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Background: The Nijmegen extended-soft-core (ESC) models describe the nucleon-nucleon (NN) and hyperon-nucleon (YN)
as well as the S=-2 hyperon-hyperon/nucleon (YY/ΞN) interactions in a unified way using broken SU(3)-symmetry. The
potentials consist of local- and non-local-potentials due to (i) One-boson-exchanges (OBE), which are the members of
nonets of pseudoscalar-, vector-, scalar-, and axial-vector mesons, (ii) Two pseudoscalar exchange (PS-PS), (iii) Meson-
Pair-exchange (MPE) and (iv) diffractive exchanges. Both the OBE- and Pair-vertices are regulated by gaussian form
factors producing potentials with a soft behavior near the origin. Broken SU(3)-symmetry serves to connect the NN ,
the Y N and the Y Y channels. In particular, the meson-baryon coupling constants are calculated via SU(3) using the
coupling constants of the NN -analysis as input. The assignment of the cut-off masses for the BBM-vertices is dependent
on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE.

Purpose: The S= -1 YN results are presented from a new version ESC16 of the ESC potential model for Baryon-baryon
(BB) scattering. The obtained two body BB-potentials are applied to the hyperonic many-body systems as well. Next
to the standard ingredients of the ESC-models a contribution of the possible short range repulsion due to the quark
Pauli-principle in the BB-channels is described in a systematic way for the first time.

Methods: Major novel ingredients with respect to the former versions ESC04-ESC08 are the inclusion of (i) short-range
gaussian Odderon-potentials corresponding to the odd numbers of gluon-exchanges next to the Pomeron-potentials due
to even gluon-exchanges, (ii) short range repulsion in all NN, YN and YY channels due to Pauli-forbidden six-quark
cluster (0s)6-configurations. Further new elements are (i) the extension of the JPC = 1++ axial-vector meson coupling,
(ii) the inclusion of the JPC = 1+− axial-vector mesons, and (iii) a completion of the 1/M -corrections for the meson-
pair-exchange (MPE) potentials, and (iii) the treatment of the scalar κ(861) meson within the Gell-Mann-Okubo (GMO)
meson-mixing scheme and as a broad meson, like the ρ(760) and ǫ(620). In contrast to ESC04, we do not consider medium
strong flavor-symmetry-breaking (FSB) of the coupling constants. The charge-symmetry-breaking (CSB) in the Λp and
Λn channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In addition to
the usual set of 35 YN-data and 3 Σ+p cross-sections from a recent KEK-experiment E289, we added 11 elastic and
inelastic Λp and 3 elastic Σ−p cross-sections at higher energy. For the ESC16-model we performed a simultaneous fit to
the combined NN and YN scattering data, supplied with constraints on the YN and YY interaction originating from the
G-matrix information on hypernuclei.

Results: The fitting of NN dominates the determination of the couplings and the cut-off masses. Only a few parameters are
strongly influenced by the Y N data, and by the constraints for the Y Y -interactions following from G-matrix analyses
of hypernuclei and hyperonic matter. Like in the ESC04-model, the obtained octet and singlet coupling constants and
F/(F + D)-ratio’s of the model are conform the predictions of the quark-antiquark pair-creation (QPC) model with
dominance of the 3P0-mechanism. This not only for the OBE-couplings but also for the MPE-couplings and F/(F +D)-
ratio’s. We obtained within this simultaneous fit χ2/NNdata = 1.10 and χ2/Y Ndata = 1.04. In particular, we were able
to fit the precise experimental datum rR = 0.468± 0.010 for the inelastic Σ−p capture ratio at rest very well.

Conclusions: Besides the good results for the fit to the S= -1 scattering data, which to a large extend defines the model, also
the information of hypernuclear systems, using the G-matrix method, is rather important in establishing the complete
ESC-model. Different versions of the ESC16-model give somewhat different results for hypernuclei. The reported G-
matrix calculations are performed for Y N (ΛN and ΣN) in nuclear matter and also for some hypernuclei. The obtained
well depths (UΛ, UΣ, UΞ) reveal distinct features of the ESC-model. The inclusion of a quark core Pauli-repulsion can
make the Σ-nucleus interaction repulsive, as seems to be required by the available experimental evidence. Furthermore,
the ESC16-model gives small spin-orbit splittings in Λ-hypernuclei, which is also indicated by experiment.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

This is the second in a series of papers on the
Extended-soft-core (ESC) model for low and interme-

diate energy baryon-baryon interactions in the ESC16-
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version. The nucleon-nucleon interactions are described
in [1], henceforth referred to as paper I. The first results
of ESC08 on the BB-channels and applications to hyper-
nuclei were given in the review [2]. Preliminary versions
can be found in [3–5]. With the ESC04-models [6–8],
it was shown that a very successful description of the
presently available baryon-baryon scattering data could
be achieved within the ESC-approach to the nuclear force
problem. Also, such a description was obtained with
meson-baryon coupling parameters which can be under-
stood rather nicely within the context of the 3P0- quark-
pair creation mechanism [9, 10]. This mechanism has
been shown to be dominant in the framework of lattice
QCD [11]. The simultaneous and unified treatment of
the NN and YN channels in ESC04, using broken SU(3),
has given already a rather successful potential model for
the low and intermediate energy baryon-baryon scatter-
ing data. Furthermore, the basic ingredients of the model
are physically motivated by the quark-model (QM) and
QCD.

The G-matrix calculations showed that basic features of
hypernuclear data are also reproduced rather well, im-
proving several weak points of the soft-core OBE-models
[12–14]. However, there remained the problem that the
meson-exchange models seem to be unable to give a pos-
itive well depth UΣ. A second problem posed the very
small spin-orbit splittings in Λ-hypernuclei [15, 16]. In
this paper we extend and refine the ESC-model in order
to provide improvements and answers to these issues.

First, we list the new ingredients of the here presented
version of ESC16, which are more or less in line with the
ESC-approach as presented so far. In this category, the
following additions to the ESC04-model are made for the
present ESC16-model:
(i) For the scalar mesons the mass of the ε = f0(620) has
been lowered, the mixing angle deviates from ideal mix-
ing, and also the κ(861) has been treated as a broad me-
son. This in order to introduce more SU(3) breaking be-
tween pp and Σ+p. (ii) For the axial-vector mesons with
JPC = 1++, the A-mesons, next to the γ5γµ-coupling
also the derivative γ5kµ-coupling is exploited.
(iii) The axial-vector mesons with JPC = 1+−, the B-
mesons, are included as well. The latter have potentials
of the same type as the pseudo-scalar mesons, but have
an opposite sign. We notice that now the set of the ex-
changed quantum numbers for OBE-potentials is identi-
cal to that for MPE-potentials.
(iv) For the meson-exchange we have included the Brown-
Downs-Iddings anti-symmetric spin-orbit potentials from
pseudoscalar-, vector-, scalar-, and axial- meson ex-
change [17].
(v) We have completed the 1/M -corrections for meson-
pair-exchange (MPE), in particular for the JPC =
1++- and JPC = 1+−-axial pairs. This also leads to
new important contributions to the anti-symmetric-spin-

orbit interaction 1. (vi) For the diffractive contribu-
tion we have next to the Pomeron-exchange 2 added the
Odderon-exchange [18]. Whereas in QCD the Pomeron
can be associated with colorless even number (2,4, ...) of
gluon-exchanges, the Odderon is associated with the col-
orless odd number (3,5, ...) of gluon-exchanges. At low
energies the Pomeron has JPC = 0++, but the Odderon
has JPC = 1−−.

Secondly, we have opened the possibility to incorporate
possible effects of a ’structural’ or channel-dependent re-
pulsion due to Pauli-blocking. This repulsion originates
from a ’forbidden-state’ in the SU(6,FS) Quark-Cluster-
Model (QCM) [19, 20]. This is the analog of a well known
effect in αα-scattering discovered in the sixties [21]. This
’forbidden-state’ is the [51]-irrep and this irrep occurs
with a large weight in the two JP = 1/2+-baryon states
in the SU(3,F)-irreps {10} and {8s}. These irreps are
prominent in the Σ+p(3S1)- respectively the ΣN(1S0)-
states. These are precisely the states where according
to e.g. the G-matrix calculations the ESC-models pos-
sibly lack some repulsion. This repulsion seems to be
indicated by experiment [22, 23]. The [51]-irrep also oc-
curs in the other NN-, YN-, and YY-channels, but with
roughly equal weights, see [19], apart from a few S=-2
channels, e.g. ΞN(I = 1, S = 0).

We account for the ’exceptional-repulsion’ in a phe-
nomenological way by enhancing the ”pure” Pomeron-
coupling. So the effective Pomeron-repulsion consists
of the pure Pomeron-exchange contribution augmented
with a fraction of Pauli-blocking repulsion, which varies
for the different BB-channels. (The other typical quark-
cluster effects like e.g. one-gluon-exchange (OGE) an-
nex quark-interchange is in ESC-models taken care of
by meson exchange.) In this work we try to deter-
mine the strength of this Pauli-blocking effect in BB-
channels. The fit to NN determines the sum of both
the pure Pomeron-repulsion and the Pauli-blocking re-
pulsion. The fit to YN determines the fraction of Pauli-
blocking in it.

The ESC16-model realizes a fusion between the soft-
core meson-exchange potentials and QCM-aspects of the
baryon-baryon interactions and can be called a ’hybrid’
ESC-model. The soft-core meson-exchange model has
been described in detail in previous papers, [6–8]. There-
fore, we may refer here to those papers for a description

1 For the OBE-potentials we have included the Brown-Downs-
Iddings anti-symmetric spin-orbit potentials from pseudo-scalar,
vector-, and scalar- meson exchange [17]. Also we derived new
anti-symmetric spin-orbit contributions from MPE. Since we do
not fit P-waves for YN, these play no role in the construction of
the ERSC07-model. Therefore, these potentials will be published
elsewhere.

2 In principle, the off-mass-shell J=0 contribution from the tensor-
meson nonet A2,K2 etc. is included with the diffractive soft-
core potentials, see e.g. [12, 13]. Although the couplings are
zero in ESC16 model, we include these potentials in the text for
completeness.
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of (a) the physical background, (b) the employed formal-
ism, (c) the description of the potentials, either in details
or in references to papers where further information may
be obtained. In this paper we will derive (i) the new
OBE-potentials employed here for the first time in the
context of the ESC-model, (ii) the Odderon-potentials,
and (iii) a derivation of the short-range phenomenology
connected to the quark Pauli principle within the context
of the SU(3)-formalism as used in the Nijmegen poten-
tials. Next to these items, we will also give the new 1/M -
corrections for the axial-meson-pair-exchange potentials,
where we restrict ourselves to the spin-spin and tensor
contributions. The YN symmetric and anti-symmetric
spin-orbit potentials will be described in another paper.

In [6, 7] a detailed description of the basic features of
the ESC-models has been given and motivated. Many of
these were already present in the Nijmegen soft-core [13]
and hard-core [24] OBE-models. We refer the reader to
these references for the description and discussion of the
items such as: (broken) SU(3)-flavor, charge-symmetry-
breaking (CSB) in YN, meson-mixing in the pseudo-
scalar-, vector-, scalar- meson SU(3)-nonets, the role of
the quark-antiquark pair-creation 3P0-model for BBM-
and BBMP-couplings. Also, in e.g. [7] one finds a reca-
pitulation of the goals of our continued investigation of
the baryon-baryon systems.

In the soft-core Nijmegen OBE- and ESC-models the
form factors are taken to be of the gaussian-type. In
the (non-relativistic) QM’s a gaussian behavior of the
form factors for ground-state baryons is most natu-
ral. The two-particle branchpoints, corresponding to e.g.
ππ, πρ, Kρ-etc., are in the ESC-models accounted for
by the MPE-potentials. Gaussian residue functions are
used in regge-pole models for two-particle reactions at
high-energy and low momentum-transfers.

As pointed out in [6, 7] SU(3)-symmetry and the QPC-
model give strong constraints on the coupling param-
eters. The 3P0-model also offers the possibility to in-
troduce a scheme for hypercharge breaking a la Gell-
Mann-Okubo for the BBM-couplings. In order to keep
some more flexibility in distinguishing the NN - and the
YN(S = −1)-channels, such a medium-strong breaking
was explored in the NSC97 [14] and ESC04 [7]. In the
present study we do not apply such a breaking. The re-
sults show that a scheme of SU(3) symmetric couplings
with only mass breaking can give an excellent description
of all BB interactions.

The content of this paper is as follows. In section
II we review very briefly the scattering formalism, the
Lippmann-Schwinger equation for the T- and V-matrices.
Similarly, in section III theNN and S = −1 YN -channels
on the isospin and particle basis, and the use of the multi-
channel Schrödinger equation is mentioned. The poten-
tials in momentum and configuration space are defined
by referring to the description given in [6]. Also SU(3)-
breaking is reviewed briefly. In section IV on the OBE-
potentials, the additions for ESC16 in comparison with
the ESC04-model are described. Here, we give the new

potentials in momentum and configuration space. In sec-
tion V the SU(3) structure of the MPE-potentials is given
and the additions in comparison with the ESC04-model
are listed. The latter are the axial JPC = 1+− (πω)-
pair potentials, which is the content of Appexdix C. In
section VI the short-range phenomenology is discussed.
We derive the incorporation of the ’exceptional’ Pauli-
repulsion, which shows up ’exceptionally’ large in the
SU(3)-irreps {10} and {8s}.
In section VII the simultaneous NN ⊕ Y N ⊕ Y Y fitting
procedure is reviewed. In section VIII the results for the
coupling constants and F/(F + D)-ratios for OBE and
MPE are given. They are discussed and compared with
the predictions of the QPC-model. Here, also the values
of the BBM -couplings are displayed for pseudo-scalar,
vector, scalar, and axial-vector mesons.
In section IX the Y N -results for ESC16 from the com-
bined NN ⊕ Y N ⊕ Y Y -fit are discussed In section X
we discuss the fit to the YN scattering data. In sec-
tion X, the hypernuclear properties of ESC16 are stud-
ied through the G-matrix calculations for Y N (ΛN , ΣN ,
ΞN) and their partial-wave contributions. Here, the im-
plications of possible three-body effects for the nuclear
saturation and baryon well-depths are discussed. Also,
the ΛΛ interactions in ESC16 are demonstrated to be
consistent with the observed data of 6

ΛΛHe. In section XI
we finish by a final discussion, draw some conclusions,
and an outlook. In Appendix A the treatment of the
broad mesons is reviewed. In Appendix B we display the
full SU(3) contents of the MPE-couplings, and in Ap-
pendix C for completeness the JPC = 1+− axial-pair
potentials are given. Finally, in Appendix D the anti-
symmetric spin-orbit potentials are derived explicitly for
strange meson-exchange K and K∗.

II. SCATTERING FORMALISM, THE
LIPPMANN-SCHWINGER EQUATION,

POTENTIALS

In this paper we treat the nucleon-nucleon (NN) and
hyperon-nucleon (YN) reactions with strangeness S =
0,−1. Since in general there are both ’direct’ and ’ex-
change’ potentials, the ordering of the baryons in the in-
coming and outgoing states needs special attention. For
keeping this ordering clear, we consider for definiteness
the hyperon-nucleon reactions

Y (p1, s1) +N(p2, s2) → Y ′(p′1, s
′
1) +N ′(p′2, s

′
2) . (2.1)

Like in [13], whose conventions we will follow in this pa-
per, we will also refer to Y and Y ′ as particles 1 and 3
and to N and N ′ as particles 2 and 4. The four momen-
tum of particle i is pi = (Ei,pi) where Ei =

√
p2
i +M2

i
and Mi is the mass. The transition amplitude matrix M
is related to the S-matrix via

〈f |S|i〉 = 〈f |i〉 − i(2π)4δ4(Pf − Pi)〈f |M |i〉 , (2.2)
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where Pi = p1 + p2 and Pf = p′1 + p′2 represent the total
four momentum for the initial state |i〉 and the final state
|f〉. The latter refer to the two-particle states, which we
normalize in the following way

〈p′
1,p

′
2|p1,p2〉 = (2π)32E(p1)δ

3(p′
1 − p1) ·

×(2π)32E(p2)δ
3(p′

2 − p2) . (2.3)

We follow section II of [13] in detail. The transfor-
mation to the non-relativistic normalization of the two-
particle states leads to states with

(p′
1, s

′
1;p

′
2, s

′
2|p1, s1;p2, s2) = (2π)6δ3(p′

1 − p1) ·
×δ3(p′

2 − p2) δs′
1
,s1δs′2,s1 . (2.4)

For these states we define the T -matrix by

(f |T |i) = {4M34(E3+E4)}−
1
2 〈f |M |i〉{4M12(E1+E2)}−

1
2 ,

(2.5)
which satisfies the Lippmann-Schwinger equation [13]

(3, 4|T |1, 2) = (3, 4|V |1, 2) + 1

(2π)3

∑

n

∫
d3kn ·

×(3, 4|V |n1, n2)
2Mn1,n2

p2
n − k2

n + iε
(n1, n2|T |1, 2) ,

(2.6)

and where analogously to Eq. (2.5) the potential V is
defined as

(f |V |i) = {4M34(E3+E4)}−
1
2 〈f |W |i〉{4M12(E1+E2)}−

1
2 .

(2.7)
Above, we denoted the initial- and final-state CM-
momenta by pi and pf . Using rotational invariance and
parity conservation we expand the T -matrix, which is a
4× 4-matrix in Pauli-spinor space, into a complete set of
Pauli-spinor invariants ([13, 25])

T =
8∑

i=1

Ti(p
2
f ,p

2
i ,pi.pf ) Pi . (2.8)

Introducing

q =
1

2
(pf+pi), k = pf−pi, n = pi×pf = q×k

(2.9)
with , of course, n = q × k, we choose for the operators
Pi in spin-space

P1 = 1 , (2.10a)

P2 = σ1 · σ2 , (2.10b)

P3 = (σ1 · k)(σ2 · k)−
1

3
(σ1 · σ2)k

2 , (2.10c)

P4 =
i

2
(σ1 + σ2) · n , (2.10d)

P5 = (σ1 · n)(σ2 · n) , (2.10e)

P6 =
i

2
(σ1 − σ2) · n , (2.10f)

P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q) (2.10g)

P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q) . (2.10h)

Here we follow [13, 25], except that we have chosen here
P3 to be a purely ‘tensor-force’ operator.
Similarly to (2.9) the potentials are expanded as

V =
6∑

i=1

Vi(k
2,q 2)Pi . (2.11)

The potentials in configuration space are described in
Pauli-spinor space as follows

V (r) = VC(r) + Vσ(r)σ1 · σ2 + VT (r) S12 + VSLS(r) ·
×L · S+ + VALS(r) L · S− + VQ(r) Q12 ,(2.12)

where S± = (σ1±σ2)/2, and see e.g. [13] for a definition
of the operators S12 and Q12.

III. CHANNELS, POTENTIALS, AND SU(3)
SYMMETRY

A. Channels and Potentials

On the physical particle basis, there are three charge
NN-channels:

q = +2,+1, 0 : pp→ pp , pn→ pn , nn→ nn.

(3.1)

Similarly, there are four charge YN-channels:

q = +2 : Σ+p→ Σ+p,

q = +1 : (Λp,Σ+n,Σ0p) → (Λp,Σ+n,Σ0p),

q = 0 : (Λn,Σ0n,Σ−p) → (Λn,Σ0n,Σ−p),

q = −1 : Σ−n→ Σ−n. (3.2)

Like in [13, 14], the potentials are calculated on the
isospin basis. For S = 0 nucleon-nucleon systems there
are two isospin-channels, namely I = 1 and I = 0. For
S = −1 hyperon-nucleon systems there are also two
isospin channels: (i) I = 1

2 : (ΛN,ΣN → ΛN,ΣN),

and (ii) I = 3
2 : ΣN → ΣN .

For the OBE-part of the potentials the treatment of
SU(3) for the BBM interaction Lagrangians and the cou-
pling coefficients of the OBE-graphs has been given in de-
tail in previous work of the Nijmegen group, e.g. [13] and
[14], For the TME- and the MPE-parts the calculation of
the coupling coefficients has been exposed in our paper
on the ESC04-model [7]. There we described the method
of an automatic computerized calculation of these coeffi-
cients by exploiting the ’cartesian-octet’-representation.

Also in this work we do not solve the Lippmann-
Schwinger equation, but the multi-channel Schrödinger
equation in configuration space, completely analogous
to [13]. The multichannel Schrödinger equation for
the configuration-space potential is derived from the
Lippmann-Schwinger equation through the standard
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Fourier transform, and the equation for the radial wave
function is found to be of the form [13]

u′′l,j + (p2i δi,j −Ai,j)ul,j −Bi,ju
′
l,j = 0, (3.3)

where Ai,j contains the potential, nonlocal contributions,
and the centrifugal barrier, while Bi,j is only present
when non-local contributions are included. The solution
in the presence of open and closed channels is given, for
example, in Ref. [26]. The inclusion of the Coulomb inter-
action in the configuration-space equation is well known
and included in the evaluation of the scattering matrix.
The momentum space and configuration space poten-

tials for the ESC-models have been described in paper
I [6] for baryon-baryon in general. Here, we will only
give the new contributions to these potentials, both in
momentum and configuration space.

B. SU(3)-Symmetry and -Breaking, Form Factors

The treatment of the mass differences among the
baryons is handled in the same way as for ESC04, which is
exactly that of other Nijmegen models [13, 14, 24]. Also,
exchange potentials related to strange meson exchange
K,K∗ etc. , can be found in these references.
The breaking of SU(3)-symmetry occurs in several

places. The physical masses of the baryons and mesons
are used. Noticable is the SU(2) ⊂ SU(3) breaking due
to Λ− Σ0-mixing [27]. This Λ− Σ0-mixing leads also to
a non-zero coupling of the Λ to the other I = 1 mesons:
ρ(760), a0(980), a1(1270), as well as to the I = 1 pairs.
For the details of these OBE-couplings see e.g. [14], equa-
tions (2.15)-(2.17). Like in ESC04, the corresponding so-
called CSB-potentials are included in the ESC16-model
for OBE, TME, and MPE.
The medium-strong SU(3)-symmetry breaking of the
BBM-coupling constants is not tried in ESC16. In the
ESC04-model this was considered optional, and regu-
lated by the 3P0-model by a differentiation between the
ss̄-quark pair and the creation of a non-strange quark-
antiquark pair. Of course, we could contemplate about
such an option here, but we did not investigate this op-
tion.
The baryon mass differences in the intermediate states

for TME- and MPE- potentials have been neglected for
YN-scattering. This, although possible in principle, be-
comes rather laborious and is not expected to change the
characteristics of the baryon-baryon potentials much.
Also in this work, like ESC04- [6–8] and in the NSC97-

models [14], the form factors depend on the SU(3) as-
signment of the mesons, In principle, we introduce form
factor masses, i.e. cut-off’s, Λ8 and Λ1 for the {8}
and {1} members of each meson nonet, respectively.
In the application to Y N and Y Y , we could allow for
SU(3)-breaking, by using different cut-offs for the strange
mesons K, K∗, and κ. However, in the ESC16-model we
do not exploit this possible breaking, but assign for the
strange I = 1/2 mesons the same cut-off as for the I = 1

mesons. Moreover, for the I = 0 mesons we assign the
cut-offs as if there were no meson-mixing. For exam-
ple we assign Λ1 for the dominant singlet mesons η′, ω, ǫ,
and Λ8 for η, φ, S∗, etc. This means a very slight form of
SU(3)-symmetry breaking.

IV. OBE-POTENTIALS IN ESC16

The OBE-potentials in ESC16 are those contained al-
ready in ESC04 [6, 7], and some new additional contri-
butions. The additions to the OBE-potentials w.r.t. the
ESC04-models consist of the following elements: (i) ex-
tension of the baryon-baryon-meson vertex of the axial-
vector mesons (JPC = 1++) by adding the derivative
coupling, (ii) inclusion of the axial-vector mesons of the
2nd kind, having JPC = 1+−. In paper I [1] the poten-
tials for non-strange meson exchange have been given.
Here, we list the additions and the basic potentials for
meson exchange with non-zero strangeness.

A. Additions to the OBE-Potentials in ESC16

The interaction Hamiltonian densities for the new
couplings are

a) Axial-vector-meson exchange ( JPC = 1++, 1st kind):

HA = gA[ψ̄γµγ5ψ]φ
µ
A +

ifA
M [ψ̄γ5ψ] ∂µφ

µ
A. (4.1)

In ESC04 the gA-coupling was included, but not the
derivative fA-coupling.

b) Axial-vector-meson exchange ( JPC = 1+−, 2nd kind):

HB =
ifB
mB

[ψ̄σµνγ5ψ] ∂νφ
µ
B , (4.2)

where mB is the mass b1(1235). In ESC04 this coupling
was not included. Like for the axial-vector mesons of
the 1st-kind we include a SU(3)-nonet with members
b1(1235), h1(1170), h

′
1(1380). In the quark-model they

are QQ̄(1P1)-states.

The inclusion of the gaussian form factors is discussed
in previous papers [13] and reviewed in paper I. For the
approximations made in deriving the potentials from the
relativistic Born-Approximation we refer also to paper
I. Due to these approximations the dependence on q2 is
linearized and we write

Vi(k
2,q2) = Via(k

2) + Vib(k
2)

(
q2 +

1

4
k2

)
, (4.3)

where i = 1 − 8. The combination (q2 + k2/4) leads
to a purely non-local potential. The additional OBE-
potentials are obtained in the standard way, see [12, 13].
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We write the potential functions Vi of (2.11) in the form

Vi(k
2,q2) =

∑

X

Ω
(X)
i (k2) ·∆(X)(k2,m2,Λ2) , (4.4)

where m denotes the mass of the meson, Λ the cut-off
in the gaussian form factor, and X = P, V, S,A,B, and
D (P= pseudoscalar, V= vector, S= scalar, A= axial-
vector, B= axial-vector, and D = Pomeron/Odderon).
For meson-exchange the propagator ∆(X)-function is

∆(X)(k2,m2,Λ2) = e−k
2/Λ2

/(k2 +m2). (4.5)

For X=S,A we have included in the propagator a zero by
the factor (1 − k2/U2), with U=750 MeV [6, 7]. In the
case X=D the propagator is replaced by

∆(D)(k2,m2,Λ2) =
1

M2
e−k

2/4m2
D . (4.6)

Here, M is a universal scaling mass, taken to be the
proton mass, which we also use in the derivative couplings
above, as well as in the fV - and fA-coupling of the vector-
mesons.

B. Meson-exchange with Non-zero Strangeness (∆Y 6= 0)

For the non-strange mesons the mass differences at the vertices are neglected, we take at the Y YM - and the
NNM -vertex the average hyperon and the average nucleon mass respectively. This implies that we do not include
contributions to the Pauli-invariants P7 and P8. These exchanges lead to the so-called ’exchange-potentials’. For the
invariants O1, . . . , O6, the expressions analogous to those for the non-strange mesons given above apply. This with
the amendments that (i) in momentum and configuration space there is a complete symmetric appearance of MY

and MN , (ii) in configuration space there appears the baryon-exchange operator P = −Px Pσ operator, and (iii)

for the antisymmetric spin-orbit potential P → Px. The details are given in Appendix D. Therefore, the Ω
(X)
i for

these potentials can be obtained from those given in paper I Eqs. (4.14)-(4.18), by replacing both MY and MN by
(MYMN )1/2. Furthermore, in the case of the vector and axial-B mesons the Proca-formalism [28] is used, which gives
for the vector mesons non-negligible contributions from the second part of the vector-meson propagator (kµkν/m

2)
of the K∗ meson:

−V K∗

i = V
(V )
i − (M3 −M1)(M4 −M2)

m2
V

(S)
i , (4.7)

where in V
(S)
i the vector-meson-couplings have to be used, and MY and MN must be replaced by (MYMN )1/2. In

Eq. (4.7) M1 = M4 = MY and M2 = M3 = MN . For the axial-A mesons we use the B-field formalism, see paper I
Appendix A, and there is no second-term in the propagator.

For the mesons with non-zero strangeness, K,K∗, κ,KA and KB , the mass differences at the vertices are not ne-
glected, we take into account at the Y NM -vertices the differences between the average hyperon and the average
nucleon mass. This implies that we do include contributions to the Pauli-invariants P8. There do not occur contribu-
tions to P7. Furthermore, mass differences in the YN-propagation are included via a meson mass corrections in the
strange-meson propagators.

(a) Pseudoscalar K-meson exchange:

Ω
(P )
2a = −fP13fP24

(
k2

3m2
π+

)
, Ω

(P )
3a = −fP13fP24

(
1

m2
π+

)
, (4.8a)

Ω
(P )
2b = +fP13f

P
24

(
k2

6m2
π+

)
, Ω

(P )
3b = +fP13f

P
24

(
1

2m2
π+MYMN

)
. (4.8b)
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(b) Vector-meson K∗-exchange:

Ω
(V )
1a =

{
gV13g

V
24

(
1− k2

2MYMN

)
−

(
gV13f

V
24 + fV13g

V
24

) k2

4M
√
MYMN

+ fV13f
V
24

k4

16M2MYMN

}
, Ω

(V )
1b = gV13g

V
24

(
3

2MYMN

)
,

Ω
(V )
2a = −2

3
k2 Ω

(V )
3a , Ω

(V )
2b = −2

3
k2 Ω

(V )
3b

Ω
(V )
3a =

{
(gV13g

V
24 +

(
gV13f

V
24 + gV24f

V
13

) √MYMN

M )− fV13f
V
24

k2

8M2

}
/(4MYMN )

Ω
(V )
3b = −

(
gV13 + fV13

MY

M

)(
gV24 + fV24

MN

M

)
/(8M2

YM
2
N ),

Ω
(V )
4 = −

{
12gV13g

V
24 + 8(gV13f

V
24 + fV13g

V
24)

√
MYMN

M − fV13f
V
24

3k2

M2

}
/(8MYMN )

Ω
(V )
5 = −

{
gV13g

V
24 + 4(gV13f

V
24 + fV13g

V
24)

√
MYMN

M + 8fV13f
V
24

MYMN

M2

}
/(16M2

YM
2
N )

Ω
(V )
6 = −

{
(gV13f

V
24 − fV13g

V
24)

1√
M2MYMN

}
. (4.9)

(c) Scalar-meson κ-exchange:

Ω
(S)
1a = −gS13gS24

(
1 +

k2

4MYMN

)
, Ω

(S)
1b = +gS13g

S
24

k2

2MYMN
,

Ω
(S)
4 = −gS13gS24

1

2MYMN
, Ω

(S)
5 = gS13g

S
24

1

16M2
YM

2
N

, Ω
(S)
6 = 0. (4.10)

(d) Axial-vector K1A-exchange J
PC = 1++:

Ω
(A)
2 = −gA13gA24

[
1− 2k2

3MYMN

]
+

[(
gA13f

A
24 + fA13g

A
24

) √
MYMN

M − fA13f
A
24

k2

2M2

]
k2

6MYMN

Ω
(A)
2b = −gA13gA24

(
3

2MYMN

)

Ω
(A)
3 = −gA13gA24

[
1

4MYMN

]
+

[(
gA13f

A
24 + fA13g

A
24

) √
MYMN

M − fA13f
A
24

k2

2M2

]
1

2MYMN

Ω
(A)
4 = −gA13gA24

[
1

2MYMN

]
, Ω

(A)′

5 = −gA13gA24
[

2

MYMN

]
, Ω

(A)
6 = 0. (4.11)

Here, we used the B-field description with αr = 1, see paper I, Appendix A. The detailed treatment of the

potential proportional to P ′
5, i.e. with Ω

(A)′

5 , is given in paper I, Appendix B.

(e) Axial-vector K1B-exchange J
PC = 1+−:

Ω
(B)
2a = +fB13f

B
24

4MNMY

m2
B

(
1− k2

4MYMN

)(
k2

12MYMN

)
, Ω

(B)
2b = +fB13f

B
24

4MNMY

m2
B

(
k2

8M2
YM

2
N

)

Ω
(B)
3a = +fB13f

B
24

4MNMY

m2
B

(
1− k2

4MYMN

)(
1

4MYMN

)
, Ω

(B)
3b = +fB13f

B
24

4MNMY

m2
B

(
3

8M2
YM

2
N

)
, (4.12)

As in Ref. [13] in the derivation of the expressions for Ω
(X)
i , given above, MY and MN denote the mean hyperon

and nucleon mass, respectively MY = (M1 + M3)/2 and MN = (M2 + M4)/2, and m denotes the mass of the
exchanged meson. Moreover, the approximation 1/M2

N + 1/M2
Y ≈ 2/(MNMY ), is used, which is rather good since

the mass differences between the baryons are not large.
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C. One-Boson-Exchange Interactions in Configuration Space I

In configuration space the BB-interactions are described by potentials of the general form

V =

{
VC(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VSO(r)L · S+ VQ(r)Q12

+VASO(r)
1

2
(σ1 − σ2) · L− 1

2MYMN

(
∇

2V n.l.(r) + V n.l.(r)∇2

)}
· P, (4.13a)

V n.l. =

{
ϕC(r) + ϕσ(r)σ1 · σ2 + ϕT (r)S12

}
, (4.13b)

where S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2), (4.14a)

Q12 =
1

2

[
(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)

]
. (4.14b)

For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [12, 13]. For the
details of the Fourier transform for the potentials with P ′

5, which occur in the case of the axial-vector mesons with
JPC = 1++, we refer to paper I, Appendix B.
(a) Pseudoscalar-meson K-exchange:

VPS(r) =
m

4π

[
fP13f

P
24

(
m2

m2
π+

)(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P, (4.15a)

V n.l.
PS (r) = −m

4π

[
fP13f

P
24

(
m2

2m2
π+

)(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P. (4.15b)

(b) Vector-meson K∗-exchange:

VV (r) =
m

4π

[{
gV13g

V
24

[
φ0C +

m2

2MYMN
φ1C

]

+
(
gV13f

V
24 + fV13g

V
24

) m2

4M
√
MYMN

φ1C + fV13f
V
24

m4

16M2MYMN
φ2C

}

+
m2

6MYMN

{[
gV13g

V
24 +

(
gV13f

V
13 + gV24f

V
13

) √MYMN

M + fV13f
V
24

MYMN

M2

]
φ1C + fV13f

V
24

m2

8M2
φ2C

}
(σ1 · σ2)

− m2

4MYMN

{[
gV13g

V
24 +

(
gV13f

V
24 + gV24f

V
13

) √MYMN

M

)
φ0T + fV13f

V
24

m2

8M2
φ1T

}
S12

− m2

MYMN

{[
3

2
gV13g

V
24 +

(
gV13f

V
24 + fV13g

V
24

) √MYMN

M

]
φ0SO +

3

8
fV13f

V
24

m2

M2
φ1SO

}
L · S

+
m4

16M2
YM

2
N

{[
gV13g

V
24 + 4

(
gV13f

V
24 + fV13g

V
24

) √MYMN

M + 8fV13f
V
24

MYMN

M2

]}
·

× 3

(mr)2
φ0TQ12 +

m2

MYMN

{(
gV13f

V
24 − fV13g

V
24

) √MYMN

M φ0SO

}
· 1
2
(σ1 − σ2) · L Pσ

]
P, (4.16a)

V n.l.
V (r) =

m

4π

[
3

2
gV13g

V
24φ

0
C

+
m2

6MYMN

{[(
gV13 + fV13

√
MYMN

M

)(
gV24 + fV24

√
MYMN

M

)]
φ1C

}
(σ1 · σ2)

− m2

4MYMN

{[(
gV13 + fV13

√
MYMN

M

)(
gV24 + fV24

√
MYMN

M

)]
φ0T

}
S12

]
. (4.16b)

(c) Scalar-meson κ-exchange:

VS(r) = −m

4π

[
gS13g

S
24

{[
φ0C − m2

4MYMN
φ1C

]
+

m2

2MYMN
φ0SO L · S+

m4

16M2
YM

2
N

3

(mr)2
φ0TQ12

}]
P, (4.17a)

V n.l.
S (r) =

m

4π

[
1

2
gS13g

S
24φ

0
C

]
P. (4.17b)
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(d) Axial-vector K1A-meson exchange JPC = 1++:

VA(r) = −m

4π

[{
gA13g

A
24

(
φ0C +

2m2

3MYMN
φ1C

)
+

m2

6MYMN

(
gA13f

A
24 + fA13g

A
24

) √MYMN

M φ1C

+fA13f
A
24

m4

12MYMNM2
φ2C

}
(σ1 · σ2)

− m2

4MYMN

{[
gA13g

A
24 − 2

(
gA13f

A
24 + fA13g

A
24

) √MYMN

M

]
φ0T − fA13f

A
24

m2

2M2
φ1T

}
S12

+
m2

2MYMN
gA13g

A
24φ

0
SO L · S

]
P, (4.18a)

V n.l.
A (r) = −m

4π

[
3

2
gA13g

A
24φ

0
C(σ1 · σ2)

]
P. (4.18b)

(e) Axial-vector K1B-meson exchange JPC = 1+−:

VB(r) = −m

4π

4MNMY

m2

[
fB13f

B
24

{
m2

12MYMN

(
φ1C +

m2

4MYMN
φ2C

)
σ1 · σ2

+
m2

4MYMN

(
φ0T +

m2

4MYMN
φ1T

)
S12

}]
P, (4.19)

V n.l.
B (r) = −m

4π

3MNMY

2m2

[
fB13f

B
24

(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P. (4.20)

(f) Diffractive-exchange: Since in the ESC16-model the diffractive Pomeron and Odderon exchanges are SU(3)
singlets there are no contribution to S 6= 0-exchange potentials.

Above, in Eq.’s (4.15-4.20) the exchange operator is defined as

P = −PxPσ, (4.21)

where Px and Pσ are the space- and spin-exchange operators respectively. The extra (−Pσ)-operator in (4.16) for the
antisymmetric spin-orbit potential is explained in Appendix D. We note that −PσP = Px, which is well defined for
the coupled singlet-triplet systems.

D. One-Boson-Exchange Interactions in Configuration Space II

Here we give the extra potentials due to the zero’s in the scalar and axial-A vector form factors:

a) Scalar-mesons:

∆VS(r) −m

4π

m2

U2

[
gS13g

S
24

{[
φ1C − m2

4MYMN
φ2C

]

+
m2

2MYMN
φ1SO L · S+

m4

16M2
YM

2
N

φ1T Q12

}]
P. (4.22)

b) Axial-mesons: The extra contribution to the potentials coming from the zero in the axial-vector meson form
factor are obtained from the expression (4.11) by making substitutions as follows

∆V
(1)
A (r) = V

(1)
A

(
φ0C → φ1C , φ

0
T → φ1T , φ

0
SO → φ1SO

)
· m

2

U2
. (4.23)

Note that we do not include the similar ∆V
(2)
A (r) since they involve k4-terms in momentum-space. Then,

V
(1)
A (r) = −g

A
13g

A
24

4π
m

[
φ0C (σ1 · σ2)−

1

12MYMN

(
∇2φ0C + φ0C∇2

)
(σ1 · σ2)

+
3m2

4MYMN
φ0T S12 +

m2

2MYMN
φ0SO L · S

+
m2

4MYMN

M2
N −M2

Y

MYMN
φ
(0)
SO · 1

2
(σ1 − σ2) · L

]
P. (4.24)
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E. PS-PS-exchange Interactions in Configuration
Space

In Fig.’s 2 and 3 of paper I, the included two-meson ex-
change graphs are shown schematically. Explicit expres-
sions for Kirr(BW ) and Kirr(TMO) were derived [29],
where also the terminology BW and TMO is explained.
The TPS-potentials for nucleon-nucleon have been given
in detail in [30]. The generalization to baryon-baryon is
similar to that for the OBE-potentials. So, we substitute
M →

√
MYMN , and include all PS-PS possibilities with

coupling constants as in the OBE-potentials. As com-
pared to nucleon-nucleon in [30] we have here in addition
the potentials with double K-exchange. The masses are
the physical pseudo-scalar meson masses. For the in-
termediate two-baryon states we take into account the
effects of the different thresholds. We have not included
uncorrelated PS-vector, PS-scalar, or PS-diffractive ex-
change. This because the range of these potentials is
similar to that of the vector-,scalar-,and axial-vector-
potentials. Moreover, for potentially large potentials,
in particularly those with scalar mesons involved, there
will be very strong cancellations between the planar- and
crossed-box contributions.

F. MPE-exchange Interactions

In Fig. 4 of paper I the pair graphs are shown. In this
work we include only the one-pair graphs. The argu-
ment for neglecting the two-pair graph is to avoid some
’double-counting’. Viewing the pair-vertex as contain-
ing heavy-meson exchange means that the contributions
from ρ(760) and ǫ = f0(620) to the two-pair graphs is
already accounted for by our treatment of the broad ρ
and ǫ OBE-potential. The MPE-potentials for nucleon-
nucleon have been given in Ref. [30]. The generaliza-
tion to baryon-baryon is similar to that for the TPS-
potentials. For the intermediate two-baryon states we
neglect the effects of the different two-baryon thresh-
olds. The inclusion of these, although in principle pos-
sible, would complicate the computation of the poten-
tials considerably and the influence is not expected to be
significant. The generalization of the pair-couplings to
baryon-baryon is described in Ref. [7], section III. Also
here in YN , we have in addition to [30] included the pair-
potentials with KK-, KK*-, and Kκ-exchange. The con-
vention for the MPE coupling constants is the same as
in Ref. [30].

G. Meson-Pair Potentials, Axial-Pairs (2nd-kind,
JPC = 1+−)

Recently we have completed the 1/M, 1/M2-
corrections to the adiabatic approximation for the
pair-potentials. The main reason is the need for a
careful evaluation of the anti-symmetric spin-orbit terms

for ΛN , in particular for pair-interactions involving
strangeness-exchange like π −K,π −K∗ etc. From this
evaluation new contributions emerged, in particular for
the axial pair-interactions JPC = 1++, 1+−, leading to a
substantial improvement w.r.t. experimental spin-orbit
splittings [16]. In our fitting procedure for the YN-data
the spin-orbit plays no role. However, also new 1/M -
corrections for the spin-spin and tensor potentials were
obtained for the axial-pair interaction of the 2nd kind,
i.e. JPC = 1+−. These are relevant for the fits presented
in this paper, and will be given in this section. Below
we give the full one-pair exchange potential as used at
present, because it has not been published before. In
the ESC04-models only the leading, i.e. the (1/M)0-
terms, were used. For the derivation of the soft-core
pair-interactions we refer the reader to [30]. Below we
report on this derivation for the axial-pair terms of the
2nd kind. The used pair-interaction Hamiltonian for e.g.
the (πω)-pair is

HB = g(πω)ψ̄γ5σµντψ · ∂ν (π φµω) /(mπM) , (4.25)

which gives the BBm1m2-vertex

ū(p′)Γ
(2)
B u(p) = i

g(πω)1

mπM

[
(±ω1 ± ω2) σ · ω + σ · k ω0

]
.

(4.26)
The full SU(3)-structure is given in [7], section IIIA.
It is assumed that this pair-coupling is dominated by
the SU(3)-octet symmetric coupling, and is given by the
SU(3)-octet symmetric couplings Hamiltonian in terms
of SU(2)-isospin invariants and SU(3) isoscalar-factors:

HB8V P =
gB8V P√

6

{
1

2

[(
B

µ
1 · ρµ

)
η8 + (Bµ

1 · πµ)φ8
]

+

√
3

4

[
B1 · (K∗†τK) + h.c.

]

+

√
3

4

[
(K†

1τK
∗) · π + (K†

1τK) · ρ+ h.c.
]

−1

4

[
(K†

1 ·K∗)η8 + (K†
1 ·K)φ8 + h.c.

]

+
1

2
H0

[
ρ · π − 1

2

(
K∗† ·K +K† ·K∗

)
− φ8η8

] }

(4.27)

Here, B1 ∼
[
ψ̄γ5τσµνψ

]
etc. See for a definition of

the octet-fields η8, φ8 in terms of the physical mesons
[7]. From the pair-interaction Hamiltonian (4.27) one
can easily read off the different meson-pairs that occur
from the JPC = 1+−-vertex. In Appendix C we give
the explicit potentials generated by the pair-interaction
(4.27).

H. Treatment Meson Widths

The treatment of the broad mesons ρ and ǫ is as usual
in the Nijmegen models. For the ρ-meson the same
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parameters are used in the OBE-models [12, 13]. (In
Appendix A the procedure of the incorporation of the
large widths is reviewed.) For the ǫ = f0(620) assum-
ing mǫ = 620 MeV and Γǫ = 464 MeV we use the
Bryan-Gersten ”dipole” parametrization [31], correpond-
ing to the pole E(ε) = (552 − i 232) MeV [32]. For the
choosen mass and width they are: m1 = 455.15919 MeV,
m2 = 1158.56219 MeV, and β1 = 0.28193, β2 = 0.71807.
New is the treatment of the scalar κ(861) as a broad me-
son. From ma0

(962),mǫ(620),mS∗(993), and the scalar
mixing θS(44

0) the GMO-scheme [33] gives mκ = 861.
With Γκ = 450 MeV good results for YN are obtained.
These values for the mass and width correspond closely
to the pole E(κ) = (826− i 449) MeV found in the anal-
ysis of Ref. [34].

V. SHORT-RANGE PHENOMENOLOGY

It is well known that the most extensive study of the
baryon-baryon interactions using meson-exchange has
difficulties to achieve sufficiently repulsive short-range in-
teractions in two channels. Namely, (i) the Σ+p(I =
3/2,3 S1)- and (ii) the ΣN(I = 1/2,1 S0)-channel. The
short-range repulsion in baryon-baryon comes in prin-
ciple from two sources: (a) meson- and multi-gluon-
exchange, and (b) the occurrence of forbidden states
by the Pauli-principle, henceforth referred to as Pauli-
repulsion or Quark-core. As for (a) in the ESC-model
[6, 7] the short-range repulsion comes from vector-meson
exchange and Pomeron/Odderon-exchange (i.e. multi-
gluon). The possibility of mechanism (b) has been ex-
plored in the Quark-Cluster model. See the reviews
[19, 20].
Analyzing the Pauli-repulsion in terms of the SU(3,F)-
irreps we find that the ”forbidden” L = 0 BB-states,
which are classified in SU(6,FS) by the [51]-irrep, indeed
occur dominantly in the SU(3,F)-irreps {10} and {8s}.
These SU(3)-irreps dominate the Σ+p(I = 3/2,3 S1)-
and the ΣN(I = 1/2,1 S0)-states respectively. These
facts open the possibility to incorporate the exception-
ally strong Pauli-repulsion for these states by enhancing
the Pomeron coupling in the ESC-approach to baryon-
baryon. For the other BB-states the [51]-irrep is present
also, but roughly with an equal weight as the [33]-irrep.
Only in a few S=-2 channels,e.g. ΞN(I = 1, S = 0)
there is a stronger presence of the irrep [51]. Therefore
a slightly moderated SU(3,F)-singlet Pomeron-exchange
can effectively take care of this Quark-core phenomeno-
logically, together with multi-gluon-exchange effects.

A. Relation SU(3,F)-irreps and SU(6,FS)-irreps
Classification YN-states

In Table I the SU(3,F)-contents of the NN and YN
states are shown. In Table II we show the the weights of
the SU(6,FS)-irreps. These are taken from [19] Table I,

TABLE I: SU(3,F)-contents of the various potentials
on the isospin basis.

Space-spin antisymmetric states 1S0,
3P, 1D2, ...

NN → NN I = 1 VNN (I = 1) = V27

ΛN → ΛN VΛΛ

(

I = 1
2

)

= (9V27 + V8s) /10

ΛN → ΣN I = 1
2
VΛΣ

(

I = 1
2

)

= (−3V27 + 3V8s) /10

ΣN → ΣN VΣΣ

(

I = 1
2

)

= (V27 + 9V8s) /10

ΣN → ΣN I = 3
2
VΣΣ

(

I = 3
2

)

= V27

Space-spin symmetric states 3S1,
1P1,

3D, ...

NN → NN I = 0 VNN (I = 0) = V10⋆

ΛN → ΛN VΛΛ

(

I = 1
2

)

= (V10⋆ + V8a) /2

ΛN → ΣN I = 1
2
VΛΣ

(

I = 1
2

)

= (V10⋆ − V8a) /2

ΣN → ΣN VΣΣ

(

I = 1
2

)

= (V10⋆ + V8a) /2

ΣN → ΣN I = 3
2
VΣΣ

(

I = 3
2

)

= V10

TABLE II: SU(6,FS)-contents of the various potentials
on the spin,isospin basis.

(S, I) V = aV[51] + bV[33]

NN → NN (0, 1) VNN = 4
9
V[51] +

5
9
V[33]

NN → NN (1, 0) VNN = 4
9
V[51] +

5
9
V[33]

ΛN → ΛN (0, 1/2) VΛΛ = 1
2
V[51] +

1
2
V[33]

ΛN → ΛN (1, 1/2) VΛΛ = 1
2
V[51] +

1
2
V[33]

ΣN → ΣN (0, 1/2) VΣΣ = 17
18
V[51] +

1
18
V[33]

ΣN → ΣN (1, 1/2) VΣΣ = 1
2
V[51] +

1
2
V[33]

ΣN → ΣN (0, 3/2) VΣΣ = 4
9
V[51] +

5
9
V[33]

ΣN → ΣN (1, 3/2) VΣΣ = 8
9
V[51] +

1
9
V[33]

where the SU(6,FS)-classifications are given. Analyzing
now the (ΛN,ΣN)-system for (S = 0, I = 1/2) we find
from these tables

(
VΛN,ΛN

VΣN,ΣN

)
=

(
1
2

1
2

17
18

1
18

)(
V[51]
V[33]

)

=

(
9
10

1
10

1
10

9
10

)(
V{27}
V{8s}

)
. (5.1)
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1. From (5.1) we obtain by simple matrix operations the
relation between the SU(6,FS)-irreps and the SU(3,F)-
irrreps, which read

(
V{27}
V{8s}

)
=

(
4
9

5
9

1 0

)(
V[51]
V[33]

)
. (5.2)

2. Also, we can read off from the tables the following
relations

VNN (I = 1, S = 0) =
4

9
V[51] +

5

9
V[33] = V{27}, (5.3a)

VNN (I = 0, S = 1) =
4

9
V[51] +

5

9
V[33] = V{10∗},(5.3b)

VΛN (I =
1

2
, S = 1) =

1

2
V[51] +

1

2
V[33]

=
1

2
V{10∗} +

1

2
V{8a} . (5.3c)

From these equations we can solve the SU(3,F)-irreps
{27}, {10∗}, and {8a} in terms of the SU(6,FS)-irreps.
Listing the results we now have

V{27} =
4

9
V[51] +

5

9
V[33] , (5.4a)

V{10∗} =
4

9
V[51] +

5

9
V[33] , (5.4b)

V{10} =
8

9
V[51] +

1

9
V[33] , (5.4c)

V{8a} =
5

9
V[51] +

4

9
V[33] , (5.4d)

V{8s} = V[51] . (5.4e)

We see from these results that the [51]-irrep has a
large weight in the {10}- and {8s}-irrep, which gives an
argument for the presence of a strong Pauli-repulsion in
these SU(3,F)-irreps.

According to the study of the wide range of meson-
exchange models in the last decade using the ESC-
approach, as a working hypothesis, we assume that the
apparent lack of an exceptionally strong repulsion in the
ESC-model for the states in the SU(3,F)-irreps {10} and
{8s} cannot be cured by meson-exchange. The inclu-
sion of this possible ”forbidden state” effect can be done
phenomenologically in the ESC-approach by making an
effective Pomeron potential as the sum of ’pure’ Pomeron
exchange and of a Pomeron-like representation of the
Pauli-repulsion. As a consequence the effective Pomeron
potential gets quite stronger in the SU(3,F)-irreps {10}
and {8s}. This way we incorporate the Pauli repulsion
effect in the ESC-approach in this paper.

B. Parametrization Quark-core effects

Using a linear parametrization of the quark-core effects,
we split the repulsive short-range Pomeron-like NN po-
tential as follows:

VPNN = (1− aPB)VPNN + aPBVPNN

≡ VNN (POM) + VNN (PB) (5.5)

TABLE III: Effective Pomeron+PB contribution
on the spin,isospin basis.

(S, I) VPBB/VPNN ESC16

NN → NN (0, 1) 1 1.000

NN → NN (1, 0) 1 1.000

ΛN → ΛN (0, 1/2) 1 + 1
8
aPB 1.049

ΛN → ΛN (1, 1/2) 1 + 1
8
aPB 1.049

ΣN → ΣN (0, 1/2) 1 + 9
8
aPB 1.439

ΣN → ΣN (1, 1/2) 1 + 1
8
aPB 1.049

ΣN → ΣN (0, 3/2) 1 1.000

ΣN → ΣN (1, 3/2) 1 + aPB 1.390

where VNN (POM) represents the genuine Pomeron and
VNN (PB) the structural effects of the Quark-core for-
bidden [51]-configuration, i.e. a Pauli-blocking (PB) ef-
fect. So aPB denotes the Quark-core fraction of the total
Pomeron-like potential. A similar relation holds for all
BB channels.

VPBB = (1− aPB)VPBB + aPBVPBB

≡ VBB(POM) + VBB(PB) (5.6)

Since the Pomeron is a unitary-singlet its contribution
is the same for all BB-channels (apart from some small
baryon mass breaking effects). The PB-effect for the BB-
channels is assumed to be proportional to the relative
weight of the forbidden [51]-configuration compared to
its weight in NN

VBB(PB) = (wBB [51]/wNN [51]) · VNN (PB) (5.7)

Then we have

VPBB = (1− aPB)VPNN + aPB

(
wBB [51]

wNN [51]

)
· VPNN

(5.8)
For example, in the SU(3)-irrep {10}, e.g. the
Σ+p(3S1, T = 3/2)-channel, one has wBB [51] = 8/9 =
2wNN [51] and therefore V10(PB) = 2VNN (PB). Conse-
quently, the total short-range repulsive potential, i.e. the
’effective Pomeron’, becomes V10 = (1 − aPB)VPNN +
2aPBVPNN = (1 + aPB)VPNN . In Table III we give the
factors for the various S=0 and S=-1 BB channels as well
as the results in the ESC16 model.
In principle one might choose a different mass for the
Quark-core repulsive potential. However, this extra pa-
rameter does not lead to better fits to NN and/or YN.
Therefore we keep for the Pauli-blocking the same mass
as the Pomeron mass. The value of the PB factor aPB
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is searched in the fit to the YN-data. The S=-2 PB
effects are then also entirely determined. In the case
of the models ESC08a’ and ESC08b’ only the channels
where wBB [51] is conspicuously large are treated approx-
imately this way, but with equal weights. These chan-
nels are: Σ+p(3S1, T = 3/2),ΣN(1S0, T = 1/2), and
ΞN(1S0, T = 1). A subtle treatment of all BB chan-
nels according to this linear scheme is characteristic for
the ESC16-model. The parameter aPB turns out to be
about 39%. This means that the Quark-core repulsion is
roughly 64% of the genuine Pomeron repulsion. Around
r=0 the Quark-core repulsion comes out at about 76
MeV, whereas the pure Pomeron repulsion is 118 MeV.
The χ2

Y N is not very sensitive to aPB . For aPB =
0.29, 0.34, 0, 39, 0.44 we get χ2

Y N = 50.0, 51.5, 54.2, 57.8
respectively. The choice aPB = 0.39 is a compromise
between the χ2

Y N and a not too attractive two-body UΣ.

VI. ESC16: FITTING NN ⊕ Y N ⊕ Y Y -DATA

In this section we describe mainly the recent changes in
the fitting process. For details on the standard NN⊕YN-
fitting we refer to [14].
(i) As usual we fit to the 1993 Nijmegen representation
of the χ2-hypersurface of the NN scattering data be-
low Tlab = 350 MeV [35, 36]. The NN low-energy pa-
rameters are fitted along with the scattering data. In
order to accomodate the differences between the 1S0-
waves for pp, np, and nn in the model, we introduce
some charge independence breaking by taking different
electric ρ-couplings gppρ 6= gnpρ 6= gnnρ, where gnnρ is
considered to be the SU(3)-octet coupling. With this
phenomenological device we fit the difference between the
1S0(pp) and 1S0(np) phases, and the different NN scat-
tering lengths and effective ranges very well. We have
found gppρ = 0.5932, gnpρ = 0.5427, which are not far
from gnnρ = 0.5793 (cfr.Table IV).
(ii) Simultaneously we fit to 52 YN scattering data.
These data consist of the usual set of 35 low-energy
YN -data, as used in [13, 14] and [7] plus 3 total Σ+p
X-sections from the recent KEK-experiment E289 [37]
and some Λp elastic and inelastic data Ref. [38] and Σ−p
elastic data at higher energies Ref. [39]. For the total
Σ+p and Σ−p elastic X-sections we have performed the
same redefinition as eq. (6.3) of [14].

A. Incorporation Hypernuclei information

A novel feature in the simultaneous fitting procedure
is the inclusion of constraints from information derived
from hypernuclei and hypernuclear matter. For the ΛN -
interaction this means not only a) the usual absence of
bound states but also b) the requirement of a sizable spin-
splitting leading to Uσσ > 1 (cfr. section IXA). c) Be-
cause of the experimental absence of Σ-hypernuclei we re-

quire the total single particle Σ-potential in nuclear mat-
ter UΣ to be overall repulsive. In the S=-2 channels there
are two clear experimental indications: d) from the anal-
ysis of the Nagara event [40] of the double-Λ hypernucleus
6
ΛΛHe it appears that the forces in the ΛΛ(1S0)-channel
are weakly attractive, indicated by a scattering length
aΛΛ(

1S0) ∼ −(0.5− 1.0) fm [41]. This evidence has been
incorporated in the fit in the form of ’pseudo-data’ for the
(1S0)ΛΛ scattering length aΛΛ = −0.8± (0.2− 0.4). the
error depending on the desired impact in the fitting pro-
cess. e) Experimentally the Ξ-nucleus interaction seems
to be attractive from analyses of events with twin-Λ hy-
pernuclei in emulsion data, where the initial Ξ− energies
were determined after Ξ−p − ΛΛ conversion in nuclei.
The Ξ-nucleus interaction can be described well with a
Wood-Saxon potential with a depth of ≈ 14 MeV [42].
On the other hand, the Ξ−p scattering seems experimen-
tally too small to support a sizeable UΞ-well-depth. (In
[5] the tensor interaction from the pairs was enlarged giv-
ing a large well-depth having a ΞN(3S1, T = 1) bound
state, but gives too large cross-sections.) See paper III
for details. The fit has resulted in an excellent simulta-
neous NN ⊕Y N ⊕Y Y -fit. We obtained for the NN-data
χ2/NNdata = 1.10 with also very good results for the NN
low energy parameters: the deuteron binding energy and
the pp, np and nn scattering lengths and effective ranges.
For the YN-data χ2/Y Ndata = 1.04. The ESC16 fits
were achieved with only physical meson-coupling param-
eters, which are partial-wave independent. The quality
of the NN-fit is at par with models of Reid-like potentials
like the Nijm93, Nijm I, and II, which are effective NN-
potentials with some meson parameters adjusted per par-
tial wave [43, 44]. Since the ESC16-model is an extension
of the ESC04-model, it is not surprising that in the simul-
taneous NN -, Y N and Y Y fit the OBE-couplings could
be kept in line with the ’naive’ predictions of the QPC-
model [6, 10]. Just as in ESC04 most of the F/(F +D)-
ratios are fixed by QPC, both for the OBE and MPE
couplings. Once more we stress the fact that in the si-
multaneous fit of the NN -, Y N - and Y Y -data, a single
set of parameters was used. Of course, the accurate and
very numerous NN -data put strong constraints on the
parameters. However, the YN-data, plus the constraints
for the YN- and YY- channels, are also quite relevant
for the set of parameters finally obtained. In particular,
certain fitted F/(F +D)-ratios, are obviously influenced
by the Y N -data.

B. Coupling Parameters and NN ⊕ Y N ⊕ Y Y Fit

For the ’diffractive’ 0++-exchanges we restrict our-
selves to the SU(3)-singlet part, henceforth referred to as
’Pomeron’. The possible J=0 part of the tensor-meson
exchange [12, 13] is not considered. The ’mass’ parameter
of the Pomeron is fitted to be mP = 212.05 MeV. The
’diffractive’ 1−−-exchange ’Odderon’ is also an SU(3)-
singlet with a fitted mass mO = 268.82 MeV.
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Summarizing the fitted parameters in ESC16 we have:

1. Meson-couplings: fNNπ, fNNη′ , gNNρ, gNNω,
fNNρ, fNNω, gNNa0

, gNNǫ,
gNNa1

, fNNa1
, gNNf ′

1
, fNNf ′

1
, fNNb1 , fNNh′

1

2. Pair couplings: gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 ,
gNNπω, gNNπη, gNNπǫ

3. Diffractive-couplings/masses:
gNNP , gNNO, fNNO, aPB ,mP ,mO

4. F/(F +D)-ratio’s: αm
V , αA

5. Cut-off masses: ΛP
8 = ΛP

1 = ΛB
8 = ΛB

1 ,Λ
V
8 ,Λ

V
1 ,

ΛS
8 ,Λ

S
1 ,Λ

A
8 = ΛA

1

These are in total 34 physical parameters, of which are
(i) 14 meson-couplings, (ii) 2 F/(F + D)-ratio’s, (iii)
4 ’diffractive’ couplings and 2 mass parameters, (iv) 6
meson-pair couplings, and (v) 6 cut-off mass parameters.
As compared to the ESC04-model, we have added in
ESC16 the following fitting parameters: (i) the deriva-
tive axial-couplings fNNa1

, fNNf ′

1
, (ii) the 1+− axial-

couplings fNNb1 , fNNh′

1
, (iii) the Odderon-couplings

gNNO, fNNO, and mass mO (iv) the Pomeron Pauli-
blocking parameter aPB , i.e. 8 new physical parame-
ters. All new parameters have been explained above.
They introduce new dynamical refinements/effects into
the model, which have resulted in a quality of the com-
bined NN+YN+YY fit for the NN-phases equal to those
of a purely NN-fit. Some other parameters have been set,
like e.g. many F/(F + D)-ratio’s, see below, and a few
cut-off parameters.
The pair coupling gNN(ππ)0 is set to be zero, which is

motivated in the Nijmegen soft-core models in view of
the fact that in πN it is constrained by chiral-symmetry.
In the fitting process we look for solutions which have
meson-couplings which are reasonably close to the ’naive’
predictions of the QPC-model. This is also the case for
the F/(F + D)-ratio’s, both for meson- and for pair-
couplings. During the fitting we experienced a rather

shallow dependence on the F/(F + D)-ratio αP for the
pseudoscalar octet. In fact we could obtain a very good
YN and NN fit in a values range 0.33-0.40. Therefore
we have fixed it at the value αP = 0.365 obtained from
the Cabibbo theory of semileptonic decay of baryons
[45]. Furthermore, the meson-pair couplings turn out
to come out rather close to predictions based on the
’heavy-meson-saturation’-model. So, the fit-parameters
are (i) physical parameters, i.e. they can be checked in
other reactions, and (ii) many are ’constraint’ by the
QPC-model.
In this work like in the ESC04-models [6, 7], the form
factors depend on the SU(3) assignment of the mesons,
In principle, we introduce form factor masses Λ8 and
Λ1 for the {8} and {1} members of each meson nonet,
respectively. Moreover, for the I = 0-mesons we assign
the {1} cut-off to the dominant singlet meson and the
{8} cut-off to the dominant octet meson, as if there
were no meson-mixing. For example we assign Λ1 to
η′, ω, ǫ, and Λ8 to η, φ, S∗, etc. Notice that the strange
octet-mesons K etc. are given the same {8} form factors
as their non-strange companions. For the cut-off masses
Λ we used as free search parameters ΛP

8 = ΛP
1 for the

pseudoscalar mesons, ΛV
8 and ΛV

1 for the vector mesons
and ΛS

8 and ΛS
1 for the scalar mesons. Furthermore,

we finally used ΛA
8 = ΛA

1 for the axial-mesons with
JPC = 1++. For the axial-mesons with JPC = 1+−

(B-mesons) the cut-off masses have been set equal
to those of the pseudoscalar mesons ΛB

8 = ΛP
8 and

ΛB
1 = ΛP

1 . Some of the previous {8} and {1} form
factors have been chosen to be equal as a consequence
of the impossibility to distinguish them in the fitting
process.
Similar to ESC04 we introduce a zero in the form
factors of mesons, which are P-wave bound states in a
qq̄-picture. These are the scalar mesons (3P0) and the
axial-vector (3P1) mesons. Like in ESC04, we use a fixed
zero by taking U = 750 MeV in (4.22) and (4.24).

VII. COUPLING CONSTANTS, F/(F +D) RATIOS, AND MIXING ANGLES

Like in ESC04, we constrained the OBE-couplings by the ’naive’ predictions of the QPC-model [9]. We kept during
the searches all OBE-couplings in the neighborhood of these predictions, but less tight than in ESC04. The same
holds for the searched α = F/(F +D)-ratios, i.e. for the BBM -couplings and the BB-Pair-couplings. In fact only
two meson-coupling F/(F +D)-ratio’s were allowed to vary during the searches: αm

V for the vector mesons, and αA

for the axial-vector mesons. As mentioned above αP was kept to the value αP = 0.365. Furthermore we kept αE
V = 1

as in all our previous work, and also αS = 1.0, i.e. equal to the QPC value. Furthermore, αB = 0.4. For the fitted
ESC16 NN meson couplings and cut-off masses we refer to Table III of paper I [1].

The mixing angles for the various meson nonets are discussed in paper I. The used values can be found in Table IV.
Here we discuss only aspects specific for the YN-channels. In Table IV the ESC16 SU(3) singlet and octet couplings

g/
√
4π are listed, the F/(F +D)-ratios and the used mixing angles.
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TABLE IV: ESC16 SU(3) coupling constants, F/(F + D)-ratio’s, mixing angles etc. The values with ⋆) have are theoretical
input or determined by the fitting and the constraint from the Y N -analysis.

mesons {1} {8} F/(F +D) angles

ps-scalar f 0.3389 0.2684 αP = 0.365∗) θP = −11.40 ∗)

vector g 3.1983 0.5793 αe
V = 1.0∗) θV = 39.10 ∗)

f –2.2644 3.7791 αm
V = 0.4655

axial(A) g –0.8826 –0.8172 αA = 0.3830 θA = 50.0o ∗)

f –6.2681 –1.6521 αp
A = 0.3830∗)

axial(B) f –0.9635 –2.2598 αB = 0.4∗) θB = 35.26o ∗)

scalar g 3.2369 0.5393 αS = 1.0∗) θS = 44.0o ∗)

diffractive gP 2.7191 aPB = 0.39
gO 4.1637
fO –3.8859

A. Coupling and SU(3) MPE-parameters

In Table V we list the couplings of the physical mesons to the nucleons (Y = 1), and to the hyperons with Y = 0 or
Y = −1. These were calculated using unbroken SU(3)-symmetry. Next to the values in the table we have incorporated,
like in the ESC04 model [7], Charge Symmetry Breaking (CSB) between Λp and Λn with nonzero Λ-couplings of the
I=1 mesons and I=1 pairs due to Λ− Σ0 mixing.

TABLE V: Coupling constants for model ESC16, divided by
√
4π. M refers to the meson. The coupling constants are listed in

the order pseudoscalar, vector (g and f), axial vector A (g and f), scalar, axial vector B, and diffractive.

M NNM ΣΣM ΣΛM ΞΞM M ΛNM ΛΞM ΣNM ΣΞM
f π 0.2684 0.1959 0.1968 –0.0725 K –0.2681 0.0713 0.0725 –0.2684
g ρ 0.5793 1.1586 0.0000 0.5793 K∗ –1.0034 1.0034 –0.5793 –0.5793
f 3.7791 3.5185 2.3323 –0.2606 –4.2132 1.8810 0.2606 –3.7791
g a1 –0.8172 –0.6260 –0.5822 0.1912 K1A 0.8333 –0.2511 –0.1912 0.8172
f –1.6521 –1.2656 –1.1770 0.3865 1.6846 –0.5076 –0.3865 1.6521
g a0 0.5393 1.0786 0.0000 0.5393 κ –0.9341 0.9341 –0.5393 –0.5393
f b1 –2.2598 –1.8078 –1.5656 0.4520 K1B 2.3484 –0.7828 –0.4520 2.2598

M NNM ΛΛM ΣΣM ΞΞM M NNM ΛΛM ΣΣM ΞΞM
f η 0.1368 –0.1259 0.2599 –0.1958 η′ 0.3181 0.3711 0.2933 0.3852
g ω 3.1148 2.4820 2.4820 1.8492 φ –1.2384 –2.0171 –2.0171 –2.7958
f –0.5710 –3.2282 –0.2863 –4.4144 2.8878 –0.3819 3.2380 –1.8416
g f ′

1 –0.7596 –0.1213 –1.0133 0.0710 f1 0.5147 1.0503 0.3019 1.2117
f –4.4179 –3.1274 –4.9303 –2.7386 4.4754 5.5582 4.0450 5.8844
g ε 2.9773 2.3284 2.3284 1.6795 f0 –1.5766 –2.2485 –2.2485 –2.9205
f h′

1 –1.2386 0.1171 –1.6905 0.5690 h1 –0.0830 1.8346 –0.7222 2.4738
g P 2.7191 2.7191 2.7191 2.7191
g O 4.1637 4.1637 4.1637 4.1637
f –3.8859 –3.8859 –3.8859 –3.8859
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In Table VI we present the fitted Pair-couplings for the MPE-potentials. We recall that only One-pair graphs are
included, in order to avoid double counting, see paper I. The F/(F +D)-ratios are all fixed, assuming heavy-boson
dominance of the pair-vertices. The ratios are taken from the QPC-model for qq̄-systems with the same quantum
numbers as the dominating boson. Only the ratio in the system with the pseudoscalar quantum numbers deviates
slightly from QPC, since it has been set equal to the value of αP = 0.365. The BB-Pair couplings are calculated,
assuming unbroken SU(3)-symmetry, from the NN -Pair coupling and the F/(F +D)-ratio using SU(3).

TABLE VI: Pair-meson coupling constants employed in the ESC16 MPE-potentials. Coupling constants are at k2 = 0. The
F/(F+D)-ratio are QPC-predictions, except that α(πω) = αP , which is very close to QPC.

JPC SU(3)-irrep (αβ) g/4π F/(F +D)

0++ {1} g(ππ)0 — —
0++ ,, g(σσ) — —
0++ {8}s g(πη) -0.6894 1.000
1−− {8}a g(ππ)1 0.2519 1.000

f(ππ)1 –1.7762 0.400
1++ ,, g(πρ)1 5.7017 0.400
1++ ,, g(πσ) –0.3899 0.400
1++ ,, g(πP ) — —
1+− {8}s g(πω) –0.3287 0.365

Unlike in [30], we did not fix pair couplings using a theoretical model, based on heavy-meson saturation and chiral-
symmetry. So, in addition to the 14 coupling parameters used in [30] we now have 6 pair-coupling fit parameters. In
Table VI the fitted pair-couplings are given, and in Appendix B the SU(3)-structure of the pair-couplings. As noted
in paper I the (ππ)-coupling gets a non-zero contribution from the {8s} pairs, giving g(ππ)0 = −0.69/2 = −0.35,
which is opposite to that of [30]. Also the f(ππ)1-pair coupling has an opposite sign as compared to [30]. In a model
with a more complex and realistic meson-dynamics [46] this coupling is predicted as found in the present ESC-fit.
The (πρ)1-coupling agrees nicely with A1-saturation, see [30]. The pair-couplings are used in a phenomelogical way
in the ESC-approach. They are in general not yet quantitatively understood, and certainly deserve more study in the
future.
The ESC-model described here, is fully consistent with SU(3)-symmetry using a straightforward extension of the

NN-model to YN and YY. For example g(πρ)1 = gA8V P , and besides (πρ)-pairs one sees also that KK∗(I = 1)-
and KK∗(I = 0)-pairs contribute to the NN potentials. All F/(F + D)-ratio’s are taken fixed with heavy-meson
saturation in mind. The approximation we have made in this paper is to neglect the baryon mass differences, i.e.
we put mΛ = mΣ = mN , in the calculation of the MPE-potentials. This because we have not yet worked out the
formulas for the inclusion of these mass differences, which is straightforward in principle.

B. Parameters and Hyperon-nucleon Fit

All ’best’ low-energy YN-data are included in the fitting, This is a selected set of 35 low-energy YN -data, the same
set has been used in [13] and [14]. We added (i) 3 total Σ+p X-sections from the KEK-experiment E289 [37], (ii) 7
elastic and 4 inelastic Λp X-sections from Berkeley [38], and (iii) 3 elastic Σ−p X-sections [39]. In section VIII these
are given together with the results. Next to these we added ’pseudo-data’ for the Λp scattering length’s in order to
ensure that the Λp(1S0) forces are stronger than the Λp(3S1). Technically ’favored’ values of the s-wave scattering
lengths for ΛN were imposed as pseudo-data during the fitting procedures, in order to get a proper spin-splitting for
the ΛN -interaction in hypernuclei. In nuclear matter this would imply Uσσ > 1, where

Uσσ =
(
UΛ(

3S1)− 3UΛ(
1S0)

)
/12 (7.1)

In ESC16, with the treatment of the broad κ(861) the S-wave scattering lenghts have become about equal as ≈ at,
leading to Uσσ < 1.
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We added ’pseudo-data’ for the Σ+p(3S1) scattering length with the goal to reach enough repulsion in this wave in
order to have UΣ > 0. For the pseudo-data in the S=-2 channels we refer to section VI. In the final stages of the
fitting process all pseudo-data were turned off. In fm:

âΛp(
1S0) = −2.60± (0.10− 0.20) , âΛp(

3S1) = −1.60± (0.10− 0.20) ,

âΣ+p(
3S1) = +0.65± (0.10− 0.20) , (7.2)

Also, during the fitting process checks were done to prevent the occurrence of bound Λp states. Parameters, typically
strongly influenced by the YN-data, are

1. F/(F +D)-parameters: αm
V and to a less extent αA, For the sensitivity of αP see section VII.

2. Pauli-blocking fraction parameter aPB .

The dependence of aPB in the fit to YN and YY is rather shallow in a range 0.20−0.40. In Table VII the dependence
of the χ2 of the 52 YN-data, and the UΣ is illustrated. A minimal value for χ2 leads to aPB = 0.29, whereas a positive

TABLE VII: UΣ in MeV, and YN χ2 as a function of aPB .

aPB UΣ χ2
Λp χ2

Σ+p χ2
Y N

0.29 -7.9 10.0 14.7 50.0
0.34 -5.5 10.4 15.9 51.5
0.39 -3.3 11.6 17.3 54.2
0.44 -1.1 13.8 18.7 57.8
0.49 +0.8 16.7 20.4 61.6

value of UΣ requires aPB > 0.49. As a compromise we have choosen aPB = 0.39.
Since all couplings and SU(3) parameters are completely fixed, the S=-2 (and -3, -4) results of ESC16 are completely
determined. Finally we want to mention that in the fitting process we have, if necessary, accounted for the vast
difference in quality of the data. The abundance of the 4313 precise NN data is to be contrasted to the 52 less precise
YN data. In the simultaneous fit we require for both the NN and for the YN that the quality of the partial fit is
comparable, i.e. χ2/NNdata ≈ χ2/Y Ndata. If necessary we add weight factors to the partial sums in the total χ2. It
turned out that in the last stages of the fitting process the weight factors are equal.

C. Hyperon-nucleon Potentials 3

In Fig. 1 we plot the total potentials for the S-wave channels ΛN → ΛN , ΛN → ΣN , and ΣN → ΣN . Note the
for the soft-core model typical structure of the Σ+p(3S1)-potential. Most contributions to the spin-spin potentials are
proportional to k2, and hence have zero volume integral. This causes the attraction in the inner region.
Figures for the OBE-, TME-, and MPE-contributions are similar to those for the ESC04-model and have been
displayed in Ref. [7] and we refer the interested reader to this reference. Likewise for the contributions of the various
types of mesons to the OBE-potentials, and also for the contributions of the different kind of pair-potentials to MPE.

VIII. ESC16-MODEL , YN-RESULTS

A. Hyperon-nucleon (S=-1) X-sections, phases, etc.

The used YN scattering data from Refs. [47]-[52] in the combined NN and YN fit are shown in Table VIII. The
NN interaction puts very strong constraints on most of the parameters, and so we are left with only a limited set of
parameters which have some freedom to steer the YN channels as compared to the NN-channels.

3 The fortran code HNPOTESC16.f is put on the permanent open access website, NN-Online facility:http://nn-online.org.
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FIG. 1: Total potentials in the partial waves 1S0 and 3S1, for I = 1/2- and I = 3/2-states.
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The aim of the present study was to construct a realistic potential model for baryon-baryon systems with parameters
that are optimal theoretically, but at the same time describes the baryon-baryon scattering data very satisfactory.
This model can then be used with a great deal of confidence in calculations of hypernuclei and in their predictions

for the S = −2, −3, and −4 sectors. Especially for the latter application, these models will be the first models for
the S = −2,−3,−4 sectors to have their theoretical foundation in the NN and YN sectors.

TABLE VIII: Comparison of the calculated ESC16 and experimental values for the 52 Y N -data that were included in the
fit. The superscipts RH and M denote, respectively, the Rehovoth-Heidelberg Ref. [47] and Maryland data Ref. [48]. Also
included are (i) 3 Σ+p X-sections at plab = 400, 500, 650 MeV from Ref. [37], (ii) Λp X-sections from Ref. [38]: 7 elastic between
350 ≤ plab ≤ 950, and 4 inelastic with plab = 667, 750, 850, 950 MeV, and (iii) 3 elastic Σ−p X-sections at plab = 450, 550, 650
MeV from Ref. [39]. The laboratory momenta are in MeV/c, and the total cross sections in mb. The total χ2 = 54.2

Λp → Λp χ2 = 3.7 Λp → Λp χ2 = 4.3
pΛ σRH

exp σth pΛ σM
exp σth

145 180±22 192.7 135 209.0±58 209.7
185 130±17 134.0 165 177.0±38 160.8
210 118±16 106.4 195 153.0±27 122.3
230 101±12 88.3 225 111.0±18 92.6
250 83± 9 73.3 255 87.0±13 69.9
290 57± 9 50.3 300 46.0±11 45.8

Λp → Λp χ2 = 3.7

350 23.9±5.0 28.6 750 10.7±3.0 8.2
450 8.9±3.0 11.6 850 10.2±3.0 9.4
550 9.1±3.0 7.3 950 8.9±3.0 10.9
650 16.7±4.0 14.3

Λp → Σ0p χ2 = 8.0

667 2.8 ±2.0 3.3 850 10.7±3.0 3.8
750 7.5±2.5 3.8 950 5.0±2.0 3.6

Σ+p → Σ+p χ2 = 17.3 Σ−p → Σ−p χ2 = 6.3
pΣ+ σexp σth pΣ− σexp σth

145 123.0±62 147.3 142.5 152±38 148.8
155 104.0±30 134.3 147.5 146±30 142.4
165 92.0±18 123.0 152.5 142±25 136.2
175 81.0±12 112.8 157.5 164±32 130.5

162.5 138±19 125.0
167.5 113±16 119.8

400 93.5±28.1 32.7 450.0 31.7±8.3 25.9
500 32.5±30.4 28.1 550.0 48.3±16.7 17.9
650 64.6±33.0 25.4 650.0 25.0±13.3 13.7

Σ−p → Σ0n χ2 = 6.0 Σ−p → Λn χ2 = 4.9
pΣ− σexp σth pΣ− σexp σth

110 396±91 205.6 110 174±47 242.3
120 159±43 179.9 120 178±39 207.1
130 157±34 159.3 130 140±28 179.2
140 125±25 142.5 140 164±25 156.6
150 111±19 128.6 150 147±19 138.2
160 115±16 116.9 160 124±14 123.0

rexpR = 0.468± 0.010 rthR = 0.467 χ2 = 0.01

The χ2 on the 52 YN scattering data for the ESC16 model is given in Table VIII. The ΛN total cross sections
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FIG. 2: Model fits total cross sections Λp, and Rehovoth-Heidelberg-, Maryland-, and Berkeley-data. Panel (a): ESC16, (b,c):
Effective range approximations I and II.

have been calculated with L ≤ 2, and the ΣN total cross sections with L ≤ 1. For the definition of the capture ratio
at rest, given in the last row of the table, see e.g. [14]. This capture ratio turns out to be rather constant in the
momentum range from 100 to 170 MeV/c. Obviously, for very low momenta the cross sections are almost completely
dominated by s waves, and so the capture ratio in flight converges to the capture ratio at rest. For more details on
the evaluation of these observables, we refer to earlier Nijmegen work on this subject.
The Σ+p nuclear-bar phase shifts as a function of energy are given in Table IX. Notice that the 3S1-phase shows

repulsion.
The ΛN nuclear-bar phase shifts as a function of energy are given in Table X. In Fig. 2 the Λp total X-sections

are shown for ESC16 together with the data. At the ΣN -threshold the cross section shows a sizeable cusp with a
large D-wave nuclear-bar phaseshift δ(3D1) = 69.10o. This signals the fact that in the ΣN(3S1, I = 1/2)-state there
is a strong attraction, with presumably a deuteron-like virtual bound-state on the unphysical sheet. Also, in Fig. 2
we show the cross sections in the effective range approximation, dashed lines I and II. Line II is including the shape
parameter in the effective range expansion. The two-term effective range expansion with the a and r parameters
describes the s-wave phases well up to pΛ ≈ 400 MeV/c.
In Table XI the low-energy parameters for Λp and Λn are shown. The singlet and triplet parameters are displayed

with the ΛΣ0-mixing turned on for pseudoscalar-, vector-, scalar-, meson-pairs-, and ps-ps- exchanges. Notice that
the effect for the scalar mesons of the ΛΣ0-mixing is zero because αs = 1.0. It is clear from these tables that the
total effect of the ΛΣ0-mixing is about given by pseudoscalar and vector exchanges. The differences in the scattering
lengths are

∆as = as(Λp)− as(Λn) = +0.08 fm, (8.1a)

∆at = at(Λp)− at(Λn) = −0.04 fm. (8.1b)

These differences are comparable to those for the soft-core OBE models [13, 14], and therefore predict a too small
binding energy difference in the A=4 hypernuclei, which is ∆BΛ(exp) = BΛ(

4
ΛHe) − BΛ(

4
ΛH) = (0.29 ± 0.06) MeV.

This in contrast to the HC-model D, which has a much larger ∆at [24]. It appeared that CSB via meson-mixing,
like π0 − η, ρ0 − ω etc., is small and does not improve the CSB for ESC16, which is understandable in view of
the large cancellations. However, as a consequence of the ESC-models there is a three-body force produced by the
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FIG. 3: Model fits total elastic cross sections Σ±p and Rehovoth-Heidelberg-, KEK-data. Left panels (a): ESC16, (b): ESC04d,
(c): NSC89, Right panels the same.

MPE-interactions, which are fixed by the BB-fit. Therefore, the CSB in the ΛNN -potential may improve the CSB
predictions significantly.
In Table XII we list the Σ+p scattering lengths and effective ranges. Here, (as, rs) are these quantities for Σ

+p(1S0)
and (at, rt) for Σ

+p(3S1).
Notice that the difference between as in ESC08a′′ and ESC16. This is mainly a consequence of the inclusion of

the non-local tensor force in Σ+p like in pp. This means that there is still less room for variations in the 3S1-wave
because of the X-section fit. Because in SU(3) the 1S0-wave is strongly constrained by pp, since the 1S0-states in NN
and Σ+p are both in the {27}-irrep. Therefore, much extra repulsion in the triplet wave is impossible.
In Fig. 3 and Fig. 4 the elastic and inelastic X-sections are shown respectively.

B. Potentials in SU(3)-irreps

In Fig. 5 the potentials V{µ}[GeV] in the SU(3) representations for BB-channels are shown. The red curves are
ESC16 including SU(3)-breaking and the green ones are the SU(3)-symmetric curves. In the latter average masses
are used, for the baryons the Λ mass, and for the SU(3)-nonets: 400 MeV for the pseudoscalar- and 800 MeV for
the vector-, scalar-, axial-vector-nonets. The cut-off masses for pseudoscalar, vector, and axial-vector have been set
equal to the octet ones, i.e. ΛP

1 = ΛP
∗ etc. But, for the scalar nonet we have taken ΛS

8 = ΛS
1 . Fig. 5 shows that, in
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FIG. 4: Model fits total inelastic cross sections Σ−p → Σ0n,Λn and Rehovoth-Heidelberg-data. Panels (a): ESC16, (b):
ESC04d, (c): NSC89, Right panels the same.

particularly for r ≤ 0.5 fm, the SU3-breaking is rather large.
The curves resemble qualitatively those obtained in lattice QCD, except for the {1}-irrep [53]. In the ESC-model the
behavior is typical for potentials with a strong spin-spin part, because the spin-spin potentials from pseudoscalar- and
vector-exchange have zero volume integral forcing them to change sign for r ∼ 0.5 fm.
The similarity between the meson-exchange and QCD-lattice potentials shows that with the ESC realization of

the program starting from the nuclear force, using SU(3,F)-symmetry and the QM, a realistic generalization to the
BB-force is achieved.

IX. ANALYSES WITH G-MATRIX INTERACTIONS

The G-matrix theory gives a good starting point for studies of hyperonic many-body systems on the basis of
free-space YN interaction models [54–56]. Here, the correlations induced by hyperonic coupling interactions such as
ΛN -ΣN ones are renormalized into single-channel G-matrices. These G-matrix interactions are considered as effective
interactions used in models of hypernuclei. Thus, the hypernuclear phenomena and the underlying YN interaction
models are linked through the YN G-matrix interactions, and the hypernuclear information gives a feedback to the
interaction models. Here, the properties of ΛN and ΣN sectors of ESC16 in nuclear medium are studied on the basis
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TABLE IX: ESC16 nuclear-bar Σ+p phases in degrees.

pΣ+ 100 200 300 400 500 600 700 800 900 1000

Tlab 4.2 16.7 37.3 65.5 100.8 142.8 190.7 244.0 302.1 364.5

1S0 35.10 41.06 35.49 27.54 19.12 10.81 2.80 –4.80 –11.99 –18.76
3S1 -5.11 –11.11 -16.94 –22.62 -27.89 –32.55 -36.55 –39.99 -43.04 –45.84
ǫ1 -0.37 –1.81 -3.33 –4.43 –5.04 –5.24 –5.14 –4.86 –4.48 –4.07

3P0 0.96 4.90 8.42 9.12 7.19 3.59 –0.92 –5.81 –10.81 –15.73
1P1 0.43 2.33 4.84 7.05 8.33 8.45 7.46 5.55 2.94 –0.17
3P1 –0.59 –3.00 –6.13 –9.53 –13.15 –16.93 –20.79 –24.64 –28.41 –32.05
3P2 0.10 0.90 2.58 4.70 6.76 8.50 9.82 10.65 10.95 10.71
ǫ2 –0.03 –0.37 –1.05 –1.81 –2.44 –2.85 –3.02 –2.98 –2.78 –2.49

3D1 0.02 0.30 0.84 1.32 1.35 0.69 –0.70 –2.75 –5.29 –8.21
1D2 0.02 0.31 0.97 2.00 3.38 4.99 6.61 8.01 8.97 9.33
3D2 –0.03 –0.45 –1.30 –2.35 –3.53 –4.87 –6.42 –8.15 –10.04 –12.04
3D3 0.00 0.05 0.26 0.66 1.14 1.59 1.93 2.20 2.45 2.70
ǫ3 -0.00 –0.07 -0.29 –0.63 –1.00 –1.35 –1.64 –1.86 –1.99 –2.04

3G3 0.00 0.00 0.04 0.12 0.25 0.41 0.57 0.70 0.75 0.67

TABLE X: ESC16 nuclear-bar Λp phases in degrees.

pΛ 100 200 300 400 500 600 633.0

Tlab 4.5 17.8 39.6 69.5 106.9 151.1 167.3

1S0 20.21 25.86 23.13 17.24 10.34 3.40 1.43
3S1 20.25 26.62 24.84 19.99 14.17 8.51 7.46
ǫ1 0.04 0.16 0.23 0.21 0.29 2.01 9.16

3P0 0.02 0.08 –0.19 –1.34 –3.54 –6.51 –7.52
1P1 –0.07 –0.55 –1.78 –3.88 –6.67 –9.80 –10.82
3P1 0.00 –0.10 –0.60 –1.70 –3.25 –4.67 –4.71
3P2 0.11 0.70 1.74 2.86 3.73 4.25 4.34
ǫ2 0.00 –0.00 –0.04 –0.15 –0.31 –0.50 –0.57

3D1 0.00 0.07 0.48 1.82 5.42 18.93 59.97
1D2 0.00 0.06 0.37 1.12 2.36 3.96 4.53
3D2 0.00 0.08 0.42 1.17 2.31 3.68 4.16
3D3 0.00 0.05 0.27 0.76 1.52 2.41 2.71

of the G-matrix theory.
In Refs. [57–59] the three-body interaction is added on ESC16, being composed of the multi-pomeron exchange

repulsive potential (MPP) and the phenomenological three-baryon attraction (TBA). The effective two-body potential
derived from MPP is given as

VMPP (r; ρ) = g
(3)
P (gP )

3 ρ

M5
· 1

4π

4√
π

(
mP√
2

)3

exp

(
−1

2
m2

P r
2

)
, (9.1)

where g
(3)
P is the triple-pomeron coupling, and the pomeron mass mP and the two-body pomeron coupling gP are

fitted to the NN-data etc. In a similar way, one can obtain an effective two-body potential with a quartic pomeron

coupling g
(4)
P . TBA also is given by a density-dependent two-body potential

VTBA(r; ρ) = V 0
TBA exp(−(r/2.0)2) ρ exp(−ηρ) (1 + Pr)/2 , (9.2)

Pr being a space-exchange operator. The values of g
(3)
P , g

(4)
P , V 0

TBA and η in NN channels are adjusted to reproduce
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TABLE XI: Comparison Λp and Λn scattering lengths and effective ranges in fm for different Nijmegen models.

Λp Λn
Model as at as at

ESC16 -1.88 -1.86 -1.96 -1.84
NSC97e -2.10 -1.86 -2.24 -1.83
NSC97f -2.51 -1.75 -2.68 -1.67
NSC89 -2.73 -1.48 -2.86 -1.24
HC-D -2.06 -1.77 -2.03 -1.84
Model rs rt rs rt
ESC16 3.58 3.37 3.65 3.33
NSC97e 3.19 3.19 3.24 3.14
NSC97f 3.03 3.32 3.07 3.34
NSC89 2.87 3.04 2.91 3.33
HC-D 3.78 3.18 3.66 3.32

TABLE XII: Σ+p scattering lengths and effective ranges in fm.

Model as at rs rt
ESC16 -4.30 +0.57 3.25 -3.11
ESC08a′′ -3.85 +0.62 3.40 -2.13
ESC04d -3.43 +0.217 3.98 -28.94

the angular distribution of 16O+16O elastic scattering at E/A = 70 MeV with use of the G-matrix folding potential,
and values of the saturation density and the energy per nucleon there in nuclear matter [57–59]. We adopt here the

parameter set (g
(3)
P = 5.25, g

(4)
P = 87.0), that gives rise to the stiff EoS of neutron matter with a maximum mass

2M⊙ for a neutron star [57, 58]. Other sets, like MPa and MPa+ in [59], lead to similar results in the normal density
region, differences appear only in the high density region.
MPP works universally in all baryon-baryon channels according to its definition. Assuming here that TBA works

also in ΛN channels, the parameters are adjusted to reproduce well energy spectra of Λ hypernuclei. We take
V 0
TBA = −16.0 MeV, being more attractive than V 0

TBA = −8.0 MeV in NN channels, and the same value of η = 4.0
fm3 for simplicity. Hereafter, the interaction ESC16+MPP+TBA is denoted as ESC16+.
We start from the channel-coupled G-matrix equation for the baryon pair B1B2 in nuclear matter [54], where

B1B2 = ΛN and ΣN :

Gcc0 = vcc0 +
∑

c′

vcc′
Qy′

ω − ǫB′

1
− ǫB′

2
+∆yy′

Gc′c0 , (9.3)

where c denotes a YN relative state (y, T, L, S, J) with y = (B1, B2). S and T are spin and isospin quantum numbers,
respectively. Orbital and total angular momenta are denoted by L and J , respectively, with J = L + S. Then,
a two-particle state is represented as 2S+1LJ . In Eq. (9.3), ω gives the starting energy in the starting channel c0.
∆yy′ =MB1

+MB2
−MB′

1
−MB′

2
denotes the mass difference between two baryon channels. The Pauli operator Qy

acts on intermediate nucleon states in a channel y = (B1, B2) = (ΛN ,ΣN). We adopt here the continuous (CON)
choice for intermediate single particle potentials in the G-matrix equation. The G-matrix equation (9.3) is represented
in the coordinate space, whose solutions give G-matrix interactions. The hyperon single particle (s.p.) energy ǫY in
nuclear matter is given by

ǫY (kY ) =
h̄2k2Y
2MY

+ UY (kY ) , (9.4)

where kY is the hyperon momentum. The potential energy UY is obtained self-consistently in terms of the G-matrix
as

UY (kY ) =
∑

|kN |

〈kY kN | GY N (ω = ǫY (kY ) + ǫN (kN )) | kY kN 〉 (9.5)
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FIG. 5: Potentials in the SU(3)-irreps. The solid and dashed curves are potentials with and without SU(3)-symmetry breaking
respectively. The units of the vertical axes are in GeV.

A. ΛN G-matrix

TABLE XIII: Values of UΛ(ρ0) and partial wave contributions in 2S+1LJ states from the G-matrix calculations (in MeV). The
value specified by D gives the sum of 2S+1DJ contributions. Contributions from S-state spin-spin interactions are given by
Uσσ = (UΛ(

3S1)− 3UΛ(
1S0))/12.

1S0
3S1

1P1
3P0

3P1
3P2 D UΛ Uσσ

ESC16 −13.3 −30.0 2.3 0.1 1.1 −2.3 −1.6 −43.7 0.83
ESC16+ −12.3 −27.4 2.9 0.3 1.7 −1.2 −1.9 −37.9 0.79

Let us calculate Λ binding energies in nuclear matter. In Table XIII we show the potential energies UΛ(ρ0) for
a zero-momentum Λ and their partial-wave contributions in 2S+1LJ states at normal density ρ0 (kF=1.35 fm−1) in
the CON choice, where a statistical factor (2J + 1) is included in each contribution in 2S+1LJ state. The value of
UΛ for ESC16+ is rather less attractive than that for ESC16, because repulsive contributions of MPP are cancelled
partially by attractive TBA contribution. Here, the value of V 0

TBA is chosen so as to reproduce BΛ values of observed
Λ hypernuclei, as shown in next subsection. The contributions to UΛ from S-state spin-spin components can be seen
qualitatively in values of Uσσ = (UΛ(

3S1) − 3UΛ(
1S0))/12. These values of Uσσ also are given in Table XIII. In the

same treatment, we obtain Uσσ=1.54 and 0.92 MeV for NSC97f and NSC97e, respectively. Various analyses suggest
that the reasonable value of Uσσ is between these values [56]. The Uσσ values for ESC16/c+ seem to be slightly too
small compared to this value.
For applications to various hypernuclear problems, it is convenient to construct kF -dependent effective local poten-
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TABLE XIV: Parameters of YNG-ESC16 Continuous choice : G(kF ; r) =
∑3

i=1(ai + bikF + cik
2
F ) exp−(r/βi)

2

βi 0.50 0.90 2.00
a −3548 413.2 −1.787

1E b 7135 −1087 0.0
c −2723 428.5 0.0
a −2820 325.1 −1.372

3E b 5888 −909.3 0.0
c −2434 397.6 0.0
a 1635 88.84 −.9019

1O b −338.7 45.01 0.0
c 138.2 −2.532 0.0
a 2283 −223.6 −1.070

3O b −2359 204.7 0.0
c 823.6 −45.50 0.0

TABLE XV: Parameters of the additional interaction in YNG-ESC16+: ∆G(kF ; r) = (a+ bkF + ck2
F ) exp−(r/0.9)2

1E 3E 1O 3O
a 18.23 16.54 27.78 26.20
b −45.62 −42.85 −78.02 −75.33
c 27.46 25.80 69.16 70.44

tials G(kF ; r) simulating the G-matrices in coordinate space, called YNG. Here we parameterize them in a three-range
Gaussian form

G(kF , r) =
3∑

i=1

(ai + bikF + cik
2
F ) exp (−r2/β2

i ) . (9.6)

The parameters (ai, bi, ci) are determined so as to simulate the calculated G-matrix for each 2S+1LJ state. The
procedures to fit the parameters are given in Ref. [56]. The obtained parameters for ESC16 are shown in Table XIV.
For ESC16+, contributions from MPP+TBA are represented by modifying the second-range parts of G(kF , r) for
ESC16 by ∆G(kF , r) = (a + bkF + ck2F ) exp−(r/0.9)2. The parameters for ∆G(kF , r) are given in Table XV. Then,
the G-matrix interaction for ESC16+ is given by G(kF , r) + ∆G(kF , r).

Here, it is worthwhile to comment about a qualitative
feature of ∆G(kF , r). The MPP contributions increase
rapidly with matter density: In high (low) density region,
they are very large (small), and cancelled considerably
by TBA at normal-density region. Then, net contribu-
tions of MPP+TBA given by ∆G(kF , r) are attractive
for smaller values of kF than 1.35 fm−1.

The solved G-matrices include not only ΛN -ΛN diago-
nal parts but also ΛN -ΣN coupling parts, and it is possi-
ble to extract such coupling parts to treat ΛN -ΣN mix-
ing problems. The ΛN -ΣN coupling interaction is deter-
mined so that its matrix elements in k space simulate the
corresponding G-matrix elements and its radial form tend
to that of the bare interaction in the outermost region.
In Table XVI (Table XVII), the parameters of the central
(tensor) parts of ΛN -ΣN and ΣN -ΣN interactions in S
states are given in a three-range Gaussian (r2-Gaussian)
form. Here, the kF dependences are represented in the
same form as the above diagonal parts. These coupling
interactions can be used for ΛN -ΣN mixing problems

together with the ΛN -ΛN diagonal interactions in the
Table XIV.

In terms of the G-matrices GJS
LL′(r) with S=1, the

SLS interactions are given by the linear combination
GSLS(r) =

(
−2G01

11 − 3G11
11 + 5G21

11

)
(r)/12. The ALS G-

matrix interaction GALS between 3P1 and 1P1 states is
given so that its matrix elements in k space simulate the
corresponding G matrix elements 〈3P1 | G | 1P1〉. Be-
cause 〈3P1 |G | 1P1〉 and 〈1P1 |G | 3P1〉 are different from
each other, we derive GALS from their averaged values.
The SLS and ALS G-matrix interactions obtained as a
function of kF are represented in three-range Gaussian
forms, the parameters of which are given for ESC16 in
Table XVIII.

In order to compare clearly the SLS and ALS com-
ponents, it is convenient to derive the strengths of the
Λ l-s potentials in hypernuclei. In the same way as
in Refs. [7, 14], the expression can be derived with the

Scheerbaum approximation [60] as U ls
Λ (r) = KΛ

1
r

dρ
dr l · s.

The values of KΛ can be calculated with use of GSLS(r)
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TABLE XVI: Central coupling parts of G-matrix interactions
for ESC16, represented in a Gaussian form

∑3
i=1(ai + bikF +

cik
2
F ) exp(−(r/βi)

2.

βi 0.50 0.90 2.00
a 5254 −796.7 8.509

ΛN -ΣN 1S0 b −8049 1302 0.0
c 3126 −497.9 0.0
a −365.9 167.5 8.606

ΣN -ΣN 1S0 b 881.7 −72.20 0.0
c −354.3 60.39 0.0
a −2868 393.9 −2.740

ΛN -ΣN 3S1 b 4683 −729.1 0.0
c −1978 320.5 0.0
a 773.5 −156.2 −4.313

ΣN -ΣN 3S1 b 159.0 −10.37 0.0
c −172.2 31.04 0.0

TABLE XVII: Tensor coupling parts of G-matrix interac-
tions for ESC16, represented in a r2-Gaussian form

∑3
i=1(ai+

bikF + cik
2
F )r

2 exp(−(r/βi)
2.

βi 0.50 0.90 2.00
a −44610 547.5 −.7435

ΛN -ΣN 3S1 b 69890 −1018 0.0
c −26870 389.0 0.0
a −2476 25.46 −.0220

ΛN -ΛN 3S1 b 3179 −28.42 0.0
c −677.6 −.5974 0.0

and GALS(r): The obtained value at kF = 1.0 fm−1 is
3.8 MeV fm5. This value is smaller than those for not
only NSC97e/f but also ESC08a/b [56].

B. Λ hypernuclei by G-matrix folding potentials

The YNG ΛN G-matrix interaction given by Table XIV
is expressed as GS

(±)(r), S and (±) denoting spin and

party quantum numbers, respectively. A Λ-nucleus po-
tential in a finite system is derived from this ΛN interac-
tion by the expression

UΛ(r, r
′) = Udr + Uex ,

Udr = δ(r− r′)

∫
dr′′ρ(r′′)Vdr(|r− r′′|; kF )

Uex = ρ(r, r′)Vex(|r− r′|; kF ) , (9.7)

(
Vdr
Vex

)
=

1

4

∑

S=0,1

(2S + 1)[GS
(±) ± GS

(∓)] . (9.8)

Here, densities ρ(r) and mixed densities ρ(r, r′) are ob-
tained from spherical Skyrme-HF wave functions.

TABLE XVIII: Parameters of SLS and ALS G-matrix interac-
tions represented by three-range Gaussian forms G(r; kF ) =
∑

i(ai + bikF + cik
2
F ) exp−(r/βi)

2 in the cases of ESC16.

βi 0.40 0.80 1.20
a −11820 355.7 −1.541

SLS b 23600 −810.3 0.0
c −9796 325.2 0.0
a 1809 1.423 .7805

ALS b −1547 37.07 0.0
c 578.0 −15.73 0.0

An important problem is how to treat kF values in-
cluded in G-matrix interactions. We use here the follow-
ing Averaged-Density Approximation (ADA), where an
averaged value 〈ρ〉 is calculated by 〈φΛ(r)|ρ(r)|φΛ(r)〉 for
each Λ state φΛ(r), and 〈kF 〉 is obtained by (1.5π2〈ρ〉)1/3.

Let us calculate the energy spectra of Λ hypernuclei
systematically (13ΛC,

16
ΛO, 28

ΛSi,
51
ΛV,

89
ΛY,

139
Λ La, 208

Λ Pb).
In Fig. 6, the calculated values are compared with the
experimental values marked by open circles, the horizon-
tal axis being given as A−2/3, where solid and dashed
curves are for YNG-ESC16+ and NG-ESC16, respec-
tively. Here, the experimental data are shifted by 0.5
MeV from the values given in Ref. [61], which has been
recently proposed according to the improved calibra-
tion [62]. The G-matrix interaction for ESC16 is found
to be overbound experimental values of BΛ. In ESC16+

values of V 0
TBA = −16.0 MeV with η = 4.0 fm3 are cho-

sen so that the value of BΛ(
89
ΛY ) is reproduced well and

the global fitting of BΛ values is nicely improved in com-
parison with that for ESC16.

The difference between ESC16+ and ESC16 is due to
the extra terms ∆G(kF , r) originated from MPP+TBA.
Especially, MPP plays an essential role to reproduce the
nuclear saturation property and the stiffness of the EoS
of neutron-star matter [57–59]. Then, it is very impor-
tant that ESC16+ gives better fitting than ESC16: The
density-dependent attraction ∆G(kF , r) in low-density
region works to reproduce better the energy spectra of
heavy systems and BΛ values of light systems. In high-
density region, this extra term is dominated by MPP and
leads to the stiff EoS of the hyperon-mixed neutron-star
matter [58, 59]. The present result suggests that such an
effect of MPP+TBA is based on terrestrial data of BΛ

values.

Finally, we comment that the Λ s.p. energies in finite
systems are not related simply to the UΛ(ρ0) values given
in Table XIII. The UΛ(ρ0) values of −43.7 MeV (−37.9
MeV) for ESC16 (ESC16+) are very attractive compared
to the value of −30 MeV, which is the depth UWS of the
Λ Woods-Saxon (WS) potential suitable to the data of
Λ hypernuclei [63]. However, it is misleading to compare
the UΛ(ρ0) value directly to the UWS one. The Λ-nucleus
folding potential depends not only on the strengths of ΛN
G-matrices but also on their kF dependences. Then, it is
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FIG. 6: Energy spectra of 13
ΛC,

28
ΛSi,

51
ΛV, 89

ΛY, 139
Λ La and 208

Λ Pb are given as a function of A−2/3, A being mass numbers of
core nuclei. Solid (dashed) lines show calculated values by the G-matrix folding model derived from ESC16+ (ESC16). Open
circles and error bars denote the experimental values taken from Ref. [61].

only of qualitative meaning to consider the depth UWS

of the phenomenological Woods-Saxon potential of Λ as
the Λ potential depth in nuclear matter.

TABLE XIX: Values of UΣ(ρ0) at normal density and partial
wave contributions in (2S+1LJ , T ) states for ESC16/c+ (in
MeV).

model T 1S0
3S1

1P1
3P0

3P1
3P2 D UΣ

ESC16 1/2 10.2 −24.7 1.9 2.1 −5.3 −0.2 −0.6
3/2 −13.1 29.5 −3.5 −2.1 5.3 −2.6 −0.2 −3.3

ESC16+ 1/2 10.8 −20.7 2.1 2.2 −5.0 0.2 −0.5
3/2 −11.4 33.3 −3.0 −2.0 5.6 −1.8 −0.0 +9.9

C. ΣN G-matrix

Here, we study here Σ binding energies in nuclear mat-
ter by solving the ΣN starting channel G-matrix equa-
tion. The universal repulsion MPP has to work also
in ΣN channels. Then, the problem is how to choose
the phenomenological TBA part on the basis of ex-
perimental information. The positive values of UΣ(ρ0)
can be compared roughly with the repulsive compo-
nent of the Σ nuclear potential obtained from analyzing
strong-interaction shifts and widths in Σ− atoms [64].

The size of repulsion is model dependent, giving rise
to the estimation of 30 ± 20 MeV. Another experimen-
tal information for the repulsive Σ-nucleus potentials are
given by the observed (π−,K−) spectra [23, 65, 66]. In
Ref. [65], they performed the DWIA analysis for the data
of 28Si(π−,K−) reaction, where some ΣN interaction
models were studied. The experimental spectrum was
reproduced nicely by the Σ-nucleus potential obtained
from G-matrices for the Nijmegen model F [67] with the
local density approximation, where the value of UΣ(ρ0)
was 24 MeV. Considering that the experimentally sug-
gested values of UΣ(ρ0) are strongly repulsive, we take
V 0
TBA = 0.0 MeV: ESC16+ in ΣN channels is given by

ESC16+MPP without TBA.

In Table XIX we show the potential energies UΣ(ρ0) for
a zero-momentum Σ and their partial-wave contributions
in (2S+1LJ , T ) states for ESC16 and ESC16+. It should
be noted here that the strongly repulsive contributions
in 3S1 T = 3/2 and 1S0 T = 1/2 states are due to the
Pauli-forbidden effects in these states, being taken into
account by strengthening the pomeron coupling in the
ESC16 modeling.

In the left (right) panel of Fig. 7, UΣ values (their S-
state contributions) are drawn as a function of kF for
ESC16 and ESC16+ by dashed and solid curves, respec-
tively. It is demonstrated that the repulsive UΣ values are
due to T = 3/2 3S1 and T = 1/2 1S0 contributions, and
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the repulsions are enhanced by the MPP contributions.
The value of UΣ is sensitive to the Pauli-repulsion pa-

rameter aPB . Though aPB = 0.39 is taken in ESC16, a
larger value of aPB gives rise to a more repulsive value of
UΣ. Taking aPB = 0.59, we obtain UΣ(ρ0)=7.4 MeV and
20.3 MeV for ESC16 and ESC16+, respectively. As found

in Table VII, such a high value for the Pauli-blocking
repulsion gives too high Σ+p cross sections. In order
to obtain strongly repulsive values of UΣ without over-
estimating Σ+p cross sections, it might be necessary to
introduce further many-body repulsions.
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FIG. 7: In the left (right) panel, the values of UΣ (partial-wave contributions) are drawn as a function of kF by dashed and
solid curves for ESC16 and ESC16+, respectively.

X. DISCUSSION, CONCLUSIONS AND
OUTLOOK

We have again shown in this paper that the ESC-
approach to the nuclear force problem is able to make
a connection between on the one hand the at present
available baryon-baryon data and on the other hand the
underlying quark structure of the baryons and mesons.
Namely, a very successful description of both the NN -
and YN -scattering data is obtained with meson-baryon
coupling parameters which are almost all explained by

the QPC-model. This at the same time in obediance of
the strong constraint of no bound states in the S = −1-
systems. Therefore, the ESC16 model of this paper is
an important further step in the determination of the
baryon-baryon interactions for low energy scattering and
the description of hypernuclei in the context of broken
SU(3)-symmetry. The values for many parameters, which
in previous work were considered to be free to a large ex-
tend, are now limited strongly, and tried to be made con-
sistent with the present theoretical view on low energy
hadron physics. This is in particularly the case for the
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F/(F +D)-ratios of the MPE-interactions. These ratio’s
for the vector- and scalar-mesons are rather close to the
QPC-model predictions.
In analyzing the effect of the Pauli-blocking repulsion

the conclusion is that from the standpoint of the BB
scattering-data fitting such a repulsion is not strong.
This conclusion is in line with arguments from strong-
coupling QCD (SCQCD). Namely, it has been argued in
[68] that quark-exchange effects are small.
The G-matrix results show that basic features of hyper-
nuclear data are reproduced nicely by ESC16, improving
the weak points of the soft-core OBE-models NSC89 [13],
NSC97 [14], and ESC04-models [6–8]. The ESC16-model
is superior for hypernuclear data and many aspects of
the effective (two-body) interactions in hypernuclei can
be obtained using the ESC16-model. For example, this
is the case for the well depth UΣ.
Experience has shown that a good fit to the scatter-

ing data not necessarily means success in the G-matrix
results. To explain this one can think of two reasons: (i)
the G-matrix results are sensitive to the two-body inter-
actions below 1 fm, whereas the present YN-scattering
data are not, (ii) other than two-body forces play an im-
portant role. However, since the NN+Y N -fit is so much
superior for ESC16 than for OBE-models, we are inclined
to look for solutions to the remaining problems outside
the two-body forces. A natural possibility is the pres-
ence of three-body forces (TBF) in hypernuclei which
can be viewed as generating effective two-body forces,

which could solve the well-depth issues. In the case of
the ∆BΛΛ also TBF could be operating. This calls for
an evaluation of the TBF’s NNN , ΛNN , ΣNN , ΛΛN ,
etc. for the soft-core ESC-model, consistent with its two-
body forces.
The ΛN p-waves seem to be better, which is the result

of the truly simultaneous NN + Y N -fitting. This is also
reflected in the better KΛ-value, making the well-known
small spin-orbit splitting smaller.
In the course of the development of the ESC-model for
baryon-baryon, up to and including ESC06 [69] it was
tried to solve all problems for NN and YN, both for scat-
tering and hypernuclear well-depth’s, by keeping the po-
tentials restricted to meson-exchange. For that purpose,
in ESC06 a ’super-extended’ ESC-approach was stud-
ied by including the second generation of the mesons,
i.e. the heavy pseudo-scalar, vector, and scalar meson
nonets. In the Quark-Model they would correspond to
the first radially excited qq̄-states, with masses in the
range 1 GeV/c2 < m < 1.7 GeV/c2. With this extension
it is possible to produce extra repulsion in the Σ+p(3S1),
but correlated with this was an exremely strong attrac-
tion in the Σ+p(1P1) partial-wave. Although the ESC06-
approach is not ruled out by the data, we think that
the solutions presented with ESC16 are much more su-
perior. In the future, such a ’super-extended’ ESC16-
model may be explored. For example, the axial-vector
and heavy pseudoscalar (π(1300)) meson sectors can be
studied more closely.

APPENDIX A: TREATMENT WIDTHS SCALAR AND VECTOR MESONS

The effects of the large width of the vector ρ(760)-meson, and the scalar ǫ(620) and κ(861) mesons are taken into
account via a generalization of the narrow (i.e. stable) meson propagator through the Källen-Lehman representation.
For a narrow meson the propagator is (k0 = 0)

∆(k2) =
1

k2 +m2 − iδ
=

∫ ∞

m2
0

dm′2 ρ(m′2)

k2 +m′2 − iδ
, (A1)

with the spectral function ρ(m′2) = δ(m′2−m2). Here, m2
0 denotes the branchpoint of ∆(k2) in the complex k2-plane.

For the broad mesons we use the spectral functions [70, 71]

ρ(m′2) =
1

π

γ(m′2 −m2
0)

n+1/2θ(m′2 −m2
0)

(m′2 −m2)2 + γ2
(
m′2

m2

)2n
(m′2 −m2

0)
2n+1

, (A2)

with n=1 for the ρ and n=0 for ǫ and κ. Furthermore, m2
0 = 4m2

π and m2
0 = (mπ +mK)2 for respectively the ρ, ǫ and

κ(861). The γ-entity contains the meson width Γ and is defined as

γ = mΓ/(m2 −m2
0)

n+1/2. (A3)

Substituting (A2) into (A1) gives for n=0

∆(k2) =

[
k2 +m2 + γ

(
k2

m2

)n (
k2 +m2

0

)n+1/2
]−1

. (A4)

This formula is approximately also correct for n=1 for not too large k2 (see [71, 72]). Note the following properties
of (A4):
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(i) it has a cut in the complex k2-plane with a branchpoint at the (ππ)- or (πK)-threshold, connected to the decayof
these mesons. Moreover, it has the proper theshold behavior at these thresholds.

(ii) it shows the correct Breit-Wigner form in the neighborhood of k2 = m2, with a width Γ.

After Fourier transformation to configuration space of (A1) with the spectral function ρ(m′2 one obtains for these
broad mesons a (contineous) superposition of Yukawa potentials wit the mass distribution 2m′ ρ(m′2). For the purpose
of practical calculations these potentials are approximated by the sum of two Yukawa potentials from two effective
narrow mesons (”dipole” fit)

∫ ∞

m2
0

dm′2 ρ(m′2)
e−m′r

r
≈ β1

e−m1r

r
+ β2

e−m2r

r
. (A5)

Here, m0 = 2mπ and m0 = (mπ +mK) in the case of the (ρ, ε) and κ respectively.
To determine the (β1,2,m1,2) parameters a possibility is to fit the left and right hand side of (A5) for a certain

range of r-values. We follow the Bryan-Gersten analytical procedure given in [70], which runs as follows: One writes
(k2 ≡ k2)

∆(k2) ≈ ∆dip(k
2) =

β1
k2 +m2

1

+
β2

k2 +m2
2

, (A6)

and requires that ∆dip = ∆ is satisfied for the 4 conditions: (1) k2 → ∞, (2) k2 = 0, (3) k2 = m2, and (4) the
derivatives match at k2 = 0, i.e. d∆/dk2 |k2=0 = d∆dip/dk

2 |k2=0. The solution of these conditions determines the
”dipole” parameters. The results are given in Table XX.

TABLE XX: Values for the ”dipole” approximation for the broad ρ(760,Γ = 120), ǫ(620,Γ = 464), and κ(861,Γ = 450). Masses
and width’s are in MeV.

meson n β1 m1 β2 m2

ρ(760) 1 0.19068 647.436 0.79649 898.117
ǫ(620) 0 0.28193 455.159 0.718071 1158.562
κ(861) 0 0.47824 813.628 0.521761 1947.286

APPENDIX B: MPE INTERACTIONS AND SU(3)

Below, σ,a0,A1, . . . are short-hands for respectively the baryon SU(3)-singlet and -octet densities ψ̄ψ, ψ̄λψ,
ψ̄γ5γµλψ, . . .. Here, λi, i = 0, 1, ..., 8 are the Gell-Mann SU(3)-matrices.

For the pseudoscalar-, vector-, scalar-, and axial-vector mesons The SU(3) octet and singlet states appearing in the
meson-pairs, denoted by the subscript 8 respectively 1, are in terms of the physical ones defined as follows:

(i) Pseudo-scalar-mesons:

η1 = cos θP η
′ − sin θP η

η8 = sin θP η
′ + cos θP η

Here, η′ and η are the physical pseudo-scalar mesons η(957) respectively η(548).

(ii) Vector-mesons:

φ1 = cos θV ω − sin θV φ

φ8 = sin θV ω + cos θV φ

Here, φ and ω are the physical vector mesons φ(1019) respectively ω(783).

Then, one has the following SU(3)-invariant pair-interaction Hamiltonians:

1. JPC = 0+−: SU(3)-singlet couplings Sα
β = δαβσ/

√
3,

HS1PP =
gS1PP√

3

{
π · π + 2K†K + η8η8

}
· σ
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2. JPC = 0++: SU(3)-octet symmetric couplings I, Sα
β = (S8)

α
β ⇒ (1/4)Tr{S[P, P ]+},

HS8PP =
gS8PP√

6

{
(a0 · π)η8 +

√
3

2
a0 · (K†τK)

+

√
3

2

{
(K†

0τK) · π + h.c.
}

−1

2

{
(K†

0K)η8 + h.c.
}

+
1

2
f0

(
π · π −K†K − η8η8

) }

3. JPC = 1+−: SU(3)-octet symmetric couplings II, Sα
β = (B8)

α
β ⇒ (1/4)Tr{Bµ[Vµ, P ]+},

HB8V P =
gB8V P√

6

{
1

2

[(
B

µ
1 · ρµ

)
η8 + (Bµ

1 · πµ)φ8
]

+ +

√
3

4

[
B1 · (K∗†τK) + h.c.

]

+

√
3

4

[
(K†

1τK
∗) · π + (K†

1τK) · ρ+ h.c.
]

− 1

4

[
(K†

1 ·K∗)η8 + (K†
1 ·K)φ8 + h.c.

]

+
1

2
H0

[
ρ · π − 1

2

(
K∗† ·K +K† ·K∗

)
− φ8η8

] }

4. JPC = 1−−: SU(3)-octet a-symmetric couplings I, Aα
β = (V8)

α
β ⇒ (−i/

√
2)Tr{V µ[P, ∂µP ]−},

HV8PP = gA8PP

{
1

2
ρµ · π×

↔

∂µπ +
i

2
ρµ · (K†τ

↔

∂µK)

+
i

2

(
K∗†

µ τ (K
↔

∂µπ)− h.c.

)
+ i

√
3

2

(
K∗†

µ ·

(K·
↔

∂µη8)− h.c.

)
+
i

2

√
3φµ(K

†
↔

∂µK)

}

5. JPC = 1++ SU(3)-octet a-symmetric couplings II, Aα
β = (A8)

α
β ⇒ (−i/

√
2)Tr{Aµ[P, Vµ]−}:

HA8V P = gA8V P

{
A1 · π × ρ

+
i

2
A1 ·

[
(K†τK∗)− (K∗†τK)

]

− i

2

([
(K†τKA) · ρ+ (K†

AτK
∗) · π

]
− h.c.

)

−i
√
3

2

([
(K† ·KA)φ8 + (K†

A ·K∗)η8

]
− h.c.

)

+
i

2

√
3f1

[
K† ·K∗ −K∗† ·K

] }

The relation with the pair-couplings used in this paper and paper I, see also [30], is gS1PP /
√
3 = g(ππ)0/mπ, gA8V P =

g(πρ)1/mπ etc.

APPENDIX C: JPC = 1+− AXIAL-PAIR POTENTIALS

In this appendix we document the JPC = 1+−-axial (πω) 1-pair potentials, which have not been reported elsewhere
yet. The involved meson-pairs can be read off from the SU(2) structure of the interaction Hamiltonian (4.27).

Below, we denote the type of potentials by writing V
(n)
σ+T , where n = 0, 1 refers to the (1/M)-order, and the subscript

σ + T indicates that only the spin-spin and tensor contributions are given here and not the spin-orbit potentials.
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1. NN-Potentials (S = 0, I = 1)-exchange, (πω1) etc.

To be specific, consider (πω)1-exchange for NN and elastic ΣN potentials. One obtains:

1. The leading, i.e. (1/M)0-terms in momentum and configuration space are

Ṽ
(0)
σ+T (q,k) = +g(πω)1;NNfNNπGNNω

(
σ1 · kσ2 · k1 + σ1 · k1σ2 · k

)
× 1

ω2
1ω

2
2

· 1

m2
πM

, (C1a)

V
(0)
σ+T (r) = −2g(πω;NN)fNNπGNNω

[
F

(0)
B,σ(r)σ1 · σ2 + F

(0)
B,T (r) S12

]
· 1

m2
πM

, (C1b)

where

F
(0)
B,σ(r) =

1

3

(
2

r
F ′G+ F ′G′ + F ′′G

)
, F

(0)
B,T (r) =

1

3

(
−1

r
F ′G+ F ′G′ + F ′′G

)
. (C2)

Above ω1 =
√
k2
1 +m2

π and ω2 =
√
k2
2 +m2

ω. For the Fourier transforms of the momentum pair-exchange potentials
with gaussians form factors, we refer to the basic papers [30]. The superscript for the functions FB,σ,T refers to the
denominators 1/(ω2

1ω
2
2) in (C1). For these denominators, in the notation of [30], the functions F and G are

F (r) = I2 (r,mπ,Λπ) , G(r) = I2 (r,mω,Λω) . (C3)

Similar formulas apply to e.g. ΣN-potentials, and also to (K∗K)1-pair exchange.
2. The non-leading, i.e. (1/M)-terms, are

Ṽ
(1)
σ+T (q,k) = −g(πω)1;NNfNNπGNNω

1

2MN

(
σ1 · kσ2 · k2 + σ1 · k2σ2 · k

)
× 1

ω1ω2(ω1 + ω2)
· 1

m2
πM

, (C4a)

V
(1)
σ+T (r) = +2g(πω)1;NNfNNπGNNω

mπ

2MN

[
F

(1)
B,σ(r)σ1 · σ2 + F

(1)
B,T (r) S12

]
· 1

m3
πM

, (C4b)

where now superscript for the functions F
(1)
B,σ,T refers to the denominators 1/[ω1ω2(ω1 + ω2)] in (C4). For this

denominator the basic Fourier transform is [30]

F
(1)
B (r) =

2

π

∫ ∞

0

dλ F (Λ, r) G(λ, r) , (C5)

where the functions F and G are

F (r) = I2 (r,mπ(λ),Λπ) , G(r) = I2 (r,mω(λ),Λω) , (C6)

with the understanding that under the λ-integral in (C5) there occur the combinations

F
(1)
B,σ(r) =

1

3

(
2

r
FG′ + F ′G′ + F G′′

)
, F

(1)
B,T (r) =

1

3

(
−1

r
FG′ + F ′G′ + FG′′

)
. (C7)

3. The symmetric spin-orbit (1/M)2-terms, are

Ṽ
(2)
SLS(q,k) = −g(πω)1;NNfNNπGNNω

1

M2
N

i

2
(σ1 + σ2) · q× k2 ×

1

ω2
2

, (C8a)

V
(2)
SLS(r) = −g(πω)1;NNfNNπGNNω

1

m2
πM

2
N

I0(mπ, r)

(
−1

r

d

dr
I2(mω,ΛV , r)

)
L · S , (C8b)

where

I0(ΛP , r) =
1

4π

1

2
√
π

(
ΛP

mπ

)3

exp

(
−1

4
Λ2
P r

2

)
. (C9)

We note that important contributions to the anti-symmetric spin-orbit potentials are proportional to (1/MN −
1/MY ) ∼ 1/M2. Also, spin-orbit potentials from OBE are order 1/M2. Therefore, we included this SLS-potential in
the ESC16-model.
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2. YN-potentials, (S=0,I=0)-Exchange, (πρ)0 etc.

The above given potentials also occur in YN- and YY-channels, of course. In this subsection we give as an illustra-
tion only the 1/M -contribution for the spin-spin and tensor. Again, to be specific, now we consider (πρ)0-exchange
for ΛN potentials. We obtain:

Ṽ
(1)
σ+T (q,k) = −2gΛΛ;(πρ)0fNNπGNNρ

1

2MN
[σ1 · kσ2 · k2]×

1

ω1ω2(ω1 + ω2)

−2gNN ;(πρ)0fΛΣπGΛΣρ
1

MΛ +MΣ
[σ1 · k2σ2 · k]×

1

ω1ω2(ω1 + ω2)
. (C10)

In configuration space we get

V
(1)
σ+T (r) = +2gΛΛ;(πρ)0fNNπGNNρ

1

2MN

[
G

(1)
B,σ(r)σ1 · σ2 +G

(1)
B,T (r) S12

]

+2gNN ;(πρ)0fΛΣπGΛΣρ
1

MΛ +MΣ

[
G

(1)
B,σ(r)σ1 · σ2 +G

(1)
B,T (r) S12

]
, (C11)

where

G
(1)
B,σ(r) =

1

3

(
2

r
Fπ ⊗ F ′

ω + F ′
π ⊗ F ′

ω + Fπ ⊗ F ′′
ω

)
, (C12a)

G
(1)
B,T (r) =

1

3

(
−1

r
Fπ ⊗ F ′

ω + F ′
π ⊗ F ′

ω + F ⊗π F
′′
ω

)
. (C12b)

Here, again the superscript on the G-functions refers to the denominator in momentum space. For the denominators
in (C10) the functions F ⊗ g are given by[30]

Fα ⊗ Fβ(r) =
2

π

∫ ∞

0

dλ Fα(λ, r)Fβ(λ, r) , (C13)

where

Fα(λ, r) = e−λ2/Λ2
αI2(

√
m2

α + λ2, r) . (C14)

3. YN-potentials, (S = ±1, I = 1/2)-Exchange, (πK∗)1/2 etc.

Again, to be specific, consider (πK∗)1/2-exchange for ΛN potentials. One obtains:

The leading, i.e. (1/M)0-potentials

Ṽ
(0)
σ+T (q,k) = +g(πK∗);ΛNfNNπGNΛK∗

(
σ1 · kσ2 · k1 + σ1 · k1σ2 · k

)
× 1

ω2
1ω

2
2

+g(πK∗);ΛNfΛΣπGNΣK∗

(
σ1 · kσ2 · k1 + σ1 · k1σ2 · k

)
× 1

ω2
1ω

2
2

. (C15)

The configuration space potentials are:

V
(0)
σ+T (r) = −2g(πK∗);ΛNfNNπGNΛK∗

(
F

(0)
B,σ(r)σ1 · σ2 + F

(0)
B,T S12

]
· Pf

−2g(πK∗);ΛNfΛΣπGNΣK∗

(
F

(0)
B,σ(r)σ1 · σ2 + F

(0)
B,T (r) S12

]
· Pf . (C16)

The non-leading, i.e. (1/M)1-potentials are

Ṽ
(1)
σ+T (q,k) = −g(πK∗);ΛNfNNπGNΛK∗

1

2MN

[(
σ1 · kσ2 · k2 + σ1 · k2σ2 · k

)]
1

ω1ω2(ω1 + ω2)

−g(πK∗);ΛNfΛΣπGNΣK∗

1

MΛ +MΣ

(
σ1 · kσ2 · k2 + σ1 · k2σ2 · k

)
1

ω1ω2(ω1 + ω2)
. (C17)
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The configuration space potentials are:

V
(1)
σ+T (r) = +2g(πK∗);ΛNfNNπGNΛK∗

mπ

2MN

(
G

(1)
B,σ(r)σ1 · σ2 +G

(1)
B,T (r) S12

]
· Pf

+2g(πK∗);ΛNfΛΣπGNΣK∗

mπ

MΛ +MΣ

(
G

(1)
B,σ(r)σ1 · σ2 +G

(1)
B,T (r) S12

]
· Pf . (C18)

Above, Pf is the flavor-exchange operator, discussed in [13, 24]. In addition, we have to multiply these potentials
with the isoscalar factors appearing in the Hamiltonian (4.26). For example for K − ρ and K − φ pairs this factor is

+
√
3/4 respectively −1/4, etc.

APPENDIX D: EXCHANGE POTENTIALS

In this section we follow our multi-channel description formalism in the treatment of the exchange potentials [8].

In the case of the anti-symmetric spin-orbit the exchange potential requires some attention, because its special features.
The potentials in configuration space are described in Pauli-spinor space as follows

V = VC + Vσσ1 · σ2 + VT S12 + VSLS L · S+ + VALS L · S− + VQ Q12 . (D1)

Here, the definition of the matrix elements of the spin operators are defined as follows

(
χ†
m′(Λ)χ

†
n′(N)|σ1 · σ2|χ†

m(Λ)χ†
n(N)

)
≡

(
χ†
m′(Λ)|σ1|χ†

m(Λ)
)
·
(
χ†
n′(N)|σ1|χ†

n(N)
)
, (D2)

and similarly for the SU(2) and SU(3) operator matrix elements. In Fig. 8 the labels (m,n,m′, n′) refer to the spin,
and the labels (α, β, α′, β′) refer to unitary spin, like SU(2) or SU(3). The momenta on line 1 are p and p′ for
respectively the initial and the final state. Likewise, the momenta on line 2 are −p and −p′ for respectively the initial
and the final state.

m, α Λ

m’, α′ N n’, β′Λ

n, βN

1 2

FIG. 8: Particle- and spin-exchange for ΛN .

In graph Fig. 8 we encounter the matrix elements

(σ1)m′,m =
(
χ†
m′(N)|σ1|χ†

m(Λ)
)
,

(σ2)n′,n =
(
χ†
n′(Λ)|σ2|χ†

n(N)
)

(D3)

1. Spin-Exchange Potentials

In order to project the exchange potentials on the
forms in (D1) we have to rewrite these matrix elements
in terms of those occurring in (D2). This can be done
using the spin-exchange operator Pσ:

Pσ =
1

2
(1 + σ1 · σ2) . (D4)

Properties of this operator are

Pσ† = Pσ , P 2
σ = 1, (D5a)

Pσ χ1,mχ2,n = χ1,nχ2,m, (D5b)

Pσ σ1,k Pσ = σ2,k, (D5c)

Pσ σ2,k Pσ = σ1,k. (D5d)

Similar properties hold for the flavor-exchange operator
Pf , but now for the SU(2) isospin operators τk, or the
SU(3) octet operators λk.
In the following we make only explicit the spin labels,
but similar operations apply to the SU(2) or SU(3) labels.



36

Using this spin-exchange operator, we find that
(
χ†
1,m′(N)χ†

2,n′(Λ)|σ1 ⊗ 12 − 11 ⊗ σ2|χ†
1,m(Λ)χ†

2,n(N)
)
=

(
χ†
2,n′(N)χ†

1,m′(Λ)|P †
σ

(
σ1 ⊗ 12 − 11 ⊗ σ2

)
Pσ Pσ|χ†

1,m(Λ)χ†
2,n(N)

)
=

−
(
χ†
1,m′(Λ)χ

†
1,n′(N)| (σ1 ⊗ 12 − 11 ⊗ σ2) Pσ|χ†

1,m(Λ)χ†
2,n(N)

)
. (D6)

Above, we added the subscripts 1 and 2 to indicate explicitly the baryon line that is involved.

2. Spin- and Strangeness-Exchange Potentials

In addition to the spin-exchange, we also have the flavor-exchange operator Pf active here. So, in total we have
to apply −Pσ Pf = Px, i.e. the space-exchange operator. This latter relation follows from the anti-symimetry of the
two-baryon states, which implies that only states with PfPσPx = −1 are physical. All this implies

1. For the ALS-potential derived in K-exchange etc. one has in (D1), considering both spin- and flavor-exchange, the
operator

ALS ⇒ 1

2
(σ1 − σ2) · L Px (D7)

2. For the SLS-potential derived in K-exchange etc. one has in (D1), considering both spin- and flavor-exchange, the
operator PfPσ, but since

σ1 · σ2 σ1,k = σ2,k + iǫklm σ1,lσ2,m ,

σ1 · σ2 σ2,k = σ1,k + iǫklm σ2,lσ1,m ,

one derives easily that

Pσ (σ1 + σ2) · L = (σ1 + σ2) · L , (D8)

and therefore, similarly to (D6) we have, with the inclusion of the flavor labels,
(
χ†
1,m′α′(N)χ†

2,n′β′(Λ)|σ1 ⊗ 12 + 11 ⊗ σ2|χ†
1,mα(Λ)χ

†
2,nβ(N)

)
=

(
χ†
2,n′β′(N)χ†

1,m′α′(Λ)|P †
fP

†
σ

(
σ1 ⊗ 12 + 11 ⊗ σ2

)
|χ†

1,mα(Λ)χ
†
2,nβ(N)

)
=

(
χ†
1,m′α′(Λ)χ

†
1,n′β′(N)| (σ1 ⊗ 12 + 11 ⊗ σ2) Pf |χ†

1,mα(Λ)χ
†
2,nβ(N)

)
. (D9)

So, for the SLS-potential derived in K-exchange etc. one has in (D1), considering both spin- and flavor-exchange, the
operator

SLS ⇒ 1

2
(σ1 + σ2) · L Pf (D10)

This treatment for the SLS-potential also applies to the central-, spin-spin-, tensor-, and quadratic-spin-orbit
potentials as well, of course.

We conclude this section by noticing that we have found, using our multi-channel set-up the same prescriptions for the
treatment of the flavor-exchange potentials as in [24]. For the treatment of the ALS-potential for S = ±1-exchange,
our prescription here is more clear. For example in the case of the coupled 1P1 −3 P1 system our prescription is
unambiguous, and given by the Px-operator, which is the same for both partial-waves coupled in this case.

APPENDIX E: DERIVATION BDI ALS-POTENTIALS FOR STRANGE-MESON-EXCHANGES

The contributions to the P8-spinor invariant, see [25],

P8 = 2

(
σ1 · qσ2 · k− σ1 · kσ2 · q

)
, (E1)
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p

p’

-p

-p’

-p’’
k

(a)

p

p’

-p

-p’

p’’
k

(b)

FIG. 9: K- and K∗-exchange time-ordered graphs (a) and (b).

for (K,K∗)-exchange were given by Brown, Downs, and Iddings (BDI) [17]. Here we derive these for (K,K∗), and in
particular for the pseudoscalar K within the ps-pv theory.

1. K-exchange ALS-potential (PS-PV Theory)

We derive the K-exchange potential using the PV-theory, and show that we get the BDI-answer for the anti-
symmetric spin-orbit potential (ALS). For graph (a) we get from the vertices the matrix element

(a) : − f2P
m2

π

[
σ1 · k+

2ω

MΛ +MN
σ1 · q

] [
−σ2 · k+

2ω

MΛ +MN
σ2 · q

]
· 1

2ω

−1

ω − a

= − f2P
m2

π

[
σ1 · kσ2 · k− 2ω

MΛ +MN
(σ1 · kσ2 · q− σ1 · qσ2 · k)

]
· 1

2ω(ω − a)
, (E2a)

(b) : − f2P
m2

π

[
σ1 · k− 2ω

MΛ +MN
σ1 · q

] [
−σ2 · k− 2ω

MΛ +MN
σ2 · q

]
· 1

2ω

−1

ω + a

= − f2P
m2

π

[
σ1 · kσ2 · k+

2ω

MΛ +MN
(σ1 · kσ2 · q− σ1 · qσ2 · k)

]
· 1

2ω(ω + a)
, (E2b)

where a =MΛ −MN . Summing these contributions gives 4

ṼK(q,k) = − f2P
m2

π

[
1

2ω

{
1

ω − a
+

1

ω + a

}
σ1 · kσ2 · k

+
1

MΛ +MN

{
1

ω − a
− 1

ω + a

}
(σ1 · kσ2 · q− σ1 · qσ2 · k)

]
Pf

= − f2P
m2

π

[
σ1 · kσ2 · k− 2

MΛ −MN

MΛ +MN

(
σ1 · kσ2 · q− σ1 · qσ2 · k

)]
Pf · 1

ω2 − a2
(E3)

4 The P-operators occur in the transition to configuration space.
In this appendix, in contrast to elsewhere in this paper, we in-
clude the P-operators in the momentum-space formulas only as
a reminder.
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We notice that this result corresponds with the answer in the PS-PS theory. All this in the approximation (MΛ +
MN )−1 = (1/MΛ + 1/MN )/4. Now, using the definitions in [13, 25] we have

P8 = 2

(
σ1 · qσ2 · k− σ1 · kσ2 · q

)
,

P6 = (i/2) (σ1 − σ2) · n , n = p× p′ = q× k ,

with the relation [17] P8 = − (1 + σ1 · σ2) P6 = 2PxPf P6. This leads to the following expression

ṼK(q,k) = − f2P
m2

π

[
σ1 · kσ2 · k+ 2

MΛ −MN

MΛ +MN
· (i/2) (σ1 − σ2) · n PxPf

]
Pf · 1

ω2 − a2
(E4)

2. K∗-exchange ALS-potential

Upon inspection, we find that the only contribution to the P8-invariant is given by

ṼK∗(q,k) ≈ 1

4

G13G24

ω2 − a2
σ1 ·

(
p

MN
− p′

MΛ

)
σ2 ·

(
p

MΛ
− p′

MN

)
Pf

=
1

4

G13G24

ω2 − a2

[
σ1 ·

{(
1

MN
− 1

MΛ

)
q− 1

2

(
1

MN
+

1

MΛ

)
k

}
·

σ2 ·
{(

1

MΛ
− 1

MM

)
q− 1

2

(
1

MΛ
+

1

MN

)
k

}]
Pf

=
1

4

G13G24

ω2 − a2

[
1

4

(
1

MN
+

1

MΛ

)2

σ1 · kσ2 · k−
(

1

MN
− 1

MΛ

)2

σ1 · qσ2 · q

−1

2

(
1

M2
N

− 1

M2
Λ

)(
σ1 · qσ2 · k− σ1 · kσ2 · q

)]
Pf , (E5)

which gives the anti-symmetric spin-orbit potential

ṼK∗(q,k) =
1

4

G13G24

ω2 − a2

(
1

M2
N

− 1

M2
Λ

)
(i/2) (σ1 − σ2) · n Px . (E6)

Finally, we mention the relation with a sometimes used
other form for the antisymmetric spin-orbit. Namely, we
have σ1 ·σ2 (σ1 × σ2) = −2i(σ1−σ2)−σ1×σ2, so that

(σ1 − σ2) = iPσ (σ1 × σ2) . (E7)
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