ETC and ETAC relations exist among the constraints. We, therefore,
introduce the new Pb à la Dirac [7]: The Dirac bracket (Db), such that the Db among the
constraints vanishes

{E(x), F (y)}D = {E(x), F (y)}P −
∫

d3zzd
3z2 {E(x), θa(z1)}P

×Cab(z1 − z2) {θb(z2), F (y)}P , (19)

where the inverse functions Cab(z1 − z2) are defined as follows

∫

d3z {θa(x), θc(z)}P Ccb(z − y) = δabδ
3(x− y) , (20)

and can be deduced from (18).
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The ETC and ETAC relations are obtained by multiplying the Db by a factor of i 11.
What we get is

[

A0(x), An(y)
]

0
=

i∂n

M2
1

δ3(x− y) ,
[

Ȧ0(x), A0(y)
]

0
= − i

M2
1

∂n∂n δ
3(x− y) ,

[

Ȧn(x), Am(y)
]

0
= i

(

gnm +
∂n∂m

M2
1

)

δ3(x− y) ,

{

ψ0(x), ψ0†(y)
}

0
= − 2

3M2
3/2

∇2 δ3(x− y) ,

{

ψ0(x), ψm†(y)
}

0
=

1

M3/2

[

2

3M3/2

(

iγk∂k

)

γ0i∂m +
1

3

(

iγk∂k

)

γ0γm + γ0i∂m

]

δ3(x− y) ,
{

ψn(x), ψ0†(y)
}

0
=

1

M3/2

[

2

3M3/2

(

iγk∂k

)

i∂nγ0 +
1

3
γnγ0

(

iγk∂k

)

+ i∂nγ0

]

δ3(x− y) ,

{

ψn(x), ψm†(y)
}

0
= −

[

gnm − 1

3
γnγm +

2

3M2
3/2

∂n∂m +
1

3M3/2

(

γni∂m − i∂nγm

)

]

δ3(x− y) ,

[

h00(x), h0l(y)
]

0
=

4i

3M4
2

∂j∂j∂
lδ3(x− y) ,

[

h0m(x), hkl(y)
]

0
=
−i
M2

2

[

4

3M2
∂m∂k∂l − 2

3
∂mgkl + ∂kgml + ∂lgmk

]

δ3(x− y) ,
[

ḣ00(x), h00(y)
]

0
= − 4i

3M4
2

∂i∂i∂
j∂jδ

3(x− y) ,
[

ḣ0m(x), h0l(y)
]

0
=

i

M2
2

[

4

3M2
2

∂m∂l ∂j∂j +
1

3
∂m∂l + ∂j∂jg

ml

]

δ3(x− y) ,
[

ḣ00(x), hkl(y)
]

0
=

i

M2
2

[

4

3M2
2

∂k∂l ∂j∂j + 2∂k∂l − 2

3
∂j∂jg

kl

]

δ3(x− y) ,
[

ḣnm(x), hkl(y)
]

0
= i

[

−gnkgml − gnlgmk +
2

3
gnmgkl

− 1

M2
2

(

∂n∂kgml + ∂m∂kgnl + ∂n∂lgmk + ∂m∂lgnk
)

+
2

3M2
2

(

∂n∂mgkl + gnm∂k∂l
)

− 4

3M2
2

∂n∂m∂k∂l

]

δ3(x− y) . (21)

This concludes the quantization of free, massive higher spin (j = 1, 3/2, 2) fields. As a final
remark we notice that the ET(A)C relations in (21) amongst the various components of the
spin-3/2, spin-2 field and their velocities are independent of the choice of the parameter A
in (1).

11 Of course, this is not the only step to be made when passing to a quantum theory. Also the fields should

be regarded as state operators, etc.
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C. Propagators

Having quantized the free fields in the previous subsection (section II B) we now want to
obtain the propagators. In order to do so we need to calculate the commutation relations
for non-equal times, which is done using the following identities as solutions to the field
equations (first column of (4))

Aµ(x) =

∫

d3z
[

∂z
0∆(x− z;M2

1 )Aµ(z)−∆(x− z;M2
1 )∂z

0A
µ(z)

]

,

ψµ(x) = i

∫

d3z(i∂/x +M3/2)γ0∆(x− z;M2
3/2)ψ

µ(z) ,

hµν(x) =

∫

d3z
[

∂z
0∆(x− z;M2

2 )hµν(z)−∆(x− z;M2
2 )∂z

0h
µν(z)

]

. (22)

Using these equations (22) and the ETC and ETAC relations we obtained before (21) we
calculate the commutation relations for unequal times

[Aµ(x), Aν(y)] = −i
(

gµν +
∂µ∂ν

M2
1

)

∆(x− y;M2
1 ) = P µν

1 (∂) i∆(x− y;M2
1 ) ,

{

ψµ(x), ψ̄ν(y)
}

= −i
(

i∂/+M3/2

)

[

gµν − 1

3
γµγν +

2∂µ∂ν

3M2
3/2

− 1

3M3/2

(γµi∂ν − γνi∂µ)

]

×∆(x− y;M2
3/2) =

(

i∂/+M3/2

)

P µν
3/2(∂) i∆(x− y;M2

3/2) ,

[

hµν(x), hαβ(y)
]

= i

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ

+
1

M2
2

(

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα
)

− 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4

3M2
2

∂µ∂ν∂α∂β

]

∆(x− y;M2
2 )

= 2P µναβ
2 (∂) i∆(x− y;M2

2 ) , (23)

where the Pj(∂), j = 1, 3/2, 2 are the (on mass shell) spin projection operators. The factor
2 in the last line of (23) can be transformed away by redefining the spin-2 field. Equation
(23) yields for the propagators

Dµν
F (x− y) = −i < 0|T [Aµ(x)Aν(y)] |0 >

= −iθ(x0 − y0)P µν
1 (∂)∆(+)(x− y;M2

1 )− iθ(y0 − x0)P µν
1 (∂)∆(−)(x− y;M2

1 )

= P µν
1 (∂)∆F (x− y;M2

1 )− iδµ
0 δ

ν
0 δ

4(x− y) . (24)

Sµν
F (x− y) = −i < 0|T

(

ψµ(x)ψ̄ν(y)
)

|0 >
= −iθ(x0 − y0)

(

i∂/+M3/2

)

P µν
3/2(∂)∆(+)(x− y;M2

3/2)

−iθ(y0 − x0)
(

i∂/+M3/2

)

P µν
3/2(∂)∆(−)(x− y;M2

3/2)

=
(

i∂/+M3/2

)

P µν
3/2(∂)∆F (x− y;M2

3/2)

−γ0

[

2

3M2
3/2

(δµ
0 δ

ν
m + δν

0δ
µ
m) i∂m +

1

3M3/2

(δµ
mδ

ν
0 − δν

mδ
µ
0 ) γm

]

δ4(x− y)
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− 2

3M2
3/2

(

i∂/+M3/2

)

δµ
0 δ

ν
0δ

4(x− y) . (25)

Dµναβ
F (x− y) = −i < 0|T

[

hµν(x)hαβ(y)
]

|0 >
= −iθ(x0 − y0)2P µναβ

2 (∂)∆(+)(x− y;M2
2 )− iθ(y0 − x0)2P µναβ

2 (∂)∆(−)(x− y;M2
2 )

= 2P µναβ
2 (∂)∆F (x− y;M2

2 )

+
1

M2
2

[

δµ
0 δ

α
0 g

νβ + δν
0δ

α
0 g

µβ + δµ
0 δ

β
0 g

να + δν
0δ

β
0 g

µα

− 2

3

(

δµ
0 δ

ν
0g

αβ + gµνδα
0 δ

β
0

)

+
4

3

(

δµ
0 δ

ν
0δ

α
0 δ

β
0 (∂0∂0 − ∂k∂k −M2

2 )

+ δµ
0 δ

ν
0δ

α
0 δ

β
b ∂

0∂b + δµ
0 δ

ν
0δ

α
a δ

β
0 ∂

0∂a + δµ
0 δ

ν
nδ

α
0 δ

β
0 ∂

0∂n + δµ
mδ

ν
0δ

α
0 δ

β
0 ∂

0∂m

+ δµ
0 δ

ν
0δ

α
a δ

β
b ∂

a∂b + δµ
0 δ

ν
nδ

α
0 δ

β
b ∂

n∂b + δµ
mδ

ν
0δ

α
0 δ

β
b ∂

m∂b + δµ
0 δ

ν
nδ

α
a δ

β
0 ∂

n∂a

+δµ
mδ

ν
0δ

α
a δ

β
0 ∂

m∂a + δµ
mδ

ν
nδ

α
0 δ

β
0 ∂

m∂n
)]

δ4(x− y) . (26)

The use of ∆(+)(x− y) and ∆(−)(x− y) is similar to what is written in [43] in case of scalar
fields

< 0|φ(x)φ(y)|0 > = ∆(+)(x− y) ,
< 0|φ(y)φ(x)|0 > = ∆(−)(x− y) . (27)

As can be seen from ((24)-(26)) the propagators are not covariant; they contain non-
covariant, local terms, as is mentioned in for instance [15].

III. AUXILIARY FIELDS

The goal of this section is to come to covariant propagators. The way we do this is to
introduce auxiliary fields. Since we also allow for mass terms we have extra parameters
which can be seen as gauge parameters. We discuss certain choices of these parameters.
Also we discuss the massless limits of the propagators in section III D and give momentum
representations of the fields in section III E. Apart from that, the organization of this section
is exactly the same as the previous one (section II).

A. Equations of Motion

As a starting point we take the Lagrangians (1a), (2a) and (2b). To these Lagrangians we
add auxiliary fields coupled to the gauge conditions of the massless theory, as discussed in
the text below (4). We also allow for mass terms of these auxiliary fields, which introduces
parameters to be seen as gauge parameters

LB = L1 +M1B∂
µAµ +

1

2
aM2

1B
2 , (28a)

Lχ = L3/2 +M3/2χ̄γ
µψµ +M3/2ψ̄µγ

µχ+ bM3/2χ̄χ , (28b)
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Lηǫ = L2 +M2∂µh
µνην +M2

2h
µ
µǫ+

1

2
cM2

2 η
µηµ . (28c)

In (28c) we did not allow for a mass term for the ǫ field. We will come back to this point
below.

These Lagrangians ((28a)-(28c)) lead to the following EoM’s.

(

� +M2
1

)

Aµ = (1− a)M1∂
µB ,

(

� +M2
B

) (

� +M2
1

)

Aµ = 0 ,
(

� +M2
B

)

B = 0 , (29)

where M2
B = aM2

1 . Furthermore we have the constraint relation ∂µAµ = −aM1B.

(

i∂/−M3/2

)

ψµ = −b+ 2

2
M3/2γµχ− bi∂µχ ,

(i∂/+Mχ)
(

i∂/−M3/2

)

ψµ = −(3b2 + 5b+ 2)M3/2i∂µχ ,
(

� +M2
χ

) (

i∂/−M3/2

)

ψµ = 0 ,

(i∂/−Mχ)χ = 0 , (30)

where Mχ = (3b/2 + 2)M3/2. The auxiliary field is related to the original spin-3/2 field via
the equations γ · ψ = −bχ and i∂ · ψ = −1

2
(1 + b)(3b+ 4)M3/2χ.

(

� +M2
2

)

hµν = − (1 + c)M2 (∂µην + ∂νηµ) +
2 (1 + c)

1− c M2
2 g

µνǫ ,

(

� +M2
η

) (

� +M2
2

)

hµν =
2 (1 + c)2

1− c M2
2

(

2∂µ∂ν − c

3 + c
M2

2 g
µν

)

ǫ ,

(

� +M2
ǫ

) (

� +M2
η

) (

� +M2
2

)

hµν = 0 ,

(

� +M2
η

)

ηµ = −2 (1 + c)

1− c M2∂
µǫ ,

(

� +M2
ǫ

) (

� +M2
η

)

ηµ = 0 ,
(

� +M2
ǫ

)

ǫ = 0 , (31)

where M2
η = −cM2

2 and M2
ǫ = − 2c

3+c
M2

2 . The constraint relations are hµ
µ = 0, ∂µh

µν =

−cM2η
ν and ∂ · η = 4M2

1−c
ǫ

From the last line of (31) we see that the ǫ-field is a free Klein-Gordon field. This equation
comes about quite naturally from the Euler-Lagrange equations. This would not be so if we
allowed for a mass term of this ǫ-field in the Lagrangian (28c). Then it must be imposed
that ǫ is a free Klein-Gordon field which makes the calculations unnatural and unnecessary
difficult.
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B. Quantization

As mentioned before the quantization procedure runs exactly the same as in the previous
section (section II B). We, therefore, determine the canonical momenta to be

π0
1 = M1B , πB = 0 ,

πn
1 = −Ȧn + ∂nA0 ,

π0
3/2 = 0 , π0

3/2
‡
= 0 ,

πn
3/2 = i

2
ψ†

kσ
kn , πn

3/2
‡ = i

2
σnkψk ,

πχ = 0 , π‡
χ = 0 ,

π00
2 = −1

2
∂nh

n0 +M2η
0 , π0

η = 0 ,
π0m

2 = −∂nh
nm + 1

2
∂mh00 + 1

2
∂mhn

n +M2η
m , πm

η = 0 ,

πnm
2 = 1

2
ḣnm − 1

2
gnmḣk

k + 1
2
gnm∂kh

k0 , πǫ = 0 ,

(32)

from which we deduce the velocities

Ȧn = −πn
1 + ∂nA0 ,

ḣnm = 2πnm
2 − gnmπ2

k
k +

1

2
gnm∂kh

k0 ,

ḣk
k = −π2

k
k +

3

2
∂kh

k0 . (33)

These velocities are the same as in the previous section (see (7)). The primary constraints
are

θ0
1 = π0

1 −M1B , θB = πB ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn
3/2 = πn

3/2 − i
2
ψ†

kσ
kn , θn

3/2
‡ = πn

3/2
‡ − i

2
σnkψk ,

θχ = πχ , θ‡χ = π‡
χ ,

θ00
2 = π00

2 + 1
2
∂nh

n0 −M2η
0 , θ0

η = π0
η ,

θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 θm

η = πm
η ,

− 1
2
∂mhn

n −M2η
m , θǫ = πǫ .

(34)

Having determined the canonical momenta, the velocities and the primary constraints we
determine the (strong) Hamiltonians to be

HB,S = −1

2
πn

1π1,n + πn
1∂nA0 +

1

2
∂mAn∂

mAn − 1

2
∂mAn∂

nAm − 1

2
M2

1A
0A0

−1

2
M2

1A
nAn −M1B∂

mAm −
1

2
aM2

1B
2 + λ1,0θ

0
1 + λBθB ,

Hχ,S =
1

2
ǫµνρkψ̄µγ5γρ (∂kψν)−

1

2
ǫµνρk

(

∂kψ̄µ

)

γ5γρψν +M3/2ψ̄µσ
µνψν
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−M3/2χ̄γ
µψµ −M3/2ψ̄µγ

µχ− bM3/2χ̄χ+ λ3/2,0θ
0
3/2 + λ3/2,nθ

n
3/2

+λ‡3/2,0θ
0
3/2

‡
+ λ‡3/2,nθ

n
3/2

‡ + λχθχ + λ‡χθ
‡
χ ,

Hηǫ,S = πnm
2 π2,nm −

1

2
π2

n
nπ2

m
m +

1

2
π2

n
n∂

mhm0 −
1

2
∂khn0∂khn0 −

1

4
∂khnm∂khnm

+
1

8
∂nh

n0∂mhm0 +
1

2
∂nh

nm∂khkm +
1

2
∂mh

00∂mhn
n +

1

4
∂mh

n
n∂

mhk
k

−1

2
∂nh

nm∂mh00 −
1

2
∂nh

nm∂mh
k
k +

1

2
M2

2h
n0hn0 +

1

4
M2

2h
nmhnm

−1

2
M2

2h
00hm

m −
1

4
M2

2h
n
nh

m
m −

1

2
cM2

2 η
µηµ −M2∂nh

n0η0 −M2∂nh
nmηm

−M2
2h

0
0ǫ−M2

2h
k
kǫ+ λ2,00θ

00
2 + λ2,0mθ

0m
2 + λ0,ηθ

0
η + λm,ηθ

m
η + λǫθǫ . (35)

With this Hamiltonians (35) and with the definition of the Pb in (10) we impose the time-
derivatives of the constraints (34) to be zero

{

θ0
1(x), HB,S

}

P
= ∂nπ

n
1 +M2

1A
0 −M1λB = 0 , (36a)

{θB(x), HB,S}P = M1∂
mAm + aM2

1B +M1λ1,0 = 0 , (36b)

{

θ0
3/2(x), Hχ,S

}

P
= ǫµ0ρk

(

∂kψ̄µ

)

γ5γρ −M3/2ψ̄µσ
µ0 +M3/2χ̄γ

0 = 0 ≡ −Φ0
3/2

‡
(x) , (37a)

{

θ0
3/2

‡
(x), Hχ,S

}

P
= −ǫµ0ρkγ0γ5γρ (∂kψµ) +M3/2γ

0σ0µψµ −M3/2χ = 0

≡ −Φ0
3/2(x) , (37b)

{

θn
3/2(x), Hχ,S

}

P
= ǫµnρk

(

∂kψ̄µ

)

γ5γρ −M3/2ψ̄µσ
µn +Mχ̄γn + iλ‡3/2,kσ

kn = 0 , (37c)
{

θn
3/2

‡(x), Hχ,S

}

P
= −ǫµnρkγ0γ5γρ (∂kψµ) +M3/2γ

0σnµψµ −Mγ0γnχ+ iσnkλ3/2,k = 0,(37d)

{θχ(x), Hχ,S}P = M3/2ψ̄ · γ + bM3/2χ̄ = 0 ≡ −M3/2Φ
‡
χγ

0 , (37e)
{

θ‡χ(x), Hχ,S

}

P
= −M3/2γ

0γ · ψ − bM3/2γ
0χ = 0 ≡ −M3/2γ

0Φχ , (37f)

{

θ00
2 (x), Hηǫ,S

}

P
= −M2λ

0
η +

1

2

(

∂k∂k +M2
2

)

hm
m −

1

2
∂n∂mh

nm +M2
2 ǫ = 0 , (38a)

{

θ0m
2 (x), Hηǫ,S

}

P
= 2∂kπ

km
2 −

(

∂k∂k +M2
2

)

h0m −M2∂
mη0 −M2λ

m
η = 0 , (38b)

{

θ0
η(x), Hηǫ,S

}

P
= ∂nh

n0 + λ00
2 + cM2η

0 = 0 , (38c)
{

θm
η (x), Hηǫ,S

}

P
= ∂nh

nm + λ0m
2 + cM2η

m = 0 , (38d)

{θǫ(x), Hηǫ,S}P = M2
2

[

h0
0 + hn

n

]

= 0 ≡M2
2 Φη , (38e)

Equations (36a), (36b), (37c), (37d) and (38a)-(38d) determine the Lagrange multipliers

λB, λ1,0, λ
‡

3/2,k, λ3/2,k, λ
0
η, λ

m
η , λ

00
2 , λ

0m
2 , respectively. All other equations in (36), (37) and (38)

yield new (secondary) constraints. Imposing their time derivatives to be zero, yields

{

Φ0
3/2(x), Hχ,S

}

P
= σnki∂nλk +M3/2γ

kλ3/2,k −M3/2λχ = 0 ,
{

Φ0
3/2

‡
(x), Hχ,S

}

P
= i∂nλ

‡

3/2,kσ
kn +M3/2λ

‡

3/2,kγ
k +M3/2λ

‡
χ = 0 ,
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{Φχ(x), Hχ,S}P = −bλχ − γ0λ3/2,0 − γnλ3/2,n = 0 ,
{

Φ‡
χ(x), Hχ,S

}

P
= bλ‡χ + λ‡3/2,0γ

0 − λ‡3/2,nγ
n = 0 , (39)

{Φη(x), Hηǫ}P = −π2
k
k +

1

2
∂nh

n0 − cM2η
0 = 0 = −Φ

(1)
2 . (40)

The equations in (39) determine the Lagrange multipliers λχ, λ‡χ, λ3/2,0 and λ‡3/2,0. Equation

(40) yields yet another (tertiary) constraint. Imposing its time derivative to be zero

{

Φ
(1)
2 (x), Hηǫ

}

P
= ∂k∂kh

00 +
1

2
∂k∂kh

m
m −

1

2
∂n∂mh

nm +
3

2
M2

2h
00 +M2

2h
m
m

−M2∂
kηk − ∂mλ

m0
2 + 3M2

2 ǫ+ cM2λ
0
η = 0 , (41)

gives an equation for λ0
η. Since we already had an equation determining λ0

η (38a) we combine
both equations for consistency and use Φη as a weakly vanishing constraint. What we get is
the last constraint

Φ
(2)
2 = −∂n∂mh

nm +
(

∂k∂k +M2
2

)

hm
m + 2M2∂

kηk − 2

(

3 + c

1− c

)

M2
2 ǫ ,

{

Φ
(2)
2 (x), Hηǫ,S

}

P
= −2∂n∂mπ

nm
2 −M2

2π2
k
k +

(

∂k∂k +
3

2
M2

2

)

∂nh
n0 + 2M2∂kλ

k
η

−2

(

3 + c

1− c

)

M2
2λǫ = 0 . (42)

As can be seen in (42) imposing the time derivative of Φ
(2)
2 to be zero determines the re-

maining Lagrange multiplier λǫ.
All Lagrange multipliers are determined, which, again, means that all constraints are

second class. So, every constraint has at least one non-vanishing Pb with another constraint.
The complete set of constraints is

θ0
1 = π0

1 −M1B , θB = πB ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn
3/2 = πn

3/2 − i
2
ψ†

kσ
kn , θn

3/2
‡ = πn

3/2
‡ − i

2
σnkψk ,

θχ = πχ , θ‡χ = π‡
χ ,

Φ0
3/2 = −iσkn∂kψn −M3/2

(

γkψk − χ
)

, Φ0
3/2

‡
= −i∂kψ

†
nσ

nk −M3/2

(

ψ†
kγ

k + χ†
)

,

Φχ = γ0ψ0 + γkψk + bχ , Φ‡
χ = −ψ†

0γ
0 + ψ†

kγ
k − bχ† ,

θ00
2 = π00

2 + 1
2
∂nh

n0 −M2η
0 , θ0

η = π0
η ,

θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 θm

η = πm
η ,

− 1
2
∂mhn

n −M2η
m , θǫ = πǫ ,

Φ
(2)
2 = −∂n∂mh

nm +
(

∂k∂k +M2
2

)

hm
m , Φη = h0

0 + hn
n ,

+ 2M2∂
kηk − 2

(

3+c
1−c

)

M2
2 ǫ , Φ

(1)
2 = π2

k
k − 1

2
∂nh

n0 + cM2η
0 .

(43)
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Again we make linear combinations of constraints in order to reduce the number of non-
vanishing Pb’s

Φ̃χ = Φχ −
b

M3/2

Φ0
3/2 ,

θ̃n
3/2 = θn

3/2 − θ0
3/2γ0

[

(1 + b)γn − b

M3/2

i
←−
∂kσ

kn

]

+
1

M3/2

θχ

[

M3/2γ
n − i←−∂kσ

kn
]

,

Φ̃‡
χ = Φ‡

χ −
b

M3/2

Φ0
3/2

‡
,

θ̃n‡
3/2 = θn

3/2
‡ −
[

−(1 + b)γn +
b

M3/2

σnki∂k

]

γ0θ
0
3/2

‡ − 1

M3/2

[

M3/2γ
n − σnki∂k

]

θ‡χ ,

Φ̃η = Φη −
1

M2

θ0
η ,

Φ̃
(1)
2 = Φ

(1)
2 + cθ00

2 +
1

2M2

(

1− c
3 + c

)

(

2∂k∂k + 3M2
)

θǫ ,

θ̃0n
2 = θ0n

2 +
1

(3 + c)
∂nΦ̃η ,

Φ̃
(2)
2 = Φ

(2)
2 + 2∂kθ̃

0k
2 . (44)

With these new constraints the remaining non-vanishing Pb’s are
{

θ0
1(x), θB(y)

}

P
= −M1δ

3(x− y) ,
{

θ0
3/2(x), Φ̃χ(y)

}

P
= γ0δ

3(x− y) = −
{

θ0
3/2

‡
(x), Φ̃‡

χ(y)
}

P
,

{

θχ(x),Φ0
3/2(y)

}

P
= M3/2 δ

3(x− y) = −
{

θ‡χ(x),Φ0
3/2

‡
(y)
}

P
,

{

θ̃n
3/2(x), θ̃

m‡

3/2(y)
}

P
= −iσmnδ3(x− y) ,

{

θ00
2 (x), θ0

η(y)
}

P
= −M2 δ

3(x− y) ,
{

θ̃0n
2 (x), θm

η (y)
}

P
= −M2 g

nm δ3(x− y) ,
{

θǫ(x), Φ̃
(2)
2 (y)

}

P
= 2

(

3 + c

1− c

)

M2
2 δ

3(x− y) ,
{

Φ̃
(1)
2 (x), Φ̃η(y)

}

P
= −(3 + c) δ3(x− y) . (45)

The Db and the inverse functions that go with them are defined in (19) and (20), so we can
immediately write down the ETC and ETAC relations

[

Aµ(x), Ȧν(y)
]

0
= −i (gµν − (1− a)δµ

0 δ
ν
0 ) δ3(x− y) ,

[Aµ(x), B(y)]0 =
i

M1

δµ
0 δ

3(x− y) ,
[

Aµ(x), Ḃ(y)
]

0
= −

[

Ȧµ(x), B(y)
]

0
= −iδµ

k

∂k

M1

δ3(x− y) ,
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[

B(x), Ḃ(y)
]

0
= −iδ3(x− y) , (46)

{

ψn(x), ψm†(y)
}

0
= −

[

gnm − 1

2
γnγm

]

δ3(x− y) ,
{

ψ0(x), ψ0†(y)
}

0
= −3

2
(1 + b)2 δ3(x− y) ,

{

ψ0(x), ψm†(y)
}

0
=

[

b+ 1

2
γm − b i∂

m

M3/2

]

γ0 δ
3(x− y) ,

{

ψn(x), ψ0†(y)
}

0
=

[

b+ 1

2
γn − b i∂n

M3/2

]

γ0 δ
3(x− y) ,

{

χ(x), χ†(y)
}

0
= −3

2
δ3(x− y) ,

{

ψ0(x), χ†(y)
}

0
= γ0

[

3(1 + b)

2
− 1

M3/2

iγk∂k

]

δ3(x− y) ,

{

ψn(x), χ†(y)
}

0
= −

[

1

2
γn − i∂n

M3/2

]

δ3(x− y) , (47)

[

h00(x), η0(y)
]

0
=

3

M2(3 + c)
iδ3(x− y) ,

[

h0n(x), ηm(y)
]

0
=

1

M2

gnm iδ3(x− y) ,
[

h0n(x), ǫ(y)
]

0
= − 1

M2
2

(

1− c
3 + c

)

∂niδ3(x− y) ,
[

hnm(x), η0(y)
]

0
= − 1

M2(3 + c)
gnm iδ3(x− y) ,

[

η0(x), ηm(y)
]

0
=

1

M2
2 (3 + c)

∂miδ3(x− y) ,

[

η0(x), ǫ(y)
]

0
=

3

2M2

(1− c)
(3 + c)2

iδ3(x− y) . (48)

In principle there are also ETC relations among time derivatives of the fields in (48), that
we have not shown for convenience. However, they are of importance when calculating the
commutation relations for non-equal times, below.

C. Propagators

In order to get commutation and anti-commutation relations for non-equal times we first
construct solutions to the EoMs ((29), (30) and (31)) based on the identities (22)

B(x) =

∫

d3z
[

∂z
0∆(x− z;M2

B) ·B(z)−∆(x− z;M2
B) · ∂z

0B(z)
]

,

Aµ(x) =

∫

d3z
[

∂z
0∆(x− z;M2

1 ) · Aµ(z)−∆(x− z;M2
1 ) · ∂z

0Aµ(z)
]

19



+
1

(1− a)M2
1

∫

d3z

[(

∂z
0∆(x− z;M2

B)− ∂z
0∆(x− z;M2

1 )

)

−
(

∆(x− z;M2
B)−∆(x− z;M2

1 )
)

∂z
0

]

× (� +M2
1 )Aµ(z) ,

χ(x) = i

∫

d3z(i∂/x +Mχ)γ0∆(x− z;M2
χ)χ(z) ,

ψµ(x) = i

∫

d3z(i∂/x +M3/2)γ
0∆(x− z;M2

3/2)ψµ(z)

+
2i

3(b+ 2)M3/2

∫

d3z

[

(i∂/x +M3/2)∆(x− z;M2
3/2)

− (i∂/x −Mχ)∆(x− z;M2
χ)

]

γ0(i∂/z −M3/2)ψµ(z)

+
2i

(3b+ 2)M3/2

∫

d3z

{

∆(x− z;M2
χ)− 2

3(b+ 2)M3/2

[

× (i∂/x +M3/2)∆(x− z;M2
3/2)− (i∂/x −Mχ)∆(x− z;M2

χ)

]}

×γ0(i∂/z +Mχ)(i∂/z −M3/2)ψµ(z) ,

ǫ(x) =

∫

d3z
[

∂z
0∆(x− z;M2

ǫ ) · ǫ(z)−∆(x− z;M2
ǫ ) · ∂z

0ǫ(z)
]

,

ηµ(x) =

∫

d3z
[

∂z
0∆(x− z;M2

η ) · ηµ(z)−∆(x− z;M2
η ) · ∂z

0η
µ(z)

]

+
1

M2
η −M2

ǫ

∫

d3z

[

∂z
0

(

∆(x− z;M2
ǫ )−∆(x− z;M2

η )

)

−
(

∆(x− z;M2
ǫ )−∆(x− z;M2

η )

)

· ∂z
0

]

(� +M2
η )ηµ(z) ,

hµν(x) =

∫

d3z
[

∂z
0∆(x− z;M2

2 ) · hµν(z)−∆(x− z;M2
2 ) · ∂z

0h
µν(z)

]

+
1

M2
2 −M2

η

∫

d3z

[

∂z
0

(

∆(x− z;M2
η )−∆(x− z;M2

2 )

)

−
(

∆(x− z;M2
η )−∆(x− z;M2

2 )

)

∂z
0

]

× (� +M2
2 )hµν(z)

+
1

(M2
η −M2

ǫ )(M2
2 −M2

η )(M2
2 −M2

ǫ )

∫

d3z

[
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∂z
0

(

(M2
2 −M2

η )∆(x− z;M2
ǫ )− (M2

2 −M2
ǫ )∆(x− z;M2

η )

+ (M2
η −M2

ǫ )∆(x− z;M2
2 )

)

−
(

(M2
2 −M2

η )∆(x− z;M2
ǫ )− (M2

2 −M2
ǫ )∆(x− z;M2

η )

+ (M2
η −M2

ǫ )∆(x− z;M2
2 )

)

∂z
0

]

(

� +M2
η

) (

� +M2
2

)

hµν(z) . (49)

Using these equations (49) and the ETC and ETAC relations of (46), (47) and (48) we obtain
the following commutation and anti-commutation relations

[B(x), B(y)] = −i∆(x− y,M2
B) ,

[Aµ(x), B(y)] = −i ∂
µ

M1

∆(x− y,M2
B) ,

[Aµ(x), Aν(y)] = −i
(

gµν +
∂µ∂ν

M2
1

)

∆(x− y;M2
1 ) + i

∂µ∂ν

M2
1

∆(x− y;M2
B)

= P µν
1 i∆(x− y;M2

1 ) + P µν
B i∆(x− y;M2

B) , (50)

{χ(x), χ̄(y)} = −3

2
i (i∂/+Mχ) ∆(x− y;M2

χ) ,

{ψµ(x), χ̄(y)} = −1

2

[

γµ − 2i∂µ

M3/2

]

i (i∂/+Mχ) ∆(x− y;M2
χ) ,

{

ψµ(x), ψ̄ν(y)
}

= −i
(

i∂/+M3/2

)

[

gµν − 1

3
γµγν +

2∂µ∂ν

3M2
3/2

− 1

3M3/2

(γµi∂ν − γνi∂µ)

]

∆(x− y;M2
3/2)

−1

6

[

γµ − 2i∂µ

M3/2

]

i (i∂/+Mχ)

[

γν − 2i∂ν

M3/2

]

∆(x− y;M2
χ)

=
(

i∂/+M3/2

)

P µν
3/2i∆(x− y;M2

3/2) + P µν
χ i∆(x− y;M2

χ) , (51)

[ǫ(x), ǫ(y)] = −3

4

c(1− c)2

(3 + c)3
i∆(x− y;M2

ǫ ) ,

[ηµ(x), ǫ(y)] = −3

2

(1− c)
(3 + c)2

∂µ

M2

i∆(x− y;M2
ǫ ) ,

[ηµ(x), ην(y)] =

[

gµν +
∂µ∂ν

M2
η

]

i∆(x− y;M2
η )− 3

(3 + c)

∂µ∂ν

M2
η

i∆(x− y;M2
ǫ ) ,

[ǫ(x), hµν(y)] =
(1− c)
(3 + c)

[

∂µ∂ν

M2
2

− 1

2

c

(3 + c)
gµν

]

i∆(x− y;M2
ǫ ) ,

[ηα(x), hµν(y)] =
1

M2

[

∂µgαν + ∂νgαµ +
2

M2
η

∂α∂µ∂ν

]

i∆(x− y;M2
η )
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− 1

M2

[

1

(3 + c)
∂αgµν +

2

M2
η

∂α∂µ∂ν

]

i∆(x− y;M2
ǫ ) ,

[

hµν(x), hαβ(y)
]

=

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ

+
1

M2
2

(

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα
)

− 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4

3M4
2

∂µ∂ν∂α∂β

]

i∆(x− y;M2
2 )

− 1

M2
2

[

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα

+
4

M2
η

∂µ∂ν∂α∂β

]

i∆(x− y;M2
η )

−
[

1

3

c

3 + c
gµνgαβ − 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4(3 + c)

3cM4
2

∂µ∂ν∂α∂β

]

i∆(x− y;M2
ǫ )

= 2P µναβ
2 (∂)i∆(x− y;M2

2 ) + P µναβ
η (∂)i∆(x− y;M2

η )

+P µναβ
ǫ (∂)i∆(x− y;M2

ǫ ) . (52)

From the overall minus signs in the (anti-) commutation relations of the auxiliary fields in
(52) we conclude that all auxiliary fields are ghost, except for the ǫ-field. There the choice of
the gauge parameter c determines whether it is ghost-like or not: for −3 < c < 0 the ǫ-field
is physical and it ghost-like in all other cases (excluding c = −3 and c = 0).

Having obtained these (anti-) commutation relations we calculate the propagators

Dµν
F,a(x− y) = −i < 0|T [Aµ(x), Aν(y)] |0 >

= −iθ(x0 − y0)

[

P µν
1 (∂)∆(+)(x− y;M2

1 ) + P µν
B (∂)∆(+)(x− y;M2

B)

]

−iθ(x0 − y0)

[

P µν
1 (∂)∆(−)(x− y;M2

1 ) + P µν
B (∂)∆(−)(x− y;M2

B)

]

= P µν
1 (∂)∆F (x− y;M2

1 ) + P µν
B (∂)∆F (x− y;M2

B) . (53)

We see that this propagator is explicitly covariant, independent of the choice of the gauge
parameter. Choosing a = 1 we see that the terms containing derivatives cancel and that
only the gµν term remains. It can be seen as the massive photon propagator. For a =∞ we
re-obtain the massive spin-1 field, like in (24). Except in the above derivation it is obtained
without non-covariant terms in the propagator. The choice a = 0 is particularly interesting,
because then still the spin-1 condition ∂ ·A = 0 holds (text below (29)), but the propagator
is covariant. In momentum space it looks like

Dµν
F,0(P ) =

−gµν + pµpν

p2

p2 −M2
1 + iε

. (54)

The spin-3/2 propagator is

Sµν
F,b(x− y) = −i < 0|T

[

ψµ(x), ψ̄ν(y)
]

|0 >
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= −iθ(x0 − y0)

[

(

i∂/+M3/2

)

P µν
3/2(∂)∆(+)(x− y;M2

3/2) + P µν
χ (∂)∆(+)(x− y;M2

χ)

]

−iθ(x0 − y0)

[

(

i∂/+M3/2

)

P µν
3/2(∂)∆(−)(x− y;M2

3/2) + P µν
χ (∂)∆(−)(x− y;M2

χ)

]

=
(

i∂/+M3/2

)

P µν
3/2(∂)∆F (x− y;M2

1 ) + P µν
χ (∂)∆F (x− y;M2

B)

+
b

M3/2

δµ
0 δ

ν
0 δ

4(x− y) . (55)

Only for b = 0 we have an explicitly covariant propagator. This result was also obtained in
[17]. From the text below (30) we see that the choice b = 0 means that we have only one of
the two spin-3/2 conditions or, to put it in a different way, we have added an extra spin-1/2
piece to make the RS propagator explicitly covariant.

For b = −4
3

and b = −1 we have that i∂ ·ψ = 0 (, but γ ·ψ 6= 0), but then the propagator
is not covariant anymore.

The spin-2 propagator is

Dµναβ
F,c (x− y) = −i < 0|T

[

hµν(x)hαβ(y)
]

|0 >

= −iθ(x0 − y0)
[

2P µναβ
2 (∂)∆(+)(x− y;M2) + P µναβ

η (∂)i∆(+)(x− y;M2
η )

+ P µναβ
ǫ (∂)i∆(+)(x− y;M2

ǫ )
]

−iθ(y0 − x0)
[

2P µναβ
2 (∂)∆(−)(x− y;M2) + P µναβ

η (∂)i∆(−)(x− y;M2
η )

+ P µναβ
ǫ (∂)i∆(−)(x− y;M2

ǫ )
]

= 2P µναβ
2 (∂)∆F (x− y;M2) + P µναβ

η (∂)∆F (x− y;M2
η )

+P µναβ
ǫ (∂)∆F (x− y;M2

ǫ ) . (56)

We see that this propagator (56) does not contain local, non-covariant terms independent of

the choice of the gauge parameter. The first part of (56) (P µναβ
2 (∂)-part) is pure spin-2 12.

The nature of the other parts depends on the free gauge parameter.
Since c is still a free parameter it is interesting to look at several gauges. But before that,

we exclude c = 1 and c = −3 as before. In these cases the ǫ-field vanishes and the EoM are
quite different. Also the quantization procedure runs differently.

An interesting gauge which we want to discuss here is c = −1. From (31) we see that all
fields become free Klein-Gordon fields of mass M2. As a result of this choice all derivative
terms disappear in (56) and what is left is

Dµναβ
F,−1 (x− y) =

[

gµαgνβ + gµβgνα − 1

2
gµνgαβ

]

∆F (x− y;M2) . (57)

In contrast to the spin-1 case, discussed above, equation (57) is not the massive version of
the massless spin-2 propagator.

Equation (56) yields for the choice c = 0

Dµναβ
F,0 (x− y) = 2P µναβ

2 (∂)∆F (x− y;M2
2 )− 1

M2
2

[

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα

12 The factor 2 can again be transformed away by redefining all fields as in (23)
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−2

3

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4∂µ∂ν∂α∂β

3M2
2

]

∆F (x− y)

+
4

3M2
2

∂µ∂ν∂α∂β∆̃F (x− y) ,

Dµναβ
F,0 (p) =

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ +

2

3p2

(

pµpνgαβ + gµνpαpβ
)

− 1

p2

(

pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα
)

+
4

3p4
pµpνpαpβ

]

× 1

p2 −M2
2 + iε

. (58)

Here, the ∆̃F (x− y) (as well as various other ∆ propagators) is defined in appendix A. As
in the spin-1 case this propagator (58) satisfies the field equations (and is therefore pure
spin-2) and is explicitly covariant. This result is also obtained by ignoring the c term in the
Lagrangian (28a) from the outset.

D. Massless limit

It is most easy to study the massless limits of the propagators obtained in the previous
subsection in momentum space

Lim
M1→0

Dµν
F,a(p) =

[

−gµν + (1− a) p
µpν

p2

]

1

p2 + iε
. (59)

Although we have not presented the massless case, it is done rather easily. The quantization
procedure runs very similar to what is presented in section III B, contrary to the case without
an auxiliary field (section II B), only the equations like in (49) are a bit different. It should
be noticed that it is sufficient in the massless case to ignore the mass term of the spin-1 field
in (28a), only. So, even though allowing for a mass term for the auxiliary field, both Aµ

and B turn out to be massless. Therefore the freedom in choosing the gauge parameter is
still present. In the massless case the exact same result as (59) is obtained, so the massless
limit connects smoothly with the massless case and is explicitly covariant. In fact this line
of reasoning is valid for all three spin cases with auxiliary fields. Having mentioned this, we
will not come back to this when discussing the massless limits of the spin-3/2 and spin-2
cases below.

The massless limit of the spin-3/2 field is

Lim
M3/2→0

Sµν
F,0(p) = −p/

[

gµν − 1

2
γµγν

]

1

p2 + iε
+ γµpν 1

p2 + iε
− 2pµpνp/

1

p4 + iε
. (60)

We notice that when this propagator (60) is coupled to conserved currents only the first two
parts contribute. These parts form exactly the massless spin-3/2 propagator with only the
helicities λ = ±3/2 ([26]). When we couple the (massive) RS-propagator (25) to conserved
currents and take the massless limit 13 we see that it is different from the one in (60) because
of the factor in front of the γµγν term.

13 Terms in the massive RS propagator that do not have a proper massless limit do not contribute since we

couple to conserved currents
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The massless limit of the spin-2 propagator is

Lim
M2→0

Dµναβ
F,c (p) =

[

gµαgνβ + gµβgνα − 2 + c

3 + c
gµνgαβ

]

1

p2 + iε

−(1 + c)
1

p2

[

pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα

− 2

3 + c

(

pµpνgαβ + gµνpαpβ
)

]

1

p2 + iε

+
4(1 + c)2

3 + c

pµpνpαpβ

p4

1

p2 + iε
. (61)

Making the choice of the gauge parameter c → ±∞ we see that (61) becomes the massless
spin-2 propagator plus terms proportional to p. In physical processes these terms do not
contribute when coupled to conserved currents

Dµναβ
F,±∞(p) =

[

gµαgνβ + gµβgνα − gµνgαβ
] 1

p2 + iε
+O(p) . (62)

Again, this is different from taking the massive spin-2 propagator (26), couple it to conserved
currents and taking the massless limit, as is mentioned in [27].

Having obtained the correct massless spin-2 propagator (61) it is particularly interesting
to see how this limit comes about. Considering the propagator (56) (coupled to conserved
currents) with a small non-zero mass and requiring that it is a mixture of pure spin-2 and
spin-0 (so no ghosts or tachyons) in order to have a kind of massive Brans-Dicke [44] theory,
this would imply that −3 < c < 0. However with this restriction we cannot take the mass
smoothly to zero in order to have a pure massless spin-2 propagator, because this requires
c→ ±∞ as mentioned before.

The above situation of a pure massive spin-2 and spin-0 propagator limiting smoothly
to a pure massless spin-2 propagator can be obtained in [18], but there the set-up is quite
different as well as the original goal.

E. Momentum Representation

To finalize the description of the higher spin fields coupled to auxiliary fields we give the
momentum representation of these fields in this subsection. Also, we give the relations which
hold for the various creation and annihilation operators.

A solution to the EoM of the fields in (29), (30) and (31) in terms of the auxiliary fields
is

Aµ = Vµ +
∂µ

M1

B ,

ψµ = Ψµ +
1

3

(

γµ −
2i∂µ

M3/2

)

χ ,

ηµ = Φ1,µ +
2(3 + c)

c(1− c)
∂µ

M2

ǫ ,

hµν = Φ2,µν −
1

M2

(∂µΦ1,ν + ∂νΦ1,µ) +
2

3

3 + c

1− c

(

gµν −
2(3 + c)

c

∂µ∂ν

M2
2

)

ǫ , (63)
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where

(� +M2
1 )Vµ = 0 , ∂ · V = 0 ,

(i∂/−M3/2)Ψµ = 0 , γ ·Ψ = 0 , i∂ ·Ψ = 0 ,

(� +M2
2 )Φ2,µν = 0 , ∂µΦ2,µν = 0 , Φµ

2,µ = 0 , (64)

and are therefore free spin-1, spin-3/2 and spin-2 fields, respectively. The field Φ1,µ also
satisfies the free spin-1 equations, but is of negative norm as we will see below.

Since the anti-commutator of the χ-field (51) and the commutator of the ǫ-field (52)
contain constants we redefine these fields for convenience

χ =

√

3

2
χ′

ǫ =

√
3(1− c)

2(3 + c)
ǫ′ . (65)

14 Therefore (63) becomes

ψµ = Ψµ +
1√
6

(

γµ −
2i∂µ

M3/2

)

χ′ ,

ηµ = Φ1,µ +

√
3

c

∂µ

M2

ǫ′ ,

hµν = Φ2,µν −
1

M2

(∂µΦ1,ν + ∂νΦ1,µ) +
1√
3

(

gµν −
2(3 + c)

c

∂µ∂ν

M2
2

)

ǫ′ . (66)

The momentum representation of the fields is

B(x) =

∫

d3p

(2π)32EB

[

aB(p)e−ipx + a†B(p)eipx
]

p0=EB

,

Vµ(x) =
1
∑

λ=−1

∫

d3p

(2π)32EV

[

aV,µ(pλ)e−ipx + a†V,µ(pλ)eipx
]

p0=EV

,

χ′(x) =

1

2
∑

s=− 1

2

∫

d3p

(2π)32Eχ

[

bχ(ps)uχ(ps)e−ipx + d†χ(ps)vχ(ps)eipx
]

p0=Eχ
,

Ψµ(x) =

3

2
∑

s=− 3

2

∫

d3p

(2π)32EΨ

[

bΨ(ps)uµ(ps)e−ipx + d†Ψ(ps)vµ(ps)eipx
]

p0=EΨ

,

ǫ′(x) =

∫

d3p

(2π)32Eǫ

[

aǫ(p)e
−ipx + a†ǫ(p)e

ipx
]

p0=Eǫ
,

14 The part in the commutator of the ǫ-field that determines whether ǫ is ghost-like or not is not taken in

the redefinition.
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Φ1,µ(x) =
1
∑

λ=−1

∫

d3p

(2π)32E1

[

a1,µ(pλ)e−ipx + a†1,µ(pλ)eipx
]

p0=E1

,

Φ2,µν =
2
∑

λ=−2

∫

d3p

(2π)32E2

[

a2,µν(pλ)e−ipx + a†2,µν(pλ)eipx
]

p0=E2

, (67)

where Ei =
√

|~p|2 +M2
i . In (67) the spin-3/2 spinor uµ(ps) is a tensor product of a spin-1

polarization vector and a spin-1/2 spinor: uµ = ǫµ⊗ u. The normalization of this (spin-1/2)
spinor, as well as that of uχ, is ū(ps)u(ps′) = 2Mδss′ and of course something similar for
the v-spinors. With this normalization the creation and annihilation operators satisfy the
following (commutation) relations

[

aB(p), a†B(p′)
]

= −(2π)32EB δ
3(p− p′) ,

[

aV,µ(pλ), a†V,ν(p
′λ′)
]

=

(

−gµν +
pµpν

M2
1

)

(2π)32EV δ
3(p− p′)δλλ′ ,

{

bχ(ps), b†χ(p′s′)
}

=
{

dχ(ps), d†χ(p′s′)
}

= −(2π)32Eχ δ
3(p− p′)δss′ ,

{

bΨ(ps), b†Ψ(p′s′)
}

=
{

dΨ(ps), d†Ψ(p′s′)
}

= (2π)32EΨ δ
3(p− p′)δss′ ,

[

aǫ(p), a
†
ǫ(p

′)
]

= − c

3 + c
(2π)32Eǫ δ

3(p− p′) ,
[

a1,µ(pλ), a†1,ν(p
′λ′)
]

= −
(

−gµν +
pµpν

M2
η

)

(2π)32E1 δ
3(p− p′)δλλ′ ,

[a2,µν(pλ), a2,αβ(p′λ′)] =

[

gµαgνβ + gµβgνα −
2

3
gµνgαβ

− 1

M2
2

(pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα)

+
2

3M2
2

(pµpνgαβ + gµνpαpβ) +
4

3M4
2

pµpνpαpβ

]

×(2π)32E2 δ
3(p− p′)δλλ′ . (68)

All other (anti-) commutation relations vanish. These (anti-) commutation relations are such
that the relations in (50), (51) and (52) remain valid.

To complete the properties of the fields in momentum space there still are the following
relations

pµaV,µ(pλ) = 0 ,

pµuµ(ps) = 0 , γµuµ(ps) = 0 ,

pµa1,µ(pλ) = 0 ,

pµa2,µν(pλ) = 0 , aµ
2,µ(pλ) = 0 . (69)
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IV. CONCLUSION AND DISCUSSION

We conclude this article by stating that we have quantized (massive) higher spin (1 ≤ j ≤
2) fields in both the case where they are free (section II) and where they are coupled to (an)
auxiliary field(s) (section III). We have presented a full constraint analysis and quantization
procedure to come to equal time (anti) commutation relations.

In the free case we have explicitly shown that the constructed propagators are non-
covariant, which is well known. In the coupled case, i.e. auxiliary fields are coupled to gauge
conditions of the free case, the propagators can be covariant. Only in the spin-3/2 case this
requires a choice of the parameter, namely b = 0. The obtained propagators have a smooth
massless limit and connect perfectly to propagators which would be obtained in the massless
case (including (an) auxiliary field(s)).

When coupled to conserved currents we see that it is possible to obtain the correct massless
spin-j propagators carrying only the helicities λ = ±jz. Only in the spin-3/2 and in the
spin-2 case we have to make choices for the parameters, namely b = 0 and c = ±∞. As far
as these two cases is concerned, it is a different situation then taking the massive propagator,
couple it to conserved currents and putting the mass to zero. We stress that in these cases
the limits are only smooth if the massive propagators contain ghost parts.

APPENDIX A: ∆ PROPAGATORS

A few definitions of on mass-shell propagators, according to [43], are

∆(x;m2) =
−i

(2π)3

∫

d4pǫ(p0)δ(p
2 −m2)e−ipx ,

∆±(x;m2) = (2π)−3

∫

d4pθ(±p0)δ(p
2 −m2)e−ipx ,

∆(1)(x;m2) =
1

(2π)3

∫

d4p δ(p2 −m2)e−ipx , (A1)

which satisfy the relations amongst each other

i∆(x;m2) = ∆+(x;m2)−∆−(x;m2) ,

∆+(−x;m2) = ∆−(x;m2) ,

∆(1)(x;m2) = ∆+(x;m2) + ∆−(x;m2) . (A2)

Furthermore, there are the following Green functions

−∆F (x;m2) = i
[

θ(x0)∆
+(x;m2) + θ(−x0)∆

−(x;m2)
]

,

∆ret(x;m
2) = −θ(x0)∆(x;m2) ,

∆adv(x;m
2) = θ(−x0)∆(x;m2) ,

∆̄(x;m2) = −1

2
ǫ(x− y)∆(x;m2) , (A3)

where the Green function of the last line of (A3) is defined in the book of Nakanishi and
Ojima (see [16]). A well known form the the Feynman propagator ∆F (x− y) is

∆F (x;m2) =
1

(2π)4

∫

d4p
e−ipx

p2 −m2 + iε
. (A4)
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The following ∆ propagators are defined to be

∆̃(x) = − ∂

∂m2
∆(x;m2)|m2=0 ,

˜̃∆(x) =

(

∂

∂m2

)2

∆(x;m2)|m2=0 . (A5)

Since the last two lines of (A5) are also valid for Feynman function we can, by using the
integral representation of the Feynman function (A3) give integral representations for ∆̃F (x)

and ˜̃∆F (x)

∆̃F (x;m2) = − 1

(2π)4

∫

d4p
e−ipx

p4 + iε
,

˜̃∆F (x;m2) =
1

(2π)4

∫

d4p
e−ipx

p6 + iε
. (A6)

Furthermore we have the important relations

(

� +m2
)

∆(x;m2) = 0 ,

∆(x;m2)|0 = 0 ,
[

∂0∆(x;m2)
]

|0 = −δ(~x) ,

�∆̃(x) = ∆(x) ,

∆̃(x)|0 = ∂0∆̃(x)|0 = ∂2
0∆̃(x)|0 = 0 ,

∂3
0∆̃(x)|0 = −δ(~x) ,

�
˜̃∆(x) = ∆̃(x) ,

˜̃∆(x)|0 = ∂0
˜̃∆(x)|0 = . . . = ∂4

0
˜̃∆(x)|0 = 0 ,

∂5
0
˜̃∆(x)|0 = −δ(~x) ,

[

∂0∆
(1)(x;m2)

]

|0 = 0 . (A7)
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