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I. ABSTRACT

In this note we describe the nucleon-nucleon (NN) and hyperon-nucleon (YN) coupling
constants in the 3 Py- and 3S;-quark-pair-creation (QPC) models. The method used exploits
the Fierz-identities, in contrast to papers in the literature. Technically, this means that the
treatment of the two QCP-models is rather uniform, and the flavor-spin-color recouplings
are rather simple. The description of the meson-states is based on the Van Royen-Weisskopf
representation.

We consider the contributions from the ’direct’ (a) and the ’exchange’ (b) QPC-process.
In (a) and (b) the ’active’ quark in the initial baryon ends up in the meson, respectively
the final baryon. It turns out that (b) is small w.r.t. (a), and neglecting (b) the difference
between the 3Py and 3S;-model is, apart from an overall constant, only due to the different
coefficients in the flavor-spin Fierz-identities.

In the QPC-models, used in these notes, we do not generate couplings for the axial
JPC¢ =17~ and tensor J©¢ = 2**-mesons.

The summary of the derived formulas, in the case of the 3 Py-model, with no QGG form-factor
nor SU(6)-breaking effects, for the divers (I=1)-couplings is:
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In a concise form the couplings can be written as

3
gpBM(£) = (45)1/a a0 Xat(Int, Lar) Fyg(Riy),

where + = —(—)Is with L; the orbital angular momentum of the final MB-state.

We discuss several corrections to these naive’ expressions for the BBM-couplings. Notably
are gluonic-corrections and hadronic-vertex corrections. The gluonic-corrections are isospin
independent. This because a two-quark subsystem in a baryon is necessarily in a {3*}.-
irrep, and higher-order gluon corrections do not change the ratio of the BBM-couplings
for Iy = 0 and I; = 1. These gluonic-corrections will produce non-harmonic effects in
the quark wave-functions, similar to those responsible for the 'running’ of the pair-creation
constant 7,;. Therefore, the effective radii of the gg-states are not constant, and may be
adapted to produce rather fine-tuned descriptions of the BBM-couplings. In obtaining these
descriptions we fit the weights A and B for the 3Py- and 3S;-mechanism. All solutions are
3 Py-dominated.



We can produce many solutions with different Agpc-values by noting the invariance of the
BBM-couplings under the scale-transformation:

Ri;=s Ry Ry =5 Ry, Aopc = s**Agep,
where R3; refer to the mesons with gy ~ R]Tf’/ ? respectively ~ R]j/ 2,
First, in a "trial-solution”, see Table II, we show a 'naive’ solution with the same radius
for the vector-, scalar-, and axial-vector mesons (R =0.66 fm). Notice that the I=1
BBM-couplings are too strong. Apparently, the vector- and scalar-meson I=1 couplings are
enhanced over the I=0 coupling, which possibly can be attributed to the isospin-dependent
gluon-corrections alluded to above.
Next, we produced two ’realistic’ solutions with 3P, /25, = 66%/33%,
99%/1%. In the first solution s = 1 (Table II): Agpc = 350 MeV, Ry, (I = 0) = 0.66
fm, Ry, (I = 1) = 0.86 fm. In the second solution s = 1/2 (Table V): Agpc = 600 MeV,
Ri(I =0) =0.33 fm, Ry, (I = 1) = 0.45 fm.
In these tables, for the spin-triplet gg-states (vector- and sclaar mesons) Ry (I = 1) >
Ry(I = 0), and for the spin-singlet gg-states (pseudoscalars) Ry(I = 1) < Ry (I = 0).
This might be understood as due to chiral-goldstone boson exchange between quarks , see
section VF. (The axial-vector mesons seem not to follow such a rule. Also, an OBE-model
for mesons gives opposite results, see section V G)
As a further possibility, we analyze in sections V C and VD SU(6)-breaking effects. This
opens the possibilty of changing the weights of the isospin 0 and 1 component of the di-quark
system in the baryons. This way the strength of the coupling to the I); = 0, 1-mesons could
be altered. May be this gives more natural solutions for the I;; = 1-problem. Exploiting
(56)-(70) SU(6)-irrep mixing, this idea is tested in section VD. The results favor the
dominance of the 3P,- over the 3S;- mechanism with a ratio 2:1. This is in agreement with
the lattice study by Isgur and Paton.
The pseudoscalar mesons are exceptional, due to the small pion mass. This means that the
perturbative gluon-correction to the running pair-creation constant can not be used, and
we have to modify both R, and the running pair-creation constant v at the pion mass in
order to get the proper strength of the m-coupling.

II. INTRODUCTION

The quark-pair-creation (QPC)-model [1] gives a prediction for all BBM-couplings. This
in terms of a single pair creation constant, and the radii of the quark-wave-functions of the
baryons and the mesons.

We start out from the 25; Pair-creation Hamiltonian
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FIG. 1: 3P,- and 3S;-quark-pair-creation (QPC)

V) . . . .
where %gq) is a phenomenological constant, and the summations run as i, j = u,d, s.

NOTE 1: In this model we have in the fundamental process a (confined) scalar or gluon
propagator. This implies, assuming a constant propagator, an extra factor depending on a
scalar or (massive) gluon exchange

(=) (Fi/mg) ~ i/ Agpe

meaning ~ +£iH;p;.

NOTE 2: The flavor part of the interaction Hamiltonian is similarly to the color part in
(1), and can be treated analogously. This in particular for the Fierzing procedures. Because
of the direct-product character of the spinors the flavor Fierzing is like that for the color.

Rearrangement is supposed to take place when a quark-antiquark pair is created by some
mechanism in a baryon, where one quark from the baryon combines into a mesonic state with
the anti-quark from the pair. The quark from the pair recombines with the two remaining
quarks of the baryon to make the baryon in the final state. This rearrangements into mesons
of different kind can be understood from a Fierz-transformation applied to (1). One has the
identity [2]

1
1% _ _ _ _
H = e 2 {+ G 4G 5 — 5 Gl - 7"
1,5
1 7.~ 5 ~ A5
=5 G0 GV~ G450 450 | - (2)

Here, we considered only the flavor-spin Fierzing. ! The appropriate Fierzing of the color
structure is different for diagram (a) and diagram (b) in Fig. 1:

(a) For this diagram we use the identity [2]

16 1
81 (s (N = 00 — SO0+ (V]

1

1
P 0 = S0+ SN2 VR, 3)

1Tt should be noted that the terms for the couplings of the B-axial JP¢ = 17—~ and tensor JF¢ =

2+ mesons are missing on the r.h.s. of (2). The same is true for the 3 Py-interaction (11).
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Now, since the mesons are colorless, the second term in (3) may be neglected, and color
gives the simple recoupling-factors (i) 3Sy-model: 16/9, and (ii) 3 Py-model: 1/3.

(b) In this diagram there is in fact a sum over ¢; and go. Because the baryons are colorless,
we have

(Al)aﬁ + (A2)aﬁ = _(A?))aﬁ' (4)
Therefore, for this diagram we have, using (3), the identity
16 1
Xs)T5- Do (W) = —3525? + g(%)l - (As)y (5)

i=1,2

Again, since the mesons are colorless, the second term in (5) may be neglected, and color
gives the simple factor —16/9.

We find that the direct (a) and exchange (b) diagram give different color factors. Such a
difference does not occur in the 3Py-model. Now, it appears that the momentum overlap
for type (b) is usually much smaller than for type (a), see section B for details. This can
be traced back to our use of a constant propagator for the (confined) gluon. Therefore, in
the following we neglect processes described in diagram (b). Then, the difference between
the 2 Py- and 3S1-model is, apart from an overall constant, exclusively given by the different
coefficients in the flavor-spin Fierz-identities (2) and (10).

This form of the interaction Lagrangian suggests that we may expect that g. =~ —2g,, and
Gag = —2g,. Also, gr & —gay and ga, & —ga,/2- In this note the details of the 3S;-model
are worked out. Here all questions are answered confirmatively. The techniques used are
those of [3-5].

We compute the the isospin-, spin- recoupling matrix elements using the *P,
interaction Hamiltonian (11), see below, which is similar but not identical to
the one implicitly used by [3-5].

In the 3S;-model for the interaction Hamiltonian for the pair-creation one uses the one-
gluon-exchange (OGE) model [6, 7], see Fig. 1. Considering one-gluon exchange, see Fig. 1,
one derives the effective vertex [6, 7|

3Gy — 1o QL1
LS = mas(\ /\]){ 5 (mi + mj)
o;-k; idiXUj'Q

_Z —

b o, (6

Here, ) is the color index, m,r, 0;, and k; are the mass, the spin operator, and the momentum
for the quark with index i. P,(ji) is the gluon propagator between quark line i and line j.
The latter we will take as a constant: Py(ji) ~ d;;/m;, where the (effective) gluon mass is
taken to be m, ~ (0.8fm™!) ~ 250 MeV [7]. We notice that the color factor for the coupling
of colorless mesons to colorless baryons is always the same, and we can include this into an

effective coupling ~g, i.e.
WO(S(AZ‘ . AJ)
m¢,

= ). (7)



Here we use for the gluon a constant (confined) propagator P, = 1/m%. As is clear from (1)
Y4q has the dimension [MeV]~2. Also, we notice that mg & Agpc, therefore

’7 —
Yaq A2qq : (8)
opC

From graph (a) of Fig. 1 we see from momentum-conservation that
Q =k3 — kj = k4 + ks. 9)

From the momentum conservation rules one now gets different dependences between the
momenta as compared to the 3 Py-model. Hence, we have to do new overlap-integrals.

A. Comparison 25;- and ?>P)-QPC models

The 3P, Pair-creation Hamiltonian is

) = iy (San) - () (1)

7

For this Hamiltonian the Fierz-identity reads [2]
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From the results for the couplings of the mesons in the ? P-model those for the 3S;-model
meson-couplings can be read off by comparing the coefficients in the Fierz-identities (2)

and (11) for the corresponding operators. Here, we assume that the effect of color in the
(5V)
qq

the scalar-meson couplings will have the ratio g.(3S;) = {fyé}l—/)/fyg)} 9.(®Py). Apart from an

3Py- and 3S;-model can be absorbed into ~ , see below. For example, the prediction for

overall constant, the couplings for the 3S;-model can be read off from those of the 3 Py-model.

B. Review of the contents of these notes

In section III the BBM transition matrix elements are given for scalar, vector, pseu-
doscalar, and axial-vector mesons. Here, also a short note on the tensor mesons is made.
In section IV the isospin factors are derived using the Fierz-identities. Section V contains
results, discussion and conclusions. Here, we first discuss the vector mesons and the relation
of the pair creation constant and the p” — eTe™ annihilation constant f,. Successively the
following topics are addressed: (i) gluonic corrections, (ii) the y-value for the QPC-model,
(iii) comparison QPC-predictions and ESC-fit to nucleon-nucleon, (iv) isospin dependence
QPC-meson-couplings. In section V C SU(6)-breaking and Di-quark structure is described.
In section VD SU(6)-breaking via the (56)- and (70)-irrep mixing is described. Section V is
concluded by a discussion of some miscelaneous topics as: (a) meson-radii and CS-Goldstone-
boson exchange, (b) meson-radii and OBE-exchange, and (c) finally the relation of the QPC

6



constant v and QCD-Sum rules.

Furthermore, these notes contain a number of appendices. In Appendix A the harmonic-
oscillator momentum space wave-functions are given. In Appendix B the basic overlap inte-
grals are derived for the BBM-transitions. This concerns the (56) — (56) baryon-transitions.
In Appendix C the SU(6)-wave functions are given using Jacobian coordinates. The overlaps
for (56) — (70) are derived. Appendix D contains the overlap integrals with the inclusion
of gaussian baryon-baryon-gluon (BBG) form factors. These are worked out for both the
(56) — (56) and (56) — (70) transitions. In Appendix E the connection and a compari-
son with the overlap integrals in the literature [3] is worked out. The notes are concluded
by a mini review on the vector-dominance model (Appendix F), and on VPP-decay using
QPC-model (Appendix G.

III. BBM TRANSITION MATRIX ELEMENTS
In this section we compute the (B, M|H;,;|A) matrix elements for the different type of
mesons. Restriction on the quark-level to process (a) in Fig. 1, using the Fierzed form of

the interaction Hamiltonians in (11).

Following [8] we write the meson creation operators as

JPC =0t dhkn) =i YD /d3k1d3k2 Sk — ki — ko) -

r,s==%

<8 (ki ko) X0 (r,5) b (k1) di(ka, 5), (12)
JPC =177 di, (k;m,n) = /d3k:1d3k:2 J(k — ki — k) -

r,s==+

x5y (ki ko) XD (r,5) b (k. 7) dfy(ko, ), (13)
JPC =07 ¢ dl (kmyn) = /d3k1d3k2 Sk — ki — ko) (=)™

r,s==£

)by (ki ko) XU (r,s) 0f (ki ) dfy(ko, s), (14)
JPC =1 dl (mn) = Y0 /d3k1d3k2 Sk — ki — ko) C(1,1,1:mp, my,m) -

r,s==+

X5 (K1, ko) X8 (r, ) B (e, 1) dy (Ko, ), (15)
JPC =1t dly (kmyn) = Y /d3k1d3k2 Sk — ki — ko) -

r,s==+

xiym) (k1 ko) XO(r, s) bl (ki ) df(ko, s), (16)
JPC =t dh (kmyn) = 3 /d3k1d3k2 Sk — ki — ko) C(1,1,2:mp,my,m) -

r,s==+

X5 (k1 ko) X8 (r, ) B (e, 1) dy (ks ), (17)

for respectively the pseudoscalar-, vector-, scalar-, axial-vector mesons of the first (A; etc.)
and second kind (B etc.)[9], and tensor mesons.

Above, for notational reasons, we have omitted the isospin wave functions, which should be
added, of course. For example, in the case of the pseudoscalars the full expression for the



meson creation operator reads actually

dTP,I(k; ”) =1 Z Z 80511)(04,5) /dg/ﬁdskz 5(k—k1 —kz) :
o,f==+r,s==%

XQZ](\;:O) (k17 kQ) X(O) (T7 8) bit(kla T) d,g(k27 8)7 (18)
and similarly for the other mesons.
The baryon and meson wave , harmonic oscillator, functions are

VAR 3/2
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~(T— RQ 3/4 RQ
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Here we used the spherical unit vectors
1

€11 =F—— (e L e , € =e3. 20

+1 :F\/§(1 2) 0 3 (20)

The wave functions of the L = 0, 1-states in momentum space contains the spherical har-

monics
V() \/7 Vo (k \/7 €m K . (21)

The quark annihilation and creation operators occur in the quark-field operators [11]
Zi/ o 3/2\/ p) {ba(P’ r)u(p,r)e” " + di (p,r)v(p,r)et?*

where for the quark

u<p,r>:( cosh 3¢ x, ): E“"(aé“" ) (23)

o -p sinh 3¢ x;, om

Y

(22)

and for the anti-quark

E op
oo () o R ()



Here we followed the phase conventions of [12] for the v-bispinor. In (17) x{?)(r,s) denotes
the coefficients for the right spin wave function. Explicitly, they are given for ¢ = 0 and
oc=1by

X(0)<7"7 s) = <5r,+1/25s,—1/2 - 5r,—1/25s,+1/2) /\/5, (25)
5r,+1/25s,+1/2 m=1

X2 (rs) = <5r,+1/25s,—1/2 + 57",—1/258,4-1/2) /V2 m=0 (26)
57«,—1/255,—1/2 m=—1

Notice that we put the antiquark in second place, and the spin-up/down state for the
antiquark has s = +£1/2.

A. Scalar mesons
First, we compute the matrix elements for the coupling of the scalar mesons.

(i) Scalar-meson-overlap matrix element:

(01 (2)aso(x) [Ms(1)) = 30 [ dhadh ok ks = ko) (=) G40 (1 ko)

x X0 (r, 8) (0], (x)g55(x) b (i, 7)d ks, 5)]0). (27)

The vacuum expectation is given as

(01, (x)gj5(x) 0f(ky, 7)dfy(ka, $)|0) = 6,050 (27) ~°
x [0(ks, s) u(ky,r)] exp[+i (k; + ko) - x]. (28)

The spinor matrix element gives

[0(ks, s) u(ky,r)] = (_)1/2_3J (Ei(k1) +mi) (Ej(ka) +m;)

2m; 2m;
Xxisl ok ok |
E;(ko) +m; Eijki)+m;
(_)1/2—5 :
~ WX—S [0+ (ka — k1)] X, (29)

where we used the non-relativistic approximation, using constituent quarks, and m denotes
the mean mass of the quarks. Next, we note that

XH+1/2) o x(+1/2) = +e.
X(+1/2) o X(—1/2) = €, — i€,
XH=1/2) o x(+1/2) = €, + i€,
XH(=1/2) o x(~1/2) = -€..
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From this we derive that

m=+1: +(e, +ie,) = —v2 €y
Z (_)1/27596%)(7“:5) [X;(_S) a Xi(rﬂ ={m= 0: —V2 =-V2¢
r,s==+ m=—1 : —(Gx — iey) = —\/§ €_1
(30)
which gives
(=) Ap—m Z 1/2 XD (r, s) {X;(—S) oAy Xi(T)} — V2 A2,
r,s==+
where Ay = k; — ko.
Using these results, we get for the meson-overlap matrix element (27)
R
x (2m) 7 <L 0)(k1,k2) exp [+i (ky + k) - ] . (31)

ii Baryon—overlap matrix element: The quark—transition matrix element for the scalar op-
P
erator is

(Ej(ka) +my) (Ei(ks) +m;)

(95 (k) 35 (x)gir (%) |90 (a3)) = (27T)‘3¢

2m; om;
o - k4 g - k3 .
T i k, — k3) -
xXx; T { Ej(ky) +mj Eij(ks) +m; } Xi €xp [2( 4 —k3) x}
~ (27) 38,0055 €xp {z’(k4 —k3) -x} ’ (32)

where again we used the non-relativistic approximation. Folding this matrix element, we
get

(B (a0 B0)) = 5y(2m) ™ [ @k Py dhy 50— b — oo — )
X [ d Rk (0~ ki — ko — Ka) - O (i ko, Ka) Gl Ko, k)
X exp [i(k4 —k;) - x} . (33)
Combining factors we get finally for the transition matrix
(B(p'), Ms(k)|Hint| B(p /d3 P'), Ms(k)[Hin:(x)| B(P))

— (271') -3 "qu (RM

)
Ajpe V2 f
x /d3kgd3k4d3k55(k3 — K, — kg —ks) 6(p' — kg — ks — k) -

/ Py Py Pk 6(p — k1 — ko — kg) -

(K, ko, k) a(Ky, Ko, ks) 0570 (K, ks)* (K} — ks)?, (34)
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where we defined Mp = 3m,. From Appendix B it is easily seen that the overlap-integral
in (34) is given by

—Qfgir(A; B, M) ¥ 2\/§<

™ 3/4 12
oy

Ry Ry,
Note that in the execution of the ~-differentiation v and Rj; have to be treated as inde-

pendent variables. Then, the scalar BBM-coupling for the 3 P-model is given by the matrix
element

(B(O), My(0) Huu BO)) = 32 - (om)

3/4 ) 3/4
2 oI} —(emy. Jm T2 )
Ry Ry Ajpc 2V2MpRy \ R}y

(35)

The hadron level interaction Hamiltonian density for the a(980)-meson to the baryons is

Hi = gNNao[Y(2) T ()] - a0 (). (36)

giving the matrix element, apart from the isospin-factor,

1 M2
@2m)#2\ 2w(k)\ By E,

< [a(p)u(p)] 3(p—p'~ ). (37)

—_

(ao(k), N'(p")|H|N (p)) =

*9NNag *

Using the non-relativistic approximation (N.R.) (37) leads to

(@000 N'(B) N () = s~ axva (1 X.)-
xd(p — p' — k). (38)

From (38) etc. one obtains upon the comparison of (38) with (35) for the N Nag-coupling,
including the isospin factor 1/4/2, the expression

3/4
gs = (27T)_3 Vaq 72 ( m ) (271’)3/2 /_2m5/\/§

‘ A% pc 2v/2Mp Ry \ Ry
= g w9 o (39)
(AgpcRar)? MRy

where we denoted gnne, = gs. Then, for Agpc = 250 MeV, Ry = 0.67 fm, mg = m,, = 962
MeV, Mp = 940 MeV we get for the rationalized coupling gs/v4m = 0.857,; ~ 1.31,
Here, in the last step we used v,; ~ 1.53. which is a very realistic valuel Note that

gennN/ VAT = 3gs/VAT ~ 3.63.
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B. Vector-mesons I

We compute the w-meson direct-coupling g,, and take the u = 0-component in the
vector type operators in the interaction Hamiltonians (1) and (11). (For the 3S)-state one
has to use the p-vector, see next subsection.)

NOTE: (i) From the relation k - p = kopo — k - p = 0, where
p*(A) is the w polarization vector, one infers that under the par-
ity transformation pgy is scalar-like. Then, in first instance one
would be inclined to treat py as a 3Py qq-state! Consequently,
the NR-treatment seems similar to the scalar-meson case. (ii)
However the scalar and vector states behave differently under
charge-conjugation. From Cp(k) = —p(k), it follows that also

Cpo(k) = —po(k), and therefore can not be represented by a 3 Py-
Below, we wilkghew that the assumption of a ® Py-state for pg leads to a conflict indeed.

(i) Vector-meson-overlap matrix element for y = 0:

(Olg} (@)g; (@) My (ko)) = 3 [ dud®hy 6(k = ki = ka) (=) 04, (e Ka)

r,s==+

<X (r,s) (0lqf (x)q;(x) bl (ky, 7)d} (k. 5)|0)

(40)
The vacuum expectation is given as
[(x)q;(x) Bl (ky, )y (K = 6150 (2m) 3, | Tl
(0|q2(x)q](x) a( 1’T> [3( 27S>|0> i3 JC!( 7T) Ez(kl) E](]CQ)
x [0f (ka, 8) u(ky, 7)| exp [+i (ki + k) - x]. (41)
The spinor matrix element gives
t iz | (Eilky) +mg) (Bj(ke) +my)
o0, 5) wller, )] = () J o o
+ (o k2 o - k1 (—)1/278 1
Xx!g + P ——x' o (ke + ki) X
gttt pt e = e il
(_)1/2—5 ; N
= quX—s [o - k] X,
(42)

where we used the non-relativistic approximation, using constituent quarks, and m denotes
the mean mass of the quarks. Also, we denoted the meson related momenta by k; = k;+ko
and Ay; = ky — ky. Next, we use (30) which gives

(=) Artm Z_:i(—)m‘sxﬁi)(n s) [xt(=s) ok x(r)] = —V2Au - k.

(43)
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(ii) Baryon-overlap matrix element: The quark-transition matrix element for the vector op-
erator is

(Ej(ka) +my) (Ei(ks) +mq)
2m; 2m;

(a5(ka)la} (%) qi(%)|ga(as)) = (2W)‘3J

o-ky o ks [ }
791 i ky —kj3) -
XX] T { + Ej(k4) + m; El(kg) +m; } Xi OXP Z( 4 3) X

~ (2m)di50ja exp {i(k4 —ks) 'X} )

(44)

where again we used the non-relativistic approximation, which is equal to that for scalar
mesons cfrm. (32). Folding this matrix element, we get

(B(P)|4}(x)ai(x)| B(p)) = Giadjs(2m) / &’k @’ky d’k3 6(p — ki — ko — k) -

x /d3k§d3k4 5(p' — ki — ka — kq) - (1, ko, ka) a(ki, ko, ks) -

X exp {i(k4 —k3) - x} . (45)
Combining factors we get finally for the transition matrix

(B(p'), My (k)| Hint| B(p /d3 p), My (k)| Hin:(x)| B(p))

= (27)73 Tag V2R
(2m) Adpo M \/EMB

x / PR kydhs0 (ks — K, — kg — ks) 0(p' — ky — ko — ky) -

x s (ki, ko, ky) a(ky, ko, ks) 121(\5:0)(1{3, k;)* (k? - k%) - (46)

/d3k1 Py ks 6(p — k1 — kg — kg) -

We note that (ki — k%) = ky, - Ay;. However, this means that, see Appendix B, the
overlap-integral (46) gives zero!? This illustrates the impossibility of represent-
ing py by a 3P,-state.

C. Vector mesons II

We compute the w-meson direct-coupling g, and take the pu = i-components in the
vector type operators in the interaction Hamiltonians (1) and (11).

(i) Vector-meson-overlap matrix element for p = i:

Ola @)y @My en)) = 3 [ dhdks 6k —la — k) 947 (ko) -

r,s==+

xx&) (1, 5) (0lg] (2)q(x) ' (ky, )" (ko, 5)[0)
(47)

13



The vacuum expectation is given as

(013:(x)y a5(x) b, (kr, ) (ko 5)[0) = G0 (2m)

x [0(ka, s) v u(ky, )] exp[+i(k; + ko) - x]. (48)

The spinor matrix element gives

[0(ka, s) v u(ky,r)] = (_)1/2—5\] (Ei(ky) +my) (Ej(ka) +my) ‘

Qmi Qmj

o -keyoo -k
(B (k2) + my)(Ei(k:) +m;)
~ (_)1/2_8 [XJLS o Xr} )

x XL, la + X
(49)

where again we used the non-relativistic approximation. Also, we denoted the meson mo-
mentum by kj; = k; — ky. Next, we use (30) which gives

S (D) [X(=s) o x(n)] = —V2 €. (50)

r,s=%

(ii) Baryon-overlap matrix element: The quark-transition matrix element for the vector op-
erator is

(£;(ks) +my) (Ei(ks) +m;)

Qmj 2ml

<%&MQQW%WMA%»=@ﬂ3¢

O'-k40' 0’0’.1{3 |: :|
' - K, — ki) -
XXJT{Ej(k4)+mj +Ei(k3)+mi}XZ exp |i(ky — k3) - x
—3%ia0j0 1

~ (2m) o X [(ks + ky) + iky X o] xs exp {z’(kll —k3) ~x} ,
q

(51)

where again we used the non-relativistic approximation, which is equal to that for scalar
mesons cfrm. (32). Folding this matrix element, we get

<B(p/)|qj(X) Y qz<X>|B<p)> = 5ij<27r>73/d3k_1 dgkg dgl{?g (5(p — kl — k2 — k3) .

X /dgkéd3k4 5(p/ - kl - k2 - k4) ' &E(k17 k27 k4) @A(k17 k27 k3) !

1
X exp |:Z(k4 — k3) . X} . % XZ/ |:(k3 + k4) + ZkM X O| Xs- (52)
q

Combining factors we get finally for the transition matrix
(B(p'), My (k, m)|Hp|B(p)) = /dgx (B(P'), My (k)[Hin(x)| B(P))

14



= (2m)7° A%q f ng [2q—i— ik X o
QPC Mp

X /d% ks dks 5(p — ki — ks — k) -

Xsi-*

x / PPk d k50 (ks — K — kg — ks) 3(p' — Ky — ko — ky) -

sy (K, ko, ka) a(ky, ko, ks) 4" (K, ks)* (53)
From Appendix B it is easily seen that the overlap-integral in (53) is given by

3/2 9\ 3/2 3/4
i k=0 1(2m A s
e =g (2) (smm) %-22(%)

The direct vector BBM-coupling is given by the matrix element

3/4
(B0 Muol00] il BO) = 0 e/2- 2 2vB (5]

v, 12 7\
= (27)7% -T{-k'xk-}s. 54

where p = 0,p’ = —k, and q = k/2.
The hadron level interaction Hamiltonian density for the w-meson to the baryons is

M = gv[i () ()] w(@). (55)

giving the matrix element

W M?
(@00 N EOUHIN®) = s oo\ o

< |a(p)yu(p) - e“<kM>] 5(p—p — k). (56)

Using the non-relativistic approximation (N.R.) (48) leads to

() NN D) = s e o {H 57+ ggpe koo fve
xd(p —p' — k). (57)

From (57) etc. one obtains upon the comparison of (57) with (54) for the N Nw-coupling,
including the isospin factor 1/ V2, the expression

3/4
g = (am)t . 2V ( : ) (2m)*V/2my /V2

- my Ry -3/2
= (3/V2) m 7y, (horcRa 2~ Ry, (58)
Comparing this with (39) we find for the ratio
1 my
=——=/— (MpRy). 29
gv/9s Sﬂ\/ZS(BM) (59)

For my = mg = 750 MeV, and Ry, = 0.7 fm, we have gy /gs = 0.85, which is conform the
expectation based on the Fierz-identities in the 3 Py-model.
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D. Pseudoscalar mesons

We compute the pseudo-scalar-meson, and take the ~v5-type operators in the interaction
Hamiltonians (1) and (11).

(i) Pseudoscalar-meson-overlap matrix element:

(01Gi(2)750; () [ Mp(K)) = i 3 / Blrd®hy 5(k — ky — ky) 9570 (k) k) -

r,s==4

xx(© (r,s) (0|qi(z)vsq,(z) bl (ky, 7”)dT (ka, 5)]0)
(60)

The vacuum expectation is given as

(013:(x)75 4;(x) b (k1 ) (ke 5)[0) = Gipdjer(2m) ™

x [U(ka, s) v5 u(ky,r)] exp[+i (ks + ko) - x]. (61)

The spinor matrix element gives

Ei(ky) +m;) (E;(ka) +mj) )

[0(ka, s) ysu(ky, )] = (_)1/25J (

2m; 2m;
XXT_S[ 7k AL —1]xr
Ei(ks) +m; Ei(ky) +m;
~ =)o = = (), (62)
where we used again the non-relativistic approximation. Then, from (25) it follows that
>0 X(r,s) (ks 5) ysulks, 7)) = +V2. (63)

r,s==4

(ii) Baryon-overlap matrix element: The quark-transition matrix element for the pseu-
doscalar operator is

E;(ky) +m; Ei(ks) + m; _
Qm]‘ le

XX]{EJ(k4)+mJ Ez(k3>+mZ}XZ eXp Z( 4 3) X

(45(k1)q;(x)75 4i(x)ga(as)) = (27T)_3\l

52'045' .
~ (27T)_3W]6 Xl4 [03 - (ks — k4)} Xss €XP [z(k4 —k3) -x] ,

q

(64)
again using the non-relativistic approximation. Folding this matrix element, we get
(B0 (050, (BB} = = (2m) " [ s s s 60—~ K-
x [ @R 50— Ky~ ke — Ka) - s (i, Ko, Ka) Dl Ka k)
X exp [z’(k4 —k3) ~X:| . le [ai . k} Xs;s (65)
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where we used that k3 — k; = p — p’ = k. Combining factors, and summing over the three
quarks of the baryon 37,_; 3, we get finally for the transition matrix

(B(p), Mp(k)|Hins| B(p /d3 '), Mp(k)|Hin(x)|B(P))
. —3 fqu 3 3 3
=i (21)” T QMB/dk: By ks 5(p — k1 — kg — kg) -

x /d3kgd3k4d3k55(k3 — K, — kg —ks) 6(p' — kg — ks — ky) -

<l ki) Dl ke ) G4 g ks ) [ (66)

From Appendix B it is easily seen that the overlap-integral in (66) is given by

3/2 9 3/2 3/4
. o 1 (27 47 us
fmA;B,M)u() () NOZQ\@() .
0 8 \ R% 3RYR3, R2,

The pseudoscalar BBM-coupling is, apart from the spinor factor x| ; [0 - K] xs,, given by the
matrix element

3v/2
B0, M H;.:|B i lad 2
(BUO0) M 0)| Hun| BLO)) ~ it 0 - om)
3/4 3/4
s 12 T
x 2v/2 (”) = ti(2m) 3o ( ) . (67)
R?, A2 pe 2Mp \ R,

The hadron level interaction Hamiltonian density for the n-meson to the baryons is

Hr = igpld(z) 59 (2)] d(). (68)

giving the matrix element

(000 () 1N )) = 5[ B 90

X {U(p’)%U(p)} o(p—p —k). (69)

Using the non-relativistic approximation (N.R.) (69) leads to

(100N ) HIN D) = m g rp (v o] v

xd(p —p' — k). (70)

From (70) etc. one obtains upon the comparison of (70) with (67) for the N Nn-coupling
including the isospin factor 1/ V2, the expression

3/4
o = n) S i 12 () @n B V2

Agpe

_ vmpRy

~ R 71
7 q (AQPCRM) ( )

17



Comparing this with (39) we find for the ratio
9gp/gs = \/_ (MBRM) (72)

For mp = 140 MeV, mg = 962 MeV, and Ry, = 0.7 fm, we have gp/gs = 0.3, which is
less than the (naive) expectation based on the Fierz-identities in the 3Py-model. Here the
smallness of the pion mass plays its role.

E. Axial-vector mesons I
First, we compute the matrix elements for the coupling of the axial-vecror mesons.

(i) Axial-meson-overlap matrix element:

01@;(2)yuys ¢ (2)|Ma(k,m)) = C(1,1,1;mp, mg, m /d3k‘1d3k’2 Ok —k; — ko) -
r,s==4
X ) (ki ko) - Y2 (7, 5) (01Gi ()75 () b (i, 7)d! ke, 5)]0). (73)

The vacuum expectation is given as

(013:(x)7"75 45(x) 0k, 7)djy(ks, 5)|0) = 6;5050(2m) ™

X [0(ka, s) Y5 u(ky, )] exp[+i(k; +ks) - x]. (74)

The Dirac bispinor matrix element gives, for the space components,

ky) +m; Ej(ks) +m;

[0(ky, 5) v5 u(ks, )] = (_)1/2—s\l Ei(

Qmi Qm]‘
ot o koo . oo -k
B ) vy Bk e Y
O 4 a4k k —k
~ WX—S[( 1+ ko) + o x (ki — ka)] x»r,
o-kyo-k s
[77(1{2,5) 70’75 U(klﬂ“)} ~ ( )1/2 SXT— [1 + 4221] Xr =~ (—)1/2 67",787
mq
(75)
where we used the non-relativistic approximation, etc. We note that for spin-1 the >, ,_,
the first term in the brackets [....] gives zero, and we get
_ V2
>0 xn(rys) [olke,s) 35 ukn,r)] = e x Ay, (76)
r,s== Mg

where Ay = ko — k.
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To proceed, we have to evaluate [13]

o111 ¢ mLX(l):>Cl ! 1A mL(GXAM)mg:

mrmem mpmem

CL AL CL L e Mgy Datm, =

mrmem = m/ mLm

4RM ( )mLém, oy, Cl 1 lcvl 11 =

mrpmem ~'m/ mng Mgy
AR (=)™ Cp b Cot b ey = —AR e,

mrmem -~ m,—mprmes

Here, the second = marks the performance [ d®Aj;, and we used the relations

Cogmime = ~Cotymm, = ()" Cot
= ~()"C g mmt, = ()" Oy -

Using these results, we get for the meson—overlap matrix element (73)
(0]@(x)vys ¢;(x)[Ma(k,m)) = +
mQ M

x(k; — ko)? - (27) 73 570 (ky, ko) exp [+i (Ky + ko) - X] €. (77)

(ii) Baryon-overlap matrix element: The quark-transition matrix element for the scalar op-
erator is

/ Bl dPhy 5(k — ki — ko)

E;(ky) +m; Ei(ks) + m; .
Qmi

(a8 (ka)|7; (%) 5 ¢i(%)]qa(as)) = (27T)_3J

2mj

O"k4 g - kg
XX”{‘” E;(ke) +m; - Ei(ks) + }Xz P { (ks = ko) 'X}

~ (27) 38ia0j5 O exp {i(k4 — k) -X} ,

(78)

where again we used the non-relativistic approximation. Folding this matrix element, we
get

(B(P)1q;(x) v75 ¢:(x)|B(p)) = 5@']'(2”)73/6131?1 d’ky d’k3 6(p — k1 — ky —k3) -
x [ AR 50— ka — o — Ka) - (K1, K, ki) Dalka ko, Ks) -

X eXp [i(k4 — k) - x} : [ngsf o, XB&} : (79)

Combining factors, and summing over the three quarks of the baryon >-,_, 5, we get finally
for the transition matrix

(B(p'), Mak, m)\HmtrB )= [ @ (B'), Malk,m) [ Hiw (%) B(p))
_ —-3_Tag 3. 3L 73 _
(2m)" R MBRM / By ks Pk 6(p — k1 — ks — kg) -

x / PR kadhs0 (kg — K, — Ky — ks) 0(p' — ki — ko — ky) -
le*B(kl,kQ,k4) &A(klyk%kii) 121%20) (k§7k5)*-le {0' : Gm} Xsi (80)
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where the (-)-sign in front is taken from the Fierz-identity in the ?Py-model. From Ap-
pendix B it is easily seen that the overlap-integral in (80) is given by

3/4
i k=0 ™
I8 (A; B, M) == 2V/2 <R2> :
M

The axial-vector BBM-coupling is, apart from the spinor factor le [0 - €n] Xs;, given by the
matrix element

6

Yea _
B(0"), M4 ,,(0)|H;: | B(O)) ~ —— 4 S(27) 73
(B(0"), M 4,n(0)|Hint| B(0)) Npo Mg o (2m)
3/4 3/4
v _a Vg 12\/§ <7r>
X 2V/2 [ —— — (2n) 3l . 81
(Rﬁ) M) 82 e MRy \ 7, (81)

The hadron level interaction Hamiltonian density for the w-meson to the baryons is

Hr = galt ()59 (2)] A" (). (82)

giving the matrix element

< (P su(p) - (k)| d(p — B~ K) (83)

Using the non-relativistic approximation (N.R.) (83) leads to

1 1
2m)3/2 \/2m

(E1(k), N'(p))|H/|N(p)) = g4 Xl {o-€}xa. -

~~
~—

b

xd(p —p' — k). (84)

From (84) etc. one obtains upon the comparison of (84) with (81) for the NN E}-coupling,
including the isospin factor 1/ V2, the expression

3/4
o = —(en) > B () o B v

A2 e MpRyy \ 2,
vVmaR 6 _
= My ~ Ry (85)
(AgrcRm)? MRy

Comparing this with (39) we find for the ratio

2 ma

N 86
9a/9s 3\ s (86)

For ms = 1270, mg = 750 MeV, and Ry, = 0.7 fm, we have g4/gs = —0.79, which is more
or less what can be expected naively from the Fierz-identities in the 3 Py-model.
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F. Axial-vector mesons, II

NOTE: (i) From the relation k - pp = koppo — k - pg = 0,
where plg(N) is the By polarization vector, one infers that un-
der the parity transformation ppo s pseudoscalar-like. Then,
in first instance one would be inclined to treat ppo as a 'Sy
qq-state! Consequently, the NR-treatment seems similar to the
pseudoscalar-meson case. (i1i) However the pseudoscalar and
axial-vector states behave differently under charge-conjugation.
From Cpp(k) = —pg(k), it follows that also Cpy(k) = —po(k),
and therefore can not be represented by a 'Sy-state which has
yal 1

1 RN Lonn y ) NP + FON o (1) ] L8 A1 NN
U—71. I HCTCjure, wt Nuuvt U st 1t pB\n)—u}wpbuoy. 17005

(i) Axial-mesdfddsertsp helgtid 1ggrengoupling for the avial B-mesons.

01G:(2) 375 4;(2)| Mp(k,m)) = 3 / Bl Pk 5(k — ki — ko) -

r,s==4
X Phim (K1 ko) - X0 (r, 5) (013i(2)7" 55 ¢;(x) bl (ky, r)df(ks, )|0).

The vacuum expectation is given as

(01G: ()75 4;(x) b, (K1, 7)dfy (s, 8)[0) = Gigdja(2m)
x [U(ka, ) Y5 u(ky, )] exp [+ (k; + ko) - x].
The Dirac bispinor matrix element gives, for the space and zero components,
(—)1/2s

[0(ka, s) s u(ky,r)] ~ WXT‘S [(ky + k) + o % (k1 — ko) X,

{E(kz,s) 705 u(kl,r)} ~ (=),

(89)

where we used the non-relativistic approximation, etc. We note that for spin-1 the >°,,_,

the first term in the brackets [....] gives zero, and we get
> xOr,s) [z‘;(kQ,s) Y5 u(kw’)} — Ve

r,s=+
S O 5) [0(ka,s) ¥ w(ks )] = —-Y> Kap.

r,s==+ 2mQ

Using these results, we get for the meson-overlap matrix element (87)

(016 (x)7° 75 ¢;(x)|Mp(k, m)) = —iRys / Bl d®ky 5(k — Ky — ko)
(k1 — Ko )m - (27) 2 3570 Ky ko) exp [+ (K + ko) - X] €,

2
Ol as(NMp (e m)) = = [ @hadh 30k — s — )
x(ky — ka) - kg - (2m) 72 OS5 (ky, k) exp [+i (ki + ko) - x| €.

21
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(ii) Baryon-overlap matrix element: The quark-transition matrix element for the axial-
vector operator is

Ej (k4) + m; Ez<k3) +m; )
QTTL]' 27712

O'-k4 U'kg |: :|
' i k, — k) -
ot {Ej(k4) +m; + E;(k3) +ml}x exp |i(ky 3) - X

(q5(ka)|3;(x)7"75 ¢5(x)|¢a(as)) = (2W)3¢

Oii .
~ (271')73% [X; o - (ks + ky) Xi} - eXp {Z(k4 —k3) 'X] 3

(9(ke)|q;(x)v75 ¢:(%)]g(as)) = (2m) biadjs 0 exp [i(k4 —k3) - X} ; (92)
where again we used the non-relativistic approximation.

As explained in the beginning of this subsection, we must use the space-component of the
B-vector meson. Folding this matrix element, we get

(B(p’)]q_](x) Y5 qz(X)|B(p>> = 61‘]'(27T>_3/d3]€1 d3k32 d3k3 6(p — k1 — k2 — k3) .
X /d3k§d3k4 5(p’ — k1 — ko — ky) '@E(khkz,k@ &A(kluk%kfﬂ) :

xexp il — ko) x| - [\, 1 ] (93)

Combining factors, and summing over the three quarks of the baryon 7,3, we get
finally for the transition matrix

(B(p'), Mp(k,m)|Hint| B(p)) = /d% (B(p'), Mp(k,m)[Hin(x)| B(P))

3 Yaz_ 3Rm

x / PPk dksd (ks — K — ka — ks) 3(p' — Ky — kg — ky) -
b (K, Ko, k) a(ke, ko, k) 5y~ (K, ks)* (ks — ks) - Kar) -

le O'XSZ.Z} , (94)

= +i(27)

/dSkl ks Ak 5(p — ky — ks — k) -

X

where the (-)-sign from the Fierz-identity in the ®Py-model is taken into account. From
Appendix B it is easily seen that the overlap-integral in (94) is zero!

The hadron level interaction Hamiltonian density

if - ,
HI = TIB;NN WO’W’YsTﬂ o, B;f ) (95>

T

giving, apart from the isospin factor, the matrix element

1 M?

(Bullen), NN R =[5 555\ B, B,
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I (0000, 5u0) - (0 — )€ (00|
X(2m)0(Ey — Fy) 6(p' —p — )
The expression betweem square brackets [...] with o, = (¢/2)[y,, 7] [11], is
w(p)owsu(p) - (p—p)"e (k)| = =i(p' +p) - € [a(p")vsu(p)).

Using the non-relativistic approximation (N.R.) (96) leads to

(Bu(k, = 0), N'(p) [y [N (p)) = — s [ Ep)e

(27T>3/2 my QmBl 2MB

x (Xl (0K x..) 8(p—p' —k) (2m)5(E) — Ey) .

G. Tensor-mesons

(96)

In the QPC-model there is no coupling for the tensor-mesons (J©¢ = 2*+). In the case
of the 3Py interaction Hamiltonian (11) there occurs a term with the antisymmetric-tensor
bilinear, which has JF¢ = 27~ see e.g. [14], paragraph 3-4-4. However, such quantum

numbers do not correspond to a gg-state, see [15].

logical parameter ,Y(qu) as follows:

T T) = v q
H = 3 [0 - [G7.0.95) =

1
T — A _ _ y _
%’ > {+ Gi 0”4 @ 945 — 5 670”4 - 457" Ot
Z?]
1

To generate non-zero symmetric tensor-meson coupling one
could introduce the QPC-interaction with a new phenomeno-

5 gy 50" q; - %”V“’Ysauql’ — 3750"q; - @j’YSau% - (98)

\ 4
\ 4

\ 4
\ 4

L,a Jd

j,-C

(a) i,b

FIG. 2: Isospin labels QPC-model
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IV. ISOSPIN FACTORS

In Fig. 2 the isospin labels of the active quarks in the creation process are shown. Since
we consider here the neutral-meson coupling, there is no-flavor change in this proces
for the quarks of the baryons, there is a factor d;; in the matrix elements (see above). The
isospin wave functions of the gg-state for I, = 0 and I,; = 1 they are

eV (c,d) = (5c,+1/25d,—1/2 — 50,—1/25d,+1/2) /V2, (99)
Oc,41/20d,4+1/2 n =+l

(1)(0 d) = <5c,+1/25d,71/2 + 50,71/25d,+1/2> /\/§ n=>0 (100)
Oc,—1/20d,—1/2 n=-—1

Notice that we put the antiquark in second place, and the spin-up/down state for the
antiquark has s = £1/2.

For the isospin description of the antiquark we note that the
charge-conjugate Dirac wave function is [11]

¢C($) = UCC@T(@, C' = —1727, nc = 1.

Evidently, ¥¢(z) ~ ¢*(x) and complex conjugation is in-
volved. The complex conjugation (c.c) of the T7-commutator
relations gives

75, 7j] = i€ijn Th = (=77, —Tf] = —ieijr (=),
and therefore to obtain the proper isospin spinors we have to
find in isospin space a unitary matrix A such that Ar; A=t =
—77 for the transformation of the quark isospinors to the
proper antiquark isospinors. This leads to A = £i75. Choos-

ing the (-)-sign gives for the isospin anti-spinors

AQO a—1 290
From the Fierz-identities [2] the iospin fhatrix elementis given as
1
dy 05 = —6“ A R (101)

1. For I; = 0 we get

= Z ST ()b, ) - 753 & = —(3/v2) &5 (102)

i=1 b,c=%

2. For Iy =1 we get

3

= > Y (O, Ty T = —(1/V) () (103)

where we have summed over the quarks 37,1 93, and 75 = 37,1 5 3 T4, i.. a sum over
the quark isospin operators.
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This settles that the couplings of the isosinglet mesons is a factor 3 larger than those for
the isotriplet mesons.

The extension to flavor SU(3) is straightforward, using e.g. the results in [16] and references
therein. The relations of the 9j-symbols in [16] and [18] is given in the note [17].

V. RESULTS, DISCUSSION AND CONCLUSIONS

Fortunately, the constants f, fi/, fa, and fs which appear in the C.F.I.’s seem to be
determined pretty certainly.
The QPC-models have much predictive power. This because here a single phenomenological
parameter, the pair-creation constant +,s, predicts for example many ratio’s of couplings.
So, many relations are obtained in this model.

Vector-mesons: In [8] one came to the conclusion that at the origin the ¢¢ wave-function
satisfies

1 m 1
[ (O) = gmi s v O)F = =R O)F = Gmvmz (1)
Equation (1) and the N.R. wave-function, see e.g. [3], yields
—3/2 3 my \ 2
() = (m8) " = v y)? =2 (2) (2)

For the p-meson, we get from (2)
m,R, =2215, R,=0.57 fm .

From [3], eq. (3.15), we have

9 >1/2 mi/z

fp = fpﬂ'Tr :prN %7(37‘_ |’¢p(0)|

27y m,

V3rm,

On the other hand, from p° — e*e™, one has [3], eq.(2.18) and eqn. (3.15),

B mz/Q B i 1/2 m?}/? _1 B
b= T = Gx) Ty 0= gV =155 @

From [3], eqn. (3.15) and the N.R. wave-function eqn. (3.9), we have
4

fp = VOE (mpRp)3/2 =
2 2
Y 3 5 f
ﬁ =15 (mpR,) ™ ﬁ ; (5)

which gives, using f7 /4w = 2.4, that o = 1.55 (R, = 0.5fm), and v = 3.34 (R, = 0.3fm).
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Gluonic correction: Since in the QPC-model we used Gaussian wave-function, the ¢g-
potential is of the harmonic-oscillator type. This potential does not account for the 1/r-
behavior at short distance, which is due to the one-gluon-exchange potential. This implies
that (4) should read

mi/Q 2\ 1/2 m2/2 ’/wp(o)/’
= = —_— — , 6
=gt~ &) e T o) (6)

where "1),(0)" is the harmonic-oscillator (h.o.) wave function, and 1,(0) the true wave
function. To first order we have [5, 19]

Y 16 o (m2)\ 2
0,01 = P00 (1= 522 U
Then, for ay(m?) = 0.5, we find that
16 as(m 12
7:7()(1—3 (ﬂ p)> = 3.94, (8)

which is close to the value 3.85 used in [5]. In Table I the relation (8) is shown. Here, we
used from [15] the parameterization

as(p) = 4/ (Byn(u?/Adpe)) (9)

with Agpc = 100MeV and () = 11 — %nf— > 9. From this table one sees that at the scale

TABLE I: Pair-creation constant v as function of «s.

1 [GeV]|ars () [ v(1)

00 0.00 |1.535
80.0 | 0.10 [1.685
35.0 |0.20 [1.889
1.05 | 0.30 |2.191
0.55 | 0.40 |2.710
0.40 | 0.50 | 3.94
0.35 | 0.55 | 5.96

of 1 GeV a value v = 2.19 is reasonable. This value we will use later when comparing the
QPC-model predictions and the ESC04-model coupling constants.
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The y-value for QPC-model: Identifying gy =: fyn,/2 we compare (5) and (50) we

have, including the isospin factor 1/v/2,

2 3/2 _ 3 —3/4 vVmy Ry

— R — ;. 10
Y \/3_71' (mV M) \/Eﬂ- Yaq (AQPCRM)2 ( )
This yields
212 45 2
Yaa/V = 3\3 7 (AgpcRum)™ (my Rar). (11)

Using Agpc = 250 MeV, my = 750 MeV, and Ry = 0.5 fm one obtains 7,;/7 = 0.55.
For Ry, = 0.67 fm the latter ratio becomes 1.0. We conclude: the quark-antiquark
pair creation constant in the QPC-model is fully compatible with the quark-
annihilation process for p° — ete™.

A. Comparison QPC-predictions and ESC-fit NN

First, we summarize the formulas for the divers couplings for the I=1 mesons:

msR 1/2

o (3/V2)

gv = 3/ Yq

gs = +m7% o

ga = —m

Writing the expressions, obtained in these notes, for the couplings in the following concise
form:

3
gpem(£) = quﬁ 73 Xor (Ing, L) Fﬁ) (12)

where + = —(—)% with L; is the orbital angular momentum of the final MB-state, X,/ is
the product of the recoupling coefficients, and where

3 _
F& = 5\/5 (mMRM)1/2 (AgpcRu) 2,
- 3 _ _
FO = 2V2 (marRar) ™ (MgpoRar) ™" - 3V2 (M /M), (13)
We note that there can be thought of various corrections to the (naive) QPC-
formulas in (12): (i) isospin-dependent gluon-exchange corrections to the pair-

creation process, similarly to those for non-leptonic weak decays in connention
with the AT = 1/2-rule; (ii) hadronic vertex corrections. Instead of trying to
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TABLE II: ESC08c Couplings and 3Py- and 3S;-model relations, with ideal mixing for vector
and scalar meson nonets (Ry = 0.54 fm). Pseudoscalar- and axial-nonets the mixing angles are
—23% and —42.7° respectively. We defined X M, i.e. the isospin factor. Here, Agpc = 350 MeV,
y(as = 0.30) = 2.19 etc. The weights are A = 1.067 and B = 0.526 for the 3Py and 35 respectively.

Meson |rpr[fm] X Y 35, 3Py QPC|ESCO08c
7(140) | 046 2 6.89|g= —3.17| g =6.40 |3.24| 3.63
n(957) | 0.66 6 2.22|g=—4.46| g=9.05 |4.58| 2.28
p(770) | 0.66 1 2.37|g=—0.37| g=1.49 |1.13| 0.69
w(783) | 0.66 3 2.35|g=—1.11| g=4.50 |3.39| 3.52
ap(962) | 0.66 3v/22.22| g=052 | g=1.06 |158| 0.87
€(760) | 0.66 9v22.37| g=1.49 | g=3.02 |4.51| 4.74
a1(1270)| 0.66 2v/2 2.09|g = —0.19|g = —0.77|-0.96| -1.11
d1(1280)| 0.66 6v/2 2.09|g = —0.64|g = —2.58/-3.22| -1.06
b1(1235)| 0.66 2.19| f=0 f=0 100/ -020
a(1320)| 0.66 2.19] g=0 g=0 |00/ 0.00

account for these effects using the QCD-corrections in a sophisticated compre-
hensive treatment we adjust the ¢gg-radii for each meson. We used a linear
combination of the ?Py- and the 3S;-model with weights A = 1.114 and B = 0.564
respectively. We notice the dominance of the P- over the 3S;-mechanism.

In the tables below, we show the results for the couplings of the 35, Py-model
and compare them with the values obtained in a typical fit to the NN-data with the
ESC-model. For the motivation for Agpc = 350 MeV, Ry = 0.66, and vy = 2.19 see
Appendix G. First, we show in Table II the results for 'naive’ trial with identical radii
for all vector-, scalar-, and axial-vector-mesons. Notice that the [=1 couplings are too strong.

We can produce many solutions with different Agpc-values by noting the invariance of the
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BBM-couplings under the scale-transformation:
Rf, =s Ry ,R]T/[ = 83/5 Ry , AQPC’ = 8_3/4AQCD,

where R3; refer to the mesons with gy; ~ R;j’/ ? respectively ~ ij/ ?. In Table IIT we show
this invariance explicitly starting from the 'naive’ solution values for s=1 in Table II.

TABLE III: Scaling Agpc, and the meson radii Rﬁ such as to keep CT = AQPC(RL)?’/ 4 and
O~ = Agpc(Ry,)** invariant

s |Agpc [MeV]|R}, [fm]| Ry, [fm]
1.00 350.0| 0.660 | 0.860
0.90 378.8| 0.594 | 0.807
0.80 413.8| 0.528 | 0.752
0.70 457.3| 0.462 | 0.694
0.60 513.4] 0.396 | 0.633
0.50 588.6| 0.330 | 0.567
0.40 695.9] 0.264 | 0.496
0.30 863.4| 0.198 | 0.418
0.20 1170.3| 0.132 | 0.327
0.10 1968.2| 0.066 | 0.216

Next, we show the two ’solutions’: (i) Table IV: a solution with 66 % and 33 % for
3Py and 38 respectively, and (ii) Table V: a solution with 99 % and 1 % for 3P, and 35,
respectively. Here, for this illustration we used a version of the ESC08c-model with the same
mixing angles as used in ESC04-models. Here, no QQG form factor nor SU(6)-breaking is
included.

In Table IX also the mixing anngles are as in ESC04-models, but now both the QQG form
factor and SU(6)-breaking effects are included.

In Table VI we show the results for the final version of the ESC08c-model, having updated val-
ues for the mizing angles of the pseudoscalar and azial-vector mesons. The ESCO8c-couplings
and the QPC-couplings agree very well. In particularly, the SU(6)-breaking improves the
agreement significantly. All this hints to the reality of the ESC08c couplings. An exception
is the fi (1420) coupling, which seems ‘abnormal’. The ratio gnnf, /gNNay = 1, instead of = 3
as expected from the Quark-model. Probably this coupling is contaminated by the presence
of the heavy pseudoscalar nonet around w(1300) MeV. Enlarging the fi(1420)-coupling and
including its heavy pseudoscalar counterpart is a possible solution of this abnormality.
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TABLE IV: ESC08c Couplings and 2Py- and 3S;-model relations, with ideal mixing for vector
and scalar meson nonets (Ry = 0.54 fm). Pseudoscalar- and axial-nonets the mixing angles are
—23% and —42.7° respectively. We defined X M, i.e. the isospin factor. Here, Agpc = 350 MeV,
y(as = 0.30) = 2.19 etc. The weights are A = 1.114 and B = 0.564 for the 3Py and 35 respectively.

Meson |rpr[fm] X Y 35, 3Py QPC|ESCO08c
m(140) 0.46 2 6.89]g=—-3.39| ¢ =6.68 |3.30| 3.63
7(957) | 0.86 6 2.22|g=-2.32| g =458 |2.26| 2.28
p(770) 0.86 1 237g=-027 ¢g=1.05|0.78| 0.69
w(783) | 066 3 2.35/g=-1.19 g=4.70 |3.51| 3.52
ap(962) | 0.86 3v22.22| =029 | g =057 |0.86| 0.87
€(760) | 0.66 9v22.37| g=1.60 | g=3.16 |4.76| 4.74
a1(1270)] 0.66 22 2.09|g = —0.20|g = —0.80|-1.00| -1.11
£1(1420)| 0.96 6v/2 2.09|g = —0.23|g = —0.91|-1.14| -1.06
b1(1235)| 0.66 219 f=0 | f=0 |00/ -020
az(1320)| 0.66 219 ¢g=0 g=20 0.0 | 0.00

The 'naive’ predictions of the QPC-model are

9o = 3907 ge = Sgam 80<)‘) ~ QQ<3P0)

Jao ® Gpr Ge X Yo ea(A) ~ qq(*S1)
ma

fNNa1 ~ 1fNN7r ~ 2.54 (CS)>

s

where for the fyna, we quoted the prediction of Schwinger [23]. It is clear that these
relations hold approximately only. In the ESC04-model the 'naive’ relations were much
better satisfied as in the ESC08c-model. In particularly, the Schwinger value [23] does not
hold in ESC08c. As stressed in the foregoing paragraph, QPC-model gives in our view the
so-called "bare” couplings (!) In Fig. 1 on the r.h.s. graph (a) indicates the QPC-model
BBM-coupling prediction, and graph (b) the lowest order meson-exchange correction to the
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TABLE V: ESC08c Couplings and ®Py- and 3S;-model relations, with ideal mixing for the vector
and scalar meson nonets (Ry = 0.54 fm). Pseudoscalar- and axial-nonets the mixing angles are
—23% and —42.7° respectively. We defined X M, i.e. the isospin factor. Here, Agpc = 600 MeV,
y(as = 0.30) = 2.19 etc. The weights are A = 0.865 and B = 0.004 for the 3Py and 35 respectively.

Meson |rpr[fm] X Y 35, 3Py QPC|ESCO08c
m(140) 0.30 2 6.89|g=-0.02| ¢ =3.35 |3.33| 3.63
7(957) | 056 6 2.22lg=-0.01] g=2.31]2.30| 2.28
p(770) 0.45 1 237 g=-0.000 g=0.73 [0.73| 0.69
w(783) | 033 3 2.35/g=-001| g=3.51 |351 3.52
ap(962) | 0.45 3v22.22| g=0.00 | g=0.76 |0.76| 0.87
(760) | 0.33 9v22.37| g=0.02 | g=4.72 |4.74| 4.74
a1(1270)] 0.33 22 2.09|g = —0.00|g = —1.20|-1.20| -1.11
£1(1420)| 051 6v/2 2.09|g = —0.00|g = —1.12|-1.12| -1.06
b1(1235)| 0.56 219 f=0 | f=0 |00/ -020
az(1320)| 0.56 219 ¢g=0 g=20 0.0 | 0.00

BBM-vertex. If we consider I = 0 and I = 1 exchange in this vertex, we have for example
for the NN-couplings of the scalar mesons

Agao = AO — 2A1 s Agfo = AQ s (14)
where A stands for the correction due to the I = 0 and I = 1 respectively. Then, such
dressing corrections could bridge the gap between the QPC-predictions and the ESCO04-fit
for the coupling constants. For instance, if Ay ~ (2/3)A(, we would have Ag,, ~ —(1/3)A,
and Agy, = Ag. To work out a more or less complete model for these vertex corrections,
which is by itself a rather elaborate program, is clearly beyond the scope of these notes.
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TABLE VI: SU(6)-breaking in coupling constants, using (56) and (70)-irrep mixing with angle ¢ =
—22° for the 3Py- and 3S;-model. Gaussian Quark-gluon cut-off Agge = 986.6 MeV. Ideal mixing
for vector and scalar meson nonets. Pseudoscalar- and axial-nonets the mixing angles are —13° and
+50.0° respectively, imposing the OZI-rule. Here, Agpc = 244.3 MeV, v(as = 0.30) = 2.19 etc.
The weights are A=0.677 and B=0.323 for the 3Py and 35 respectively. The values in parentheses

in the column QPC denote the results for ¢ = 0°.

Meson |ra[fm] v 35, 3Py QPC ESCO08c
7(140) | 0.23 5.51|g = —3.54|g = +7.40| 3.87 (4.07) | 3.64
7(957) | 071 2.22|g = —2.83|g = +5.93| 3.10 (3.72) | 3.07
p(770) | 071 2.37|g = —0.24|g = +0.99| 0.75 (0.92) | 0.73
w(783) 0.71 2.35|g = —1.10|g = +4.60| 3.50 (3.45) | 3.51
a0(962) | 0.81 2.22|g = +0.28/g = +0.58| 0.86 (0.90) | 0.89
€(760) 0.71 2.37|g = +1.42|g = +2.96| 4.38 (4.37) | 4.36
a1(1270)] 0.61  2.09|g = —0.20|g = —0.84|-1.05 (-1.06)| -1.10
£1(1420)| 0.61 2.09|g = —0.72|g = —3.03|-3.76 (-3.25)| -0.91
— (O - ——,
\, ‘*\ ‘<
A @ OB

FIG. 1: Vertex-dressing correction to QPC-coupling

B.

Isospin Dependence QPC Meson-couplings 7

It is well known that for weak non-leptonic transitions the hard-gluon corrections give a
(partial) explanation of the Al = 1/2-rule [2]. This comes about because of the correlation
between isospin and color through the particle statistics. Likewise, in this subsection we
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TABLE VII: Meson radii from the literature [20-22]

Meson M(exp)/GeV |M(the)/GeV +/(r?)/fm|+/(r?) /fm [21]|\/(r?)/fm [22]

7(11.Sp) 7(140) 0.139 0.337 0.512 0.64

n(1'So)  7'(957) —

p(1351)  p(770) 0.775 0.706 0.769 0.72
#(1381)  #(1020) 0.958 0.640 0.647 0.46
w(138))  w(783) — — 0.72

a0(13P1) a0(962) — -
e(13P)  €(760) — —
ar1(13Py)  a1(1260) 1.206 0.856 0.993

di(13Py)  d1(1280) — —

bi(1*P)  b1(1235) 1.293 0.940 0.978
@ B B @ @« > P q)
2 > E > ¢ @ > > &
q3 > @ E a4 g3 44
*\ a5
(a) M (b) a3

FIG. 2: Gluonic-corrections BBM in QPC-models

discuss the possibility for the isospin dependence of the BBM-couplings in the QPC-model.
In Fig. 2 (multi) gluon-exchange corrections are depicted. We analyze here the corrections
due to one-gluon exchange. The isospin for quarks 2 and 3 is given by gaq3 = (¢2q3 +
342)/2 + (q2q3 — q3q2) /2 — ling) = [izg = 1) + |is3 = 0)] /v/2. Combined with color, the
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FIG. 3: Isospin Ip; dependent correction to QPC-coupling
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FIG. 4: Hard-gluon correction to QPC-coupling

isospin-color state has

123)rc = ) ® |z = 3%) ) ® |cog = 6)

1 1
—|igy = 1 4 ——|isg =0
\/§| 23 \/§| 23
However, the 3 quarks in a baryon are in a color-singlet state. Therefore any subsystem
of two quarks must be in the {3*}.-irrep. In our discussion we have to include also the
flavor-symmetry. In SU(6) the JP = (1/2)"-states in the {56}-irrep the flavor-spin-color
states are, see [24],

1(8,2)) = \}5 Oms X + Ona Xara| @ [{37})e

Therefore, the conclusion is: The (hard) gluon corrections do not lead to isospin-
dependence of the BBM-couplings.

C. SU(6)-Breaking, Di-quarks, and Isospin Dependence QPC Meson-couplings?

It is well known that SU(6), is not a good dynamical symmetry. SU(6)y is better
symmetry but also broken on the 3Pj;-model. This may be an alternative to solve the
"Iy = 1-problem”. Here, we study SU(6)-breaking by describing the J¥ = (1/2)" baryon-
states in the {56}-irrep the flavor-spin-color states by introducing di-quark correlations.
These are introduced by the generalization of the SU(6) representation of the baryon states

1(8,2)) = |ws das Xam,s +wa dara Xara| @ {3 })e, (15)

where w? +w? =1 and ws = wy = 1/+/2. Allowing wg and wy to deviate from the SU(6)-
weights would break SU(6)-symmetry, and the ratio of the Iy = 0- and I; = 1-coupling is
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changes compared to the symmetric case. Effectively, this may be desribed phenomenological
by making the pair-creation constant 7,5 isospin dependent. However, the problem with this
proposal is statistics. For wg # w4 the state is nor symmetric nor antisymmetric. Hence
the total 3-quark state does not obey FD-statistics!

Fortunately, effectively the same result can be realized in accordance with FD-statistics by
using the baryon-states [25, 26]

(8,2))s ~ Ns [.f12 dn,s(1,2)xar,s(1,2) + fis dars(1,3)xars (1, 3)+

+ fos ¢M,S(273)XM,S<2a3>} ,

(8,2))a ~ Na |g12 dar,a(1,2)xar,4(1,2) + 913 dar,a(1, 3)xar,a(1,3)+
+ g Sua2.3nra23)| (16)
where Ng 4 are normalization constants, fio = |fi(ky, ko;ks)) etc., and similarly for the
gi;-functions. Then, the physical baryon states are
(8,2)) = ws [(8,2))s +wa |(8,2))4, (17)

with w% + w% = 1. We omitted here the color-component which is identical to that for the
SU(6)-symmetric state.
In (16) f;; and g;; are symmetric respectively antisymmetric in the quarks i and j.
In our computations each term with f;; or g;; gives identical results and can be added. This
gives the factor 3 from the summation over the quarks of the baryon. In effect, the results
for f;; # ¢;; are similar to those with the "wrong” representation of the baryon-state (15).
In Table VIII we show an example where SU(6)-breaking has been applied. Since there
is a distiction of the S-type and the A-type quark-pairs, there is also a distiction between
i;; = 0 and 1, and ipso facto a diference between the /)y = 0 and I; = 1 coupling. We have
modified only the strength of the pair-creation process for I, = 1. In principle there is also
a corresponding change for I; = 0, of course. In Table VIII the SU(6)-breaking is described
by the replacement vy, — 7, for the Iy = 1 mesons. We do not include this until we have
some concrete calculated estimate of these shifts.

D. SU(6)-Breaking, (56)- and (70)-irrep Mixing

It is well known that SU(6), is not a good dynamical symmetry. SU(6)y is better
symmetry but also broken on the ®Pj-model. This may be an alternative to solve the
? Iy = 1-problem”. Here, we study SU(6)-breaking by describing the JZ = (1/2)* baryon-
states in the {56}-irrep the flavor-spin states by introducing mixng with the {70}-irrep.
From [27] we describe the mixing for the SU3-octet baryons by

1t .
{8}, 3 ) = cosg |(56, L = 07)n—o, Pr1) +sing |(70,L = 07)n—1, Pi1). (18)

In [27] it was found that ¢ ~ —22°. The (56) wave functions are [24]

(56, L = 0F) n—o, Pr1) = \}5 [Xar.4 Gar.a + Xars ars) ©° (19)
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TABLE VIII: SU(6)-breaking in ESC08c Couplings. 3P,- and 2S;-model relations, with ideal
mixing for vector and scalar meson nonets. Pseudoscalar- and axial-nonets the mixing angles are
—23% and —42.7° respectively. We defined X M, i.e. the isospin factor. Here, Agpc = 350 MeV,
y(as = 0.30) = 2.19 etc. The weights are A=1.287 and B=0.738 for the 3P, and 25 respectively.

Meson |rpr[fm] X YV VMY M 39, 3Py QPC|ESC08c
(140) 0.36 2 689 08 |g=—-4.29| ¢g=7483.19| 3.63
7957) | 090 6 222 1.0 |g=-271| g=473 |2.02| 2.28
p(770) 0.71 1 237 08 |g=-037¢g=1.29 092| 0.69
w(783) | 071 3 235 1.0 |g=-140| =478 [3.38| 3.52
a(962) 0.90 3v2222 0.8 g=2027|¢g=047 |0.74| 0.87
«(760) | 071 9v22.37 1.0 | g=1.74 | g=3.04 |478| 4.74
ar(1270)] 0.66 2v22.09 0.8 |g=—0.21|g = —0.74/-0.95 -1.11
d1(1280)] 0.90 6v22.09 1.0 |g=—0.39g = —1.34/-1.73| -1.06
b1(1235)| 0.90 2.09 0.8 f=0 f=0 0.0 | -0.20
(70, L = 07 )n=1, Pr1) = ; [(Yar,sXns,a + Urraxm,s) Omat
(VaraXma — VarsXs) O]

1
=5 [Xar,4 Oara — Xor,s Our,s| Vs (20)
Here, we have choosen to symmetrize (M,S) or anti-symmetrize (M,A) w.r.t. the quarks
numbered 1 and 2. The notation in [27] is X’ = xa.a, and X" = x5, and similarly for ¢
and ¢. The wave function 1 has the complete symmetry w.r.t. 1,2,3 permutations (Ss-
group). The last line applies because the overlap integrals in momentum-space vanishes for

Yar.a and 1%, see Appendix C. Rewriting, we have

1
(70, L = 0" ) y=1, P1y) = 5 [(Xpr.4 Orra — Xors Oars) Vnrs

(Xp,4 Ors + Xars Oum,a) Yaral (21)
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and, in general, the interference between the irreps is given by

<(m7 L = O+)N=17P11‘<®7L = 0+)N=07P11> =

1
WG (XM,A OM,A — XM,S ¢M,S|O§712§‘XM,A Om,A+ XS ¢M,S) (wM,S!O,%m,Sp,WS) +

1
3 (XM,S OarA + XA ¢M,S|O§?2,Z§|XM,A Oaa+ XS ¢M,s) <¢M,A|O£§gm,sp.|¢s) :

(22)

The next task is to evaluate the matrix elements of the flavor (isospin) and spin operators
1. Isospin operators: We evaluate below the matrix elements

on the quark level.
(56 S 7@ 56) , (70 S o1 56)

i=1,2,3 i=1,2,3
Because of the complete symmetry, we choose quark 3, and consider the matrix elements of
7, for the proton (P) and the neutron (N). We get

(¢M,S|TZ(3) |¢M,s) =

P é (UDU + DUU — 20U D ®|UDU + DUU — 2UUD> — é(+1 F1—4) = —;,
N é (UDD + DUD — 2DDU|+®|UDD + DUD — 2DDU> _ (1),(—1 _144)= +;,
and
(Orralmar,a) =
P ; <UDU _ DUUIF®IUDU — DUU> — ;(+1 1) =41,
N ; (UDD — DUD|T®|UDD — DUD) = ;(—1 —1)=-1,
which gives on the baryon level
<®|T§3)|®> = ; <¢M,A + dars| TP | para + ¢M,S) — ;Tm
(70/7]56) = 255 (6n.4 — DisIm®Sara + durs) — 2\3@@.
(23)

2. Spin operators: This completely analogous to the isospin operators, and we have on the
baryon level

1 1
(560 [56) = 2 (6rra + Gar,sl0P|drsa + dars) — 372

1 22

BWG) (¢M,A — Oar.sloP | dara + ¢M,s) — 0.

(70/0”156) 3

(24)
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3. Isospin-spin operators: We evaluate below the matrix elements
Z () @)
i=1,2,3

56 56| , |70 56 | .
i=1,2,3

Taking again quark 3 for the proton (P) and the neutron (N), we get now
(¢M,S!T§3)U§3)|¢M,s> =

(Ps=+1/2) : -

1
G (UDU + DUU — 2UUD|r®|\UDU + DUU — 2UUD) = +3.
1 1
(N.s=%1/2) : (UDD + DUD — 2DDU|+®|UDD + DUD — 2DDU) =%,
and

(¢M,A\TZ(3)U£3) W)M,A) =

(P,s =+1/2) : ! (UDU — DUU|T®|UDU — DUU) = +1,

(N,s =+£1/2) : (UDD —~ DUD|®|UDD — DUD) = FI,

| — NI

which gives on the baryon level

1 )
(®’T§3)U§3)|®) =3 (¢M,A + ours| TV 0P dara + ¢M,s) — oT:0,
1 2v/2
<E|TZ(3)U,(Z3)|®) = ﬁ (CbM,A - ¢M,S|7_z(3)0'£3)|¢M,A + ¢M,S> - V2

—T,0,.
(25)

Application to the different meson types the (56) — (70) transition matrix elements are:

1. Pseudoscalar mesons: baryon-quark matrix elements

2
(XTO'XOc) ) (¢T{177} Pa) — <2\/§v 3\/§> )

(26)
2. Vector mesons: baryon-quark matrix elements
(X1 xa) 5 (6'{1, 7} 0a) — (0,2V2), (27)
3. Scalar mesons: baryon-quark matrix elements
(X1 xa) » (6" {1, 7} 6a) — (0,2v2), (28)
4. Axial-vector mesons: baryon-quark matrix elements
(Foxe) . (61,7} 00) — (2V2.5V2). (29)
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In order to have a non-zero transition between the SU(6)-irreps,
one needs at least one non-trivial operator. Therefore, in the case
of the 1=0 vector- (w) and scalar-mesons (€) there is no effect of
SU(6)-breaking via SU(6)-irrep mizing.

Inclusion of the quark-gluon form factor and SU(6)-breaking via irrep-mixing, we obtain,
using results from Appendices B-D,

~

= 1) = gv(I = 1) Fygq) (Ra, Bar, Agaa) (1+sin(2¢) (r) 15707(0)/100(0))

= 1) = gs(I = 1) Fyoa' (Ra, Rur, Agga) (1 +sin(2p) (r) 1"=1"(0)/14=1(0)) .
(30)

QV(

~

gs(

Similarly for gp and g4. In Table VI the results are shown for p = —22° [27]. We note that
the effects for the L=1 mesons is small, because of the large Agge. The values in parentheses
are with ¢ = 0, i.e. no SU(6)-breaking included. The results show a dominance for the *Pp-
over the 3S;-mechanism with a ratio 2:1.

Now it is appropriate to scale A, B, and Agcp such that A+B=1. Equivalent to the set
{A, B, Agep} = {1.445,0.772,350} is the set {4, B, Agep |} = {0.652,0.348,235}. The last
set is the proper one because then the given v values are genuine.

E. Hard-gluon corrections to BBM-couplings

Here, we compute the so-called rescaled quark operators due to the hard-gluon renormal-
ization of the BBM-vertex, see the diagram on the r.h.s. of Fig. 4. The operator & stands
for the (gsqs)(g;I" ¢;) operator, where s denotes the ’spectator’ quark and I' = 1, v5, v, ¥57y-
The latter indicate the type of meson that couples in the vertex. The diagram has the value

28]
Gyux = /(31154(—@9)2 (;) (gs)\ (k(:lﬁli_‘;;?f—Fm) Xz’y“%) .

(q”uifg— 7 )

_ d*k  k?/d u _ u
~ +ig? / kQ/ (@YY A" qs) (@57 T @)
(2m)* (k?)?
1, I(2-4d/2) i
:_,78 A qs) (v, T vu\q:) .

19 (@A as) (@70 T vudai)
Here, m = mg and ~ means the extraction of the divergent part of the integral. The
symmetry of the k-integral has been used to deal with the ¥ operators.
In principle the gluon-corrections are finite, because we have in addition an extra (confined)
gluon /scalar-propagator in the @-vertex. So, we assume that the approximate computation
above is only valid in the region of integration where k2 < A. In a direct QCD-calculation
the ultraviolet-divergent terms in the evaluation of Fig. 4 would be replaced by logarithms
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TABLE IX: SU(6)-breaking in coupling constants, using (56) and (70)-irrep mixing with angle
¢ = —22° for the 3P)- and 3S;-model. Gaussian Quark-gluon cut-off Agga = 986.6 MeV. Ideal
mixing for vector and scalar meson nonets. Pseudoscalar- and axial-nonets the mixing angles are
—23% and —42.7° respectively, imposing the OZI-rule. Here, Agpc = 235 MeV, v(as = 0.30) = 2.19
etc. The weights are A=0.652 and B=0.348 for the 3Py and 35 respectively.

Meson |ra[fm] v 35, 3P QPC ESCO08c
7(140) | 0.23 5.51|g = —4.11|g = +7.70| 3.58 (3.88) | 3.63
7(957) | 0.71 2.22|g = —2.60|g = +4.87| 2.27 (2.72) | 2.28
p(770) | 0.71 2.37|g = —0.28/g = +1.03 0.75 (0.93) | 0.69
w(783) 0.71 2.35|g = —1.28|g = +4.79| 3.51 (3.51) | 3.52
ao(962) | 0.81 2.22|g = +0.32|g = +0.61| 0.93 (0.97) | 0.87
€(760) 0.71 2.37|g = +1.65|g = +3.08| 4.73 (4.73) | 4.74
a1(1270)] 0.61 2.09|g = —0.24|g = —0.88|-1.13 (-1.13)| -1.11
e1(1420)| 0.61 2.09|g = —0.23|g = —0.85/-1.08 (-1.10)| -1.06

cut off at A [28]. The lower limit we take as mg. Thus the correction should be evaluated

by replacing

9

2 1'(2 = d/2)
(4m)?

0451
— — lo
47

gl — .
mg

with this interpretation the hard-gluon correction is given by

(@ as) (GT @) —

F.

7

(1

%
— 10
1. 08

<;:;>> (QS QS) (%F Qi)'
Q

Meson-radii and CS-Goldstone-boson exchange

Since the constituent quarks have a significant mass ~ 330 MeV, the exchange of the
Chiral-Symmetry Goldstone-bosons (GBE) may be operating between quarks [29]. For =-
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exchange in a gg-sytem gives, see [30],

2 3
Jngg M
Vag (m) = - 7r2
47 12mQ

(T1-72) (01-02) ¢a(r),

which has the same sign as for NN because the C-parity of the 7° is +1, see [31]. The pion-
nucleon form factor mass A,yy ~ 900 MeV, which is larger than what would be expected
from the quark model and the radius of the nucleon. Therefore, a gaussian form factor for
the mqqg-coupling must be rather large, and the m-exchange between quarks in a baryon is
dominated by the tail. This is opposite to the GBE-asumption in [29], where il is assumed
that GBE is dominated by the cut-off part." Now, for the spin-triplet ¢g-states this potential
is repulsive for I; = 1 and atractive for I, = 0. This applies to the vector-, scalar-, and
axial-vector mesons. Then, for these mesons one expects larger radii for the Ip; = 1- than
for the Ip; = O-mesons. In the case of the pseudoscalar mesons the opposite would be true.
Except for the axial-vector-mesons, these features are confirmed in Table’s IV and V.

Note: In the argument above we did not include the possible effect of the tensor and spin-orbit
force for the P-wave qq-states. (PPy: Sy = —4,L.8 = —2,3P, : S;p=+2,L.8 =—1.)

4
4
4

q—> T T

FIG. 5: OBE and BSE in qg-systems

\
A
\
\

Q)
Y

G. Meson-radii and OBE-exchange

Here we analyze the expectation w.r.t. to the quark radii in mesons, where we suppose
that OBE-exchange in the ¢g-systems is important. In Fig. 5 we envisage the ¢q wave
function generated through solving the Bethe-Salpeter equation (BSE) with OBE as the
driving force. The meson-echange central, spin-spin, and tensor potentals are [30]

my mg
Ve = T ar 9\2/ Cboc,v - g?g ¢OC,S7
2 2
mp o Mp 4 my 2 My 4 ma o o
Ve = +— —_— - — — — ,
+ . dp 12Mc29 ¢C,P An (gv + fv) 6M22 Cbc,v+ An ga ¢C,A
2 2 2
mp o Mp g my 2 My g ma o My g
Vr = +— gp — +— (gv + — ——= ¢4 —= P4

There are also central potentials from Pomeron and Odderon exchange, but they have no
isospin dependence.

As for the isospin dependence, neglecting mass differences one has g% ~ g%w + T To gg(vl,
which can be expected all to be positive. We notice the strong central attraction,
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which is stronger for I; = 1 than for I, = 0. Assuming this to be dominant, we expect that
ipso facto Ry(I = 1) < Ry (I = 0), contrary to what we seem to find from the couplings
obtained in ESCO8c!

H. QCD-Sum Rules

To make connection with the QCD-SR approach, we have using p-saturation

2

Im H(S) = 7T7T2Lp (S(S — mi) (31)
1
and [32], eqn. (4.44)
1 s
/6_8/M2ImH(S) ds = 8—]\42 [1 + a} ; (32)
T T
which yields
2
T e Ly o &
3 8 T
With M = m, one finds
2 2 —1 2
fl’_ﬂ<1+a$) z£:2.33. (34)
47 e ™ e

The basis for this determination are the simplest vacuum-polarization graphs, the 1 corre-
sponds the 1-loop quarkdiagram, and the a4 term to the one-gluon exchange correction to
that diagram.

The connection with the pair creation constant v is given by for example (5) and (10). One

has

oSy B om
47r—47r4m/2)
32 as\ "t m?2
= T (14 %) Ma 35
26(+7T) 2 (35)

The 'universality’ of « is explained by m, ~ m. ~ m,,, and f, = f, = f., so that instead of
p-like quantities in (11) one could as well use e-like quantities, etc.

What remains puzzling is why the QCD-SR approach does not give, like 3P,-
model, the ratio’s (/ =0): ([ =1)~3:1 ?!!
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APPENDIX A: HARMONIC-OSCILLATOR MOMENTUM SPACE WAVE-
FUNCTIONS

The harmonic-oscillator wave functions in configuration space is [33]

Ynim(r) = Nyjexp (—;)\7’2> (\/Xr)l L§€+1/2()\r2) YA(@, ®),

n=1+2 (k=0,1,2,...) )\:%ER;}. (A1)

Here, Li:l/ 2(t) are the Laguerre polynomials, and k = n, as used in some of the literature.
In Table I the for this paper relevant entities are given. The Fourier transformation to

TABLE I: H.O. Laguerre polynomials and Normalizations

1/4
n=0, 1=0, k=0|L}/* = 1 Noo =2 (%) /
1/2 3 2 5 (\3)1/4
n=2,1=0, k=1]L1"" = 5 = Ar"| N = 2\/; (7)

1/4
n=3, 1=1, k=1|L}* = § - \?| Ny, = 2,/ (%) /

momentum-space is given by
zEn,l,m(k) = (27T>73/2/d37n wn,l,m<r> eXp (Zk I') ) (A2>
where k is the relative momentum in the QQ CM-system. So, denoting the quark and

anti-quark CM-momenta by k; and ks, we have k = (k; — ko) /2. Then, for ¢, ;,,(ki, ko) =
Yn.1.m(k) we have the normalization

/ Py Py 5(ky + k) [Dnsm (ki k)2 = 1. (A3)
1. Case n =0,1=0:
~ 3\ /4 .
— =32 | 2 3 ) 1
Yoo0k) = (2m) <W> /d r exp{ 2/\r + ik r}
= (7A) "t exp (—k2/2)\>

2 \ 3/4 2
_ (RM> exp [_iM(kl—kg)Z] . (A4)

™
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Notice that we included here in the first step the factor Y (6, ¢) = 1/v/4m in v 9.

2. Case n = 2,1 = 0: Similarly to the previous case we now find

Daoll) = (27)° 3/?[ ( )3/4 [ (5= x) e [-5n2 + ik
= 3 [ e ()
() )
X exp [—ng(kl—kg)Q] . (A5)

3. Case n = 1,1l = 1: For [ = 1 it is convenient to use cartesian components of the wave-

function by the substitution Y} (0, ) — y/3/47r;,;i = 1,2,3. Then, we find for the wave-
function in momentum space

@Enz‘ k) = (27) 3/2 d>r /\7’Z exp —1/\r2+ik-r
T 2
2 [ A5\ 1
= (27?)_3/2\/> <A> (=1Vky) /d3r exp [—2/\7“2 +ik - r}
TAT
92 _
— z\/; (73) " exp (~K2/20) -k, . (A6)
4. Case n = 3,1 = 1: Similarly to the former case we now find
~ 1
3,1, = (27 TZ —— X )exp|—= A" +ik-r
Ys1.4(k —3/2 &Pr (VA Z Ar? oA 2 4ik
[ 5\ 2.9 2
= iy (m ) (1 -k /A) exp (—K2/22) - &, (A7)

Also the cases 4 and 5 can be transcribed to the spherical base in an obvious manner.

Summarizing, we have the following momentum-space QQ h.o. wave functions:

(n=0,1=0) : Pooo(k) =+ (R})M exp l—}? (ky — kg)Q] , (AS)
(n=21=0) : aoo(k) = —\/g (Rj‘4>3/4 {1 . é (k; — ky)? Rﬁw} .

X exp l—Rg” (ky — k2)2] : (A9)
(= 11=1) ¢ k) =~ Ru (R;”)/[ (ki — k)]
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X exp l—}? (k, — kg)Z] : (A10)

9 \ 5/4
(n =3,l= 1) : &3,1,m(k) = +;\/§ <P';i\4> {1 - 110 (kl - k2)2 R%} )
X [€m - (ki — kp)] - exp [—Ré” (ky — k2)2] . (A11)
Here Y1 (0,¢) = i|k|Y.1 (0, ¢) [34].

The h.o. energy is given by

Eho = (n+3/2)hw . (A12)
Then, the energy difference for the radial states is given by
n? h ?
AE = Anhw = An——— = 2An < /RM) U (A13)
mRy, mpgc mq

where we used A = mw/h = Ry}, so that w = h/(mR3,), and the reduced mass m = mg /2.
Taking mg = 330 MeV, and Ry, = 1 fm, we find for An = 2 that AE ~ 485 MeV. For
Ry = 0.66 fm, AE ~ 1102,

In connection with time-reversal invariance it is better to
use as basis functions in configuration space the spheri-
cal harmonics with an extra i~ [18]

VO, ¢) =i r"Y[M(6, ). (A14)

This implies for L=1 an extra factor ¢ also in momen-
tum space. This way the scalar- and axial-vector meson
couphngs become Teal:

APPENDIX B: BASIC OVERLAP INTEGRAL QPC-MODEL I

We define the basic overlap integral Io(A; B, M), where A and B are baryons, as
Io(A; B, M) = /d3k1 Py Ak 5(p — k1 — kg — kg) -
x / PR P hadhs6 (ks — K, — kg — ks) 0(p' — kg — ko — ky) -
X ng(kh k27 k4) &A(kh k27 k3) 121(\5:0) (ki% k5)*
— N, /d3k1 By dky Phy K, 6(p — ke — ko — Kg) -
X 5(p/ — k1 — k2 — k4) - exp [+f(k1, e ,k4; ké, k5] s (Bl)
where in the last expression ks is understood to be fixed according to the J-function in the

first expression, and
3R2 3 R2 3/4
No- (Y2 (8T (B2)

™

45



and

, 1
flkiy .o ke ks ks) = _gRi [(kl —ko)® + (ki — kg)? + (ko — k3)2]

_éRZ [(k1 - k2)2 + (kl - k4)2 + (kz - k4)2]

1
LR~ k) (B3
ki > > kll
k2 » » kIQ
k3 ky
ks
(a) kj

FIG. 1: Gluon/Scalar-exchange (a).

Because of the d-functions, there remain only two three momenta which have to be integrated
over in (B1). For these we choose

Ap=(ki—ky) , Qs=(ks+ky)/2. (B4)
From the é-functions we have
p=(ki+ky)+ks , p=(ki+ko)+ky,
which gives

k3—k4:kg—|—k5:p—p,5k,
kg—ké:k4—|—k5EQ,
1

1
ki +ky = §(P+P/)—§(k3+k4) =q—Qu, (B5)

where q = (p’ + p)/2. From these relations we readily derive that

1
ki = - (q— Qs+ Aya)

2
1
ky = §(q—Q34—A12) )
1
ks = Q34+§k7
1
k4 = Q34_§k7
1
ki = Q34+§k—Q7
1
ks = —Q34+§k+Q- (B6)
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Then,

(k1 — ko)® + (ki — k3)® + (ko — k3)® = A}, +

im—3QM+Au—kf+im—sQM—Au—kf=
AL+ (@104 (A —3Qu) + 5 (a—K) (Ar —3Qu)
+la—10* 1<An+3QM>—;<q k) (A +3Qu) =

4
3 1
§A%2+§(q—k) +§Q34_3(q—k)'Q34

Similarly

(ki — ko)? + (k; — ky)? + (ko — kq)? =

1
A3, + Z(q_ 3Q34—|—A12—|—k)2 +

1

AZ 4+ =
12 + 4

3

§A§2 +

(d—3Qss — Az + k)2 =
1

S(@+10* 4 Qk -~ 3(a+ k) Qy

Then,
f(kl, e ,k4, kg, k5> —Oz<q2 -+ k2) + f(kg, k4, ké, k5),
f(ks, ka, K, ks) = —a [3A%, +9Q3, — 64 Qs

4y (Qzs — Q)% (B7)

where

1

1. Parametrization Integrand with A3, Q34, Q (B)

Since k1 + ko = q — Q34, we have

1 1/ 7w \3/?
By B f/d?’A - () . B9
/ 10782 = g 2= g \3, (BY)

Also, because k3 — k, = k we have [ d®ksd®k, = [ d*Qs4 and

b () ()" e fo0

X exp{ — (92 +47)Q2, — 49Q? + 6aa - Q34 + 87Q - Q34}
3/2
) (E) 00 ol
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1\ /7N\32 [ 2 \*? 5
= M (8) <3a) (36047) P {aa ]
o\
= 2V2 <R2> =2V2 7t R (B10)
M

where a = q. Above, we performed with b = Q34 the integral

o\ 82
/de exXp [_ 49Q + 87b - Q} = <4’Y> exp (4”yb2> ,

from which we derive that extra QQ-vector components in the integrand lead
N\ 32
2
Qi — (1/87)Ve; — b, <47> exp (4’710 ) ;

Qin - (1/8’}/)2Vb,ivb,j — [&yél] + blb]] (él’y) exp (4fyb2) )

With extra components of Q in the integrand, the integrals get the following factors w.r.t.
the basic integral Ij:

1 1
Q34,z - 6 V g Qj,
1\2 12 ,
Q34,iQ347]‘ — <60¢) Va ZVaj — <6a) |:20z 5@' + dov a; a,j:| s
1 13\?
Q34,Q34,;Q34 1 — | — V iVaiVar — (— ] |4a® (i ar + 6ir aj + djp ai )|,
6 6
1 1y\*
Q34,034,034 6 Q341 — <) ViiVaiVarVar — <) {40&2 (5z‘j5kl + 0irdji + 5jk5il)} )
6 6
1 2
@34,,Q; — Q34,,Q315 — <6a) {26! 8ij + 4a’a; aj:| ;
1
Qin - Q34,iQ34,j - g 5z‘j- (Bll)

Here, = means the limit a = q. Also, above we have left out terms quadratic in the
momenta q and k.

2.  Overlaps for (56) — (56) Transitions

(a) Loy = 0: V) (ks — k) = /2 i€ (2Qz — Q — k) =
=02y — i3 e (LY (N 3 o .
=0 (i) —z@em,z No(5) () [dQu [#Q 2Qui-Qi—k)
xexp{ — (90 + 4)Q3, + 6aa - Qus — 1Q + $9Q - Qui
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= Z\/E €m.i - No <;> <37;>3/2 (;)3/2 /d3Q34 (Qsa; — ki) -

X exp{ —9aQ3, + 6aa - Q34}
TN\3/2 [\
-l 0@ ) (5)
32 [ 12 \3/?
- z\/g(em -k) - (_(73) Mo (;) (;;) / (36OW> exp(aq?). (B12)

Here, we used that q = —k/2. With

1) (§) et

3R%\° (R2\Y [(6v3a)’ /834
No = (*f A) < M) :< fo‘) <7> (B13)
T T T T
we have
3/4
3 7 T
JL=0) (k2 — I -k <_> 219 —
AN T z,/i(e k) (B14)
3 M ™
For future reference we define
- 3/4 . 3/4
Ik*=0) = 2v2|— =2V2 | = . B15
=0 =23 (7 ) <ava () B15

b. Ly, = 1: This case in the momentum-space overlap-integral the integrand contains the
factor

Vi (ks = ks) V), (K — k) =

may

(e (2Qs1 — Q—K)) ey, (2Qus —2Q)) = (e )il )

X |4Q)34,i1Q34,5 — 4Q34,,Q5 — 2Qi Q345 + 2Q; Q5 — 2k; Q345 + 2/%@]}
1 2
which yields, neglecting ¢*-, gk-terms,
3 1 T\ 3/2
VK =0) = ———Ruy (em)i(€)); - () () /d3 : /d3
m,n ( ) 47_‘_\/5 M (6 ) (en)] '/\[0 ] 3o Q34 Q

X (zQin - 2@34,iQ34,j) :
X exp { — (9a + 47)Q§4 +6aa - Qg — 47Q% + 8vQ - Q34}
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3 1 T \3/2 2 \*? 1
_ R Er) - i N o
= gyt (e ) NO(S) <3a> <36m> 1y
3/4
3 . us _

c. Summary: The (56) — (56) transition momentum-space overlap-
integral, in the special frame where p = 0, @ = —k/2, neglecting
k2, gk-terms, we obtain

3/4
a. [(L:O)<k2 =0) = _z\/§ U / . @F(e -k), (B17)
s 3 R% dr L™ )

3/4
_ m _ 3 *
b. IV (K* = 0) = —4 (R?\) Ry - E(em -€,), (B18)

By
0

N

( e*
€m €, mn

APPENDIX C: SU(6)-WAVE FUNCTIONS AND JACOBIAN-COORDINATES

The Jacobian-coordinates for a 3-body sytem are

1 1

kp:ﬁ(kl_kZ) 5 k)\ \/6

The momentum-space the wave functions are

(k; + ko — 2k;). (C1)

~ 1
‘(®7L = 0+)7 {8}7 P11> : ¢N:0 = NO exp |:_2R?V (k?) + ki):| )
~ 1
(70, =048}, P+ ey = i (12 =16) exp |~ % (i +16}) |
~ 1
(70, L =07),{8}, Pui)’ : ¥y_1 = N1 (2k, - k») exp [_2R?V (I + kiﬂ '
(C2)

Here, the double-primed and the single-primed functions are antisymmetric respectively
symmetric w.r.t. two indices, which we choose, without loss of generality, to be 1 and 2.
The normalization constants are

NG AN V3R3\ Y
M= (IR e (V) (©3
In terms of the momenta of the previous sections, we have
1 1 1
kp = ﬁAl? s k)\ = %(q— 3Q34 - k) = %(u - 3Q34)7
1 1 1
k;, = EAH , k= %(q —3Qs + k)= %(W —3Qa4)- (C4)
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Now, for k =0

kp'k)\ = 2\/— (11—3Q34) A,
1

K-k = §A§2 -5 (u® — 6u- Qai +9Q3,) - (C5)

we recall that

flki o ky) = —a(q’ +K) + f(ki, .o k),
flki,.....ky) = =3 A%z — (9a + 47)Q:)2,4 +6aq - Q3 +87Q - Q34 — 47Q2-

Then, we get the integrals

3 3 3 1 3/2
/dk;ldk2:> /dA12:> ( ) :
8 \ 3«

1d 1 1 3/2
Bl By A2, = —:»-() .
/ 1 s 3da  2a 8 \3a

For the overlap between the SU(6)-irreps (56)- and (70)-irreps we have for the (70) in the
initial state

1 1
K-k} = §Af2——

- <u2 —6u- Qs+ 9Q§4> , (C6)

where u = q — k. For the (70) in the final state we have the factor k? — k' % which is the
same as in (C6) apart from the replacement u — w = q + k.

The basic overlap integral with the f(ki,...., ky)-function, as seen from (B10), is

i an = 3 (2) ()" () ool

3/4
= 22 (wa> VI By, )

For the computation of the momentum-space overlaps we need the results:

200
(76}
2005 + 4o qlq]]

(Ag)i — 0, (Q34); — +61

1
(Q34)i(Q34); — +quvivq7j —

Vq,i - qi,

1
3602 [
In passing we note that from above it follows that for the SU(6)-irrep transition overlaps

T, M) =0, (4", M) # 0. (C8)
With these results, we readily derive that

1 9
kK> —ki = v 6(604)‘1 =0, (C9)
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which is logical because the (56) and (70) are orthogonal.
For the normalization constant of the (70)-irrep

R2 3/4
NI = Ny N, (;f) — (R/V3) Ny (C10)

For the finally needed overlap-integrals we have extra factors (34 in the integrands. There-
fore, we need

(Q34)i(Q34)(Qs4) = + (610)3 (40?) (5ij Q. + ik @5 + O qi)

Q@@ @) — (&) (10 (g dusy+ 5u00) . (1)

where in the last expression we restricted ourselves to the limit k? = 0.

1.  Overlaps for (56) — (70) Transitions

(a) Ly =0: y%.bp(kg —k5) = \/EZE . (2Q34 — Q —k) =

1706y = 1 Lei o8y (D) (2)" [0 [0 (00w - 0~ k)

Lt om )

x exp { (90 + 47)Q3, + 60a - Qzs + 87Q - Qa1 — 47Q3, }

[3 SO\ N2 (P
e ()" (2) oo

1 9
X {4& — 6Q§4} exp {—9aQ§4 + 6aa - Q34}

3 1 TNY2 (w2 \P?
— i) e k) N (VYT 12
"\ ax (em k) N (8) <3a) (36047) 36a’ (C12)

where we used a = q = —k/2. From this we obtain

3 R? 1 A2 [ w2 \*? 1
TE=0" K2y = 44— m - k) - () <)
w0 = g @0 M5 Ga) \sear) 6

3 12 =\

b. Ly, = 1: This case in the momentum-space overlap-integral the integrand contains the
factor

Vo (ks —k5) (Vs (K — ks) =

3 3

_Zemp (2Q34 - Q k) €mar (2Q34 - QQ) (emP) (emM)J )
7 4

X 4@34,i@34,j - 4@34@]' - 2QiQ34,j + 2@1@] - 2k1 Q34,j + 2k2Q] )
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which gives, using the computed integrals,

=0 =+ Lo i (1) () 0 f e

X (2Q:Q; — 2Q34,Q345) - {4104 — é <W2 — 6w - Q34 + 9Q§4)} :

xexp{ = (90 -+ 49)Q%, + 6aa - Quu — 1Q* +59Q - Qui

e W Q@) (5) 6
x [ Qs ( Q34) exp{ ~ 9aQ2, + 6aa - Q34} — 0(17)
(C14)

c. Summary: The (56) — (70) transition momentum-space overlap-
integral, in the special frame where p = 0, q = —k/2, neglecting
k2-terms, we obtain

3 12/ = \**
) ]’//(L:O) k — S m.k .\/7 -
a. I (k) Z\/47T<€ >33R§4 ’

_ 3 2Ry (N (3 3
i = et () A )

APPENDIX D: QUARK FORM-FACTORS

In this appendix we introduce a quark form factor in the overlap integrals. It appeared
above that for the L=1 mesons there is no transition matrix element between the SUG-
irreps (56) vand (70). This occurred because of a subtile cancellation. To disrupt this
cancellation we introduce a cut-off. For this here a convenient choice is a gaussian form

factor F(Q?) = exp[—4A\Q?] in order to generate a non-zero transiton matrix element.
Similarly as before, we now have

b= N (D (5)" [aQu [dQ e w0+ mai

—4(y + N)Q% + Gaa - Qs + $7Q Q34}

- 0() () () e

X exp {— ((9& +4v) — 741 )\) Q3, + 6aa - Q34}

23



1N\ w32 a2 \*? 9oy 3/ o
N N“(s) (3a> (36047) <9a(’y+)\)+4’y)\> P {O‘a}

3/4 2 P2 3/2
3R R
~oova (T L L R (D1)
R%, 3R%(R3, + R3) + R3,R3

where a = q and

_ 9a(y +A) azll by A ]1 (D2)

“T 900y + A) + 4y 9o (v + A)

Above, we performed with b = Qs the integral

3/2 9
/dSQ exp { —4(y+N)Q* + 8vb - Q} = (4(71)\)) exp (sz)\b2> ,

from which we derive that extra QQ-vector components in the integrand lead
3/2 9
v 7T 47
1/8v)V i bz e b s
= W8Ves = 75 (4(7+A)> Xp<v+A )
1 v ?
— 0+ | —— | bib| -
8(y+A) 7 <7+)\) j]
3/2 5
T 497 1
X | — e b* | .
(4(7+A)> - <7+A )

With extra components of Q in the integrand, the integrals get the following factors w.r.t.
the basic integral Ij:

QiQ; — (1/87)°Vy,:Vi; —

1 200
Q34,i - V ﬁ a;,
6

2 1 2
6 ) Va ZV,”- — <6a> |:20é 5ij + 4642@,- CLj:| s

b
1
Q34,iQ34,j - (
o
1\?3 1\?3
Q34iQ34,jQ34,k - <) V. V Vak—> <>
§%e" 470"
(1
§%e"

4a°2 <5ZJ ag + O a; + 5jk CLZ)] )
1 4
Q34iQ347jQ347kQ347l - ) Va zvajva kval - (60&) |:4042 (5135kl + 5Zk5]l + 5]k51l>:| ’

1 2
Q34,Q; — 5 1 \ <6a) {261 0ij + 46’ a; aj] ;

2
Qi@j - Q34,iQ34,j - 8(71+/\) 5@']’ - [1 - (_T_>\> Q34,i@34,j
_ 1 s 27 + A

Here, = means the limit a = q. Also, above we have left out terms quadratic in the
momenta q and k.
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1. Overlaps for (56) — (56) Transitions

(a) Lyr = 0: Y} (ks —ks) = /£ i (2Qz — Q — k) =

f,gf=0><k2>:z'\/§ i Mo (3) ()" [ [dQ 2Qui—ai k)

% eXp{ — (9a +47)Q3, + 60a- Qsq — 4(y + N)Q* +87Q - Q34}

B Z\/E €m,i - No (é) (37;)3/2 (4(77:- A))S/Q /d3Q34 (77—:_2;\ Q34 — kl> .

2

4
X exp{ — ((9044—47) — 7_7_)\> Q3 —|—6aa~Q34}
() (1) (o) LR
T Vdr '\8/) \3a 36ary Y+ 6o

9y 3/2
2
% <9oz(fy +A)+ 47)\) exp(aq’)

3 v+2\ & 7\ 9ary 3/2 9

Y e . N | DNVoY .

! (¢ ) [ v+ A ba ] \/_<8fy> 9a(y + A) + 4y explad’)
(D4)

Here, we used that q = —k/2. We have

_ /3 v+ 2\ @ \**
IE=0(K2 =0) = —i/— (€n k) - — 1 2v2 (=]
m 0) \ax (e ) v+ A 6a+ V2 8y

90y 3/2
X . D5
(904(7+)\) —|—47)\> (

Voo (ks —K5) (Vs (K — ks) =
3

_Er(emp ’ (2Q34 - Q - k)) (emM ’ (2Q34 - 2Q)) = _E(emp)i(emzw)j ’

X 4@34,iQ34,j - 4@34,1’Qj - 2QiQ34.j + 2@2@] - 2kz Q34,j + kaQ]:|
2
1 Y
= 5, —|1—-|——
8(y+A) [ (wA)

BV = =05 B eiens Mo (5) (55) [ #0u [

(034,134,
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(034,iQ34,5 } :

A ()
% exp { — (90 + 47)Q2, + 6aa - Quy — 4(7 + N)Q% + 87Q - Q34}

g e (1) () ()

N 1 (7) | o) (i mn) ot
e 23(2) - - (2] ()]

90y 3/2
2
. D
% (9(1(7 +A)+ 47)\> exp(aq’) (D6)

we have

3/4
=Dk =0) = — S Ry (€m-€0) - 2V2 (o CL
" Ar\/2 8 8y

2 _
d (‘m) .
(v+A) Y+ A 902
3/2
9ary )
\ A J T 77

2. Overlaps for (56) — (70) Transitions

(a) Ly = 0: V!, (ks — ks) = /2 ie- (2Qz —Q — k) =

1oy =iy 2 ey (1) (2)" [wau [

1 1

X (2Q34 — Qi — ki) - {M—6(W —6W~Q34—|—9Q34)}.

g eXp{ — (90 +47)Q3, + 60a - Qay — 4(y + 1) Q* + 87Q - Q34}

o5z s (5) () (i) S (555 i)

y {1_1(W ~ 6w+ Qu+9Q3,) |

4o 6
xexp? — [ (9 +4)_4772 Q3, + 6aa- Q
Xp Q g ISY 34 aQ 34
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i 026 () ()" 355)

3a 360

LD B PRI ) B R 2 N
4o 6a v+ A

«

18a v+ A
3/2
oy ,
g (904(7 +A) + 4%) exp(aq’)

| ! ay+2\  a a v+ 2X
i 47r(€ >4a{ [+6a7+/\]+a<+18a7+>\>}
™ 3/4 9 3/2
x2v3 a 2v2 [ — Y exp(ad?).
8y 9a(

Y+ A) +4vA

(D8)
Here, we used that q = —k/2. we have

s 9ary 3/2
&y ey + ) + 492

(D9)
\ 7

o 3 1 T \3/2 T
[7(7"{:;1)”(1{2) - _47T\/§ RM €m,i€n,j N(;, (8) (306> (

3/2
3
4(fy+)\)> /dQ34-
1 ~ 2
X {8(7—{-)\)5” — [1 — <’y—{—/\> Q34,iQ34,j} .
1
* {4a G (w? —6W~Q34+9Q§4)} :

472
—( (9 4y) — —
<o~ (Ga-+ 1) - T

n ) Q3, + 60a - Q34}

= _4:\/5 Rus (€m - €,) - N <513> <37;)3/2< 2 >3/2.

3607
«

X{320z(71+A)<1_a>_720;3<1 5a> [1—< ! )2

3a T

} |

ga,y 3/2
2
: <904(7 + ) + 4%) exp(aq’)
3/4 9
3 - .
- R m " €En) " 2\/5 —_— A
iryg T Lem ) (m)

V3
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This gives
(L=1)11 (1,2 3 V2 m o R’
IV="Kk* =0) = ———~ Ry (€ - €,) - 2V2 | — 4.
1 _ _ _
32a(y+ ) o 7203 3
2 3/2
gl oy
X |1—|—- D11
{ (WFA) } (9a(7+k)+4ﬂb )
3. Summary and Ratio’s for Overlaps

(a) Ratio’s for Ly, = 0:

I(L=0(k2 = 1 A A 2\ Ay 420\
n ) _lplioa(ip 00t 14 00T .
[mL_O)(kQZO) 2 « 18a v+ A 6o v+ A

(b) Ratio’s for Ly, = 1:

[E=D"(k2 = 0) 1 3{(1_a> 4a\ (1_5a> 27+A}_

Ve =0) 2 o) 902 3a) v+ A
[y _dar2y £\
9a2 v+ A '

(D10)

(D12)

(D13)

APPENDIX E: CONNECTION OVERLAP INTEGRALS LE YOUANC ET AL

Using the representation d.(x) = exp [—z%/¢] /\/Te we have

3/2
53(Q) = lim (me)™? exp (—QQ/E) = lim (Zi:\) exp (—4)\ Q2> :

e— A—00

To establish the connection, we write the quark-gluon form-factor of section D as

9 3/2
F(Q*) = <47T)\0>3/ : <47r)\> exp (—4)\ Q2> )

o8

(E1)

(E2)



and take limy_, . First we note that, see definition (D2),

Q Yo
lim — = : E
Aho a  a+ 4y (E3)
Furthermore,
_ 3/2 2\ 3/2 3/2 3/2
I = N, (1) (W) i dary (A
8/ \3a 36y 9a(y + A) + 49\ T
3/2 3/2 2 3/2
=% w5 (5) (%) il _ (3R ) (E4)
8/ \3a 9o + 4y 3R + Ry,

Below, we apply this limit to the overlap integrals of the foregoing section.

1. Overlaps for (56) — (56) Transitions

From (D5) we get, after multiplication with (4)/7)%/2,

3/2 3/2
0 =0) =% i 2 (e 1) [2vE 7] <”> 120+ 4y ( 300y )
7

8y 9a+ 4y \9a + 4y
3 3RERy \** 4R% + R2
= iy (e k) [ OTATM ) A T My (E5)
477' 3RA+RM 3RA+RM

Similarly, from (D7) we get

3 R \ 1 4y 360y \*
TE=D (K2 =) 2= — 2 M 0 er) 2v/2 [ - R —3/2| (2290
o e V2 R, R%, Oa+4y " O + 4y
3 1 sR2Ry \* R
_— a— m * . — 2 _3/4 . A M M . E6
T (e ) V2T <3R3 Y R,) 3Ryt R, (E6)

2. Overlaps for (56) — (70) Transitions

From (D9) we get

[3 9 RyRy \7*
JE=0r (K2 _ ) A= 4 2 k)2 -3/4 AfYM .
o =0) = (e k) gm 3RS + R3,
2

( R ) Ry R, E
3R% + k2, 3R% + R2,
From (D11) we get
3 1 3RZRy \**
JE=Dr 2 — ) Ao 2 c€') - = —3/4 [ _2tATIM .
W= 0) = g (e €) VB 3R + R,
2 P2
SRR LY 2083 = Ry ) | (E8)
3R% + R%, \3R% + R},
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3. Ratio’s for Overlaps

From formulas (D12) and (D13) the limits limy_, give the ratio’s:

(a) Ratio’s for Ly, = 0:

R Ry + Ry
3R% + R, AR + R2,

(b) Ratio’s for Ly = 1:

Lr="k*=0) 1 5 (20— By
I k2 = 0) 2 3R4+R3, )
4. Comparison with formulas Le Youanc et al

1. Comparison Pair-creation constants: Writing Eq. (3.12) in Ref. [3] as

Lo(N'; N, M) = —z,/f(em k) I(N'; N, M),
/I

where

3RARy \*? 4RL + R},
3R?% + R}, 3R% + R%,
Then, comparing the expression for gy in Eq. (3.13) of Ref. [3]

I(N';N, M) =n"%" <

v = 7( . )1/2 3/4 3/2< B3R5 R )3/2 AR + Ry
, =

3 V. \3RY + R}, 3R% + R,
2 1/2 3

= (3> 7 miy I(N'; N, M),
m

with Eq. (50)

32 \/myR
_ 5 —3/45 ( ™ ) vty
gv (3/\/_> m Yaq Ao (AQPCRM)2

3 s (w)?’/? VI F o
= a5, (— -I(N'; N, M).

This gives

and therefore, requiring that 7,; = v, we obtain the relation
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_ 2 327
A = \/; 3 (m‘/ AQQPC)

=A).  (E15)

From (E15) we get Ag &~ 1 GeV, giving A\g &~ 0.2 fm, which is in reasonable agreement with

the actually used A-value for the QQG form-factor.

2. Comparison Integral Formulas:

a. (56) — (56) Transitions:

al. Without Quark-Form Factor F(Q?) = 1:

A 43/ [(

/'3
L = 0) = =i 4 (em T > g 2v/2 (7 /R%,
B: —i—% 2v/2 (W/R?\/[)BM

3
_ 3R2Rym \2 R
A: —L1/2 x=3/4 4 M
2 3R%+R3, | 3R%+R3,

3
2 2 2
3R2 ) > R2,

a2. With Quark-Form Factor F/(Q?) # 1:

A 43/t [(

x [CD/6

R3,+R3

61

= (€ - €) x . —9Ry} (7T/R?\4)3/4 l(

B : +4R,} (7/R%))

3R%+R3,

3R%+R3,

3
3R R ) 24R124+R?W‘|

)3/4 :;Ri .
3R%Z+R2,

3
24R;4+sz
3R2+R3,

1)

3/4

3R%+R2,

](L:O)(kQ — 0) = — i (em . k) > — 2\/§ (W/R?\/I

3 ey ] =2 rm

B:+2R;} (w/R%)?’/“(
X oL {1—CR% }

4
B:+2V2 (r/R3)" <3R2A(R

3
3R;4R1\g 24R‘24+RZM
3RZ+R2, | 3R%+R3,
3
)3/4 :;,RE,Z 24R§,+sz
3R4+R2, | 3R%4+R32,
23R?4]2%?M 2 2
TR+ Ry R
+ 1],
Ry
3R%+R3,

3
.1 —3/4 | ( 3R3Rm |2
A —3V2r l(wi*%

. (M) 3
3R%+R3, Ra

(E16)

| ()

)3/2

3
s\ R,
3RA+R1\4

2 p2
3RAPEJVI

2
3R%

3R% (R3,+R%)+R2, R%

3R%+R3,

| ()

>3/2

(E17)



We note that because of (E2) for a proper comparison we have to multiply the A-entries
with a factor (7/4X0)*2. Taking Ao = R%/8, we get the expressions after — in the equations
above.

Noticeable is the sign change between the A- and the B-expressions
in (E16) and (E17). This is due to a sign flip in the following factor
in the formulas (D9) and (D11) between A = 0 and A — oc:

2 _
)= 5 - ()] 6
v+ A v+ A 9o
Y B 2y + A
74+ A 9a(y + A) +4yA |’

which is > 0 for small A, and < 0 for large \.
b. (56) — (70) Transitions:

- R2 2 R%2 +R?
[7%70)”(1(2 = 0) _ A: _%\/g [(3Rif3?w> - 3R2+R1§i1‘|
T(HL:O) k2=0 1+CD/18
( ) B:+%\/§{1_CI+CD//6}’
. 1 2R2 —R2
A —3V3 3R§+R%>
L=V (k* = 0) ) R
g o) - B: -2v3{(1-0)—(1-50/3)CE- 3RA}
m — 5 -1
X (1 — ?%CE) .
Here,
G RRR) R
"o 3Ry (R, +R:)4+RYLR: = R}
_R%4—|—2R/2\_1+R7% ~ 1 _2R%4+R?\_3_D
- P2 2 2 T P2 2 :
R3; + R} R3, R5, + RX

Here, (A) refers to [3], and (B) to the formulas in these notes.

APPENDIX F: VECTOR DOMINANCE AND CFI

For a formulation of the basic relations of vector-dominance model (VDM) consider the
hahronic reaction VA — B, where V is a vector meson and A and B are arbitrary hadrons.
From the LSZ-reduction formulas we have for the amplitude

T.(VA = B) = (Blijvu(0)|4) , (F1)
where jy () is the hadronic current to which the vector-meson field V,,(x) couples, i.e.

(070, +m}) Vi) = jvulx) - (F2)

62



Here, the vector current is assumed to be conserved, i.e. 0*jy,(r) = 0. Taking matrix
elements of (F2) between arbitrary states, and using translational invariance, one easily
derives

(BIV.(0)]4) = (my — k) (Bljv,.(0)| A) . (F3)
which using CFI (se F7)
g () = V%;We ﬁVu(I) : (F4)

This gives for the matrix elements of the electromagnetic current the expression

e mi,

(Bljim(0)]A) = WT]{/Q@?UV#(ONA)' (F5)
V=pw, <1V TV

From the QCD electromagnetic current operator in (u, d, s)-space

jzm = g [QQZ’YMU — Jyud — 5%3}

1,/_ - 1/ - 1_
=e [2 (u%u — d'yud) + 6 (u%u + d’yud) — 33%5]
e [1 , . 1, . V2
= 7 [\/5 (u%u - d%d) + 32 (u%u + dv,ml) - 33%31
= Wiﬁ/ 6
Y e 5 () (F6)
V=pO w,p 047
and (F5) for k* = 0 we have
m? 1 -
£ = — (uy,u— dv,d
ﬁ%pu(ﬂc) 5 (@ — dvd)
m?2 1, -
\/@yww“(x) =3 (u%u—kd%d) ,
m?2 1
¢ _
S . E7
5 0ule) = 5 ) (7)
From SU(3) one has
pO ~ L (ﬂyuu - J’Yud) ’
V2
1 ,_ = _
gbi ~ % (u%u + dry,d — 25%3> ,
1 /. < _
b~ (@t + dyud + 57,5) - (F8)

Ideal mixing gives for the physical w and ¢

V2/3 60 +4/1/3 ¢,
—\1/3 6" +/2/3 ¢° (F9)
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which implies that
I Z _
s (ot ) L 0~ — () (F10)
Comparison with (F7) implies that

7;1:7;1:7(;1:3:1:\/5. (F11)

The photon vector-meson couplings have been determined in the Orsay e™e™-experiments
[35], yielding

V2/Am =058 £0.06 , 72/4m =4.6£0.45 , ~3/4m =3.6+£0.3. (F12)
Considering the nucleon interaction Hamiltonians

Hi = gnnp0ruTy - p* + gnneD Y bw? + gnnethy o (F13)

one finds from (F5) for the electromagnetic charge form factors of the nucleon at k* = 0,
i.e. VDM hypothesis,

1 gNN

—=FV(0) = 2222

1 gNNw . YNN¢

p— A} - EEAEALAN F14
3 =IO = 5+ 8 (F14)

Assuming gnyg = 0, in view of the fact that ¢ contains only s-quarks, see (F10), and the
nucluon none, we get

INNp = Vo s INNw = Ve s (F15)

which implies the prediction [36]
gNNw _ Yw
gNNp B 7;)

=3. (F16)

In order to make contact with the fi-constants in [37], notice that in terms of the fi s,
equation (F7) reads

2

m 1/ -
\/53" pu(z) = 5 (uvuu—d%d) ,
p
m?2 1, -
NGT wu(z) = 5 (uvuu—i—dyud) ,
2
m
\/§?¢¢M($) = (5/7;13) : (F17)
Comparison (F7) and (F17) gives
fP:7P7 fw:wa/?’? f¢:_’}/¢/3- (Flg)
From (F16) and (F18) we obtain that
fP:fw:’yw/37 (Flg)

and moreover m, ~ m,,. S0, the p and w are pretty degenerate.
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(a) I

FIG. 2: 3Py-model with scalar-exchange (a).

APPENDIX G: VPP-DECAY AND QPC

To check the relation between the pair-creation constant 7,; in these notes and « in
the literature [3, 5], we compute the matrix element for V' — P + P. This process in
the QPC-model is depicted in Fig. 2. There is in addition a diagram where the exchange

is between the po-line and the pair (b), which can be taken into account by giving the
contribution from Fig. 2 an extra factor 2.

The decay matrix element is
(Po(k) Po()ISIVa(p)) = =i [ d'z (Po(k) Po@)[H”Va(p)) =

S Y S [ded [ dhe [ddL
QPC rasarpsprcsc

x6(p—pP1—P2) 0(k — ki —k2) 6(1 - 11 —I2) 6(ks + ka2 +1; —p1) 6(l2 — p2) -

Xiﬁg:o)*(kl,kﬂ (CLZO)*(11,12) 1/’E4L:0)(p1ap2) - x (rB,5B) X(O)(TC7SC) X(1)<TA’ s4)

m

x(0ld(ky, sp)b(k1,75) d(la, sc)b(la, 1) D 4i(@)ai(@) - Gj(x)q;(x) - 0 (pr, ra)0! (p2, 51)10).

(G1)
The evaluation of the vacuum expectation gives the factors
u(ki,rp) u(P1,74) ~ O prp
a(ly,re) u(ks, sp) ~ 2”1%2(—)1/283 oy (ke =) | (G2)
which leads to the spin factor
67"A77"B55A,SC<_)1/27SB {XJLSBUJ' - (ky — ll)ch} :
xxO(rp, s8) X (re,s¢) X3 (ra,sa) =
N —;em (ks — 1) = ; ‘grylm(kQ 1), (G3)

The matrix element (G1) becomes

(Ps(1) PoISIVa(p) = =27 i0(Es — B ~ Fe) (o) 120
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< [dpi &' [k dke [ @l dl 5o~ 1~ p2)
x0(k — ki —ka) 6(1—1y — 1) 6(ks + ka + 11 — p1) 6(l2 — p2) -
<y = (ki ko) U (11, 1) U4 (1, pa) - [€m - (ko — 1)) (G4)

1. Momentum integral for V — PP (I)

We define the basic overlap integral Io(A; B, M), wher A and B are mesons, as

(A4 B, M) = [ @y &y [ @y sy [ d*h 5(p —p1—pa) -
><(5(k —k; — kz) (5(1 -1 - 12) 5(k1 + ko +1; — pl) (5(12 — p2)
1 (ki ko) Ol 1) ¢ pi, pa)
= No [ & d'e [ @l @y [ @ d'l 6~ - p2) -
x6(k —k; —ka) 6(1—1; —1y) 6(ks + ko +1; — p1) 6(12 — Pa)
x exp [+f(p1, p2; ki, ko, 11, L] (Gb)

where in the last expression kj is understood to be fixed according to the d-function in the
first expression, and in this section

A (RiizBRQCf/ " ()
and
f(p1,. .., 1) = —; RAA% + REAL + REAZ (G7)
where
Ay =p1—p2, Ap=ki—ky, Ac=1 — 1. (G8)

We work in the rest system of A, i.e. p = 0. Then, defining Q = p; — k; = ko + 15, i.e. the
momentum transfer from the meson-quarks to the created pair, we can solve for the quark
momenta:

1 1
=4+-A =——A
P1 +2 A 5 P2 5 DA

1 1
k1:+§AA_Q ) k2:+§AA_AC+Q7
1 1
11 — —iAA + AC 5 12 - —§AA (Gg)

Then, the relations between the momenta from the J-functions in (G1) are

k1+k2:AA—AC:k, OI"AC:AA—k,
ki —ko=Ap=A,—2Q —k,
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Choosing as independent integration variables Q and A 4 the f-function reads

f(- )é—*

—2(RE+R%) Ay k+4R% Q* +4R% Q-k—4R% A4 - Q.
B C B B B

(R% +R2)k2} —[(R + RL + RE) + A?

(G11)
Then, the basic integral becomes
1
Io(A; B, M) = ./\foexp{—8(R +R2) k2} { /d3AA /d3

1
3 (RA+RL+R2)A* —2(RE+R2) Ay-a

Xexp(—
+4R% Q® +4R% Q- b — AR, AA-QD}, (G12)

where a = b = k. Performance of the integrations yields
3/2 3/2
2T 2 1
L(A:BM) = N <R> ( o Rz) exp {~ (% + R}
2 P2
X eXp 1[(R} + R%)a— R3b|”
8 (R4 + R%)

. 3/2 or  \¥2 - _1R%(R% + RY) + RLRY 12
"\ R}, R% + R% 8 R% + RY, '

(G13)
We note that extra momentum in integrand:

A v fe
Ai 7 53 53 Vai 7 T 5 . s K
R, + RZ R+ R?.

2
Q o -2 1 R

Vi — — et K
Ry " 2Ry + R

Inclusion of factor
[G,m . (kg — 11>] = [G,m . (—AA + Q + Qk)] (G14)

gives

3/2 3/2 2 2
2 27 4R5 +5R
I(A:B,M) = N, [ =X a0
( ) ’ <R%> (Ri + R? ) 2(R% + RY)

1 2 2
< exp [_RA(R B+ R+ RyRY

8 R% + R% ] (e k).
(G15)
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2. Momentum integral for V — PP (II)

Here we evaluate the momemtum integral as appears in [3, 5. Then, we have an extra
5(Q) in the integrand. The integral becomes

1 1
(A B, M) = Noexp { S (B + Ra e {© [ aban

1
X exp (—8 (R + R + R2) A? — 2(R% + R%) Ay -a )}
(G16)
giving
o 372 1y ey
IL(A;B,M) = Afo(Ri—i—R?g—i—R%) eXp{_g(RB+RC)k}'
2 2\2
X eXp 1 (Rp+ Re) 2
8 R4 + R% + RZ
3/2
ak < 2m ) / o l_l R%(R% + R?) kzl |
R% + R% + RZ 8 R4 + R% + RZ
(G17)
We note that extra momentum in the integrand:
4 R% + R?
Apgi — ——— Vi B___¢ , G18
SRy 7y N Ry sy oy (G18)
Inclusion of factor
[ecm- (ks — 1) =[em - (—As+Q+2K)] T3 e, - (—A4 +2K),
gives
(A BM) = Nl 2 % 9R% + R} + RY
) T O\ RS+ RL + R R% + R% + R%,
1 R%(R% + R%)
—— k? —m - K).
XeXpl 8R4 + R3, + R2 (e )
(G19)

3. Decay p(760) —» 7w+

The phenomenological hadronic interaction Hamiltonian for the decay p — 7 + 7 is
Hi = —fonn ™ X 01 - p*. (G20)

In the rest frame of the p-meson matrix element is
1

- _ 4 ke — . -9/2__ ° (k. _ .
(s alSIA) = —(25)'50h — by = ) - (20) % O — b))
1 2
— . 3 —_— .
= 218(m, — 2E;) - (2m)°d(k; + ko) S, I (ky - p). (G21)
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I: The decay coupling becomes

- Taq
fore = 2m)32 - (20)73 - V2 m3/2 . 2 (
! 8 Ajpema

(2 20 o \Y? (URY 4+ 5R2)
R B2+ R:) 2R+ R%)

aja (MR 2 ( RaRc )3/2 (4R% +5R2)

RiR%R%)M

3

=4y T

(AgpcRa)?>m,Ra \ R% + RZ (R4 + R)
(G22)
Here, we used mg ~ m,/2. With Ry = R, and R = Rc = R, we have
I = 4oy /A (mpRp)3/2 2 RyR; i (4Ri+5R72r)
prm = Hag (Agrc R, m,R, \R2+ R2)  (RZ+ R2)
(G23)
II: In [3] the decay coupling becomes
2 1/2 X 3R2 3/2 R2 + R2 3/2
_~ (=~ /4 R.)3/? ek S R . G24
Joms 7(%) m (moRy) <2R§+R3> <2R,2T+Rg) (G24)
From (G23) and (G24) we finally obtain the ratio
T [3 R2+R2 3R R2+R2)%?
B Y A 2 U 14 v 4 14 .
7‘]‘]/7 8\/; ( QPCRP) (mPRP) [ Rﬂ'Rp 2R%— + RIQ) 2R72r + RZ‘|
(R2+ R2) T /3
Xm =3\3 (AgrcR,)? (m,R,) F(Rfr/Ri)
o T
TV 2
= 7(AQPCR,))2 (m,R,) , for R, = R,,. (G25)

Here we defined

l+z (1+xz)\°
F(z) = 3v/3 23/ ( ) .
(=33t = (e
For x = 1/2 and = 1 one has F' = 0.69 and ' = 0.34 respectively. In Table II we list
the R, = R, values for which the ratio 7,5/ = 1. From this table the choice, see Table V,
Ay = 600 MeV and R, = 0.66 corresponds indeed to 7,5 = v = 2.19.
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