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Background: The Nijmegen extended-soft-core (ESC) model ESC16, as well as its predecessors ESC04-ESC08, describe the
nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon/nucleon (YY/Ξ N) interactions in a unified way
using broken SU(3)-symmetry. SU(3)-symmetry serves to connect the NN with the Y N and the Y Y channels. In
the spirit of the Yukawa-approach to the nuclear force problem, the interactions are studied from the meson-exchange
picture viewpoint, using generalized soft-core Yukawa-functions. The meson exchanges are supplemented with diffractive
contributions due to multiple-gluon-exchanges. The extended-soft-core (ESC) meson-exchange interactions consist of
local- and non-local-potentials due to (i) One-boson-exchanges (OBE), which are the members of nonets of pseudoscalar,
vector, scalar, and axial-vector mesons, (ii) diffractive exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv)
meson-pair-exchange (MPE). The OBE- and MPE-vertices are regulated by gaussian form factors producing potentials
with a soft behavior near the origin. The assignment of the cut-off masses for the BBM-vertices is dependent on the
SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE.

Purpose: The evolution of the ESC approach to the ESC16 model for the baryon-baryon (BB) interactions of the SU(3)
flavor-octet of baryons (N, Λ, Σ, and Ξ) is described and presented. In this first of a series of papers, the NN model and
results are reported in detail.

Methods: Important non-standard ingredients in the OBE-sector in the ESC-models are (i) the axial-vector meson potentials,
and (ii) a zero in the scalar- and axial-vector meson form factors. Furthermore, the strange scalar κ-meson is treated within
the scheme of the Gell-Mann-Okubo mass relations, and like the ρ and ǫ treated as a broad meson. The multiple-gluon-
exchanges are elaborated further by adding contributions due to odd number of gluon exchanges. A novel contribution is
the incorporation of structural effects due to the quark-core of the baryons. In establishing the parameters of the model
a simultaneous fit to NN- and YN-channels has been performed. The meson-baryon coupling constants are calculated
via SU(3) using the coupling constants of the NN ⊕ Y N -analysis as input. In ESC16 the couplings are kept completely
SU(3)-symmetric. About 25 physical coupling parameters and 8 cut-off and diffractive masses, were searched.

Results: In the fit to NN and YN many parameters are essentially fixed by the NN-data. A few, but severely constrained
parameters, e.g. F/(F+D)-ratio’s, are left for determination of the Y N -interactions and the Y Y experimental indications.
The simultaneous fit of the ESC-models to the NN- and YN- scattering data with a single set of parameters has achieved
excellent results for the NN- and YN-data, and for the YY-data in accordance with the experimental indications for ΛΛ
and ΞN . In the case of ESC16, the version discussed here, the achievements are: (i) For the selected 4313 pp and np
scattering data with energies 0 ≤ Tlab ≤ 350 MeV, the model reaches a fit having χ2/Ndata = 1.10. (ii) The deuteron
binding energy and all the NN scattering lengths are fitted very nicely. (iii) The YN-data are described very well with
χ2/Ndata = 1.03, giving at the same time a descriptions of the ΞN cross sections in agreement with the experimental
indications.

Conclusions: The ESC aproach leads to an excellent description of the NN- and YN-data, and for the scarce YY-data. The
added innovations as well as the treatment of mass broken SU(3) make it possible to keep the meson coupling parameters
and the F/(F + D)-ratio’s of the model qualitatively in accordance with the predictions of the 3P0-dominated quark-
antiquark pair creation (QPC) model. The information about estimates of (i) the Λ- and Σ-nuclear well-depth, and (ii)
the ΛΛ hypernuclei played an important role in the form of using constraints. in particular, the experimental indications
for the ΛΛ-attraction and the Σ-nuclear well-depth were directive.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.+y

——————————————————————–

I. INTRODUCTION

In a new series of papers we present the results ob-
tained with the recent ESC16-version of the Extended-
Soft-Core (ESC) model [1] for nucleon-nucleon (NN),
hyperon-nucleon (YN), and hyperon-hyperon (YY) in-

teractions with S = 0,−1,−2. Moreover, we present
predictions for the YY-channels with S = −3,−4.
The combined study of all baryon-baryon (BB) inter-

actions, exploiting all experimental information hitherto
available, both on BB-scattering and (hyper-)nuclear sys-
tems, might throw light on the basic mechanisms of these



2

interactions. The program, which in its original form was
formulated in Refs. [2, 3], pursuits the aims:

• To study the assumption of broken SU(3)-
symmetry. For example we investigate the prop-
erties of the scalar mesons (ε = f0(620), f0(993),
δ = a0(962), κ(861)).

• To determine the F/(F +D)-ratio’s [4].

• To study the connection between QCD, the quark-
model, and low energy physics.

• To extract, in spite of the scarce experimental
Y N - and Y Y -data, information about scattering
lengths, effective ranges, the existence of reso-
nances and bound states, etc.

• To provide realistic baryon-baryon potentials,
which can be applied in few-body calculations,
nuclear- and hyperonic matter studies, neutron-
stars;

• To extend the theoretical description to the baryon-
baryon channels with strangeness S=-2. This in
particular for the ΛΛ and ΞN channels, where some
data already exist, and for which experiments will
be realized in the near future.

• Finally, to extend the theoretical description to all
baryon-baryon channels with strangeness S=-3,-4.
These will be parameter free predictions, and have,
like the other BB-channels, relevance for the study
of hyperonic matter and compact stars.

With this series of papers this program nears essentially
its completion.
As has been amply demonstrated, see Refs. [5–9], the

ESC-model interactions give excellent simultaneous de-
scriptions of the NN and YN data. Also it turned out
that the ESC-approach gives great improvements for the
NN description as compared to the One-Boson-Exchange
(OBE) models, e.g. [3, 10], and other existing models
in the literature. The ESC16-model presents the culmi-
nation in this respect: the NN-model has a quality on
equal par with the energy-dependent partial-wave analy-
sis (PWA) [11, 12].
The ESC04-model papers [5–7] contain the first rather

extensive exposition of the ESC-approach. As compared
to the earlier versions of the ESC-model, we introduced
in ESC04-models [5–7] several innovations: Firstly, we
introduced a zero in the form factor of the mesons with
P-wave quark-antiquark contents, which applies to the
scalar and axial-vector mesons. Secondly, we exploited
the exchange of the axial-vector mesons with JPC = 1++

and JPC = 1+−. Thirdly, we employed some ΛΛ,ΞN
information.

In the ESC16-model on top of these improvements,
we introduce in the ESC-approach for the first time:
(i) Odderon-exchange JPC = 1−−. Odderon-exchange

represents the exchange of an odd-number of gluons at
short-distance. This to complement pomeron-exchange
which stands for the exchange of an even-number of glu-
ons. (ii) Quark-core effects. The quark-core effects repre-
sent structural effects caused by the occurrence of Pauli-
blocked configurations in two-baryon systems. These
structural effects depend on the BB-channel and cannot
be described by t-channel exchanges.
Furthermore, (iii) the axial-vector (JPC = 1++) mesons
are treated with the most general vertices, and the
(σ1·q)(σ2·q)-operator is evaluated in a superior mannner
compared to ESC04. Not included are the potentials
from the tensor (JPC = 2++) mesons. Attempts in-
cluding the latter mesons did not lead to substantial po-
tentials from these mesons or qualitative changes in the
other contributions to the potentials. The results with
the ESC08-model are reported in [8, 9]. With this si-
multaneous treatment of the NN , YN , and YY chan-
nels we have achieved a high quality description of the
baryon-baryon interactions. The results, using a single
set of meson and quark-core parameters, include: (a)
a description of the NN-data with a χ2

pdp = 1.10 and
good low energy parameters for the NN-channels includ-
ing the binding energy EB of the deuteron, (b) a very
good fit to the YN-scattering data. (c) the fitting pa-
rameters with a clear physical significance, like e.g. the
NNπ-, NNρ-couplings etc. and with realistic values of
the F/(F +D)-ratio’s αP and αm

V . The fitting has been
done under the constraints of the G-matrix results for
the ESC16-interactions. These show (i) satisfactory well-
depth values for UΛ < 0, UΣ > 0, and UΞ < 0, (ii) proper
spin-spin (Uσσ ≥ 1), and small spin-orbit interactions
for ΛN . All these features are in agreement with the
Hyperball-data [13] and the NAGARA-event [14].
In this first paper of the series, we display and discuss

the NN results of the simultaneous fit to the NN- and
YN-data, including some ΛΛ,ΞN and ΣN information
from hypernuclei, using a single set of parameters. In the
second paper, henceforth referred to as II [15], we report
on the results for strangeness S=-1 YN-channels, using
the same simultaneous fit of the NN- and YN-data. This
simultaneous fitting procedure was first introduced in [6],
and its importance and advantages will be discussed in
II. In the third paper, henceforth referred to as III [16],
we report on the results and predictions for YY with
strangeness S = −2. Finally, in the fourth paper (IV),
we describe the predictions for YY with strangeness S =
−3,−4.
The contents of this paper are as follows. In section II

a description of the physical background and dynamical
contents of the ESC16-model is given. In section III the
two-body integral equations in momentum space are dis-
cussed. Also, the expansion into Pauli-spinor invariants
is reviewed. In section IV the ESC-potentials in mo-
mentum and configuration space for non-strange mesons
are discussed in detail. In particular the new potentials
are given. Section V contains some brief remarks on the
ESC-couplings and the QPC-model. In section VI the
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simultaneous NN ⊕ Y N ⊕ Y Y fitting procedure is re-
viewed. Here, also the results for the coupling constants
and F/(F + D)-ratios for OBE and MPE are given. In
section VII the NN-results for the ESC16-model are dis-
played.
In section VIII we discuss the results and draw some

conclusions. In appendix A the B-field formalism for
vector- and axial-vector mesons is described. The exact
treatment of the non-local-tensor operator is explained in
appendix B. In appendix C the realization of the B-field
condition, i.e. the conservation of the the axial-vector
current, is analyzed in the context of the ESC-model.
In appendix D the treatment of the non-local tensor
potential is reviewed. In appendix E the basic formulas
for the configuration space gaussian-yukawa functions
are given.

II. PHYSICAL CONTENT OF THE ESC-MODEL

The general physical basis, within the context of QCD,
for the Nijmegen soft-core models has been outlined
in the introduction of [5]. The description of baryon-
interactions at low energies in terms of baryons and
mesons can be reached through the following stages: (i)
The strongly interacting sector of the standard-model
(SM) contains three families of quarks: (ud), (cs), (tb).
(ii) Integrating out the heavy quarks (c,b,t) leads to
a QCD-world with effective interactions for the (u,d,s)
quarks. (iii) This QCD-world is characterized by a
phase transition of the vacuum. Thereby the quarks
gets dressed and become the so-called constituent quarks.
The emerging picture is that of the constituent-quark-
model (CQM) [17]. The phase transition has transformed
the effective QCD-world into an complex hadronic-world.
(iv) The strong coupling lattice QCD (SCQCD) seems to
be a proper model to study the low energy meson-baryon
and baryon-baryon physics, see [18] for applications and
references. Here the lattice spacing a ≥ 0.11 fm provides
a momentum scale for which the QCD coupling g ≥ 1.1.
Emerging is a picture where the meson-baryon coupling
constants get large, and quark-exchange effects are rather
small. The latter is due to the suppression due to the glu-
onic overlaps involved. For a similar reason it has been
argued [19] that the pomeron is exchanged between the
individual quarks of the baryons. In this picture the Nij-
megen soft-core approach to baryon-baryon interactions
has a natural motivation. (v) For the mesons we restrict
ourselves to mesons with M ≤ 1.5 GeV/c2, arriving at
a so-called effective field theory as the arena for our de-
scription of the low energy baryon-baryon scattering.
In view of the success of QCD, pseudo-scalar dom-

inance of the divergence of the axial-vector current
(PCAC) leading to small light (”current”) quark masses
[20, 21], the spectroscopic success of the CQM, where
the quarks have definite color charges, in generating the
masses of the pseudo-scalar and vector nonets, and the

masses and magnetic moments of the baryon octet is
rather surprising [22, 23]. The transition from ”cur-
rent” to ”constituent” quarks comes from dressing the
quark fields in the original QCD Lagrangian, see e.g.
Refs. [17, 24, 25].
In all works of the Nijmegen group on the baryon-

baryon models, (broken) SU(3) flavor-symmetry is ex-
plored to connect the NN , Y N , and Y Y channels, mak-
ing possible a simultaneous fitting of all the available BB-
data using a single set of model-parameters. The dynam-
ical basis is the (approximate) permutation symmetry
w.r.t. the constituent (u,d,s)-quarks. This has its roots in
the approximate equality of the quark-masses, and more
importantly that the gluons have no flavor. This enables
the calculation of the baryon-baryon-meson coupling con-
stants using as parameters the nucleon-nucleon-meson
couplings and the F/(F + D)-ratio’s. This provides a
strong correlation between the (rich) nucleon-nucleon-
and the (scarce) hyperon-nucleon-data.
The obtained coupling constants of the BBM-vertices

are interpreted studying the predictions of the con-
stituent quark-model (CQM) in the form of the quark-
antiquark pair creation model (QPC). It has been ar-
gued that the 3P0-mechanism [26, 27] is dominant over
the 3S1-mechanism in lattice QCD [28]. It turned out
that the fitted coupling constants in ESC04 and ESC16
indeed follow mainly the pattern of couplings set by the
3P0-model. Also, all α = F/(F +D)-ratios are required
to deviate no more than 0.1 from the QPC-model pre-
dictions for the BBM- and the BB-Meson-Pair vertices.
Although it is in principle attractive to study the SU(3)-
breaking of the BBM-couplings using the QPC-model,
as has been explored in ESC04 [6], in ESC16 the cou-
plings are treated as SU(3)-symmetric. In the Nijmegen
soft-core OBE- and ESC-models the BBM-vertices are
described by coupling constants and gaussian form fac-
tors. Given the fact that in the CQM the quark wave
functions for the baryons are very much like ground state
harmonic oscillator functions, a gaussian behavior of the
form factors is most natural. These form factors guaran-
tee a soft behavior of the potentials in configuration space
at small distances. The cut-off parameters in the form
factors depend only on the type of meson (pseudoscalar,
vector, etc.). Within a meson SU(3)-multiplet we distin-
guish between octet and singlet form factors. Since there
is singlet-octet mixing for the I=0 mesons, we attribute
the singlet and octet cut-off to the dominant singlet or
octet particle respectively. For the considered nonets the
singlet and octet cut-off’s are the same or close.
In this way we have full predictive power for the

S = −2,−3,−4 baryon-baryon channels, e.g. ΛΛ,ΞN -
channels which involve the singlet {1}-irrep that does
not occur in the NN and YN channels.
Field theory allows both linear and non-linear realiza-

tions of chiral-symmetry (CS) [29–31]. At low-energy
phenomenologically the non-linear realization is the most
economical and natural. Therefore, we have chosen the
pv-coupling and not the ps-coupling for the pseudoscalar
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mesons. This choice affects some 1/M2-terms in the ps-
ps-exchange potential, In ESC04 we tested mixtures of
the pv- and ps-coupling, but in ESC16 we use only the pv-
coupling. In the non-linear realization chiral-symmetry
for the couplings of the scalar-, vector-, axial-vector-,
etc. mesons is realized through isospin-symmetry SU(2,I)
[30, 31].

A. Potentials ESC-model

The potentials of the ESC-model are generated by
(i) One-Boson-Exchange (OBE), (ii) uncorrelated Two-
Meson-Exchange (TME), (iii) Meson-Pair-Exchange
(MPE), (iv) Diffractive/Multi-gluon Exchange, (v)
Quark-Core Effects (QCE).

(i) The OBE-part of the dynamical contents of
the ESC16-model is determined by the following
meson-exchanges:

(a) JPC = 0−−: The pseudoscalar-meson nonet
π, η, η′, K with the η−η′ mixing angle θP =
−11.40 [32], close to the Gell-Mann-Okubo
(GMO) quadratic mass formula [33].

(b) JPC = 1−−: The vector-meson nonet
ρ, φ, K⋆, ω with the φ − ω mixing an-
gle θV = 39.10 [32] This follows from the
quadratic GMO mass-formula, and is close to
ideal mixing.

(c) JPC = 1++: The axial-vector-meson nonet
a1, f1, K1A, f

′
1 with the f1 − f ′1 mixing angle

θA = 50.00 [34].

(d) JPC = 0++: The scalar-meson nonet
a0(962) = δ, f0(993) = S⋆, κ(861), f0(620) = ε
[35]. The scalar S⋆−εmixing angle θS = 44.00

is fitted and deviates from the ideal mixing
angle θS = 35.260. The κ(861) mass is deter-
mined via GMO.

(e) JPC = 1+−: The axial-vector-meson nonet
b1, h1, K1B , h

′
1 with the h1 − h′1 ideal mixing

angle θB = 35.260. (Furthermore K1,A and
K1,B are completely mixed.)

The soft-core approach of the OBE has been given
originally for NN in [36], and for Y N in [3]. With
respect to these OBE-interactions the ESC-models
contain the modification of the form factor by intro-
ducing a zero for the mesons being P-wave quark-
antiquark states in the CQM: the scalar- and axial-
vector-mesons. Such a zero is natural in the 3P0-
quark-pair-creation (QPC) [26, 27] model for the
coupling of the mesonic quark-antiquark (QQ̄) sys-
tem to baryons. A consequence of such a zero is
that a bound state in Λp-scattering is less likely to
occur.

(ii) The configuration space soft-core uncorrelated two-
meson exchange for NN has been derived in [37,
38]. Similarly to ESC04, also in ESC16 we use
these potentials for ps-ps exchange with a com-
plete SU(3)-symmetric treatment in NN, YN and
YY. For example, we include double K-exchange
in NN -scattering. Since this includes two-pion ex-
change (TPE) the long-range part of the poten-
tials are represented. Here it is tacitly assumed
that other TME potentials, like ps-vc, ps-sc, etc.,
are either small due to cancellations, or can be
described adequately by using effective couplings
in the OBE-potentials. When these effective cou-
plings do not deviate from experimentally deter-
mined couplings it may be assumed that the cor-
rections from these other SU(3) meson-nonets in
the TME potentials are small. This is our work-
ing hypothesis for the TME-potentials. From the
point of view of SU(3), since OBE contains only
{8}- and {1}-exchange, TME can not be repre-
sented completely in terms of OBE. This because
TME also has {27}−, {10}-, and {10∗}-exchange
components. Therefore, the predictions made by
the ESC-models could be sensitive to this incom-
pleteness of TME in the ESC-models. At present
the BB-data and the hypernuclear-data do not give
information at this point.

(iii) Meson-pair exchanges (MPE) have been introduced
in [1] for NN and described in detail in [39]. The
two-meson-baryon-baryon vertices are the low en-
ergy approximations of (a) the heavy-meson and
their two-meson decays, and (b) baryon-resonance
contributions ∆33 etc [34, 39].

(iv) Diffractive contributions to the soft-core potential
have been introduced from the beginning, cfr. [36].
The pomeron is thought of being related to an even
number of gluon-exchanges. Here we introduce the
odderon-potential, which is related to an odd num-
ber of gluon exchanges.

(a) JPC = 0++: The ‘diffractive’ contribution
from the pomeron (P), which is a unitary sin-
glet. These interactions give a repulsive con-
tribution to the potentials in all channels of a
gaussian type.

(b) JPC = 1−−: The ‘diffractive’ contribution
from the odderon (O). The origin of the odd-
eron is assumed to be purely the exchange of
the color-singlets with an odd number of glu-
ons. Similarly to the pomeron, the odderon
potential is taken to be an SU(3) singlet and
of the gaussian form.

As an explanation of the repulsive character of
the pomeron-potential the following: The JPC is
identical to that for the scalar-mesons. Naively,
one would expect an attractive central potential.
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However, considering the two-gluon model for the
pomeron [40, 41] the two-gluon parallel and crossed
diagram contributions to the BB-interaction can be
shown to cancel adiabatically. The remaining non-
adiabatic contribution is repulsive [42].

(v) Quark-Core-Effects in the soft-core model can sup-
ply extra repulsion, which may be required in some
BB-channels. Baryon-baryon studies with the soft-
core OBE and ESC-models thus far show that
it is difficult to achieve a strongly enough repul-
sive short-range interactions in (i) the Σ+p(I =
3/2,3 S1)- and (ii) the ΣN(I = 1/2,1 S0)-channel.
The short-range repulsion in baryon-baryon may
in principle come from: (a) meson- and multi-
gluon-exchange [5, 6], and/or (b) the occurrence
of forbidden six-quark SU(6)-states by the Pauli-
principle [43–45]. In view of the mentioned dif-
ficulties, we have developed a phenomenological
method for the ESC-model, which enables us to
incorporate this quark-structural effect. This is
an important new ingredient of the here presented
ESC16-model. This structural effect we describe
phenomenologically by gaussian repulsions, simi-
lar to the pomeron. In the ESC16-model we take
the strength of this repulsion proportional to the
weights of the SU(6)-forbidden [51]-configuration
in the various BB-channels. This in contrast to
ESC08a,b [8, 9] where the quark-core effect is only
included in the BB-channels with a dominant oc-
currence of the [51]-configuration.

B. Non-local Potentials, SU(3)-breaking, and
Coulomb

As is well known, the non-local potentials are inher-
ent to a relativistic theory, and occur in the central,
spin-spin, tensor, spin-orbit etc. potentials. In the
ESC-models we include the non-local contributions to
the central/spin-spin potentials for scalar, vector, ax-
ial, and diffractive exchanges, as in the OBE-models
[3, 36]. In addition, for all BB-channels we include for
the pseudoscalar-type of potentials, which occur from
pseudoscalar-, axial A- and B-mesons, the non-local spin-
spin and tensor contributions [46]. This, because it
turned out that the non-local pion-exchange spin-spin
and tensor force is rather important for achieving a very
good fit to the NN-data.

The different sources of SU(3)-breaking are discussed
in paper II of this series.
As in all Nijmegen models, the Coulomb interaction

is included exactly, for which we solve the multichannel
Schrödinger equation on the physical particle basis. The
nuclear potentials are calculated on the isospin basis.
This means that we include only the so-called ’medium
strong’ SU(3)-breaking and the charge symmetry break-
ing (CSB) in the potentials.

III. TWO-BODY INTEGRAL EQUATIONS IN
MOMENTUM SPACE

A. Three-dimensional Two-Body Equations

We consider the baryon-baryon reactions

B(pa, sa) +B(pb, sb) → B(pa′ , sa′) +B(pb′ , sb′) (3.1)

In the following we also refer to a and a’ as particles 1
and 1’ (or 3), and to b and b’ as particles 2 and 2’ (or
4). The total four-momenta for the initial and the final
states are denoted as P = pa + pb, P

′ = pa′ + pb′ , and
similarly the relative momenta by p = 1

2 (pa − pb), p
′ =

1
2 (pa′ − pb′). In the center-of-mass system (CM-system)
for a and b on-mass-shell one has P = (W,0) , p =
(0,p) , p′ = (0,p′). In the following, the on-mass-shell
CM-momenta for the initial and final states are denoted
respectively by p and p′. So, p0a = Ea(p) =

√
p2 +M2

a

and p0a′ = Ea′(p′) =
√
p′2 +M2

a′ , and similarly for b(2)

and b’(4). Because of translation-invariance P = P ′ and
W = W ′ = Ea(p) + Eb(p) = Ea′(p′) + Eb′(p

′). The
transition amplitude matrixM is related to the S-matrix
via

〈f |S|i〉 = 〈f |i〉 − i(2π)4δ4(Pf − Pi)〈f |M |i〉. (3.2)

The two-particle states we normalize in the following way

〈p′
1,p

′
2|p1,p2〉 = (2π)32E(p1)δ

3(p′
1 − p1) ·

×(2π)32E(p2)δ
3(p′

2 − p2). (3.3)

Three-dimensional integral equations for the amplitudes
〈f |M |i〉 have been derived in various ways, see e.g. [2, 47–
50]. Here, we follow Ref. [5] which employs the Macke-
Klein procedure [51]. After redefining the CM-amplitude
M(p′,p|W ) by

M(p′,p|W ) →
√

MaMb

Ea(p′)Eb(p′)
M(p′,p|W )

√
MaMb

Ea(p′)Eb(p′)
(3.4)

one arrives, see for details Ref. [5], at the Thompson equation [49]

M(p′,p|W ) = Kirr(p′,p|W ) +

∫
d3p′′

(2π)3
Kirr(p′,p′′|W ) E

(+)
2 (p′′;W ) M(p′′,p|W ),

(3.5)
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where E
(+)
2 (p′′;W ) = (W −W(p′′) + iδ)

−1
, and the two-nucleon irreducible kernel is given by

Kirr (p′,p|W ) = − 1

(2π)2

√
MaMb

Ea(p′)Eb(p′)

√
MaMb

Ea(p)Eb(p)
(W −W(p′)) (W −W(p))

×
∫ +∞

−∞
dp′0

∫ +∞

−∞
dp0

[{
F

(a)
W (p′, p′0)F

(b)
W (−p′,−p′0)

}−1

× [I(p′0,p
′; p0,p)]++,++

{
F

(a)
W (p, p0)F

(b)
W (−p,−p0)

}−1
]
, (3.6)

where FW (p, p0) = p0 − E(p) +W/2 + iδ. This same expression for the kernel was exploited in [37–39].
In case one does not assume the strong pair-suppression, one must study instead of equation (3.5) a more general

equation with couplings between the positive and negative energy spinorial amplitudes. Also to this more general
case one can apply the described three-dimensional reduction, and we refer the reader to Ref. [52] for a treatment of
this case.
The M/E-factors in (3.6) are due to the difference between the relativistic and the non-relativistic normalization

of the two-particle states. In the following we simply put M/E(p) = 1 in the kernel Kirr Eq. (3.6). The corrections
to this approximation would give (1/M)2-corrections to the potentials, which we neglect in this paper. In the same
approximation there is no difference between the Thompson [49] and the Lippmann-Schwinger equation, when the
connection between these equations is made using multiplication factors. Henceforth, we will not distinguish between
the two.
The contributions to the two-particle irreducible kernel Kirr up to second order in the meson-exchange are given

in detail in [38, 39].

B. Lippmann-Schwinger Equation

1

p

p’

-p

-p’

k

(a) p

p’

-p

-p’

k

(b)

FIG. 1: One-boson-exchange graphs: The dashed lines with
momentum k refers to the bosons: pseudo-scalar, vector,
axial-vector, or scalar mesons.

The transformation of (3.5) to the Lippmann-
Schwinger equation can be effectuated by defining

T (p′,p) = N(p′) M(p′,p|W ) N(p),

V (p′,p) = N(p′) Kirr(p′,p|W ) N(p), (3.7)

where the transformation function is

N(p) =

√
p2
i − p2

2MN (E (pi)− E(p))
. (3.8)

Application of this transformation, yields the Lippmann-
Schwinger equation

T (p′,p) = V (p′,p) +

∫
d3p′′

(2π)3

×V (p′,p′′) g(p′′;W ) T (p′′,p) (3.9)

with the standard Green function

g(p;W ) =
MN

p2
i − p2 + iδ

. (3.10)

The corrections to the approximation E
(+)
2 ≈ g(p;W )

are of order 1/M2, which we neglect henceforth.
The transition from Dirac-spinors to Pauli-spinors, is

given in Appendix C of Ref. [37], where we write for the
the Lippmann-Schwinger equation in the 4-dimensional
Pauli-spinor space

T (p′,p) = V(p′,p) +

∫
d3p′′

(2π)3

×V(p′,p′′) g(p′′;W ) T (p′′,p) .(3.11)

The T -operator in Pauli spinor-space is defined by

χ
(a)†
σ′

a
χ
(b)†
σ′

b

T (p′,p) χ(a)
σa
χ(b)
σb

=

ūa(p
′, σ′

a)ūb(−p′, σ′
b) T̃ (p

′,p) ua(p, σa)ub(−p, σb).

(3.12)
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p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’

-p’’

k

k’

(b)

p

p’

-p

-p’

p’’

-p’’

k

k’

(c)

p

p’

-p

-p’

p’’
-p’’

k

k’

(d)

FIG. 2: BW two-meson-exchange graphs: (a) planar and (b)–
(d) crossed box. The dashed line with momentum k1 refers
to the pion and the dashed line with momentum k2 refers to
one of the other (vector, scalar, or pseudoscalar) mesons. To
these we have to add the “mirror” graphs, and the graphs
where we interchange the two meson lines.

and similarly for the V-operator. Like in the deriva-
tion of the OBE-potentials [2, 36] we make off-shell and
on-shell the approximation, E(p) = M + p2/2M and

W = 2
√

p2
i +M2 ≈ 2M + p2

i /M , everywhere in the
interaction kernels, which, of course, is fully justified for
low energies only. In contrast to these kinds of approx-
imations, of course the full k2-dependence of the form
factors is kept throughout the derivation of the TME.
Notice that the gaussian form factors suppress the high
momentum transfers strongly. This means that the con-
tribution to the potentials from intermediate states which
are far off-energy-shell can not be very large.
Because of rotational invariance and parity conserva-

tion, the T -matrix, which is a 4×4-matrix in Pauli-spinor
space, can be expanded into the following set of in gen-
eral 8 spinor invariants, see for example Ref. [53]. At this
point it is suitable to change the notation of the initial
and final momenta. We use from now on the notations

p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’ -p’’

k

k’

(b)

FIG. 3: Planar-box TMO two-meson-exchange graphs. Same
notation as in Fig. 2. To these we have to add the “mirror”
graphs, and the graphs where we interchange the two meson
lines.

pi ≡ p, pf ≡ p′ for both on-shell and off-shell momenta.
Introducing

q =
1

2
(p′ + p) , k = p′ − p , n = p× p′, (3.13)

with, of course, n = q × k, we choose for the operators
Pj in spin-space

P1 = 1, P2 = σ1 · σ2,

P3 = (σ1 · k)(σ2 · k)−
1

3
(σ1 · σ2)k

2,

P4 =
i

2
(σ1 + σ2) · n, P5 = (σ1 · n)(σ2 · n),

P6 =
i

2
(σ1 − σ2) · n,

P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q),
P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q). (3.14)

Here we follow Ref. [3], where in contrast to Ref. [36],
we have chosen P3 to be a purely ‘tensor-force’ operator.
The expansion in spinor-invariants reads

T (p′,p) =

8∑

j=1

T̃j(p
′2,p2,p′ · p) Pj(p

′,p) . (3.15)

Similarly to (3.15) we expand the potentials V . In the
case of the axial-vector meson exchange there will occur
terms proportional to

P ′
5 = (σ1 · q)(σ2 · q)−

1

3
(σ1 · σ2)q

2. (3.16)

The treatment of such a Pauli-invariant using the Okubo-
Marshak identity [54], see also Ref. [53], is not with-
out problems because it involves the division with k2.
Therefore, in the ESC04-models [5, 6] the replacement
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P ′
5 → −P3 was chosen. For the ESC16-model a satisfac-

tory treatment has been developed, which is described in
Appendix B. For the treatment of the potentials with P8

we use the identity [55]

P8 = −(1 + σ1 · σ2)P6. (3.17)

Under time-reversal P7 → −P7 and P8 → −P8. There-
fore for elastic scattering V7 = V8 = 0. Anticipating
the explicit results for the potentials in section IV we
notice the following: (i) For the general BB-reaction
we will find no contribution to V7. The operators P6

and P8 give spin singlet-triplet transitions. (ii) In the
case of non-strangeness-exchange (∆S = 0), V6 6= 0 and
V8=0. The latter follows from our approximation to ne-
glect the mass differences among the nucleons, between
the Λ and Σ’s, and among the Ξ’s. (iii) In the case of
strangeness-exchange (∆S = ±1), V6, V8 6= 0. The con-
tributions to V6 come from graphs with both spin- and
particle-exchange, i.e. Majorana-type potentials having
the PfPσP6 = −PxP6-operator. Here, PfPσ reflect our
convention for the two-particle wave functions, see [2].
The contributions to V8 come from graphs with particle-
exchange and spin-exchange, because P8 = −PσP6.
Therefore, we only have to apply Pf in order to map
the wave functions after such exchange onto our two-
particle wave-functions. So, we have the PfP8 = +PxP6-
operator. Here, we used that for BB-systems the allowed
physical states satisfy PfPσPx = −1.

IV. EXTENDED-SOFT-CORE POTENTIALS IN
MOMENTUM SPACE

The potential of the ESC-model contains the contribu-
tions from (i) One-boson-exchanges, Fig. 1, (ii) Uncorre-
lated Two-Pseudo-scalar exchange, Fig. 2 and Fig. 3, and
(iii) Meson-Pair-exchange, Fig 4. In this section we re-
view the potentials and indicate the changes with respect
to earlier papers on the OBE- and ESC-models. The
spin-1 meson-exchange is an important ingredient for the
baryon-baryon force. In the ESC16-model we treat the
vector-mesons and the axial-vector mesons according to
the Proca- [56] and the B-field [57, 58] formalism respec-
tively. For details, we refer to Appendix A.

A. One-Boson-Exchange Interactions in
Momentum Space

The OBE-potentials are the same as given in [3, 36],
with the exception of (i) the zero in the scalar form
factor, and (ii) the axial-vector-meson potentials. Here,
we review the OBE-potentials briefly, and give those
potentials which are not included in the above references.

Interaction Hamiltonians: The local interaction

p

p’

-p

-p’

-p’’

k

k’

(a)

p

p’

-p

-p’

-p’’k

k’

(b)

p

p’

-p

-p’

-p’’

k

k’

(c)

p

p’

-p

-p’

k

k’

(d)

FIG. 4: One- and Two-Pair exchange graphs. To these we
have to add the “mirror” graphs, and the graphs where we
interchange the two meson lines.

Hamilton densities for the different couplings are 1

a) Pseudoscalar-meson exchange (JPC = 0−+)

HPV =
fP
mπ+

ψ̄γµγ5ψ∂
µφP . (4.1)

This is the pseudovector coupling, and the relation with
the pseudoscalar coupling is gP = 2MB/mπ+ , where MB

is the nucleon or hyperon mass.

b) Vector-meson exchange (JPC = 1−−)

HV = gV ψ̄γµψφ
µ
V +

fV
4M ψ̄σµνψ(∂

µφνV − ∂νφµV ), (4.2)

where σµν = i[γµ, γν ]/2, and the scaling mass M, will
be taken to be the proton mass.

1 We follow the conventions of Ref. [59]. We note that in [5, 6]
in the definition of the interaction Hamiltonians, we used the
conventions of [2, 3].
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c) Axial-vector-meson exchange ( JPC = 1++, 1st

kind):

HA = gA[ψ̄γµγ5ψ]φ
µ
A +

ifA
M [ψ̄γ5ψ] ∂µφ

µ
A. (4.3)

In ESC04 the gA-coupling was included, but not the
derivative fA-coupling.

2 Also, in ESC04 we used a local-
tensor approximation (LTA) for the (σ1 ·q)(σ2 ·q) oper-
ator. Here, we improve on that considerably by avoiding
such rather crude approximation. The details of our new
treatment are given in Appendix B.

d) Axial-vector-meson exchange ( JPC = 1+−, 2nd kind):

HB =
ifB
mB

[ψ̄σµνγ5ψ] ∂νφ
µ
B , (4.4)

where mB is the b1(1235)-mass. In ESC04 this coupling
was not included. Like for the axial-vector mesons of
the 1st-kind we include an SU(3)-nonet with members
b1(1235), h1(1170), h1(1380). In the quark-model they
are QQ̄(1P1)-states.

e) Scalar-meson exchange (JPC = 0++):

HS = gS [ψ̄ψ]φS +
fS
M [ψ̄γµψ] ∂

µφS , (4.5)

which is the most general interaction up to the
first derivative. However, charge conjugation gives
C[ψ̄γµψ]C−1 = −[ψ̄γµψ], and therefore fS = 0.

f) Pomeron-exchange (JPC = 0++): The vertices for this
‘diffractive’-exchange have the same Lorentz structure as
those for scalar-meson-exchange.

g) Odderon-exchange (JPC = 1−−):

HO = gO[ψ̄γµψ]φ
µ
O+

fO
4M [ψ̄σµνψ](∂

µφνO−∂νφµO). (4.6)

Since the gluons are flavorless, odderon-exchange is
treated as an SU(3)-singlet. Furthermore, since the
odderon represents a Regge-trajectory with an intercept
equal to that of the pomeron, and is supposed not to
contribute for small k2, we include a factor k2/M2 in
the coupling.

Form Factors: Including form factors f(x′ − x) , the
interaction hamiltonian densities are modified to

HX(x) =

∫
d3x′ f(x′ − x)HX(x′), (4.7)

for X = P, V, A, and S (P = pseudo-scalar, V = vector,
A = axial-vector, and S = scalar). The potentials in

2 Note that in this paper we suppose that fA does not contain
the one-pion-pole etc. In momentum space f̃A(k2) is a smooth
function of k2.

momentum space are the same as for point interactions,
except that the coupling constants are multiplied by the
Fourier transform of the form factors.
In the derivation of the Vi we employ the same approx-

imations as in [3, 36], i.e.

1. We expand in 1/M : E(p) =
[
k2/4 + q2 +M2

] 1
2

≈ M + k2/8M + q2/2M and keep only terms up
to first order in k2/M and q2/M . This except
for the form factors where the full k2-dependence
is kept throughout the calculations. Notice that
the gaussian form factors suppress the high k2-
contributions strongly.

2. In the meson propagators (−(p1 − p3)
2 + m2) ≈

(k2 + m2), except for the strangeness carrying
mesons, see below.

3. When two different baryons are involved at a BBM-
vertex their average mass is used in the poten-
tials and the non-zero component of the momen-
tum transfer is accounted for by using an effective
mass in the meson propagator (for details see [3]).

Due to the approximations we get only a linear depen-
dence on q2 for V1. In the following, separating the local
and the non-local parts, we write

Vi(k
2,q2) = Via(k

2) + Vib(k
2)(q2 +

1

4
k2), (4.8)

where in principle i = 1, 8.
The OBE-potentials are now obtained in the standard

way (see e.g. [3, 36]) by evaluating the BB-interaction
in Born-approximation. We write the potentials Vi of
Eqs. (3.15) and (4.8) in the form

Vi(k
2,q 2) =

∑

X

Ω
(X)
i (k 2) ·∆(X)(k2,m2,Λ2). (4.9)

Furthermore for X = P, V

∆(X)(k2,m2,Λ2) = e−k2/Λ2

/
(
k2 +m2

)
, (4.10)

and for X = S,A a zero in the form factor

∆(S)(k2,m2,Λ2) =
(
1− k2/U2

)
e−k2/Λ2

/
(
k2 +m2

)
,

(4.11)
and for X = D,O

∆(D)(k2,m2,Λ2) =
1

M2
e−k2/(4m2

P,O). (4.12)

In the last expression M is a universal scaling mass,
which is again taken to be the proton mass. The mass pa-
rameter mP controls the k2-dependence of the pomeron.
Similarly,mO controls the k2-dependence of the odderon.

In the following we give the OBE-potentials in
momentum-space for the nucleon/hyperon-nucleon
systems for the non-strange mesons. From these those
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for NN and YY can be deduced easily. We assign the
particles 1 and 3 to be hyperons, and particles 2 and 4 to
be nucleons. Mass differences among the hyperons and

among the nucleons will be neglected.

For pseudo-scalar mesons, the graph’s of Fig. 1 give for the potential V (k,q) ≈ K
(2)
PS(p

′,p|W )

VPS(k,q) = −f13f24
m2

π

(
1− (q2 + k2/4)

2MYMN

)
·
[
1

2ω

{
1

ω + a
+

1

ω − a

}
(σ1 · k)(σ2 · k)

+
1

MY +MN

{
1

ω + a
− 1

ω − a

}
(σ1 · q σ2 · k− σ1 · k σ2 · q)

]
exp

(
−k2/Λ2

)
. (4.13)

Here, ω =
√
k2 +m2, and using the on-energy-shell approximation E1 + E2 = E3 + E4, we have

a = E1 + E4 −W =
1

2

(
E1 + E4 − E2 − E3

)

≈ ∆M +
1

4
∆M

(
1

M1M3
+

1

M2M4

)(
q2 + k2/4

)
,

where ∆M = (M1 +M4 −M3 −M2)/2, and we neglected the q · k-term which is of order (MY −MN )/2MYMN .
Henceforth we neglect the non-adiabatic effects, i.e. a ≈ ∆M , in the OBE-potentials, except for the P8-terms, where
the leading term is proportional to a. One notices that the P8-term in (4.13) is only non-zero for K-exchange.

B. Non-strange Meson-exchange

For the non-strange mesons the mass differences at the vertices are neglected, we take at the Y YM - and the
NNM -vertex the average hyperon and the average nucleon mass respectively. This implies that we do not include

contributions to the Pauli-invariants P7 and P8. Below the contributions to the different Ω
(X)
i ’s for baryon-baryon

scattering are given in detail.

(a) Pseudoscalar-meson exchange:

Ω
(P )
2a = −fPV

13 fPV
24

(
k2

3m2
π+

)
, Ω

(P )
3a = −fPV

13 fPV
24

(
1

m2
π+

)
, (4.14a)

Ω
(P )
2b = +fPV

13 fPV
24

(
k2

6m2
π+MYMN

)
, Ω

(P )
3b = +fPV

13 fPV
24

(
1

2m2
π+MYMN

)
, . (4.14b)

(b) Vector-meson exchange:

Ω
(V )
1a =

{
gV13g

V
24

(
1− k2

2MYMN

)
− gV13f

V
24

k2

4MMN
− fV13g

V
24

k2

4MMY

+ fV13f
V
24

k4

16M2MYMN

}
, Ω

(V )
1b = gV13g

V
24

(
3

2MYMN

)
,

Ω
(V )
2a = −2

3
k2 Ω

(V )
3a , Ω

(V )
2b = −2

3
k2 Ω

(V )
3b ,

Ω
(V )
3a =

{
(gV13 + fV13

MY

M )(gV24 + fV24
MN

M )− fV13f
V
24

k2

8M2

}
/(4MYMN ),

Ω
(V )
3b = −(gV13 + fV13

MY

M )(gV24 + fV24
MN

M )/(8M2
YM

2
N ),

Ω
(V )
4 = −

{
12gV13g

V
24 + 8(gV13f

V
24 + fV13g

V
24)

√
MYMN

M − fV13f
V
24

3k2

M2

}
/(8MYMN )

Ω
(V )
5 = −

{
gV13g

V
24 + 4(gV13f

V
24 + fV13g

V
24)

√
MYMN

M + 8fV13f
V
24

MYMN

M2

}
/(16M2

YM
2
N )

Ω
(V )
6 = −

{
(gV13g

V
24 + fV13f

V
24

k2

4M2
)
(M2

N −M2
Y )

4M2
YM

2
N

− (gV13f
V
24 − fV13g

V
24)

1√
M2MYMN

}
.

(4.15)
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(c) Scalar-meson exchange:

Ω
(S)
1a = −gS13gS24

(
1 +

k2

4MYMN

)
, Ω

(S)
1b = +gS13g

S
24

1

2MYMN

Ω
(S)
4 = −gS13gS24

1

2MYMN
, Ω

(S)
5 = gS13g

S
24

1

16M2
YM

2
N

Ω
(S)
6 = −gS13gS24

(M2
N −M2

Y )

4MYMN
. (4.16)

(d) Axial-vector-exchange JPC = 1++:

Ω
(A)
2a = −gA13gA24

[
1− 2k2

3MYMN

]
+

[(
gA13f

A
24

MN

M + fA13g
A
24

MY

M

)
− fA13f

A
24

k2

2M2

]
k2

6MYMN

Ω
(A)
2b = −gA13gA24

(
3

2MYMN

)

Ω
(A)
3 = −gA13gA24

[
1

4MYMN

]
+

[(
gA13f

A
24

MN

M + fA13g
A
24

MY

M

)
− fA13f

A
24

k2

2M2

]
1

2MYMN

Ω
(A)
4 = −gA13gA24

[
1

2MYMN

]
, Ω

(A)′

5 = −gA13gA24
[

2

MYMN

]

Ω
(A)
6 = −gA13gA24

[
(M2

N −M2
Y )

4M2
YM

2
N

]
(4.17)

Here, we used the B-field description with αr = 1, see Appendix A. The detailed treatment of the potential

proportional to P ′
5, i.e. with Ω

(A)′

5 , is given in Appendix B.

(e) Axial-vector mesons with JPC = 1+−:

Ω
(B)
2a = +fB13f

B
24

(MN +MY )
2

m2
B

(
1− k2

4MYMN

)(
k2

12MYMN

)
, Ω

(B)
2b = +fB13f

B
24

(MN +MY )
2

m2
B

(
k2

8M2
YM

2
N

)

Ω
(B)
3a = +fB13f

B
24

(MN +MY )
2

m2
B

(
1− k2

4MYMN

)(
1

4MYMN

)
, Ω

(B)
3b = +fB13f

B
24

(MN +MY )
2

m2
B

(
3

8M2
YM

2
N

)
.

(4.18)

(f) Diffractive-exchange (pomeron):
The ΩD

i are the same as for scalar-meson-exchange Eq.(4.16), but with ±gS13gS24 replaced by ∓gD13gD24, and except
for the zero in the form factor.

(g) Odderon-exchange: The ΩO
i are the same as for vector-meson-exchange Eq. (4.15), but with gV13 → gO13, f

V
13 → fO13

and similarly for the couplings with the 24-subscript.

As in Ref. [3] in the derivation of the expressions for Ω
(X)
i , given above, MY and MN denote the mean hyperon and

nucleon mass, respectively MY = (M1 +M3)/2 and MN = (M2 +M4)/2, and m denotes the mass of the exchanged
meson. Moreover, the approximation 1/M2

N + 1/M2
Y ≈ 2/(MNMY ), is used, which is rather good since the mass

differences between the baryons are not large.
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C. One-Boson-Exchange Interactions in Configuration Space I

In configuration space the BB-interactions are described by potentials of the general form 3

V = VC(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VSO(r)L · S+ VQ(r)Q12

+VASO(r)
1

2
(σ1 − σ2) · L− 1

2MYMN

(
∇

2V n.l.(r) + V n.l.(r)∇2

)
, (4.19a)

V n.l. =

{
ϕC(r) + ϕσ(r)σ1 · σ2 + ϕT (r)S12

}
, (4.19b)

where

S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2), (4.20a)

Q12 =
1

2

[
(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)

]
. (4.20b)

For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [3, 36]. For the details of
the Fourier transform for the potentials with P ′

5, which occur in the case of the axial-vector mesons with JPC = 1++,
we refer to Appendix B.
(a) Pseudoscalar-meson-exchange:

VPS(r) =
m

4π

[
fP13f

P
24

(
m

mπ+

)2(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
, (4.21a)

V n.l.
PS (r) = −m

4π

[
fP13f

P
24

(
m2

2m2
π+

)(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
. (4.21b)

(b) Vector-meson-exchange:

VV (r) =
m

4π

[{
gV13g

V
24

[
φ0C +

m2

2MYMN
φ1C

]

+

[
gV13f

V
24

m2

4MMN
+ fV13g

V
24

m2

4MMY

]
φ1C + fV13f

V
24

m4

16M2MYMN
φ2C

}

+
m2

6MYMN

{[(
gV13 + fV13

MY

M

)
·
(
gV24 + fV24

MN

M

)]
φ1C + fV13f

V
24

m2

8M2
φ2C

}
(σ1 · σ2)

− m2

4MYMN

{[(
gV13 + fV13

MY

M

)
·
(
gV24 + fV24

MN

M

)]
φ0T + fV13f

V
24

m2

8M2
φ1T

}
S12

− m2

MYMN

{[
3

2
gV13g

V
24 +

(
gV13f

V
24 + fV13g

V
24

) √MYMN

M

]
φ0SO +

3

8
fV13f

V
24

m2

M2
φ1SO

}
L · S

+
m4

16M2
YM

2
N

{[
gV13g

V
24 + 4

(
gV13f

V
24 + fV13g

V
24

) √MYMN

M + 8fV13f
V
24

MYMN

M2

]}
·

× 3

(mr)2
φ0TQ12 −

m2

MYMN

{[(
gV13g

V
24 − fV13f

V
24

m2

M2

)
(M2

N −M2
Y )

4MYMN

−
(
gV13f

V
24 − fV13g

V
24

) √MYMN

M

]
φ0SO

}
· 1
2
(σ1 − σ2) · L

]
, (4.22a)

V n.l.
V (r) =

m

4π

[
3

2
gV13g

V
24 φ

0
C

+
m2

6MYMN

{[(
gV13 + fV13

MY

M

)
·
(
gV24 + fV24

MN

M

)]
φ1C

}
(σ1 · σ2)

− m2

4MYMN

{[(
gV13 + fV13

MY

M

)
·
(
gV24 + fV24

MN

M

)]
φ0T

}
S12

]
. (4.22b)

3 The relation with the non-local φ(r)-function defined in Ref. [36], Eq. (35), and the V n,l.(r) is φ(r) = [2Mred/(2MY MN )] V n.l.(r).
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Note: the spin-spin and tensor non-local terms are not included in ESC16.

(c) Scalar-meson-exchange:

VS(r) = −m

4π

[
gS13g

S
24

{[
φ0C − m2

4MYMN
φ1C

]
+

m2

2MYMN
φ0SO L · S+

m4

16M2
YM

2
N

·

× 3

(mr)2
φ0TQ12 +

m2

MYMN

[
(M2

N −M2
Y )

4MYMN

]
φ0SO · 1

2
(σ1 − σ2) · L

}]
, (4.23a)

V n.l.
S (r) =

m

4π

[
1

2
gS13g

S
24 φ

0
C

]
. (4.23b)

(d) Axial-vector-meson exchange JPC = 1++:

VA(r) = −m

4π

[{
gA13g

A
24

(
φ0C +

2m2

3MYMN
φ1C

)
+

m2

6MYMN

(
gA13f

A
24

MN

M + fA13g
A
24

MY

M

)
φ1C

+fA13f
A
24

m4

12MYMNM2
φ2C

}
(σ1 · σ2)−

m2

4MYMN

{[
gA13g

A
24

−2

(
gA13f

A
24

MN

M + fA13g
A
24

MY

M

)]
φ0T − fA13f

A
24

m2

M2
φ1T

}
S12

+
m2

2MYMN
gA13g

A
24

{
φ0SO L · S+

m2

MYMN

[
(M2

N −M2
Y )

4MYMN

]
φ0SO · 1

2
(σ1 − σ2) · L

}]
, (4.24a)

V n.l.
A (r) = −m

4π

[
3

2
gA13g

A
24 φ

0
C(σ1 · σ2)

]
. (4.24b)

(e) Axial-vector-meson exchange JPC = 1+−:

VB(r) = −m

4π

(MN +MY )
2

m2

[
fB13f

B
24

{
m2

12MYMN

(
φ1C +

m2

4MYMN
φ2C

)
(σ1 · σ2)

+
m2

4MYMN

(
φ0T +

m2

4MYMN
φ1T

)
S12

}]
, (4.25a)

V n.l.
B (r) = −m

4π

3(MN +MY )
2

8m2

[
fB13f

B
24

{(
1

3
σ1 · σ2 φ

1
C + S12 φ

0
T

)}]
. (4.25b)

(f) Pomeron exchange:

VP (r) =
mP

4π

[
gP13g

P
24

4√
π

m2
P

M2
·
[{

1 +
m2

P

2MYMN
(3− 2m2

P r
2) +

m2
P

MYMN
L · S

+

(
m2

P

2MYMN

)2

Q12 +
m2

P

MYMN

[
(M2

N −M2
Y )

4MYMN

]
· 1
2
(σ1 − σ2) · L

}
e−m2

P r2

}]
, (4.26a)

V n.l.
D (r) = −m

4π

[
1

2
e−m2

P r2
]
. (4.26b)
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(g) Odderon-exchange:

VO,C(r) = +
gO13g

O
24

4π

8√
π

m5
O

M4

[(
3− 2m2

Or
2
)

− m2
O

MYMN

(
15− 20m2

Or
2 + 4m4

Or
4
)]

exp(−m2
Or

2) , (4.27a)

V n.l.
O (r) = −g

O
13g

O
24

4π

8√
π

m5
O

M4

3

4MYMN

{
∇

2
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
+

+
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
∇

2
}
, (4.27b)

VO,σ(r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MYMN

[
15− 20m2

Or
2 + 4m4

Or
4
]
exp(−m2

Or
2) ·

×
(
1 + κO13

MY

M

)(
1 + κO24

MN

M

)
, (4.27c)

VO,T (r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MYMN
·m2

Or
2
[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
(
1 + κO13

MY

M

)(
1 + κO24

MN

M

)
, (4.27d)

VO,SO(r) = −g
O
13g

O
24

4π

8√
π

m5
O

M4

m2
O

MYMN

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
3 +

(
κO13 + κO24

) √MYMN

M

}
, (4.27e)

VO,Q(r) = +
gO13g

O
24

4π

2√
π

m5
O

M4

m4
O

M2
YM

2
N

[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
1 + 4

(
κO13 + κO24

) √MYMN

M + 8κ13κ24
MYMN

M2

}
, (4.27f)

VO,ASO(r) = −g
O
13g

O
24

4π

4√
π

m5
O

M4

m2
O

MYMN

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
M2

N −M2
Y

MYMN
− 4

(
κO24 − κO13

) √MYMN

M

}
. (4.27g)

Here, κO13 = gO13/f
O
13 and κO24 = gO24/f

O
24.

D. One-Boson-Exchange Interactions in Configuration Space II

Here we give the extra potentials due to the zero’s in the scalar and axial-A vector form factors:

a) Scalar-mesons:

∆VS(r) = −m

4π

m2

U2

[
gS13g

S
24

{[
φ1C − m2

4MYMN
φ2C

]
+

m2

2MYMN
φ1SO L · S

+
m4

16M2
YM

2
N

φ1T Q12 +
m2

4MYMN

M2
N −M2

Y

MYMN
φ
(1)
SO · 1

2
(σ1 − σ2) · L

}]
.

(4.28)

b) Axial-mesons: The extra contribution to the potentials coming from the zero in the axial-vector meson form
factor are obtained from the expression (4.17) by making substitutions as follows

∆V
(1)
A (r) = V

(1)
A

(
φ0C → φ1C , φ

0
T → φ1T , φ

0
SO → φ1SO

)
· m

2

U2
. (4.29)
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Note that we do not include the similar ∆V
(2)
A (r) since they involve k4-terms in momentum-space. Then,

V
(1)
A (r) = −g

A
13g

A
24

4π
m

[
φ0C (σ1 · σ2)−

1

12MYMN

(
∇2φ0C + φ0C∇2

)
(σ1 · σ2)

+
3m2

4MYMN
φ0T S12 +

m2

2MYMN
φ0SO L · S

+
m2

4MYMN

M2
N −M2

Y

MYMN
φ
(0)
SO · 1

2
(σ1 − σ2) · L

]
. (4.30)

E. PS-PS-exchange Interactions in Configuration Space

In Fig. 2 and Fig. 3 the included two-meson exchange graphs are shown schematically. Explicit expressions for
Kirr(BW ) and Kirr(TMO) were derived [37], where also the terminology BW and TMO is explained. The TPS-
potentials for nucleon-nucleon have been given in detail in [38, 39] The generalization to baryon-baryon is similar to
that for the OBE-potentials. So, we substitute M →

√
MYMN , and include all PS-PS possibilities with coupling

constants as in the OBE-potentials. As compared to nucleon-nucleon in [38, 39] here we have in addition the potentials
with double K-exchange. The masses are the physical pseudo-scalar meson masses. For the intermediate two-baryon
states we take into account of the different thresholds. We have not included uncorrelated PS-vector, PS-scalar,
or PS-diffractive exchange. This because the range of these potentials is similar to that of the vector-,scalar-,and
axial-vector-potentials. Moreover, for potentially large potentials, in particular those with scalar mesons involved,
there will be very strong cancellations between the planar- and crossed-box contributions.

F. MPE-exchange Interactions

In Fig. 4 both the one-pair graphs and the two-pair graphs are shown. In this work we include only the one-pair
graphs. The argument for neglecting the two-pair graph is to avoid some ’double-counting’. Viewing the pair-vertex
as containing heavy-meson exchange means that the contributions from ρ(750) and ǫ = f0(620) to the two-pair graphs
is already accounted for by our treatment of the broad ρ and ǫ OBE-potential. For a more complete discussion of
the physics behind MPE we refer to our previous papers [1, 38, 39]. The MPE-potentials for nucleon-nucleon have
been given in Refs. [38, 39]. The generalization to baryon-baryon is similar to that for the TPS-potentials. For the
intermediate two-baryon states we neglect the different two-baryon thresholds. This because, although in principle
possible, it complicates the computation of the potentials considerably. For a proper appreciation of the physics it is
useful to scale the phenomenological meson-pair baryon-baryon interaction Hamiltonians different from the originally
used scalings [38, 39]. Below we give these Hamiltonians:

HS = ψ̄ψ
[
g(ππ)0π · π + g(σσ)σ

2
]
/M, (4.31a)

HV = g(ππ)1
[
ψ̄γµτψ

]
· (π × ∂µπ/mπ) /M

−f(ππ)1
2M

[
ψ̄σµντψ

]
∂ν · (π × ∂µπ/mπ) /M, (4.31b)

HA = g(πρ)1
[
ψ̄γ5γµτψ

]
· π × ρ/M, (4.31c)

HB = ig(πω)

[
ψ̄γ5σµντψ

]
· ∂ν (πφµω) /(mπM), (4.31d)

HP = g(πσ)
[
ψ̄γ5γµτψ

]
· (π∂µσ − σ∂µπ) /(mπM). (4.31e)

Here, we systematically scaled the partial derivatives with mπ.
The generalization of the pair-couplings to baryon-baryon is described in Ref. [6], section III. Also here in NN , we
have in addition to [38, 39] included the pair-potentials with KK-, KK*-, and Kκ-exchange. The convention for the
MPE coupling constants is the same as in Refs. [38, 39].

G. The Schrödinger equation with Non-local potential

The non-local potentials are of the central-, spin-spin, and tensor type. The method of solution of the Schrödinger
equation for nucleon-nucleon central (and spin-spin) potentials has been described in Ref. [36]. In [46] the extension
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of the method to non-local tensor potentials has been presented. The method is reviewed briefly in Appendix D.
Here, the non-local tensor is in momentum space of the form (q2 + k2/4) ṽT (k).

V. ESC-COUPLINGS AND THE QPC-MODEL

In the ESC-model for baryon-baryon the meson-baryon couplings are in principle only restricted by the requirements
of relativistic covariance, time-reversal and parity. However, dynamical input based on e.g. QCD, the QM, chiral-
symmetry, and flavor SU(3), is essential in order to be able to link the NN-, YN-, and YY-systems. It appeared
that in the ESC-model the 3P0 quark-antiquark pair-creation model [26, 27] leads to a scheme for the meson-baryon-
baryon couplings which is very similar to that found in the fits of the ESC-model [5, 6]. The couplings found in the
ESC16-model fit very well in the (3P0 +

3 S1)-scheme with a ratio 3P0/
3S1 = 2 : 1.

A. QPC-model Coupling Non-strange Mesons

According to the Quark-Pair-Creation (QPC) model, in the 3P0-version [26, 27], the baryon-baryon-meson couplings
are given in terms of the quark-pair creation constant γM , and the radii of the (constituent) gaussian quark wave
functions, by [27, 60]

gBBM (±) = γqq̄
3√
2
π−3/4 XM (IM , LM , SM , JM ) F

(±)
M , (5.1)

where ± = −(−)Lf with Lf is the orbital angular momentum of the final BM-state, XM (. . .) is a isospin, spin etc.
recoupling coefficient, and

F (+) =
3

2
(mMRM )

+1/2
(ΛQPCRM )−2,

F (−) =
3

2
(mMRM )

−1/2
(ΛQPCRM )−2 · 3

√
2(MM/MB). (5.2)

are coming from the overlap integrals, see Appendix F. Here, the superscripts ∓ refer to the parity of the mesons
M : (−) for JPC = 0+−, 1−−, and (+) for JPC = 0++, 1++. The radii of the baryons, in this case nucleons, and the
mesons are respectively denoted by RB and RM .

The QPC(3P0)-model gives several interesting relations, such as gω = 3gρ, gǫ = 3ga0
, and ga0

≈ gρ, gǫ ≈ gω. These
relations can be seen most easily by applying the Fierz-transformation to the 3P0-pair-creation Hamiltonian, see
Appendix F.
From ρ → e+e−, employing the current-field-identities (C.F.I’s) one can derive, see for example [61], the following

relation with the QPC-model

fρ =
m

3/2
ρ√

2|ψρ(0)|
⇔ γ

(
2

3π

)1/2
m

3/2
ρ

|′ψρ(0)′|
, (5.3)

which, neglecting the difference between the wave functions on the left and right hand side, gives for the pair creation
constant γ → γ0 = 1

2

√
3π = 1.535. However, since in the QPC-model gaussian wave functions are used, the qq̄-

potential is a harmonic-oscillator one. This does not account for the 1/r-behavior, due to one-gluon-exchange (OGE),
at short distance. This implies a OG-correction [62] to the wave function, which gives for γ [63]

γ = γ0

(
1− 16

3

α(mM )

π

)−1/2

. (5.4)

In Table I γ(µ) is shown, Using from [64] the parameterization

αs(µ) = 4π/
(
β0 ln(µ

2/Λ2
QCD)

)
, (5.5)

with ΛQCD = 100 MeV and β0 = 11− 2
3nf for nf = 3, and taking the typical scale mM ≈ 1 GeV, the above formula

gives γ = 2.19. This value we will use later when comparing the QPC-model predictions and the ESC16-model
coupling constants.
The formulas (5.2) are valid for the most simple QPC-model. For a realistic description of the coupling constants of
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TABLE I: Pair-creation constant γ as a function of µ.

µ [GeV] αs(µ) γ(µ)

∞ 0.00 1.535

80.0 0.10 1.685

35.0 0.20 1.889

1.05 0.30 2.191

0.55 0.40 2.710

0.40 0.50 3.94

0.35 0.55 5.96

the ESC16-model we include two sophistocations: (i) inclusion of both the 3P0- and the 3S1-mechanism, (ii) inclusion
of SU(6)-breaking. For details, see [65]. For the latter we use the (56) and (70) SU(6)-irrep mixing [60], and a
short-distance quark-gluon form factor. In Table II we show the 3P0 −3 S1-model results and the values obtained in
the ESC16-fit. In this table we fixed γM = 2.19 for the vector-, scalar-, and axial-vector-mesons. From Table I one
sees that at the scale of mM ≈ 1 GeV such a value is reasonable. Here, one has to realize that the QPC-predictions
are kind of ”bare” couplings, which allows vertex corrections from meson-exchange. For the pseudo-scalar, a different
value has to be used, showing indeed some ’running’-behavior as expected from QCD. In [63], for the decays ρ, ǫ→ 2π
etc. it was found γ = 3.33, whereas we have γπ = 5.51. For the mesonic decays of the charmonium states γ = 1.12.
One notices the similarity between the QPC(3P0)-model predictions and the fitted couplings. Of course, these results
are sensitive to the rM values. We found that for all solutions with a very good χ2

NN the rM values varied by ±0.2
fm.
The ESC16-couplings and the QPC-couplings agree very well. In particular, the SU(6)-breaking is improving the
agreement significantly. All this strengthens the claim that the ESC16-couplings are realistic ones.

B. ESC-potentials and the Constituent Quark-model

The calculation of Table II uses the constituent quark model (CQM) in the SU(6)-version of [27]. Since this
calculation implicity uses the direct coupling of the mesons to the quarks, it defines the QQM-vertex. Then, OBE-
potentials can be derived by folding meson-exchange with the quark wave functions of the baryons. prescribed by the
Dirac-structure, at the baryon level the vertices have in Pauli-spinor space the 1/MB-expansion

ū(p′, s′)Γu(p, s) = χ′†
s′

{
Γbb + Γbs

σ · p
E +M

− σ · p′

E′ +M ′Γsb −
σ · p
E +M

Γss
σ · p′

E′ +M ′Γsb

}
χs

≡
∑

l

c
(l)
BB

[
χ′†
s′Ol(p

′,p) χs

]
(
√
M ′M)αl (l = bb, bs, sb, ss). (5.6)

This expansion is general and does not depend on the internal structure of the baryon. A similar expansion can be

made on the quark-level, but now with quark masses mQ and coefficients c
(l)
QQ. It appears that in the CQM, i.e.

mQ = MB/3, the QQM-vertices can be chosen such that the ratio’s c
(l)
QQ/c

(l)
BB are constant for each type of meson

[66]. Then, by scaling the couplings these coefficients can be made equal. (Ipso facto this defines a meson-exchange
quark-quark interaction.) This shows that the use of the QPC-model is consistent with the 1/M-expansion.

VI. ESC16-MODEL: FITTING NN ⊕ Y N ⊕ Y Y -DATA

In the simultaneous χ2-fit of the NN -, Y N -, and YY-data a single set of parameters was used, which means the
same parameters for all BB-channels. The input NN -data are the same as in Ref. [5], and we refer the reader to



18

TABLE II: SU(6)-breaking in coupling constants, using (56) and (70)-irrep mixing with angle ϕ = −22o for the 3P0- and
3S1-

model. Gaussian Quark-gluon cut-off ΛQQG = 986.6 MeV. Ideal mixing for vector and scalar meson nonets. For pseudoscalar-
and axial-nonets the mixing angles are −11.40 and −42.7o respectively, imposing the OZI-rule. Here, ΛQPC = 259.6 MeV,
γ(αs = 0.30) = 2.19 etc. The weights are A=0.789 and B=0.211 for the 3P0 and 3S1 respectively. The values in parentheses
in the column QPC denote the results for ϕ = 0o.

Meson rM [fm] γM
3S1

3P0 QPC ESC16

π(140) 0.30 5.51 g = −1.37 g = +5.12 3.76 (3.99) 3.65

η′(957) 0.60 2.22 g = −1.61 g = +6.02 4.41 (5.38) 4.32

ρ(770) 0.80 2.37 g = −0.09 g = +0.65 0.57 (0.68) 0.58

ω(783) 0.70 2.35 g = −0.48 g = +3.60 3.12 (3.09) 3.11

a0(962) 0.80 2.22 g = +0.12 g = +0.46 0.59 (0.61) 0.54

ǫ(620) 0.70 2.37 g = +0.63 g = +2.35 2.98 (2.98) 2.98

a1(1270) 0.60 2.09 g = −0.09 g = −0.67 -0.76 (-0.77) -0.82

f1(1285) 0.60 2.09 g = −0.08 g = −0.60 -0.68 (-0.69) -0.76

this paper for a description of the employed phase shift analysis [11, 12]. Note that in addition to the NN-phases,
including their correlations, in the ESC16-model also the NN -low energy parameters and the deuteron binding energy
are fitted. The YN-data are those used in Ref. [6] with the addition of higher energy data, see paper II. Of course,
it is to be expected that the accurate and very numerous NN -data essentially fix most of the parameters. Only
some of the parameters, for example certain F/(F + D)-ratios, are quite influenced by the Y N -data. In the fitting
procedure the following constraints are applied: (i) A strong restriction imposed on YN-models is the absence of
S=-1 bound states. (ii) During the fitting process sometimes constraints are imposed in the form of ’pseudo-data’
for some YN scattering lengths. These constraints are based on experiences with Nijmegen YN-models in the past
or to impose constraints from the G-matrix results. In some cases it is necessary to add some extra weight of the
YN-scattering data w.r.t. the NN-data in the fitting process. (iii) After obtaining a solution for the scattering data
the corresponding model is tested by checking the corresponding G-matrix results for the well-depths for UΣ > 0
and UΞ < 0, and sufficient s-wave spin splitting in the UΛ. If not satisfactory we refit the scattering data etc. This
iterative process implements the constraints from the G-matrix well-depth’s results, and plays a vital role in obtaining
the final results of the combined fit. (For the G-matrix approach to hyperon-nucleus systems, see e.g. Ref. [67].) The
fitting process is discussed more elaborately in paper II.
The χ2 is a very shallow function of the quark-core parameter, which influences only the YN- and YY-channels.

Accordingly solutions have been obtained using different assumptions about the quark-core-effects, all with a strength
of about 25% of the total diffractive contribution. In previous work [9], models ESC08a and ESC08a”, the solu-
tions were obtained by assuming quark-core effects only for the channels where the [51]-component is dominant:
Σ+p(3S1, I = 3/2),ΣN(1S0, I = 1/2), and ΞN(1S0, I = 1). The solution ESC16 is obtained by application of the
quark-core effects according to equation (8.4) in [9], see paper II for a full description of the Pauli-blocking scheme.
Like in the NN -fit, described in Ref. [5], also in the simultaneous χ2-fit of the NN - and Y N -data, it appeared

again that the OBE-couplings could be constrained successfully by the ’naive’ predictions of the QPC-model [26, 27].
Although these predictions, see section V, are ’bare’ ones, we tried to keep during the searches many OBE-couplings
in the neighborhood of the QPC-values. Also, it appeared that we could either fix the F/(F +D)-ratios to those as
suggested by the QPC-model, or apply the same restraining strategy as for the OBE-couplings.
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A. Fitted BB-parameters

The treatment of the broad mesons ρ and ǫ is similar to that in the OBE-models [3, 36]. For the ρ-meson the same
parameters are used as in these references. However, for the ǫ = f0(620) we take in this work the mass mǫ = 620
MeV and width Γǫ = 464 MeV. Using the the Bryan-Gersten ”dipole” parameters [68] for the two-pole approximation
we get: m1 = 455.15919 MeV, m2 = 1158.56219 MeV, and β1 = 0.28193, β2 = 0.71807. Other meson masses are
given in Table III. The sensitivity for the values of the cut-off masses of the η and η′ is very weak. Therefore we
have set the {1}-cut-off mass for the pseudoscalar nonet equal to that for the {8}. Likewise, for the two nonets of the
axial-vector mesons, see table III. Furthermore we experience a rather shallow dependence on the value of αP in the
range 0.33-0.40. Therefore, we put it at the Cabibbo-theory value 0.365.
Summarizing the parameters we have for baryon-baryon (BB): (i) NN Meson-couplings: fNNπ, fNNη′ , gNNρ, gNNω,

fNNρ, fNNω, gNNa0
, gNNǫ, gNNa1

, fNNa1
, gNNf ′

1
, fNNf ′

1
, fNNb1 , fNNh′

1
, (ii) F/(F +D)-ratios: αm

V , αA, (iii) NN Pair
couplings: gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 , gNNπω, gNNπη, gNNπǫ, (iv) Diffractive couplings and masslike parameters

gNNP , gNNO, fNNO, mP , mO, (v) Cut-off masses: ΛP
8 = ΛP

1 = ΛB
8 = ΛB

1 , Λ
V
8 , Λ

V
1 , Λ

S
8 , Λ

S
1 , and ΛA

8 = ΛA
1 .

The pair coupling gNN(ππ)0 was kept fixed at zero. Note that in the interaction Hamiltonians of the pair-couplings
(4.31b)-(4.31e) the partial derivatives are scaled by mπ, and there is a scaling mass MN .
The ESC-model described here, is fully consistent with SU(3)-symmetry using a straightforward extension of the NN-

model to YN and YY. This the case for the OBE- and TPS-potentials, as well as for the Pair-potentials. For example
g(πρ)1 = gA8V P , and besides (πρ)-pairs one sees also that KK∗(I = 1)- and KK∗(I = 0)-pairs contribute to the NN
potentials. All F/(F+D)-ratio’s are taken as fixed with heavy-meson saturation in mind. The approximation we have
made in this paper is to neglect the baryon mass differences in the TPS-potentials, i.e. we put mΛ = mΣ = mN . This
because we have not yet worked out the formulas for the inclusion of these mass differences, which is straightforward
in principle.

B. Coupling Constants, F/(F +D) Ratios, and Mixing Angles

In Table III we give the ESC16 meson masses, and the fitted couplings and cut-off parameters. Note that the axial-
vector couplings for the B-mesons are scaled with mB1

. The mixing for the pseudo-scalar, vector, and scalar mesons,
as well as the handling of the diffractive potentials, has been described elsewhere, see e.g. Refs. [3, 10]. The mixing
scheme of the axial-vector mesons is completely similar as for the vector etc. mesons, except for the mixing angle. In
the paper II [15] the SU(3) singlet and octet couplings are listed, and also the F/(F +D)-ratios and mixing angles.
Also the Pauli-blocking effect parameter aPB , described in [9], section 8, for ESC16 is given. As mentioned above, we
searched for solutions where all OBE-couplings are compatible with the QPC-predictions. This time the QPC-model
contains a mixture of the 3P0 and 3S1 mechanism, whereas in Ref. [5] only the 3P0-mechanism was considered. For
the pair-couplings all F/(F +D)-ratios were fixed to the predictions of the QPC-model.
One notices that all the BBM α’s have values rather close to that which are expected from the QPC-model. In the

ESC16 solution αA ≈ 0.383, which is close to αA ∼ 0.4. As in previous works, e.g. Ref. [36], αe
V = 1 is kept fixed.

Above, we remarked that the axial-nonet parameters may be sensitive to whether or not the heavy pseudoscalar nonet
with the π(1300) are included.
In Table IV we listed the fitted Pair-couplings for the MPE-potentials. We recall that only One-pair graphs are

included, in order to avoid double counting, see Ref. [5]. The F/(F +D)-ratios are all fixed, assuming heavy-boson
domination of the pair-vertices. The ratios are taken from the QPC-model for QQ̄-systems with the same quantum
numbers as the dominating boson. For example, the α-parameter for the axial (πρ)1-pair could fixed at the quark-
model prediction 0.40, see Table IV. The BB-Pair couplings are calculated, assuming unbroken SU(3)-symmetry, from
the NN -Pair coupling and the F/(F+D)-ratio using SU(3). Unlike in Refs. [38, 39], we did not fix pair couplings using
a theoretical model, e.g. based on heavy-meson saturation and chiral-symmetry. So, in addition to the 14 parameters
used in Refs. [38, 39] we now have 6 pair-coupling fit parameters. In Table IV the fitted pair-couplings are given.
Note that the (ππ)0-coupling gets a non-zero contribution from the {8s}-pairs, giving g(ππ)0 = −0.688/2 ≈ −0.34,
which is opposite in sign compared to the result in [38, 39]. The f(ππ)1-pair coupling has opposite sign as compared to
Refs. [38, 39]. In a model with a more complex and realistic meson-dynamics [34] this coupling is predicted as found
in the present ESC-fit. The (πρ)1-coupling is large as expected from A1-saturation, see Refs. [38, 39]. We conclude
that the pair-couplings are in general not well understood quantitatively, and deserve more study.
In Table III we show the OBE-coupling constants and the gaussian cut-off’s Λ. The used α =: F/(F +D)-ratio’s

for the OBE-couplings are: pseudoscalar mesons αP = 0.365, vector mesons αe
V = 1.0, αm

V = 0.4655, scalar-mesons
αS = 1.0, axial mesons αA = 0.3830 and αB = 0.4. In Table IV we show the MPE-coupling constants. The used
α =: F/(F +D)-ratio’s for the MPE-couplings are: (πη) pairs α({8s}) = 1.0, (ππ)1 pairs αe

V ({8}a) = 1.0, αm
V ({8}a) =
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TABLE III: Meson couplings and parameters employed in the ESC16-potentials. Coupling constants are at k2 = 0. An asterisk
denotes that the coupling constant is constrained via SU(3). The masses and Λ’s are given in MeV.

meson mass g/
√
4π f/

√
4π Λ

π 138.04 0.2684 1030.96

η 547.45 0.1368∗ ,,

η′ 957.75 0.3181 ,,

ρ 768.10 0.5793 3.7791 680.79

φ 1019.41 –1.2384∗ 2.8878∗ ,,

ω 781.95 3.1149 –0.5710 734.21

a1 1270.00 –0.8172 –1.6521 1034.13

f1 1420.00 0.5147 4.4754 ,,

f ′

1 1285.00 –0.7596 –4.4179 ,,

b1 1235.00 –2.2598 1030.96

h1 1380.00 –0.0830∗ ,,

h′

1 1170.00 –1.2386 ,,

a0 962.00 0.5393 830.42

f0 993.00 –1.5766∗ ,,

ε 620.00 2.9773 1220.28

Pomeron 212.06 2.7191

Odderon 268.81 4.1637 –3.8859

TABLE IV: Pair-meson coupling constants employed in the ESC16 MPE-potentials. Coupling constants are at k2 = 0. The
F/(F+D)-ratio are QPC-predictions, except that α(πω) = αP , which is very close to QPC.

JPC SU(3)-irrep (αβ) g/4π F/(F +D)

0++ {1} g(ππ)0 — —

0++ ,, g(σσ) — —

0++ {8}s g(πη) -0.6894 1.000

1−− {8}a g(ππ)1 0.2519 1.000

f(ππ)1 –1.7762 0.400

1++ ,, g(πρ)1 5.7017 0.400

1++ ,, g(πσ) –0.3899 0.400

1++ ,, g(πP ) — —

1+− {8}s g(πω) –0.3287 0.365

0.400, and the (πρ)1 pairs αA({8}a) = 0.400. The (πω) pairs α({8s}) has been set equal to αP = 0.365.

VII. ESC16-MODEL , NN-RESULTS

A. Nucleon-nucleon Fit, Low-energy and Phase Parameters

For a more detailed discussion on the NN-fitting we refer to Ref. [5]. Here, we fit to the 1993 Nijmegen representation
of the χ2-hypersurface of the NN scattering data below Tlab = 350 MeV [11, 12], and also the low-energy parameters
are fitted for pp, np and nn. In this simultaneous fit of NN and Y N , we obtained for ESC16 for the phase shifts
χ2/Ndata = 1.10. For a comparison with Ref. [5], and for use of this model for the description of NN , we give in
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FIG. 5: Solid line: proton-proton I=1 phase shifts in degrees vs. Tlab in MeV for the ESC16-model. The dashed line: the m.e.
phases of the Nijmegen93 PW-analysis [11]. The black dots: the s.e. phases of the Nijmegen93 PW-analysis. The diamonds:
Bugg s.e. [69].

Table V the nuclear-bar phases for pp in case I = 1, and for np in the case of 1S0(I = 1) and the I = 0-phases. Here,
∆χ2 denotes the accrescence in χ2 of the ESC-model w.r.t. the phase shift analysis [11, 12].

The deuteron has been included in the fitting procedure, as well as the low-energy parameters. The fitted binding
energy EB = 2.224636 MeV, which is very close to EB(experiment) = 2.224644 MeV. The charge-symmetry breaking
is described phenomenologically by having next to gρnn free couplings for gρnp, and gρpp. This phenomenological
treatment is successful for the various NN-channels, especially for the np(1S0, I = 1)-phases, which were included in
the NN-fit.
We emphasize that we use the single-energy (s.e.) phases and χ2-surface [12] as a means to fit the NN-data. The

multi-energy (m.e.) phases of the PW-analysis [11] in Fig. 5-Fig. 7 are the dashed lines in these figures. One notices
that the central value of the s.e. phases do not correspond to the m.e. phases in general, illustrating that there has
been a certain amount of noise fitting in the s.e. PW-analysis, see e.g. ǫ1 and 1P1 at Tlab = 100 MeV. The m.e.
PW-analysis reaches χ2/Ndata = 0.99, using 39 phenomenological parameters plus normalization parameters. The
related phenomenological PW-potentials NijmI,II and Reid93 [70], with respectively 41, 47, and 50 parameters, turn
out all with χ2/Ndata = 1.03. This should be compared to the ESC-model, which has χ2/Ndata = 1.10 using for NN
32 meson related parameters. These are 14 QPC-constrained meson-nucleon-nucleon couplings, 6 meson-pair-nucleon-
nucleon couplings, 6 gaussian cut-off parameters, 3 diffractive couplings, and 2 diffractive mass parameters. The 3
remaining fitting parameters (2 F/(F+D) ratios and the Pauli blocking fraction) are mainly or totally determined by
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FIG. 6: Solid line: proton-proton I=1 phase shifts in degrees vs. Tlab in MeV for the ESC16-model. The dashed line: the m.e.
phases of the Nijmegen93 PW-analysis [11]. The black dots: the s.e. phases of the Nijmegen93 PW-analysis. The diamonds:
Bugg s.e. [69].

the YN-fit. From the figures it is obvious that the ESC-model deviates from the m.e. PW-analysis in particular at
the highest energy.
In Table VI the results for the low energy parameters are given. In order to discriminate between the 1S0-wave for

pp, np, and nn, we introduced some charge independence breaking by taking gppρ 6= gnpρ 6= gnnρ. With this device
we fitted the difference between the 1S0(pp) and 1S0(np) phases, and the different scattering lengths and effective
ranges as well. We found gnpρ = 0.5427, gppρ = 0.5932, which are not far from gnnρ = 0.5793, see Table III. The NN
low-energy parameters are described very well, see Table VI. Here, with the exception of ann and rnn the experimental
values are taken from the compilation given in Ref. [71]. For ann(

1S0) we have used in the fitting the value from
an investigation of the n-p and n-n final state interaction in the 2H(n, nnp) reaction at 13 MeV [72]. The value for
ann(

1S0) is still somewhat in discussion. Another recent determination [73] obtained e.g. ann(
1S0) = −16.27 ± 0.40

fm. The ESC16-model has the value −17.78 fm which is in between these values. Although the values from [71] are
not recent, here they still give an adequate presentation since this ESC-model is not detailed study of the low-energy
parameters. For a discussion of the theoretical and experimental situation w.r.t. these low energy parameters, see [74].
The binding energy of the deuteron is fitted excellently. The electric quadrupole moment result is typical for models
without meson-exchange current effects. Further properties of the deuteron in this model are: PD = 6.15%, D/S =
0.025698, N2

G = 0.771658, and ρ−ǫ,−ǫ = 1.725857.
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FIG. 7: Solid line: neutron-proton I=0, and the I=1 1S0(NP ) phase shifts in degrees vs. Tlab in MeV for the ESC16-model.
The dashed line: the m.e. phases of the Nijmegen93 PW-analysis [11]. The black dots: the s.e. phases of the Nijmegen93
PW-analysis. The diamonds: Bugg s.e. [69].

B. Nucleon-nucleon Potentials 4

The nucleon-nucleon OBE-, TPS-, and Pair-potentials are qualitatively rather similar in character as the hyperon-
nucleon potentials, which are shown in Ref. [6] for the ESC04 model. Therefore we refer the reader to this cited
YN-paper for pictures of the potentials. The odderon and the derivative axial-vector coupling, and the non-local
pseudoscalar type i spin-spin and tensor potentials are added.

The odderon potential is a novel feature of ESC16-model. In Fig. 9 the central and spin-orbit potentials are shown.
The spin-spin, tensor, and quadratic spin-orbit potentials are very small. One notices from this figure that the
pomeron potential is like an ’anti-scalar’ potential whereas the odderon is a normal vector-exchange potential. Note
the strong cancellation in the spin-orbit giving a negligible summed contribution. The upshot is a universal central
repulsion from the pomeron+odderon. In ESC models the strength of the pomeron is related to that of the ε. The
pomeron curve in Fig. 9 corresponds to a fit with ε = f0(760), whereas in this paper we have ε = f0(620). This results
in weaker couplings of ε, ω, and pomeron, reducing the strength of the pomeron by ≈ 2/3.

4 The fortran code NNPOTESC16.f is put on the permanent open access website, NN-Online facility:http://nn-online.org.
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VIII. DISCUSSION AND CONCLUSIONS

The ESC-approach to baryon-baryon (BB) interactions is a meson-exchange model with (physical) form factors.
Here, besides pseudoscalar also vector-, scalar-, and axial-vector-mesons are included, which is important for an
accurate description of the phase shifts at the higher energies. Also, in this approach flavor SU(3) (broken) symmetry
can be incorporated in order to connect the different BB-channels. A presentation of the potentials, valid at low
energies, can be obtained by making a low-t expansion of the vector etc. meson propagators and form factors giving
contact terms. This would be similar to the EFT-approach [75].
The presentation in this paper reports on the present stage of the ESC-model. Compared to ESC04 [5–7] the model

has been developed further. The new version ESC16 has in addition to meson-exchange also incorporated quark-
core effects. Furthermore, the multi-gluon sector has been completed by the inclusion of the odderon. Moreover, the
treatment of the axial-vector mesons is now in a very satisfactory shape by employing the B-field formalism. The ESC-
approach to the nuclear force is a promising one. It opens the possibility to make a connection between the at present
available baryon-baryon experimental data on the one hand, and with the underlying quark structure of the baryons
and mesons on the other hand. Namely, a successful description of both the NN - and YN -scattering data is obtained
with meson-baryon coupling parameters which all comply with the QPC-model. Here, we note that in particular the
QPC-model treats the vector and scalar mesons on an equal footing. Apart from its role in ππ and πK scattering,
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TABLE V: ESC16 nuclear-bar pp and np phases in degrees.

Tlab 0.38 1 5 10 25 50 100 150 215 320

1S0(np) 54.57 62.02 63.47 59.72 50.48 39.82 25.45 15.11 4.65 –8.34
1S0 14.62 32.62 54.75 55.16 48.67 38.97 25.06 14.85 4.44 –8.53
3S1 159.39 147.77 118.25 102.72 80.81 63.03 43.62 31.27 19.58 5.83

ǫ1 0.03 0.11 0.68 1.17 1.82 2.15 2.50 2.94 3.64 4.93
3P0 0.02 0.14 1.61 3.81 8.81 11.80 9.68 4.83 –1.86 –11.73
3P1 –0.01 –0.08 –0.89 –2.04 –4.89 –8.29 –13.28 –17.35 –21.87 –27.90
1P1 –0.05 –0.19 –1.50 –3.07 –6.39 –9.81 –14.65 –18.75 –23.38 –29.44
3P2 0.00 0.02 0.22 0.67 2.51 5.80 10.90 14.04 16.24 17.07

ǫ2 –0.00 –0.00 –0.05 –0.20 –0.81 –1.71 –2.71 –2.99 –2.84 –2.18
3D1 –0.00 –0.01 –0.18 –0.68 –2.83 –6.51 –12.40 –16.69 –20.72 –25.04
3D2 0.00 0.01 0.22 0.85 3.70 8.93 17.22 22.15 24.99 25.05
1D2 0.00 0.00 0.04 0.17 0.69 1.70 3.78 5.70 7.64 9.20
3D3 0.00 0.00 0.00 0.00 0.03 0.24 1.17 2.31 3.61 4.86

ǫ3 0.00 0.00 0.01 0.08 0.55 1.59 3.46 4.81 5.97 6.99
3F2 0.00 0.00 0.00 0.01 0.11 0.34 0.80 1.10 1.14 0.39
3F3 –0.00 –0.00 –0.01 –0.03 –0.23 –0.67 –1.46 –2.06 –2.66 –3.50
1F3 –0.00 –0.00 –0.01 –0.06 –0.41 –1.10 –2.11 –2.77 –3.46 –4.69
3F4 0.00 0.00 0.00 0.00 0.02 0.12 0.51 1.04 1.80 3.00

ǫ4 –0.00 –0.00 –0.00 –0.00 –0.05 –0.19 –0.53 –0.83 –1.13 –1.46
3G3 –0.00 –0.00 –0.00 –0.00 –0.05 –0.26 –0.93 –1.73 –2.77 –4.17
3G4 0.00 0.00 0.00 0.01 0.17 0.71 2.11 3.52 5.17 7.28
1G4 0.00 0.00 0.00 0.00 0.04 0.15 0.41 0.69 1.06 1.70
3G5 –0.00 –0.00 –0.00 –0.00 –0.01 –0.05 –0.16 –0.25 –0.28 –0.19

ǫ5 0.00 0.00 0.00 0.00 0.04 0.20 0.70 1.22 1.83 2.62
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FIG. 9: Pomeron(p) and Odderon(o) central- and spin-orbit potentials.

the f0(620) has been shown to be present in relativistic nuclear scattering as well [76]. We note that by studying
the relation between the QPC-processes and the BBM-couplings, we determined the ratio γ(3P0)/γ(

3S1) = 2 : 1. In
the literature, the 3P0-QPC and the 3S1-QPC in the SCQCD [18] has been studied in [77] and [78] respectively. In
this paper we give therefore an estimation of the relative importance of the QPC processes. At the same time we
comply with the strong constraint of no bound states in the S = −1 systems. Therefore, the ESC-models, ESC04
and ESC16, are an important step in the determination of the baryon-baryon interactions for low energy scattering
and the description of hypernuclei in the context of broken SU(3)-symmetry. The values for many parameters, which
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TABLE VI: ESC16 Low energy parameters: S-wave scattering lengths and effective ranges, deuteron binding energy EB , and
electric quadrupole Qe. Experimental values and references, see [71, 72]. The asterisk denotes that the low-energy parameters
were not searched.

experimental data ESC16

app(
1S0) –7.828 ± 0.008 –7.7718

rpp(
1S0) 2.800 ± 0.020 2.7612∗

anp(
1S0) –23.748 ± 0.010 –23.7346

rnp(
1S0) 2.750 ± 0.050 2.6992∗

ann(
1S0) –18.63 ± 0.48 –17.783

rnn(
1S0) 2.860 ± 0.15 2.8301∗

anp(
3S1) 5.424 ± 0.004 5.4396∗

rnp(
3S1) 1.760 ± 0.005 1.7488∗

EB –2.224644 ± 0.000046 –2.224636

Qe 0.286 ± 0.002 0.2727

TABLE VII: ESC16 χ2 and χ2 per datum at the ten energy bins for the Nijmegen93 Partial-Wave-Analysis. Ndata lists the
number of data within each energy bin. The bottom line gives the results for the total 0−350 MeV interval. The χ2-accrescence
for the ESC model is denoted by ∆χ2 and ∆χ̂2, respectively.

Tlab ♯ data χ2
0 ∆χ2 χ̂2

0 ∆χ̂2
0

0.383 144 137.555 18.7 0.960 0.130

1 68 38.019 57.3 0.560 0.843

5 103 82.226 7.5 0.800 0.073

10 290 257.995 29.8 1.234 0.103

25 352 272.197 32.6 0.773 0.093

50 571 538.522 33.5 0.957 0.059

100 399 382.499 20.9 0.959 0.052

150 676 673.055 82.6 0.996 0.122

215 756 754.525 132.7 0.998 0.176

320 954 945.379 254.1 0.991 0.266

Total 4313 4081.971 669.8 0.948 0.153

in previous Nijmegen work were considered to be free to a large extent, follow now rather well the pattern shown in
quark-model predictions. This is particularly the case for the F/(F +D)-ratios of the OBE- and MPE-interactions.
In fitting the NN-data the Nijmegen PWA(1993) is used. Although phase shift analyses, with a more extended

data base comprising more recent data, e.g. [79] are available in principle, we expect apart from fine tuning no major
changes. For example, it appeared that measured spin correlations like Axx and Ayy from [80] respectively [81] are
successfully described by PWA(1993). In Fig. 2 of Ref. [79] the Granada phase shifts are compared to the Nijmegen
PWA(1993). From this figure it is clear that both analyses overlap very strongly.

As is well known, the experimental nuclear saturation properties, the density ρN , the binding energy per nucleon
E/A, and the compression modulus K, cannot be reproduced quantitatively with nuclear two-body interactions only,
see e.g. Ref. [82]. The inclusion of many-nucleon interactions is essential for giving the correct energy curve E(ρN ).
Here, the three-nucleon interaction, composed of an attractive (TNA) and a repulsive (TNR) part, seems to be most
important. Soft-core two-baryon potentials lead to a too soft equation of state (EoS). For example, ESC16 gives for
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the mass of the neutron star 1.35M⊙ [83], implying for this model the necessity for a TNR contribution. Furthermore,
at high densities hyperon-mixing in neutron-star matter brings about a significant softening of the EoS, which gives a
reduction of the TNR effect for the maximum mass [84–86]. To compensate for this adverse effect Nishizaki, Takatsuka
and one of the authors (Y.Y.) [86] made the conjecture that there is a three-baryon repulsion (TBR) that operates
universally for YNN and YYN as well as for NNN . In QCD the gluons are flavor blind and therefore it is natural to
relate this universal TBR to multi-gluon exchange. Because in QCD the pomeron is a (non-perturbative) multi-gluon
effect, which gives repulsion at low energies, we associate TBR with triple and quartic pomeron exchange [87, 88], as
illustrated in Fig. 10.

FIG. 10: Triple- and quartic-pomeron 3- and 4-body interaction.

Then, in order to stiffen the EoS, together with a phenomenological TNA, we include in the G-matrix matter
calculations with ESC16 the universal repulsive multi-gluon three-body (and four-body) forces in the form of the
multi-pomeron exchange potential (MPP) [9, 89, 90]. As demonstrated in [91–94], the inclusion of TNA+MPP gives
the proper nuclear saturation point, and makes the EoS of neutron matter stiff enough to assure the large observed
values of two massive neutron stars with mass 1.97 ± 0.04M⊙ for PSR J1614-2230 [95] and 2.01 ± 0.04M⊙ for PSR
J0348+0432 [96]. So, with the introduction of TNA+MPP three things are achieved: (i) the right nuclear saturation
point, (ii) the proper description of the neutron star masses, and moreover (iii) better hyperonic well depth’s UY for
Y = Λ,Σ (see the companion paper II).
The combined fit for NN and YN is extremely good in ESC16. It is for the first time that the quality of the NN-fit

does not suffer from the inclusion of the YN-data. The ΛN p-waves seem to be better, which is the result of the truly
simultaneous NN+Y N -fitting. This is also reflected in the better Scheerbaum KΛ-value [97], making the well-known
small spin-orbit splitting smaller, see Ref. [98].
The G-matrix results showed for ESC04 that basic features of hypernuclear data are reproduced nicely, improving

on the soft-core OBE-models NSC89 [3] and NSC97 [10]. In spite of this superiority of ESC04 for hypernuclear data,
some problems remained. In particular the well depth UΣ was attractive, which is very unlikely in view of several
other studies e.g. Refs. [99–102] Furthermore, it has been shown [86] that the EoS for nuclear matter is too soft for
the soft-core models. From this we learn that a good fit to the present scattering data not necessarily means success
in the G-matrix results. To explain this one can think of two reasons: (i) the G-matrix results are sensitive to the
two-body interactions below 1 fm, whereas the present YN-scattering data are not, (ii) other than two-body forces
play an important role. The problem with UΣ hints at a special feature in the Σ+p(3S1)-channel. As we show in
ESC16 paper II of this series, it can be solved partly by the inclusion of quark-core effects. Furthermore, for the
stiffening of the EoS a natural possibility is the presence of TBF in nuclear and hyperonic matter, see Ref. [86]. This
also solves the nuclear saturation problem [6].
It is important to stress the role of the information on hypernuclei in our analysis. We imposed for the ESC16-

solution (i) no BB-bound states, (ii) Uss > 1, and UΣ > 0.
Summarizing the results of the ESC-approach to baryon-baryon interactions, it can be stated that this is a very

successful one. It has been shown that ESC-models are able to give with a single parameter-set extremely satisfactory
descriptions of the NN⊕YN-data, and at the same time lead to successful G-matrix results. For the coupling constants
(i) flavor SU(3)-symmetry can be maintained, and (ii) they show rather well the pattern as predicted by the QPC-
model. We conclude that these ESC-model predictions, as well as the applications to the S=-3,-4 systems and
hyperonic matter, have a rather sound physical basis.
We close by remarking that the determination of the MPE-couplings opens the possibility to compute the TBF-
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potentials for baryon-systems where all meson-pair vertices are fixed by the ESC-model.
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APPENDIX A: B-FIELD FORMALISM FOR VECTOR- AND AXIAL-VECTOR MESONS

As an alternative to the usual Proca-formalism for vector mesons, Nakanishi and collaborators [57, 58] introduced the
B-field formalism. In the non-abelian theory, e.g. isospin SU(2,I), one introduces the B-field through the Lagrangian

LA = −1

4
F i

µνFµνi +
1

2
m2Ai

µA
µi +Bi∂µA

µi +
α

2
BiBi , (A1)

where the field tensor and the covariant derivative Dµ are given by

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gAǫ

ijkAj
µA

k
ν , (A2a)

Dµ = ∂µ − igAti A
i
µ . (A2b)

We assume that the Ai
µ-field is coupled to the conserved, or almost conserved, hadronic ’strong’ current JH,µ. The

field equations, neglecting the non-abelian term in the axial field tensor, become

Ai
µ : ∂µF i

µν +m2Ai
µ = −J i

H,µ + ∂µB
i , (A3a)

Bi : ∂µAi
µ + αBi = 0 . (A3b)

Exploiting now that approximately ∂µJ i
µ = 0, one derives from the field equation for Ai

µ, upon taking the derivative

∂µ etc., that Bi is a free field, i.e.
(
�+ αm2

)
Bi = 0 . (A4)

This theory can be quantized in a satisfactory way, giving an axial-vector-meson propagator which is covariant, see
Nakanishi & Ojima [58] It implies that in the propagator one has for the spectral function of the propagator projection
operator

Πµν(k) =

[
−ηµν +

kµkν

m2

]
δ(k2 −m2)− kµkν

m2
δ(k2 − αrm

2) , (A5)

where αr > 0 is the renormalized B-field parameter α giving it a mass
√
αrm [58]. The propagator becomes

Pµν(k) = − ηµν

k2 −m2 + iǫ
+ (1− αr)

kµkν

(k2 −m2 + iǫ)(k2 − αrm2 + iǫ)

⇒ − ηµν

k2 −m2 + iǫ
, for αr = 1 . (A6)

The case αr = 1 reminds one of the Feynman-gauge in the massless case. Now, in the case of coupling to a conserved
current, the potential will be independent of αr. Therefore, we will use the ”Feynman-gauge” in this paper. It implies
that the kµkν-terms in the vector-meson propagators will not contribute to the potentials in the B-field formalism.
This in contrast to the Proca-formalism, see e.g. Ref. [56]. For the axial-vector mesons we will use the B-field
formalism, whereas for the vector mesons we continue to use the Proca formalism, like in Refs. [3, 6, 10].

APPENDIX B: EXACT TREATMENT NON-LOCAL-TENSOR (NLT) OPERATOR

From results given in Ref. [103], we derive a new method for the treatment of the non-local-tensor (NLT) σ1 ·qσ2 ·q-
operator. Starting from

Ṽ (k,q) =

∫
d3r′

∫
d3r eip

′·r′V (r′, r)e−ip·r , (B1)
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where

V (r′, r) = δ3(r′ − r) f(r) Q12 , (B2)

with the quadratic-spin-orbit operator Q12 = (σ1 · Lσ2 · L+ σ2 · Lσ1 · L) /2 . Introducing the functions g(r) and
h(r) by

rif(r) = −∇ig(r) , rirjf(r) =

[
−∇i∇j + δij

(
1

r

d

dr

)]
h(r) , (B3)

executing the Fourier transformation in (B1) leads to the identity

Ṽ (k,q) = [σ1 · q× k] [σ2 · q× k] h̃(k2)

−
[
σ1 · qσ2 · q− q2σ1 · σ2

]
g̃(k2)

+
1

4

[
σ1 · kσ2 · k− k2σ1 · σ2

]
g̃(k2) , (B4)

where h̃(k2) and g̃(k2) are the Fourier transforms of respectively h(r) and g(r).
The strategy is now to derive the configuration potentials with the σ1 · qσ2 · q-operator by utilizing (B4), which

we rewrite as
[
σ1 · qσ2 · q− q2σ1 · σ2

]
g̃(k2) =

{
[σ1 · q× k] [σ2 · q× k] h̃(k2)− Ṽ (k,q)

}

+
1

4

[
σ1 · kσ2 · k− k2σ1 · σ2

]
g̃(k2) , (B5)

In our application

g̃(k2) =
exp(−k2/Λ2)

k2 +m2
, g(r) =

m

4π
φ0C(r,m,Λ) . (B6)

Then, from (B3) one derives that

f(r) = −1

r

d

dr
g(r) = −m

4π

1

r

d

dr
φ0C(r,m,Λ) =

m3

4π
φ0SO(r,m,Λ) . (B7)

In momentum space, one easily derives the relation df̃(k2)/dk2 = −g̃(k2)/2 , which leads to

f̃(k2) =
1

2
exp

(
m2/Λ2

)
E1

[
(k2 +m2)/Λ2

]
, (B8)

where E1(x) is the standard exponential integral function.

Next, we turn to the determination of h(r). From (B3) one readily derives the momentum space differential equation

∇
2
k g̃(k

2) = (k ·∇k + 3) h̃(k2) . (B9)

Trying the form

h̃(k2) =

(
A+

B

k2 +m2

)
g̃(k2) , (B10)

one obtains from (B9) the solution A = −2/Λ2 and B = −2. So,

h̃(k2) = −2

(
1

Λ2
+

1

k2 +m2

)
g̃(k2) = −2

(
1

Λ2
− d

dm2

)
g̃(k2) = 2

dg̃(k2)

dk2
(B11)
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Using the (approximate) axial-current conservation, and the ”Feynman gauge” in the B-field formalism, we have from

the Ω
(A)
i in (4.17) the following expression for V(1)

A

Ṽ(1)
A = −g2A

[(
1− 1

3MM ′k
2 +

3(q2 + k2/4)

2M ′M

)
σ1 · σ2 +

2

MM ′

(
(σ1 · q)(σ2 · q)

− q2σ1 · σ2

)
− 1

4M ′M

(
(σ1 · k)(σ2 · k)−

1

3
k2σ1 · σ2

)

+
i

4M ′M
(σ1 + σ2) · q× k

]
· g̃(k2) , (B12)

Here, the superscript (1) refers to the circumstance that this comes from the gµν-term in the axial-vector-meson
propagator. Then, using the identity (B5) we get from (B12)

Ṽ(1)
A = −g2A

[(
1− 2k2

3MM ′ +
3(q2 + k2/4)

2M ′M

)
σ1 · σ2

+
1

4M ′M

(
(σ1 · k)(σ2 · k)−

1

3
k2σ1 · σ2

)

+
i

4M ′M
(σ1 + σ2) · q× k

]
· g̃(k2)

−g2A
[

2

MM ′

{
[σ1 · q× k] [σ2 · q× k] h̃(k2)− Ṽ (k,q)

}]
. (B13)

Making now our standard approximation of the Fourier transformation of the [σ1 · q× k] [σ2 · q× k]-operator, cfr.
Ref. [36], the configuration space potentials corresponding with (B13) read

V(1)
A = −g

2
A

4π
m

[(
φ0C +

2m2

3M ′M
φ1C

)
(σ1 · σ2)−

3

4M ′M

(
∇2φ0C + φ0C∇2

)
(σ1 · σ2)

− m2

4M ′M
φ0T S12 +

m2

2M ′M
φ0SO(m, r) L · S

]

+
g2A
4π

2m2

M ′M

[
φ0SO(r) +

3

(mr)2

{
3− 2m2

Λ2
+

(
m

d

dm

)}
φ0T (r)

]
Q12 . (B14)

Now it happens that the second term in the coefficient of Q12 in (B14) becomes by virtue of the properties of the
Gaussian Yukawa-functions, see Appendix E,

3

(mr)2

{
. . .

}
= − 3

(mr)2
ψ0
T (r) = −φ0SO(r) , (B15)

and so the coefficient of Q12 in (B14) vanishes!

APPENDIX C: AXIAL-DERIVATIVE COUPLING AND CAC

In the B-field theory the conservation of the axial-current conservation (CAC) is an important ingredient. Therefore,
an analysis of the realization of CAC in the ESC-model is opportune. Isolating the derivative coupling terms in the
axial-vector meson-exchange potential we have

VA,a(r) = −m

4π

m2

2MYMN

(
gA13f

A
24

MN

M + fA13g
A
24

MY

M

)[
1

3
(σ1 · σ2) φ

1
C + S12 φ

0
T

]
, (C1a)

VA,b(r) = −m

4π
fA13f

A
24

m2

M2

m2

4MYMN

[
1

3
(σ1 · σ2) φ

2
C + S12 φ

1
T

]
. (C1b)

Depending on the sign of gAfA the first potential VA,a(r) is a B-type (gAfA > 0) or a P-type (gAfA < 0) potential,
and the second potential VA,b(r) is a B-type potential.
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Axial-vector current conservation at the meson-pole requires

∂µJ
µ
A = 0 :

fA

gA
= −2

MNM
m2

A

≈ −1. (C2)

For NN the response of the axial potentials upon the change fA → fA0 +∆fA from (C1b) is

∆VA(r) = ∆VA,a(r) + ∆VA,b(r) = −m

4π

m2

2M2
N

[
2

(
gA +

m2

2M2
N

fA

)
∆fA

+
m2

2M2
N

(∆fA)2
]
·
[
1

3
(σ1 · σ2) φ

1
C + S12 φ

0
T

]
. (C3)

Now, it turns out that for ESC16, with the parameters presented in this paper, the expression [. . .] > 0 for the axial
mesons a1(1270), f1(1420), f1(1285). The coupling constant for the compensating B-meson potential is

f2B(A) =
3m2

2M2
N

[
2

(
gA +

m2

2M2
N

fA

)
∆fA +

m2

2M2
N

(∆fA)2
]

(C4)

From the results for the couplings it appears that changes in the derivative couplings can be made in order to satisfy
(C2), which can be compensated by changing the B-meson couplings.

APPENDIX D: NON-LOCAL TENSOR-CORRECTION

In this appendix we repeat the treatment of the non-local correction correction to the tensor-potential similar to
that for the central non-local potential

∆ṼT =

(
q2 +

1

4
k2

)
ṽT S12. (D1)

This incorporation of this kind of potential in the solution of the Schrödinger equation is given in [46], see Appendix D.
For completeness we repeat here the treatment of this type of potential, which is exact when there is no non-local
spin-orbit potential. For definiteness we consider the contribution to the π-exchange potential

ṽT =
f2P

2MM ′ m2
π

(
q2 +

1

4
k2

)
/(k2 +m2). (D2)

In configuration space this leads to the potential

VT (r) =
f2P
4π

m

4MM ′

[
1

3
(σ1 · σ2)

(
∇2φ1C + φ1C∇2

)
+
(
∇2φ0TS12 + φ0TS12∇2

)]

≡ −
[(
∇2φ(r) + φ(r)∇2

)
+
(
∇2χ(r)S12 + χ(r)S12∇2

)]
. (D3)

Here we put σ1 ·σ2 = 1, because this potential contributes for spin-triplet states only. The radial Schrödinger equation
reads

{
(1 + 2φ) + 2χ S12

}
u′′ +

(
2φ′ + 2χ′ S12

)
u′ +

[
k2cm − 2MredV

−
{
(1 + 2φ) + χ S12

}
L2

r2
− L2

r2
χ S12 + φ′′ + χ′′ S12

]
u = 0. (D4)

Under the substitution u = A−1/2v, where

A ≡ (1 + 2φ) + 2χ S12, (D5)

over into the radial equation for v(r)

v′′(r) +

[
k2cm − l(l + 1)

r2
− 2MredW

]
v(r) = 0 (D6)
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with the (pseudo) potential

2MredW = 2MredA
−1/2V A−1/2 −A−2 (φ′ + χ′ S12)

2 −
(
A−1 − 1

)
k2cm

+

{
A1/2

[
L2, A−1/2

]
+A−1/2

[
L2, A1/2

]}
/(2r2). (D7)

In passing we note that A and S12 commute, and therefore

A−2 (φ′ + χ′ S12)
2
=
[
A−1/2 (φ′ + χ′ S12)A

−1/2
]2

=
1

4

[
A−1/2 A′ A−1/2

]2
.

Defining

X = (1 + 2φ+ 4χ)1/2 , Y = (1 + 2φ− 8χ)1/2, (D8)

the transformation A is given as

A1/2 =
1

3
(2X + Y ) +

1

6
(X − Y ) S12

A−1/2 =

{
1

3
(X + 2Y ) +

1

6
(−X + Y ) S12

}
/(XY ). (D9)

Using (D10) one readily derives
{
A1/2

[
L2, A−1/2

]

−
+A−1/2

[
L2, A1/2

]

−

}
=

−2
(X − Y )2

XY

√
J(J + 1)

2J + 1

(
2
√
J(J + 1) −1

−1 −2
√
J(J + 1)

)
. (D10)

Writing A−1 = α+ β S12 one finds

α = +(1 + 2φ− 4χ)

[
(1 + 2φ+ 4χ) (1 + 2φ− 8χ)

]−1

,

β = −2χ

[
(1 + 2φ+ 4χ) (1 + 2φ− 8χ)

]−1

, (D11)

leading to

−
(
A−1 − 1

)
=

[{
(2φ− 8χ)(1 + 2φ+ 4χ)− 8χ

}
+ 2χ S12

]
·

× [(1 + 2φ+ 4χ)(1 + 2φ− 8χ)]
−1
. (D12)

APPENDIX E: GAUSSIAN YUKAWA-FUNCTIONS

The basic Fourier transforms for the soft-core potentials is Refs. [3, 36]
∫

d3k

(2π)3
eik·r

k2 +m2
(k2)n exp

(
−k2/Λ2

)
≡ m

4π
(−m2)nφnC(r) = (−∇

2)n
m

4π
φ0C(r), (E1)

and similar ones for the tensor-, spin-orbit-, and the quadratic-spin-orbit potentials. The basic central, tensor, and
spin-orbit functions are

(i) central potentials:

φ0C(r) = exp(m2/Λ2)

[
e−mrErfc

(
−Λr

2
+
m

Λ

)
− emrErfc

(
Λr

2
+
m

Λ

)]
/2mr ,

(E2a)

φ1C(r) = φ0C(r)−
1

2
√
π

(
Λ

m

)3

exp

[
−
(
Λr

2

)2
]
, (E2b)

φ2C(r) = φ1C(r) +
1

2
√
π

(
Λ

m

)5
[
3

2
−
(
Λr

2

)2
]
exp

[
−
(
Λr

2

)2
]
, (E2c)
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(ii) tensor potentials:

φ0T (r) =
1

3

1

m2
r
∂

∂r

1

r

∂

∂r
φ0C(r) =

{
exp(m2/Λ2)

[
[1 +mr + (mr)2/3]e−mr·

×Erfc
(
−Λr

2
+
m

Λ

)
− [1−mr + (mr)2/3]emrErfc

(
Λr

2
+
m

Λ

)]

− 4√
π

(
Λr

2

)[
1 +

2

3

(
Λr

2

)2
]
exp

[
−
(
Λr

2

)2
]}

/2(mr)3 , (E3a)

φ1T (r) = φ0T − 1

6
√
π

(
Λ

m

)5(
Λr

2

)2

exp

[
−
(
Λr

2

)2
]
. (E3b)

(iii) spin-orbit potentials:

φ0SO(r) = − 1

m2

1

r

∂

∂r
φ0C(r) =

{
exp(m2/Λ2)

[
[1 +mr]e−mr·

×Erfc
(
−Λr

2
+
m

Λ

)
− [1−mr]emrErfc

(
Λr

2
+
m

Λ

)]

− 4√
π

(
Λr

2

)(
Λr

2

)
exp

[
−
(
Λr

2

)2
]}

/2(mr)3 , (E4a)

φ1SO(r) = φ0SO − 1

4
√
π

(
Λ

m

)5(
Λr

2

)2

exp

[
−
(
Λr

2

)2
]
. (E4b)

(iv) quadratic-spin-orbit potentials:

φ0Q(r) = −m
5

4π

3

(mr)2
φ0T (r). (E5)

The Fourier transforms of the Pomeron-type of potentials are gaussian-integrals, which can be obtained from the
above formulas by the substitutions

1

2
Λ ≡ mP , m = 0, φP,n

i = φn+1
i . (E6)

For explicit formulas see Refs. [3, 36].

APPENDIX F: NEW VERSION QUARK-PAIR-CREATION MODEL [65]

In this appendix we give a short description of the evaluation of the BBM coupling constants in the QPC-model
using the Fierz-transformation technique. For details we refer to Ref. [65]. Here, apart from the Fierz-transformation,
the techniques used are those of [27, 60, 63]. In Fig. 11 the two kind of processes, direct (a) and exchange (b),
are shown. The derivation of the BBM-couplings starts from the generalized 3P0 (S) and 3S1 (V) Pair-creation
Hamiltonians

H(S)
I = −4γ

(S)
qq̄

(
∑

i

q̄iqi

)
·



∑

j

q̄jqj


 ,

H(V )
I = −γ(V )

qq̄

(
∑

i

q̄i,α(λ)
α
βγ

µqi,β

)
⊗



∑

j

q̄j,γ(λ)
γ
δγµqj,δ


 (F1)

where γ
(V )
qq̄ is a phenomenological constant, and the summations run as i, j = u, d, s. In this QPC-model in the

fundamental process there is a (confined) scalar or gluon propagator. This implies, assuming a constant propagator,
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q1

q2

q3

q′1

q′2

q4

q5

q′3(a) direct

q1

q2

q3

q′1

q′2

q4

q5

q′3(b) exchange

FIG. 11: 3P0- and
3S1-quark-pair-creation (QPC)

an extra factor depending on a scalar or (massive) gluon exchange (−i)2.(∓i/m2
G) ∼ ±i/Λ2

QPC . meaning ∼ ±iHint.
Rearrangement is supposed to take place when a quark-antiquark pair is created by some mechanism in a baryon,
where one quark from the baryon combines into a mesonic state with the anti-quark from the pair. The quark
from the pair recombines with the two remaining quarks of the baryon to make the baryon in the final state. This
rearrangements into mesons of different kind can be understood from a Fierz-transformation applied to (F1). One
has the identity [104]

H(S)
I = γ

(S)
qq̄

∑

i,j

[
+ q̄i qj · q̄i qj + q̄iγµqj · q̄jγµqi

−1

2
q̄iσµνqj · q̄jσµνqi − q̄iγµγ5qj · q̄jγµγ5qi + q̄iγ5qj · q̄jγ5qi

]
,

H(V )
I = +γ

(V )
qq̄

∑

i,j

[
+ q̄i qj · q̄i qj −

1

2
q̄iγµqj · q̄jγµqi

−1

2
q̄iγµγ5qj · q̄jγµγ5qi − q̄iγ5qj · q̄jγ5qi

]
. (F2)

Here, we considered only the flavor-spin Fierzing. 5 The appropriate Fierzing of the color structure is different for
diagram (a) and diagram (b) in Fig. 11: (i) For diagram (a) we use the identity [104]

(λ)γδ · (λ) β
α =

16

9
δγαδ

β
δ − 1

3
(λ)γα · (λ)βδ (F3)

Since the mesons are colorless, the second term in (F3) may be neglected, and color gives the simple factor 16/9.
(ii) In diagram (b) there is in fact a sum over q1 and q2. Because the baryons are colorless, we have

(λ1)
β
α + (λ2)

β
α = −(λ3)

β
α . (F4)

Therefore, for this diagram we have, using (F3), the identity

(λ5)
γ
δ ·
∑

i=1,2

(λi)
β
α = −16

9
δγαδ

β
δ +

1

3
(λ5)

γ
α · (λ3)

β
δ (F5)

Again, for colorless mesons the second term in (F5) may be neglected, and color gives the simple factor −16/9.
We find that the direct (a) and exchange (b) diagram give different color factors. Such a difference does not occur in
the 3P0-model. Now, it appears that the momentum overlap for type (b) is usually much smaller than for type (a), see
Ref. [65] for details. This can be traced back to our use of a constant propagator for the (confined) gluon. Therefore,
in the following we neglect processes described in diagram (b). Then, the difference between the 3P0- and

3S1-model is,
apart from an overall constant, exclusively given by the different coefficients in the flavor-spin Fierz-identities (F2).

5 It should be noted that the terms for the couplings of the B-axial JPC = 1+−- and tensor JPC = 2++mesons are missing on the r.h.s.
of (F2). The same is true for the 3P0-interaction (F1).
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In the 3S1-model for the interaction Hamiltonian for the pair-creation one uses the one-gluon-exchange (OGE)
model [105, 106], see Fig. 11. Considering one-gluon exchange, see Fig. 11, one derives the effective vertex [105, 106]
by using a (confined) constant Pg(ji) gluon propagator between quark line i and line j: Pg(ji) ∼ δji/m

2
g, where the

(effective) gluon mass is taken to be mg ≈ (0.8fm−1) ≈ 250 MeV [106]. We notice that the color factor for the
coupling of colorless mesons to colorless baryons is always the same, and we can include this into an effective coupling
γS , i.e.

παs(λi · λj)

m2
G

⇒ γ
(V )
qq̄ . (F6)

Here we use for the gluon a constant (confined) propagator Pg = 1/m2
G. As is clear from (F1) γqq̄ has the dimension

[MeV]−2. Also, we notice that mG ≈ ΛQPC , therefore γqq̄ −→ γqq̄/Λ
2
QPC . From the momentum conservation rules

one now gets different dependences between the momenta as compared to the version of the 3P0-model in [27, 63].
Hence, we have different momentum overlap-integrals.
From the results for the couplings of the mesons in the 3P0-model those for the 3S1–model meson-couplings can be

read off by comparing the coefficients in the Fierz-identities (F2) and (F1) for the corresponding operators. Here, we

assume that the effect of color in the 3P0- and
3S1-model can be absorbed into γ

(S,V )
qq̄ , see below. For example, the

prediction for the scalar-meson couplings will have the ratio gǫ(
3S1) =

[
γ
(V )
qq̄ /γ

(S)
qq̄

]
gǫ(

3P0). Apart from an overall

constant, the couplings for the 3S1-model can be read off from those of the 3P0-model.

1. Meson-states, Meson- and baryon wave-functions

We list the 〈B,M |Hint|A〉 matrix elements for the different type of mesons. Restriction on the quark-level to
process (a) in Fig. 11, using the Fierzed form of the interaction Hamiltonians in (F1). So, below we will give the
results for the 3P0-model. Following [107] we write the meson creation operators as

JPC = 0−+ : d†M,P (k) = i
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) ·

×ψ̃(L=0)
M (k1,k2) ϕ

(0)(r, s) b†(k1, r) d
†(k2, s), (F7)

JPC = 1−− : d†M,V (k,m) =
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) ·

×ψ̃(L=0)
M (k1,k2) ϕ

(1)
m (r, s) b†(k1, r) d

†(k2, s), (F8)

JPC = 0++ : d†M,S(k,m) =
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) (−)m ·

×ψ̃(L=1)
M,m (k1,k2) ϕ

(1)
−m(r, s) b†(k1, r) d

†(k2, s), (F9)

JPC = 1++ : d†M,A(k,m) =
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) C(1, 1, 1;mL,mσ,m) ·

×ψ̃(L=1)
M,mL

(k1,k2) ϕ
(1)
mσ

(r, s) b†(k1, r) d
†(k2, s), (F10)

JPC = 1+− : d†M,B(k,m) =
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) ·

×ψ̃(L=1)
M,m (k1,k2) ϕ

(0)(r, s) b†(k1, r) d
†(k2, s), (F11)

JPC = 2++ : d†M,T (k,m) =
∑

r,s=±

∫
d3k1d

3k2 δ(k− k1 − k2) C(1, 1, 2;mL,mσ,m) ·

×ψ̃(L=1)
M,mL

(k1,k2) ϕ
(1)
mσ

(r, s) b†(k1, r) d
†(k2, s), (F12)

for respectively the pseudoscalar-, vector-, scalar-, axial-vector mesons of the first (A1 etc.) and second kind (B1 etc.),
and tensor mesons. These representations are the equal-time Bethe-Salpeter wave functions [108]:

fk,α(x, y) ≡ 〈0|T [qi(x)qj(y)] |M(k, α〉 x0=y0

−→ (0|qi(x)qj(y)|M(k, α) ,
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using the definition θ[0] = 1/2. Here, a factor i is included in the definition of the d†M,P (k)-operator. This in order to

have under time-reversal T |π0(k)〉 = |π0(−k)〉. The reason is that under time-reversal the spin-components change
sign, which implies for the spin-singlet ϕ(0)(−r,−s) = −ϕ(0)(r, s) etc.
The baryon and meson harmonic oscillator wave functions are

ψ̃N (k1,k2,k3) =

(√
3R2

A

π

)3/2

exp


−R

2
A

6

∑

i<j

(ki − kj)
2


 ,

ψ̃
(L=0)
M (k1,k2) =

(
R2

M

π

)3/4

exp

[
−R

2
M

8
(k1 − k2)

2

]
,

ψ̃
(L=1)
M,m (k1,k2) =

RM√
2

(
R2

M

π

)3/4

[−ǫm · (k1 − k2)] . exp

[
−R

2
M

8
(k1 − k2)

2

]
.

Here we used the spherical unit vectors ǫ±1 = ∓ 1√
2
(e1 ± ie2) , ǫ0 = e3.

2. Coupling-constant Formulas

The matrix elements 〈Bf (p
′) M(k)|H(S),(V )

I |Bi(p)〉 involve the momentum space overlap integrals, which can be
performed in a straightforward manner [65]. The summary of the derived formulas in [65], in the case of the 3P0-model,
for the divers (I=1)-couplings is:

gP = +π−3/4 γqq̄
(mPRP )

1/2

(ΛQPCRP )2
· (6

√
2) ,

gV = +π−3/4 γqq̄
(mVRV )

1/2

(ΛQPCRV )2
· (3/

√
2) ,

gS = +π−3/4 γqq̄
(mSRS)

−1/2

(ΛQPCRS)2
· 9mS

MB
,

gA = −π−3/4 γqq̄
(mARA)

−1/2

(ΛQPCRA)2
· 6mA

MB
,

with ΛQPC ≈ 600 MeV, and RM ≈ 0.66.
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[20] F.J. Ynduráin, Quantum chromodynamics (Springer, Berlin, 1980), see chapter IV for a description and references original

literature.
[21] J. Gasser and H. Leutwyler, Nucl. Phys. B94 (1975) 269.
[22] S. Gasiorowicz and J.L. Rossner, Am. J. Phys. 49 (1981) 954. Here, one uses the constituent quark masses: mu = md = 310

MeV and ms = 483 MeV.
[23] B. Povh et al, Particles and Nuclei (Springer, Berlin, 1995).
[24] H.D. Politzer, Nucl. Phys. B117 (1976) 397.
[25] M. Lavelle and D. McMullan, Physics Reports 279 (1997) 1-65. In this reference an extensive discussion of the dressing-

problem can be found.
[26] L. Micu, Nucl. Phys. B10 (1969) 521; R. Carlitz and M. Kislinger, Phys. Rev. D 2 (1970) 336.
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