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Abstract

To complete the Extended-Soft-Core (ESC) model, we derive in this note the nucleon-nucleon
and hyperon-nucleon potentials due to meson-pairs with J©¢ = 07+, with derivative couplings. In
effective chiral field theory models this represents the so called c3-term. In this note we assume
that it is dominated by the Ags-resonance. This enables the SU(3) generalization to all baryon-
baryon channels where the baryons belong to the {8}-irrep, containing N, A, ¥, and Z, i.e. the
JPC = %+—states. The potentials are worked out explicitly, and the SU(3)-matrix elements are
constructed for all two-baryon channels.
Important applications are: (i) Construction of a new ESC-model, (ii) The SU(3)-generalization

of the Fugita-Myazawa threebody forces.
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I. INTRODUCTION

To complete the Extended-Soft-Core (ESC) model, we derive in this note the nucleon-
nucleon potential due to meson-pairs with J¢ = 0**, with derivative couplings. The
philosophy and technical devices used in this derivation are described in detail in [1, 2]. In
connection with the ESC-model we mention the following points:

e In the Nijmegen soft-core models, the form factor is taken to be Gaussian. This means
that the form factors do not contain the two-meson contributions accurately, but at
best in some mean sense.

e Many unstable boson-exchanges H; contain in principle also effects from their decay
channels. It is especially important to include the long and intermediate range parts
in nucleon-nucleon potentials designed for the interactions where Tj,, < 400 MeV.

e Meson-baryon resonances R;, notably the Asz3(1236)-resonance, in low energy BB-
channels can be approximated as non-propagating and the corresponding box graphs
lead to long range potentials.

As pointed out in [1] all three points are met by the inclusion of the meson-pair vertices.
In particularly 2m-exchange effects can be included by the meson-pair potentials, see Fig. 1.
Also, when the two-meson contributions are taken care off by the pair interactions, the
Gaussian form factors more truly represent the effects of the quark composition composition
of the nucleons.
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FIG. 1: Meson-pair description and low-energy approximation.

As pointed out by Ko and Rudaz [3] besides the most simple Lagrangian £, = JonnOTCTC
also the coupling with two derivatives appears in the linear o-model Lagrangian, which is
useful in keeping the scalar meson width’s within reasonable bounds as the scalar mass
increases. Also, such couplings and the corresponding contribution to the BB-potentials
were considered in the context of an SUy(3) generalization in [4]. This Lagrangian reads

L8, = G rr0 (0, - 0"7) Also, such a coupling of the scalar mesons can give an account for
the cs-term in the (N N27 effective field-theory interaction Lagrangian [5, 6]
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E(l) = —7; 801D71m7r 2

+ 4C3DM - D* + 2040'/“,7' -D* x D¥ w s (11)

where D =1+ «w?/F? and D, = Dilauﬂ'/Fﬂ, with F; = 2f, = 185 MeV. The c3-term has
been determined in e.g. nucleon-nucleon [9]. Notice that because we use the conventions
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of [7] there is a minus sign in the cs-term. Since we have shown elsewhere [8] that tensor-
meson exchange can account only 20% of the cs-coefficient, we assume that the remaining
part comes from scalar-meson exchange. This is the motivation for the derivation given in
this note of the nucleon-nucleon pair-potentials due to the derivative coupling of a scalar
(m)o-pair coupling.

Application of the c3-term NN-potential, with a gaussian cut-off A ~ 1 Gev/c?, to a fit
in nucleon-nucleon, using the ESC-model, reveals that it is impossible to reach a sensible
description of the NN-phases when we fix the value at c3 = —5 GeV ™!, obtained in [9]. This
is caused by the large oscillations of this potential below 1 fm. Only by making A much
smaller it should be possible to use such a potential in the ESC-model. In view of this fact,
we analyze an interpretation of this interaction in terms of scalar and diffractive exchange,
using an expansion of the # N-amplitude valid for low ¢-values. It turns out that the c3-term
can be ascribed to a form factor effect in the NN-system. As such this interaction is largely
already contained implicitly in the ESC-model.

However, this is inadequate for the description of the three-body NNN force (TBF)
using the ESC-model pair-interactions. Namely, it appears not possible to reproduce the
Fugita-Miyazawa three-nucleon interaction [10] . Also, for YN- and YNN-forces the SU(3)-
structure of the decuplet resonances As3(1236), 3*(1385), etc. is not yet represented in the
ESC-modeling. Therefore, it will be a natural next step to incorporate the cs-pair inter-
action, interpreted as coming from the decuplet resonances, in the ESC-model BB-potentials.

In section II we give the 7w N N-vertex. In section II-V the consequences for the nucleon-
nucleon potential are worked out up the 1/M-corrections. This is similar to the techniques
employed for the other pair potentials, see [1]. In Appendices A and B some useful definitions
and results are collected that were not given in the references. In Appendix C we give
the small ¢t interpretation of the c3 interaction, and discuss how it is accomodated by the
ESC-model. In Appendix VI the SU(3) structure of the cs-term in (1.1) is derived. In
Appendix VII useful SU(2) Glebsch-Gordon coefficients are listed. In Appexdix E the gauge-
invariant /N Ags-coupling is applied to the computation of the Agzs-resonance contribution
to the mN-amplitude. The corresponding c; 3-coefficients are computed, and the relation
with the FM-interaction is given.

II. DERIVATIVE SCALAR-PAIR NN-INTERACTION HAMILTONIANS

We consider the 1N — 7N amplitude and denote the initial and final pion momenta
respectively as ¢ and ¢’. Similarly, the initial and final nucleon momenta are denoted by p
and p’. As usual, we introduce the variables

1 / 1 ! !/ /
P=§(p +p) Q=§(q +q) , A=¢ —q=p —p. (2.1)

The interaction Hamiltonian for the derivative scalar type (7)-coupling to nucleons reads
as follows

5?2 — +fni§(aﬂ.aun> ($) . (2.2)
Comparison of (2.2) and (1.1) yields ggo = +4(csmy) (my/Fy)* ~ —1.60.
Remark: check conventions and signs!



For the interaction Hamiltonian (2.2) we get the 'pionic’ vertex factor
1
(¢'10u - 0"7lq) = 2(' - q) = 2(Q* = 7A%) . (2.3)
In the CM-system, we use the customary combinations of nucleon momenta:
1
a=5@+p), k=@ -p) =k +ks. (24)

The nucleon-spinor vertex factor is

L(',p) = (¥ (W) |p) = u(p)ulp)

_ \/(E’Jr]\;[j/([f—kM) {1_ (E,iJ;?EEM)}

Q

1 1 1

Here, the reduction to the Pauli-spinors is carried through in the CM-system. In the follow-
ing we evaluate the potentials up to and including the 1/M-corrections.

III. DERIVATIVE-SCALAR-PAIR EXCHANGE: 1-PAIR-EXCHANGE

The general formulas for the fourth-order meson-pair exchange kernels are given in [1],
equations (2.1) and (2.2). Here, we use the same conventions w.r.t. to the exchanged
momenta ki‘ 5 = (wi2,ki2), and the nomenclature of the contributing momentum-space
graphs. The connection with the momenta ¢, ¢’ introduced in section 2 will be given below
in this section.

The pair-potentials can be written as

() ) (@ 8) ¢ Chd’ks agiore g 002
‘/Pair(aﬂ) = C"(ap) g™ (ap) W € Fo (ki) F(k3) -
x Y 0%, (ki wiska,ws) DY (wr,ws) - (3.1)
p
Here, the index n distinguishes the 1-pair (n = 1) and two-pair (n = 2) meson-pair

exchange, and the index p distinguishes the different time-ordered graphs. The labels
(af) refer to the particular pion-pair, or more generally pseudo-scalar meson-pair, that
is being exchanged. So, in this note always o« = n,8 = w. For the couplings we have

2
gV = oy, (fr/mz)? and g? = (g(sfﬂ)o) , with powers of m, depending on the definitions

of the Hamiltonians. Note that in this paper the isospin factor C™ = 6, see [1], Table I.
In the following of these notes we suppress this isospin factor C™ in the formulas for the
potentials.



In the adiabatic approximation, i.e. E(p) & M, the energy denominators of the various
time-ordered graphs for 1-pair exchange are

1 1
DW(wy,ws) = ,
@ ( ! 2> 2&)1&)2 CL)Q(CUl +w2)
(1) _ 1
D, (w1, wa) = m;
D(l)(w1 WQ) = L L . (32)
¢ ’ 2(4.)1(.4.)2 w1 (w1 + w2)
A. MTPE, One-Pair-Exchange with Vertex I
The (NNnrm)-vertex for H; we write as, cfrm. (2.5),
_ gs v 1 _
T Gu) = 22 20 (QuQu ~ 1A, ) -alp!u(p)
gs2 s 1o /
= 2= —=-A").T . 3.3
o= (Q 1 ) ¥, p) (3.3)

The reduction to Pauli-spinors in the CM-system is given above.
To evaluate the contribution from the graphs (a), (b), and (c), we need the Q*-vector
and the A¥-vector. One has

] (a) : Q" = (—wy +wa, +ky — ko) /2
Q=30+ =1 (1) : Q"= (twi +wy, +ky —ky) /2 (3.4)
(c) + Q" = (+w1 — w2, +ki — kg) /2

(a) © AP = (+w + wy, —ki — ko)
AF = (¢ —q)* =< (b) : A = (—w; + ws, —k; — ky) (3.5)
(C) . A,u = (—w1 — Wy, —k1 — kg)

From (3.4) and (3.5) one deduces

1 (CL) D —Wiwy + k1 . kQ

q q=0Q*— ZAQ =< (b) : Fwiws + ky - ko (3.6)
() : —wiwe + ki - ko

We write the operators in (3.3) factorized as a product of the operator for the 1-pair vertex
and an operator for the two single pion couplings, i.e.

2
08, (st = 05 0 . 0679 =~ (22) ks i b
6&%24)) - +2%<q/ : Q) = +2% (iwlw2 + ki - kg) . (37)

™ T

Next, we evaluate the contribution to the pair-vertex summed over the graphs:

> 14 ®) - alp)] DIV (wr,ws) (3.8)

p=a,b,c



The different contributions are:

1) Z [45(P)qo(p)] DY (wi,ws) =0,

p=a,b,c
' (1) _ki-ke
2) Y [d®)-al)] D (wiw) = —— (3.9)
p:azbzc 1%2

The mirror graphs give similar contributions and are included by making the replacement
1
0'1—>§(0'1+0'2) , (310)

everywhere in the matrix elements. Collecting now all results, and selecting the symmetric,
and taking into account that the pair vertex can be left and right in the 1-pair graphs, one
finally obtains the contribution

Z 5§r§r2’1)(k1, wi; ko, wz)D,(,l)(wl, wy) =
p
gs2 fr\? i 1
25 ) ) (k) ke =g (@t on) i xka p gy (301)

The Fourier transformation leads to the potential

2
Plid®ky . 1
VSM)(T) = -2 (@) (f—P) /# et By (k) Fy(k3) - (ki - ka)” - —5 o5

m3 ) \mx (2m)6 wiw?

2
= -2 (@) (f—P) lim (Vl . V2)2]2,7r(m7r7711)-[2,7r<m7r7T2>

mf’r s ry,rg—r
gs P\ 2
2
— (m—?r) (m—ﬂ) [T—Qlém(mmrl)fém(mﬂ,rg) + [écﬂ(mﬂ,rl)léfﬂ(mw,7“20%.12)

Notice that the term in the integrand odd under the interchange k; <+ ks vanishes upon
integration. For a definition of the function I5 . (r), and the lateron used I .(r) and F.(r),
we refer to [2, 11].

The non-local central potential, coming from the —(q* +k?/4)/4M?-piece in (2.5) is p(r) =
—(2M,eq/ (4M?) Va(jZ)(r), where ¢(r) is defined as in Eq. (35) of [12]. We expect that
©(r) < 0.05. (The non-local spin-orbit is negected in the Nijmegen work.) The k*/8M?-
piece (2.5) leads to corrections via the extra derivatives [V + 2V - Vo + V3], This leads
to contributions from the third- and fourth-order derivatives of the ¢&(my,r)-functions and
are (presumably) small in view of the m2 /8 M?-coefficient.

IV. 1/M CORRECTIONS

A. Non-adiabatic contributions

The nonadiabatic corrections from the 1/M expansion of the energy denominators is
explained in Ref. [2] and also used in [1], section IV. The expansion of the denominators
gives an extra momentum dependent factor in the numerator, which can be rewritten as
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The one-pair energy denominators become
1 1
2w wo wi(wy + wy)

1 1 1
Dy (wi,ws) = ( + 2>v

2wiws \Wiws  wiws
1 1

2wiwo wi(wy + wo)

Dy (wy,wp) =

D (wy,w2) =

(4.2)

Notice that all D}¢(w;,ws) are symmetric in k; and ko. Therefore, only the terms symmetric
in the exchanged momenta will survive the ki, ks integrations.

The numerator is a product of (i) the nonadiabatic momentum dependent factor, alluded to
above, (ii) the factor in (3.7), and (iii) the 2¢’ - g-factor worked out in (3.6). Taking all this
into account, we arrive at the nonadiabatic correction

3
Vi) = 222 (—) S / ! kld 2 et (1) Fy(K3) -

m3 \ m,

X {(k1 k,)? + 2(0'1+0'2) k; x ks q- (ky — ko)

X Z 0751'21)1 Dna wl7 w2) ’ (43)
where _
07(33;)1) = :I:wlwg -+ k1 . kg . (44)

Here for p = a, ¢ the (—)-sign and for p = b the (+)-sign applies. Using (4.2) and (4.4) the
sum over the graphs in (4.3) is easily performed and yields

1 1 1{11 1
+

§ : (52,1 na
Oﬂ_wp)D wl,wg) = — —_— =
w1 Wo w1 + Wa

} (k; - ko). (4.5)

Wiwg w1 +wy  wiw?

The potentlal (4.3) can now be worked our further, giving for a =7, 8 ==
2,y gs2 (fp\T 1 , 2 s B
Viac (1) = md (mw> M riresr | \ 12 Or10ry + or? or3 11(r1,72)
S (P L aN(F 10N, P
r2 87“1 ror ) \or:  ry0r, Ar3 g3 [ T b2

1 1 0?B1
ey o gs2 (fp)T 1 1 9 :
na,50 <T) mf’r mr M 7”2 Tl,'}‘griﬁ" 87“187'2 (Tb TQ)

0? 0? 1 0 0? 10 0?
2= - —— Bre . (4.6
( Or2or2  riOr 0r2 1y 0ry (97’1> wlr; 7“2)} (4.6)
The functions B,,, and By are defined in Appendix A.

B. Pseudo-vector vertex contributions

The pseudovector vertex gives 1/M-terms as can be seen from

WO ulp) = —i2 o (o~ p) + o (0 +p)] (4.7



where upper (lower) sign applies for creation (absorption) of the pion at the vertex. For
graph (a) the operator for the nucleon line on the right is readily seen to be

2

— (f—P) L |: (wlk% — (,UQk%) — 2q . (w1k2 + U)le) + 220’2 q X (w1k2 — U.)le) (48)
my. /) 2M

The same expression for gragh (b) is obviously obtained from (4.7) by making the the

substitution w; — —wy, and for graph (c) the substitution wy 3 — —w; 2. The mirror graphs

are included by making again the replacement given in (3.10). Combining all this with the

denominators D} (wy,ws) in (3.2) gives the following 1/M-corrections

2
v(5271)(r) — _9s2 <f_P) i/%p (k2)F2(k2) i(ki+ka)r

by m3 \ My M (2m)6
1
X m; w—l—w —2ww k2+k2 (kg - k
Wis (Cd1 +CU2) |:{ ! 2 ! 2} 2)

—i(al—l—ag)-qu(w%%—w;—{—kl-kg)] . (4.9)
Using the Fourier transforms given in A, one obtains

1 .
Vp(vsél (r) = _9%2 (fp) - — . lim [{mi (B-11+ B1-1) — 23_1,_1} (r1,7r9)+

“m3 \m, M rira—r
92

+
87’187’2

{B—l,l +Bi_1— QmiBl,l}} ;

2 2
(20 _ 4 9s2 (fp\" 1 2d __0
Viso(r) = + (mﬂ) WV ordr nlq{?})r (B_1g+ Bi,-1) arlaTZBl,l (71, 74.10)

V. DERIVATIVE SCALAR MESON-PAIR EXCHANGE: 2-PAIR-EXCHANGE

There are 2 two-pair exchange diagrams, cfrm. [1], and we designate the left nucleon line
by the suffix a and the right nucleon line by the suffix b. Then, for the two-pair graph with
the lower vertex on line (a) and the upper vertex on line (b).

(q/ “q)a = (C], Q) = —wiw2 + ki - ko . (5.1)
The energy denominators, summed over the 2 graphs give
1 1
D® = - . 5.2
(Wl, Wz) 2W1W2 w1 + Wo ( )
(52,2) 9s2\° [ Phkidky (k1 +ko)-r 9 2 2 2
Vaio () = = m) ] @ eI | (ky) Fa(ky) - (—wiws + ki - ko) DY (wy, wo)

1 2
= —3 <@> .rllr?ir {B_11(r1,m2) +2(V1 - V3)Boo(ri,r2) + (Vi - Va)? By (r1, 74p}3)

Here, the functions B, ,,(r1,72) and the (V- Vy)-operations are given in Appendix B.

There are no 1/M-corrections to the 2-pair contribution to the potentials.
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R, = Ag3, 2", ...

FIG. 2: Meson-pair description Ass-induced BB-interaction

FIG. 3: One-pair SU(3) matrix elements M _pqir(j, 159, m) = MW (5, n;i,m) + MO (j,n;i,m)

SU(3) STRUCTURE Aj; INTERPRETATION c¢3-TERM
In this appendix we work out the SU(3)-structure coefficients for the one and two pair-

VI.
approximation to the Ags-induced BB-interaction, see Fig. 3. The interaction Lagrangian
for the coupling of the SU(3)-decuplet {x1} = {10*} to the SU(3)-octets for the baryons

{r2} = {8} and the mesons {u} = {8} is [15]
K1 Ky poop 1 :
Lin(r) = Y 9y v X0 (@) Y (@)l (2). (6.1)
1 Z821%:%% vy V9 —Uls —Ul3 U3 0
Here, k1 = {10}, ko = {8}, and p = {8}. Furthermore,
wow L+ Ia+(Y+Yi)/2 1 Q(vs)
= (=)l Y2 N ()R, 6.2
e IV = =) 62)



So,

1 K1 Ky M poopto 1
V1V2V37Y Vy V9 —Us V3 —Ul3 0
X (=) (=)0 ) (@) 9P ()0l (2). (6.3)
This Lagrangian is invariant under transformations g € SU(3) i.e.

Within an SU(3)-irrep each state can be tranformed into any other state within the irreps.
Therefore, (6.4) means for matrix elements

WUlglf 1 Limt|Ulglf) = (f|Linmel ) - (6.5)

Below, we evaluate the matrix elements for the coupling of the decuplet Ass, X% ...
{10*}-states to the meson-baryon {8 x 8}-states.

The coefficients for the vertices of the meson-baryon coupling to the SU(3)-decuplet are
given by [16]

d*(r;1,p) = (r|Line(0) 12, 1) , (6.6)
Here, r (1,..,10) denotes the decuplet states, i,p (1,...,8) denote the baryon and meson
octet states. The 10 decuplet states and their coupling to the {8} ® {8}-states are given in
Ref. [19], Table 3.4. This makes the construction of the ten 8x8-mtrices d*(r;4,p) in prin-
ciple straightforward. However, this is rather tricky because of convention-sensitivity, and
therefore we prefer here to use the octet-model representation, i.e. SU(3)/Z(3) representa-
tion, where the {10*} & {10}-states can be represented by a symmetric tensor Sk, k,1 = 1,8
[17]. Here, including a factor 1/4/2 to avoid double counting, the decuplet {10} couplings
to {8} @ {8}-states we describe by

(k. 14, p) = (k, Lo (0)]2, ) /V2. (6.7)

Then, the SU(3) matrix elements for the 1-pair graph in Fig. 2 is given by the sum of the
graph (a) and (b) in Fig. 2, where the index s runs over the 8 octet baryon states. (Notice
that the meson lines have no direction due to the fact that the meson fields are hermitean,
ie. qu» = ¢;.) Similarly for the 2-pair matrix element, where now the line with index s in
Fig. 3 runs over the 10 decuplet irrep {10}-states. So,

8 8
My _pair(j, 51, m) = Z [O(s;m,p) O(n;s,q) + O(s;m, q) O(n;s,p)] -
p,q,5=1 k=1
x [T*(kl; 4, )] [T (kL;4,p)], (6.82)

Mo pair(jmi,m) = > Y [T*(kl; j,q)] [T*(kl;i,p)] - [T*(rt;n, q)] [T*(rt; m, p)[6.8b)

p,q klrt=1
Here, I'* are the complex conjugates, and for pseudoscalars

O(s;m,p) = —iap Jsmp T (1—ap) ds,m.ps (6.9)
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O(TL, q,map) = ‘\ l' @ \\s ;"
. ’ ’,"\~
— O —» —@-@—-
S S

FIG. 4: Meson-baryon SU(3) matrix elements O(n,q; m,p)

where fs.,, and ds ., are the su(3)-algebra structure constants.
Using (6.9) and some identities for the structure constants [17, 18] we can work out the
1-pair matrix element further. Denoting a = ap and b = 1 —ap we have, ) __ is understood,

O(n,q;m,p) = O(s;m,p)O(n;s,q) + O(s;m, q)O(n; s, p)
= [~ia Jsmp + b dsmp] [—ia Jnsq + 0 dnsq] +
[—ia Jsmg T dsmq] [—ia Jnsp + b dnSP]
= —0 (fomp fusq + Jomg fasp) + U (dsmp dusq + dsmg dnsp)
—iab (fsmp Ansq + dsmp frsg + fomg dnsp + dsmg frsp)

1. ad ab-term: Using identity [Ditt15] [18] we have

(.. ) = — (fmps dnqs + fmqs dpms) = +fmns dpqs’

- (fnqs dmps + fnps dqns) =T —mns dpqs>

which means that the ab-term vanishes.

2. ad a*-term: Using identity [Ditt24] [18]
2

fmps fnqs = g (5mn5pq - 5mq5np> + dmns dpqs - qus dnpsa

2
fmqs fnps - g <5mn6pq - 5mp5nq) + dmns dpqs - dmps dnqs:

Summing these terms we get for the a?-term

2
- () = 5 (20050 = Grngup — g
+2dmns dpqs - {qus dnps + dmps dnqs}

The identity [Ditt23] [18] gives

(5mq(5np + 5mn6pq + 5mp6nq) - dmns dpqs;

Wl

{qus dnps + dmps dnqs} =

11



which gives upon substitution in the a?>-term
@ [Omn0pg — OmqOnp — OmpOng) + 3mns dpgs,

3. ad b*-term: Using identity [Ditt23] [18]

1
+ ( . > =3 [0mpOng + OmnOpg + OmgOnp] — dimns Apgs-

Collecting the results we obtain

O(n,q;m,p) = a? ﬂémn(qu — OmgOnp — 5mp6nq] + 3dmns dpqs}
1
+§b2 {[6mnOpg + OmgOnp + OmpOng) — 3dimns dpgs} =

1 1
(a2 - ng) SmnOpg — (a2 - §b2> {(OmpOng + OmgOnp) — 3dmns dpgst  (6.10)

For ap = 2/5 we have

1 1 7
a2—0—562 = 5(404?3—206}34—1) — %,

1 1 1
Cl2_§b2 = §<20é?3—|—2OZP—1> — %

A. Interpretation: t-channel exchange SU(3)-irreps

From the symmetry in the pseudoscalar labels m and n, and the baryon labels p and q,
it is clear that from the t-channel exchange viewpoint only the SU(3)-irreps {1}, {85}, and
{27} are involved. Following [17] we multiply with the octet vectors a, and a, which gives:
a) (a® 4 b°/3)-term: &,,n[>, apa,] which is a {1}-irrep.
b) (a* — b*/3)-term:

2 2 2
3(a” —b%/3) {gaman — dyns(a * a)s} =

2(&2 - b2/3) { [aman — gdmns(a * a)s - éémn(z apap)]

p

9 1
_Ede(a *a)s + gémn<zp: apap)} =
2(a” = /3) { Mo = 35 M+ § D]} (6.11)

Conclusion: the SU(8) generalization of the cs-term in the mN interaction Lagrangian,
using Asz-dominance, leads to the {1}:—,{8s}+—, and {27}-irrep scalar derivative pair-
interaction.
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VII. SU(3) STRUCTURE MPE FROM OCTET BARYON RESONANCES

In this appendix we work out the SU(3)-structure coefficients for the one and two pair-
approximation to the baryon resonance induced BB-interactions, similarly to the graphs
of Fig. 2. Here we evaluate the matrix elements for the coupling of the baryon-resonance
octet states to the meson-baryon {8 x 8}-states.

The coefficients for the vertices of the meson-baryon coupling to the SU(3)-octet are given
by [16]

(k. 14,p) = (| L (0)]i,p) / V2. (7.1)
Here, k,1 (1,..,8) give the decuplet states, and ,p (1,...,8) denote the baryon and meson
octet states. Then, the SU(3) matrix elements for the 1-pair graph in Fig. 2 is given by
the sum of the graph (a) and (b) in Fig. 2, where the index s runs over the 8 octet baryon
states. (Notice that the meson lines have no direction due to the fact that the meson fields
are hermitean, i.e. ¢T ¢;.) Similarly for the 2-pair matrix element, where now the line
with index s in Fig. 2 runs over the 8 octet states. So,

Mi_peir (4, n50,m) = Z Z [O(s;m, p) O(n;s,q) + O(s;m,q) O(n; s,p)] -

p,q,s=1k,l=1
x [T*(k, 4, 0)] [T*(k, 1d,p)], (7.2a)
8 8
M poir(jomziym) = Y Y [Tk, 15 4,q)] [T (k, 133, p)]
p,q k,l,st=1
x [T*(s,t;m,q)] [T*(s, ;m, p)]. (7.2b)

Here, T'* are the complex conjugates, and again for pseudoscalars
O(S; m>p) = _iaP fs,m,p + (1 - Oép) ds,m,pa (73)

where fs.,, and ds ., are the su(3)-algebra structure constants.
The rest of the construction is completely the same as in Appendix VI.

A. SU(3)/Zs Octet-model states

The baryon and meson states are given in Table I, see [19]. From Table I one readily
finds the physical states in terms of the octet-base states B;, P;. We have

ST = (Y —ihe)/V2 , T = (¢ —ig) V2, (7.4a)
ST = (i) /V2 T = (1 +id)/V2, (7.4b)
YO =1y, 7 = ¢, (7.4c)

(a —ihs)/V2 , KT = (¢4 —ig5)/V?2, (7.4d)
= —(a+itps) V2 , K~ = (¢4 +ig5)/V2, (7.4e)
no= (g —ihr)/V2 , K° = (¢ —i¢7)/V2, (7.4f)
(o +ir)/V2 , K® = (¢6 +idr)/V2, (7.4g)

A=1g , 3= ¢s. (7.4h)

13



TABLE I: Wave functions of the Baryon and meson octet representations in terms of physical
components.

states | (i =1-28) state o(i=1-28)

Bi=91|(ST+E7)/V2|Pr=¢1| (xt +77)/V2
By = n|i(XT —X7)/V2|| Py = ¢o| i(rT —7m7)/V2
B3 =13 30 Py = ¢3 70

Byi=14| (p—E7)/V2 |Pi=gu| (KT +K7)/V2
Bs = 5| i(p+E7)/V2 | Ps = ¢s|i(KT — K7)/V2
Bs=vs| (n+EZ%/v2 ||Ps=¢s| (K°+ K°)/V2
By =4r| i(n —E°)/vV2 | Py = ¢r| i(K® — K°)/V/2
Bg = 13 A Py = ¢s 78

For the isospin states in terms of the particle states we use the Condon-Shortley
phase convention. This implies for the proper isospinor states of the K-on and

anti-K-on spinors
K+ . K°
K:(KO), K:ZTQKT:(_K_), (7.5)

B. Computation {8} ® {8} — {10}-coupling Vertices in SU(3)/Z;

Representing the octet meson and baryon states by 8-dimensional vectors with components
a,, and b; respectively, we split the meson-baryon wave function components as follows in a
symmetric and antisymmetric part

1

N —

ambz’ -

Then

1 3 1
Sij = [g%% + e dimdmi + 5 {00 + 0adjn)
6 1
_gdijpdpmn (OmkOnt + Omidnk) — Z5ij5kl Skis (7.7a)
1 1 2
Aij = |:§fijmfmkl + 5 {(5@k6]l - (51‘15]‘]9) — gfijpfpmn (6mk5nl — 5m15nk)}:| Ak:l- (77b)

Here, A;; is splitted into the irreps {8,} and {10} @ {10*}, and similarly S;; into the irreps
{1}, {8:}, and {27}.

For the vertex I'*(k,l;i,m) connecting the meson-baryon state |i,m) to the {10}-state

14



|10; k, 1) one has

. 1
F*[ka la 2, m] = 5 (5k25lm 5k‘m5lz Z fk:lrfrst 557,5tm 55m5tz) (78)

Then, the s-channel Ass-resonance contribution to the meson-baryon matrix element for
li,m) — |j,n) is given by

8
M (jnii,m) = Y T*[k,1;4,n] T*[k,1;i,m] (7.9)
k=1

The evaluation of the 4 terms in this product is straightforward:

8

1 1
Lo MZI (0450 = Orndi) (Okidm — Ohmdis) = = [0ij0mn — Bindjm)
1 8 1 8
12 (5kj5ln 5kn5lj) fklr’fr’s’t’ (6s’i5t’m - 5s’m5t’i) = _5 Z fimrfjnra
k,l=1 r=1

8 8
1 1
3. _E Z fklrfrst (5sj6tn - 5sn5tj) (ékzélm - (5km5ll) = _g TZ:; fimrfjnra

k=1

8 8
1 1
+_6 Z fklrfrst (58j5tn - 6sn5tj) fklr’fr’s’t’ (5s’i5t’m - 5s’m5t’i) = +§ ; fimrfjn’ra

k=1

which gives

8
. 1 1
M (ja n;z,m) = 5 [5ij5mn - 5zn5]m] - 5 Z fimrfjnra (710)
r=1
and
(M;By|M|B; M,,) Z Z apbi M (j,m;4,m) amb;. (7.11)

jn=1im=1

The three-body force due to the Ass-resonance is depicted in the right panel (b) of Fig. 5.
In the ”effective two-body potential” the ”third nucleon” is summed and integrated over.
This has the consequence that for the ”third-nucleon” the pseudoscalars do not couple.
Therefore, in matter the nucleon line, or in general the baryon line, with the Asz-resonance
is integrated out for a non-zero contribution. Then, for symmetric baryonic matter, the
relevant pion-nucleon operator in panel (b) is

8
5
> M (i n;i,m) 6y = 5 O (7.12)

ii'=1

This is very useful for making SU(3) checks on the ”effective two-body” NN, YN, and YY
potentials.

15



Pa Pe Do Pa Pec, 7 Db

(a) (b)
FIG. 5: FM Three-particle amplitude from Ags-resonance.

VIII. FUJITA-MIYAZAWA AMPLITUDE

The expressions in (E14) should be compared to those in Fugita-Miyazawa [10] Ags
amplitude for 7N, and with the cs-pair term in the Lagrangian.

Lry = +¢ [{ ((A+B)V1 -V, +D) 0 —(A=B) o-V; XV, fijkﬂc} '

<o)yl v, (5.
where . 5 5
033 m
A= —— | =d B=-A D=— 2 8.2
18#2/ w? P 57 3 (ar + 2a3), (82)
with the numerical values J = [dp oss/w) = 3.7m;°, and a; + 2a5 = —0.06m,". This

implies that A, B > 0 and D < 0 and for the ratio (D/A)py ~ —0.4m2.

Remark: The D-term represents s-wave mN scattering at low energies. This is not given by
the Ass-resonance, but by the the nucleon s- and u- exchange diagrams, wr-pair diagrams,
plus others. In the Miyazawa paper the D-term comes from the subtraction term in the 1N
dispersion relations due to Oehme.

So, the D-term could be omitted when calculating the wr-pair interaction for the two-body
NN-, YN-, and YY-potentials. Inclusion of the D-term implies merely a shift in the wmw-pair
coupling constants. We include the D-term also in the two-body potential because it is
convenient to refer always to the complete FM-interaction!

Furthermore, the SUS3-generalization does not apply to the subtraction terms!

Comparing the isoscalar part with the pair-interaction
HﬁSQ) _ _1_9& 0 {a#ﬂ- ) (9“71'} W
we have gs, = m3 (A + B) =~ 0.167, and gs, = —m, D ~ 0.126.
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To cover completely the 0;;-term in (8.1) we need the additional pair interaction

’H&Sl) = —i-% [1/_11#] ()

My

with Ags, = gs, + mzD =~ 0.04.

In momentum space the FM Lagrangian gives, (Mpar)i; = — (', ¢'|Lrm(0)|p, @),
(Mpun)i; = —u(p, s) [((A +B)q -q— D) b5
—(A-=B) (aqxdq -0) €ijk7-k:| u(p, s). (8.3)

Comparison with (E14) gives for case [, i.e. s = M?,

302, 3m  3m?
352, 3m? 9
D = — A \saz) ™ (8.4b)
For case II, i.e. s = (M +m)?,
202, ™m  m?
TP = gean ' T ) (8:5)
202 m  5m? 5

We note that the ratio (D/A); < (D/A)ry and (D/A)r ~ (D/A)py showing that case 11
is the more appropriate approximation.

Y=+1,1=3 O '} A33(1236)
Y= 0I=1 o >*(1385)
Y=-1,1=3% =*(1530)
Y=-21=0 0 (1674)

FIG. 6: Contents SU(3) {10}-irrep.
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A. SU(3)-generalization Fujita-Miyazawa amplitude

The SU(3)-structure of the three-body amplitude in Fig. 7 is

M(m,ln;i k,j) = Y O(m:k,p) On;l,q) | D d(ril,q) d*(r; k,p)] (8.6)

p,q=1 Lr=1

= > O(m:k,p)On;l,q) | > T*(k,;l,q) F*(k,l;k,p)] (8.7)

pg=1 Lk,l1=1

P “p
T T o
— @ @— v & — @ —@— v
L q g,
m »- ‘ n m »- . n
(a) (b)

FIG. 7: Three-body FM-graphs

B. BB effective FM-potential in Nuclear Matter

The effective BB FM-potential in nuclear matter is obtained by integrating out the ”third-
nucleon”. The resulting two-body potential we obtain by imposing charge and spin conserva-
tion for that nucleon is that for symmetric matter. This implies that only the Asz-excitation
on the ”third nucleon” will contribute because of the pseudoscalar character of the exchanged
mesons. Using the notation ky = k and [y = [ to denote the SU(3)-indices of the ”third nu-
cleon”. We have for the effective two-body SU(3) matrix elements for protons and neutrons
respectively

5 8
My(p,q) = > > T*(r,s:ln,q) T*(r, 53k, ), (8.8)

8
M,(p,q) = Z T*(r, s;1n,q) T*(r, s, kn, D), (8.8Db)

which gives, for N=p or N=n,

On(j,nyi,m) = O(j;4,p) O(n;m, q) My(p,q), (8.9a)
O(m;i,p) = 2[iap foip+ (1 —ap) dpip) - (8.9b)
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For nuclear matter we have
ONM = ZL‘pOp + [L’nOn. (810)

In case of symmetric matter z, = x,, = 1/2, and for neutron matter x, =0, z, = 1.

Footnote: Note that the 7, 7 and K couplings to the ”third nucleon” do not contribute in
a nuclear medium becuase of the sum over the spins of this nucleon.

The matrix element between two BB-states is given by

+(BB|Vey|BB); ZZZj i) Z(n,m) On(j,n;1,m) Vear(r). (8.11)

jn  im

where the wave-function factors Z(...) are described in [28], and ¢ = i — iy etc are defined
such that ¢ = 1,2.

To illustrate the computation of the SU(3) matrix elements we give as an example the Xn
matrix element. Using the states defined in (7.4) we get

(S| Mgy |Stn) Z Zwl—wm e — ithr|thn) -

zymn 1 p=1

X (Wjthn| Mpnr[ithm) (ilthy — i)a) (Ym[th1 — i9ha)

8

8
Z Z(5lj + 902;) (O6n + 1070 (015 — 1025) (06 — 107 ) (W Un| Mpar|Vithm)

i,7,m,n=1 p=1

2 8
iz S S 20,2 — 5.m — 5) Wyl Mt 6.12)
j=1m,n=6 p=1

Z:G _12) (8.13)
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APPENDIX A: INTEGRAL REPRESENTATIONS

We employ throughout these notes the integral representations introduced in [2] and used
n [1, 11]. Special cases needed and not covered so far we give in this appendix.
From the inegral identity

Y.
witws Ty (w? + A2)(w2 + \2)

(A1)
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Supplying the Gaussian form factors, the Fourier transform By, of (Al) is, see e.g. [2] for
the complete procedure,

9 00
B070(’I"1,’T‘2> = —/ )\2d)\ Fa()\,ml,rl)F/g()\,mg,TQ) . (A2>

™ Jo

Using (A1) one easily derives

1 1 2 [ 1 1 1
— == d\ | = — A3
wiwi + wy 7T/o L}% w%+>\2] w3 + A2 (A3)

Again, adding the Gaussian form factors, the Fourier transformation yields

92 0o
= ;/ d\ []Q(ml,rl) — Fa()\,m177“1):| . Fﬁ(A,mg,Tg) . (A4)
0

Here, the functions Iy(m,r) and F,(A,m,r) have been defined in e.g. [11], eq. (4.5).
I(m,r) = (m/4m)¢%(mr) the basic generalized Gauss-Yukawa function for meson exchange
with a gaussian form factor. Using (A3)-(A4) one easily derives the Fourier transform

1 1 1 2 [
( + _2> = _/ dA |:]2,0¢(m17 Tl)Fﬁ(Aa ma, TQ) + Fa()\7mlarl>]2,ﬁ<m2a Tg)
0

w_% wy /) Wi + wo ™
—2Fa(>\,m1,7'1) Fﬁ(/\,mg,’l“z)] . (A5)
The integral representation
2 %) 2
wi 1 2 / A 1 1
— = — A\ [1— ——| |5 — ——— A6
wiwg+we TSy { WA wi wi+ N (46)

From the identity (A6) one derives the Fourier transform for the left hand side as being
given by the expression

2 o
= ;/ d\ { [[0,a<m17r1> - >\2Fa()\7m177”1>] '[12,5(7712,7“2) —Fﬁ()\,mz,rz)]}
0
= B_Q’Q(Tl,TQ) (A?)
Similarly,
2

wy 1
— F.T. By _ A8
2 o1 + o3 = DBy _o(r1,72) (A8)

Notice that we have introduced the (non-local) Fourier transforms

1 1

F.T. = Bua(r, . A9
wl'wy Wy + wa ' (r1,m2) (A9)
In particular, quite often appears
2 (o)
Bl,l(rl7r2) - ;/ dA Fa(A,ml,Tl) Fﬁ()\7m27r2) . (AlO)
0
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In the non-adiabatic 1/M-correction computation, we encountered the denominator

1 1 1 1
ST € R )
Wiwy (W1 w2 Wit W

which gives upon F.T. the coordinate space function

Bzg(rl,rg) = _/o dA |:[2(ma,7”1)[2(m13,7”2) Fa()\,rl)Fg()\,rz)l ) (A12)

T A2

APPENDIX B: DIFFERENTIATION DICTIONARY

We employ throughout these notes the integral representations introduced in [2] and used
n [1, 11]. Special cases needed and not covered so far we give in this appendix.

() lm (o1t os)-ax (Vi V) Fr)Glm) =~ [Fr)G() L-S,
(i) Jim 3 (@ +on)ax (Vi+Va) (Vi- V) Fr)Gls) = 0 [F)G0)] LS,

1 2
(’lll) lim 5 (0'1 + 0'2) . Vl X VQ q- (Vl — Vg) F(T’I)G(T’Q) = —T—2FIG/ L. S,

T1,72—T

() lim (o1t ) Vi x Vo q- (Vi — V) (Vi V) F(r)G(r) =

71,72—T

o) | ws

r

1 1

1
~(FGL+ FGY) + 2F1’G’1} L-S=-— KF

r

F/> G//+F// (G// _

Here Fy = F(ry)/r1, F| = (F" — F'/r) /r, and similarly for Gy, G}.
The B,, ,-functions have the generic form

2
Bon(r1,7) = —/ ) ZF () GBI ) | (B2)

where F' and G are [, or F,(\,r) functions. From this it is clear that taking the partial
derivatives and the limit ry,rs — r give functions of the form

qu““

or+a P 5
PR B (r1,79) = / A Z Ar)— =) (B3)
One can verify easily that
NN 2 [ dFP dGy
(Z) 7"1%71"?LT(V1 . Vz)an "1 TQ % /0 d>\ dr dr ()\’ T) ’

2 dFM dGY 2 G

7"_2 dr dr + dr?  dr? (A(BY)

2 00
(ZZ) lim (Vl . VQ) m,n 7’1,7’2 = ;/ d)\
0

T1,r2—T
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APPENDIX C: INTERPRETATION c¢; AND c3-INTERACTION

1. The mN-amplitude from the c¢;- and c3-term: The pair-interaction Hamiltonians corre-
sponding to ¢; and ¢z in (1.1) are of the form

HS = I () (By) , H? =+%(8“7r-3“ﬂ') () - (C1)

7" ™

The lowest order contribution to the = N-amplitude is

2 qq 2 gs, t
M = m—ﬂ [951 +952m—7zr} = m_ﬂ(gsl +gs,) — m—ﬂm—?r ;

(C2)

where ¢ and ¢’ are respectively the initial and final pion momenta, and ¢t = (¢’ — q).

2. The mN-amplitude from ¢ and P-exchange: The wr-coupling of the o0 and pomeron are
defined by

1 1
‘CO'ﬂ'Tl' = igoﬂﬂmﬂ (0'71' : 77) ) £P7r7r = §gP7r7rm7r (Pﬂ- : 71') . <C3)

Then, in terms of the width gy, is given by the formula g2, /47 = 2(m2/m2)(T,/p), where
p=+/m2 —4m?2/2. In Born-Approximation one has

GornJoNN 4t gPrrdPNN ot
M= My | —————€ 7 + ——————¢ P s 4
From ¢; =~ 0, one has
Jorn Yo NN 9pPrnJPNN ~
oSy SN 0. (C5)

Introducing the expansion

M=MD 4 MV (C6)

for low t gives, using (C4) and (C5), that the term linear in ¢ of the 7 N-amplitude is given
by

loaiwiwv Xoa 1
MW g, JommIoNN (aP —a, — _2)
m

2
mg o

Gorn o NN < 1 1 1 >
= mﬂ_ —_—

m2 4m% A2 m2
Yorndo NN 1
¥ R )

Here, we used mp ~ 310 MeV and m, ~ 2mp.

3. Conjecture: Assuming now that M) corresponds to the c3-term in (1.1), and so also to
the pair-interaction (2.2), one has the relation

4
gs, m. Gorn9oNN
Ar T Tm2A2 Am (C8)
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In order to answer the question whether equation (C8) is a reasonable one, we use the value
for gg, given in section II, and from [13] the estimates

Gorr Yo NN
47

Then, we obtain A, =~ 2.56m, = 360 MeV. Now we must realize that

2 2
m, ~ 30m._,

~ 25 . (C9)

1 1 1
MR W 1)

OTT

Assuming that the cut-off’s for the onm- and o N N-vertex are approximately equal, we
obtain from (C10)

Agrr = Aoy = V2A, = 510 MeV . (C11)

This is a perfectly acceptable value for these cut-off parameters. Therefore, we conclude
that the cs-term in the Lagrangian (1.1) finds a natural explanation in ¢ and P-exchange.
It can be considered as due to the first term in the low ¢ expansion of the form factor.

The upshot of this analysis is that in dynamical models for low energy w/N the c3-term
must not be included. Inclusion of this term with the strength as estimated in [9] would
mean 'double counting’.

4. Note on ¢q: From C1 and 1.1 one easily finds that

2
gs, = 8(crmy) (%) (C12)
Using the result of Ref. [9] ¢; = —0.76 £ 0.07, one gets gs, = —0.43 £ 0.04. This would
imply a very large (7)o-pair interaction in the ESC-model, much larger as found in fitting
the data using the ESC-model. Also, a consequence in AN would be that the attraction
would mainly come from the region beyond r = 1 fm, which is in conflict with the studies of
A-hypernuclei [14] The natural explanation is also here that indeed the effective ¢; is mainly
produced by ¢ and P exchange.

5. Miscelaneous relations Indroducing the dimensionless parameters ¢; =: ¢;/M and ¢3 =:
c1/M, where M =1 GeV/c?, one readily finds in Born-approximation for the contribution
to the mN-amplitude

M= (%>2 {8 (281 — &) + 453%} (C13)

s -l

The low t-expansion of (C4), see also (C7), gives upon comparison with (C13) the relations

~ ~ mzr M F7r 2 YornJo NN grPrrYPNN
-t =) T T e
~ mgr M FT{' 2 YorrJo NN m72r m721- 9PrrdPNN mgr
Cg = ——— —_— ——2 —2 + —2 —l— 5 2 . (014)
4 my; \'my m2 m2 A2 M 4m¥p

Using these formulas one can compute the contribution to ¢ 3 for the fy(760)- and f,(980)-
states.

6. Application to Nucleon-nucleon: The (77)o- and (77);-pair interactions in nucleon-
nucleon (NN) represent in the diagrams with one pair-vertex the effects of the 27-cut in
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the scalar and the vector meson form factor. The mN-diagrams, discussed above, are sub-
graphs of the N N-graphs containing these 27-cuts. Therefore, taking into account these
one-pair terms is covering the interactions contained in the Lagrangian (1.1). The NN-
graphs with two pair vetices describe the decays of the scalar and vector mesons in two
pions. They are contained in the ’broad meson’ description of scalar o = €(760) etc. and
(p(760) etc exchange.

In the case of other pairs one must decide in each case whether the inclusion of the
two-pair graphs in essence is double counting. For example in the case of the (mp);-pair,
which has the same quantum numbers as the a1(1270), the two-pair term is included because
aj-exchange is not included in the OBE-set. The same is true for (77) with the quantum
numbers of the tensor mesons.

Another class of graphs is the following. Consider the exchange of o and P, coupling to
the nucleon lines via their 27-decay on both nucleon lines. For ¢ = 0 these graphs look like
a graph with an internal (7 - 7)*-vertex. In view of the cancelation (C4) we conclude that
this vertex is very weak, and justifies the neglect of these graphs.

In conclusion, the pair terms in ESC cover the effects of the terms generated by the
effective field theories [5]. It has the advantage not being limited to the long range region,
but leads to potentials for all distances. Of course, the included physics is restricted to low
and intermediate momentum transfers ([t| < 1 GeV).

APPENDIX D: PHENOMENOLOGICAL 7NA3z; COUPLING

In this section we use the following local (N*N P) interaction

Hy«np = —1 (Z@) YNy - O dp, (D1)

™M+

where 9y« , denotes the Rarita-Schwinger spinor. It now well known that in this form
the 33-resonance does not couple to the right spin-3/2 degrees of freedom, hence we call it
"phenomenological”. In momentum space the vertex is given by

@i/fxﬂwwﬂwwﬂ%:@ﬂ%%P—p—q»f“”*amﬂy>wn@~¢

M+
= 27)*" (P —p—q) [EZ(P, s") T v p(P;p, q)u(p, 3)} , (D2)
which gives the vertex
fy-
Iynp(Pip,q) = ;;LAJCP~ (D3)
The JP = %Jr—resonance is described by the Rarita-Schwinger Dirac spinors [20] satisfying
the equations
(P— My) uy-(P) =0, yuly(P) = Pul(P)=0, (D4)
and the resonance propagator is
Uy (P)
P,(p) = —Lr— | D5
lp) = (D3)
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where the spin projector is [20]

+3/2
Uw®) = Y uu(p,0)u,(p) = (§ + My) -
o=-3/2
TR ) 2 (D6)
G+ 300+ 3y O = W) + 3y Pub |

The JP = %Jr—pole S-matrix element is

s d‘p U (P, w
St = f;jéfj4(—i)2/wu<pf,8f) {(_qM)IDJjT%(_q )} u(pi, 5i)

x(2m)* 0" (P —p —q)(2m)'0" () —¢' = P)
= —(2m)"5' (0" + ¢ —p —q) (fiafsu/m2s)

q“U*“’(P)qW] u(pis51), (D7)

xtlps.s5) [T
Y

with s = (p+ ¢)* = (p' + ¢)%. The corresponding invariant amplitudes are [21]

fia 3 1 1 >
A = : S =(t—2 M + M
! +m3r+ s — M2 + ie 2( mo) (M + My)
M 1
+m[]\/[2—m2—3] +§My(S—M2}
M 2
+? [s — M?] + 37;\2}/ [M2—m2—s}}, (D8a)
JiaJ34 1 1 2 1 2 272
By = — . — ¢ —=(t -2 - - M
! m2, s — M} +ie 2( ™) 6M}2,[8 + ]
+3MMY—1(m2—2M2)+£(M2—m2—s) : (D8b)
3 3 3My

Here, m and M denote the pion and nucleon mass respectively.

7 N-threshold: With s ~ M?+2mM, t—2m?* = —2¢'-q, s+m?—M?* = m(2M+m) ~ 2Mm,
we get

x fx IM -1 2 M2 — mM
Ap ~ —f122f34-<MY—M m ) {—q’~q+—Mm{1+m( = Y)H,

m2, - M+ My 3 M2 (M + My)
Ji2 S35 2Mm 7 / 2.5 m My
By ~ A My =M - g4 M- — 4 —
= Y Miay) |03 My M
2
2 2 m -1
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The Ms3 = Ay — m,By; amplitude becomes

Ji2 13 oMm \ ' . m /
Mss ~ — A My - M- 00 N S .
» mfﬁ' Y M+MY U(p,S) + M"‘MY (q q)
2 m(M? — mMy) M m My  2M?+ M2 ,
—Mm<1 - 1— _
3 m{ TME(M A My) | M+ My My "M 2z u(p, s)
_fiafa

2

Q

2Mm -t 2
A My — M — 22 (. s —=(d" - a) — ZMm -
< y M+My) U(p,S){ (¢"-q) gMm

o5 0+ 28)1 (- ) oo

2
2 fBli (1= 2 W) | )= S

o2 (A ) o

In [21] the fitted Ass-coupling is fHa,/4m = 0.478, and a cut-off A = 603.22 MeV.
Comparing the with the coefficient of the ¢’ - g-term we have for the corresponding cs-pair
term coupling

ZZ

9s,/AT = (fyar /A7) (Mg /AM) = 0.216. (D11)
Here, AM = Ma — My.

APPENDIX E: GAUGE-INVARIANT 7NA3s3 COUPLING

The so-called "gauge-invariant coupling of the Ass-resonance which is a spin-3/2 particle,
restricting to the positive energy states, reads [24—26]

Lar = gar € [(%@) V5Yad ™ + P57, (auqf(””)} (0s9) (E1)

The U, field contains besides the spin-3/2 also spin-1/2 components. Using the interaction
(E1) it is assured that only the spin-3/2 components couple to the m/N-channel. This is not
the case for the coupling in (D1).

In [25], section 5.4, the interaction Hamiltonian in the Takahashi-Umezawa formalism [27]
is derived, which leads to the s- and u-channel 7N amplitudes, [25] eqn. (5.43),

d/fl

K1 + 1€

MH/,,{(S) = _59(2}1/ Euyaﬂa(pla 3/)70/)/5 qlg(ps)u(ps)u’ (Ps + MA) :

1 /I//O/ !
X <gw/’ - 571/71/’) A(PS)E‘M A Yo' V54p U(p, S>7 (EQ&)
d/fl

K1 + 1€

L,

MH’,H(U) = _EQGI/

1 10 Al
X (gwf — g%%/) A(P)E P sy ulp, s), (E2b)

e Pu(p’, ) Va5 qs(Po)u(P)w (P, + Ma) -
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where P; = P,+nky, i=s,u. Here, P, = Aj+nk—nk; and A(BP) = e(P2)3(P2—M3) (i = s, u).
The A; are

1 1
Aszé(p’+p+q’+q), Auzi(p”rp—q’—q)- (E3)
Using the identity
1
§(P? = M3) = ——— (8(k1 — k7)) +0(k1 — K7)]
ki — Ky |
R = A -n+REA;, (E4)

where A; = /(n-A;)2 — A? + MZ. The €(P?) selects both solutions with a relative mi-
nus sign, and since P; are xi-independent, the k,-integral applies only to the quasi scalar
propagator 1/(xy + i€), and gives the factor

1 1 1

1
.EDZ‘AS, ,K).
(A;-n+R)?2— A2 +ie (Bsm, )

Contracting all indices the amplitudes become

Mols) = ety 10 | (B +213) (P2 ) = 3P4~ 5P (P
FPAPa) = (PP 0)) | wps) DOnm), (B
Men(t) = =50 007, | (P4 Ms) (P2 0) = 3 P24~ 3 Pd(Pe- o)
b (B = SR P 0))| ) DBwnR). (B3

These expressions are worked out in detail in Ref. [25, 26]. Here, for our discussion we use
only the amplitudes for k = k¥’ = 0. Using the standard decomposition

Moo = (4,9 | Aaa + Bao @] o), Q= 3(d + ), (E6)
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one obtains [25, 26],
s 1 S 1
A(()()) = —592@ [+S(M +Mp) ¢ -q— 5(5 — M?)(M 4+ Ma) — EWQMA(S — M? 4+ m?)

+éMA(s — M?)(s — M* +m?) — é(M + Ma)(s — M? + m2)2] - D(s, M3),(E7a)

B = — 5o [+s (¢ 0) — S (~2M(M + Ma) + %) = <(s+ MMa)(s — M? 4 m?)
+é(s — MMa)(s — M? +m?) — %(s - M?+ m2)2] - D(s, M3), (E7b)

A((fo) = —%gél {—l—u(M +Ma) ¢ - q— %(u — M*)(M + M) — %mQMA(u — M? +m?)
+%MA<U C M) (= M2 4 m?) — é(]\/[ M) (u— M2 + mZ)Q] . D(s, M2) (ETc)

B((fo) = —%gél [—u (¢ -q) — %(ZM(M + Mp) —m?) + é(u—i— MMp)(u — M? +m?)
—é(u — MMp)(u — M?* +m?) + é(u — M? + m2)2} - D(u, M3). (E7d)

Defining
Ao = Aéi)) + Aéﬁ%, Boy = B((]i% + B(()%), (E8)

and using in the denominators the approximation s = u = M?, we have

Ago = —%géf [+(s +u)(M+Ma)q g %(M + Ma) {s(s = M?) + u(u — M?)}
—%mwA + éMA [(s — M2)(s — M) + (u— M?)(u— M?))
—%(M + Ma) {(s = M? +m?)* + (u— M* 4+ m?)*}| - D(M?, M3), (E9a)
Bua = ~5t (s =) [+(d+0) + 3 (MM + Ma) = m?}) = S0
—é(s +u—2M? + 2m2)] -D(M?* M3). (E9b)
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1 1
Avo = —5961 [+(s +u)(M + Ma) - q = (M + Ma)(M? +m?)(s + u)
1 1
+E(M + Ma)(2M? + 3m?)(2M? — m?) — 6(MA — M)m?*

o5 (50 + Ma) = (M = M)} {(s = M2 + (u = M)P}| -

x D(M?* M3), (E10a)
1 1 1 1
1

—é(s +u—2M* + 2m2)] - D(M?* M3). (E10b)

Next we note that D(M?, M3) = (M? — M3)™ ' = —[(M + Ma)(Ma — M)]™!, and keeping
only the dominant terms, i.e. terms in the numerator proportional to (M + Ma), we get the
low energy approximation

2
9dar / Lo 2
Aoy = =<
0,0 +2AM [+(S+U)C] q 3( +m”)(s + u)
!
+6(2M2+3m2)(2M2—m2)—% (s — M2+ (u— M??Y|,  (Ella)
9?;1
Boy = —u) M Bl
0,0 +4AM (8 U’) Y ( b)

with AM = M — M.
I. nucleon-pole s = M?: From s+t +u = 2M? + 2m? we have u — M? = —(s — M?) +
(2m?* —t) = 2(q¢' - q) for s — M?. This gives
s+u=2M>+2¢-q, s—u=-2¢-q. (E12)
and
(s = M?)* + (u— M?)? = 4(¢ - q)* = 0.
All this leads to the low energy approximation

A _+92;1 2(2M2 2>(/ ) Ly
00 = ToAM |3 A M

gé‘[ 2 2 2 1 2 2 2
N — {—(QM -m?®) (d'-q) — = (8M —7m)m},

2AM |3 6
9% 9er 2
= =7 ! ~ 4+ == "o — X
For the amplitude this leads to the approximation
2
9ar 0 |2 2 3 2 / 1 2 2Y ,pr2
Ms3 = — —(2M* — =Mm — -q) — = (8M* —6Mm —
= =R ) [0 = Shm = ) ()~ g (S0 = 60— 7o) | ()
305, ., 3m  m? ) 3m Tm?\
- _ 1— 2 _ ca) — (1= 22—
3.@%‘[ =] o 3m m2 / 3m2 2
1—— — -q) — . E14



Note that we introduced in the last two lines the dimensionless coupling gor = gar/Mm,.
The last line is obtained by the substitution q' - q &~ —(¢’ - ¢ — m?) facilitating the relation
with the coefficients ¢y 3 in (1.1). We obtain

m?2 3 m?2 3 m? [ 3m?
A = aa%er 8 AT T (8M2) (E15)

II. 7N-threshold s ~ M? + 2Mm: From s+t + u = 2M? + 2m? we have u — M? =
—(s = M?)+ (2m?* —t) = 2(¢' - ¢) — 2Mm. This case gives

s+u=2M*4+2¢-q, s—u=4Mm —2q¢ -q. (E16)
and
(s — M*)? + (u— M?*)* = 4(¢ - ¢)* = 8Mm[Mm — ¢ - q].

The corresponding low energy approximation reads

2[4 5 2 2 bm Tm?
Ao ~ —Jar [—M2(1+ - ) (q’-q)+—M2(3——m+ m)mﬂ,

C2AM |3 oM 2M? 3 M ' 4M?
2 2
9ar / 9aor ’ 2
Byo = 2Mm —q -q| M =~ M . 2Mm — . E1l
For the amplitude (E17) leads to the approximation
My — — 61 a(y,s') | 22M + - Mm —m?) (¢ Q) — ~ (14Mm — Tm?) 12| u(p, )
33 — QAM b, 3 92 q-q 6 ulp,
202, ., ™m m? , Tm  Tm? 9
— __ZJar 14— — q) — [ — —
smzanr W) |+ gy o) @ = (g — g )| )

208, ., , m m? , 3m? 9
_9er e ) - (1- .
= Hamaanr W) | op) (@0 saz )™ | )

APPENDIX F: NUCLEON-RESONANCE PAIR-INTERACTIONS

In this section we derive the effective m N-interaction generated by the s-channel Nucleon
resonance states Ppp(1440) and S11(1535), and their SU(3) octet companions. We derive
forms with coefficients A,B,C and D like in the FM-Lagrangian. The 7N amplitude reads

M = u(py,sy) {A(s,t,u) + %(gj'—i—gj) B(s,t,u)] u(p;, Si) (Fla)

= x'(sy) [F(Pf’Pz') +o-q; Gpy,pi) o 51} X(8i)- (F1b)

The relation between these the first (relativistic) presentation and the second (non-

relativistic) presentation, using [7] Dirac-spinors, is

\/(E’+M’)(E+M)
AM'M

F =

{A+% (Vs = M)+ (/5 = M) B}, (F2a)

G = \/(E'_f\}ﬁ_M){—A+% [(\/?+M’)+(\/§+M)} B}. (F2b)
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We develop the amplitudes around the 7N threshold, and use the approximations

2 2
|Y
E(p) =~ M + 207 E'(p')~ M + Wi

Vs—M=~m, s+ M=~2M+m,
Vs — M ~m', Vs + M ~2M +m/,

p

1

S—M}%:(\f—MR)(\/E—i—MR)z%(m’—i—m) My + 5(M'+ M)
V5= V3 % SO+ M) + (' )],

where M' = My, m' = my. The last approximation is based on the on-energy-shell assump-
tion.

We define the effective Lagrangian such that in first-order it reproduces the 7 /N-amplitude
similarly to [10], see expression (8.1), i.e.

Eeff = —|—'¢_R [{ ((A + B)Vl . Vg —+ D) (51']' — (A - B) (o Vl X V2 eijka} '

X ﬂl,i(a:)wzj(a:)} Wy + h.c. (F3)
1 JP =17 baryon-resonance
. 2

For the P1; meson-baryon resonance, e.g. the Roper resonance P11(1440), the local (N'N
P) interaction

Lnyne = [rye [WrTUN] - p + hec. (F4)
The amplitudes A and B are, see [21] Appendix C,
A(s,t,u) = +ﬁ%¢ 1(M’—{—M)%—MR B(s,t u):+f12%¢ (F5)
s — Mg +ie |2 ’ ’ s — M3} + ie

where the average baryon and meson masses are M = (M’ + M)/2 and m = (m/ +m)/2.
Also, the last expressions for A and B refer to the threshold approximation. The Pauli-spinor
threshold amplitudes become
12 / 12
[ (PO RN — (F6)
M+ m — Mg + ¢ AM'M M + m + Mg

where the average baryon and meson masses are M = (M’ + M)/2 and m = (m' +m)/2.
Taking into account the resonance character we should use the resonance propagator
1 N 1 _ S — Mlz% - iMRFR
s— M2 +ie  s— Mj+iMglr (s — M3)2+ M3T?%

(¥7)
Restricting ourselves to the Real-part implies the multiplication of the F and G amplitudes
above by

s — M3 +ie N (s — Mg)?
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which leads to

M +m)? — M? -
P gt B (M+m+M F8
f (5 — M2)2 + M2T%, ( +m+ R)’ (F8a)
i M +m)? — M3 _
G~ 2P| M +m— M Fsh
I i G -y g, M+ m = M), (8b)
where 5 = (M + m)% In the M-amplitude becomes in the CM-system, i.e. p’ = —q and
Pp=—q,
M +1m)? — M? -
M~ 2L N M M
"G e agrg | M7t Me)
_ B o - q, o - q
M — Mp) —————— F
(1 m— a) T (Fo)
Then, the effective Lagrangian which reproduces the M-amplitude in first order reads
AN M2) +M2r2 f f AM'M
(M+m-—-M
x (V- V2)) i + z( VO R)U -V X V2€ijk:7'k} YN 1,025 (F10)

Here, we inserted the isospin operators, because the effective Lagrangian must be hermitean.
In case of the isospin zero n-mesons the spin-orbit term vanishes.

Compared with the parameters in the effective Lagrangian for the FM-interaction we
have

— M3 (M +m— Mg)
A+B = +f" (M +m)° F11
B = 4G M D2 METE  AMM (Flla)
M +m)? — M (M +m — Mg)
A_pB — 4t R F1lb
IR IV LSV TV VA (F11b)
(M +m)>+ M3
D = +f? M +m + Mp) . F11
"G ey agrg (M+m+ M) (F11c)
2. JP= %Jr baryon-resonance
For the S1;(1535) meson-baryon resonance the local (N’N P) interaction
Lyynp = ifrnp [UrYsTUN] - dp + hec. (F12)
The amplitudes A and B are, see [21] Appendix C,
As, t,u) = +f’2%¢ 1(M’+M) — Mg|, (F13a)
s — M} +ie | 2
fanp
B(s,t = 4+——F F13b
(o) =+ (F13b)
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The Pauli-spinor amplitudes around the threshold become

f/2
M +m+ Mg + i€’
p'p f*
G ~ - . F14b
AM'M M + m — Mg ( )

F

Q

(F14a)

Taking into account the resonance character, like in the previous subsection, we obtain
(M +m)* — M3
s— M2)2 + MiT%

G ~ f/2 p/p (M+m)2 — M]%
AM'M s — M3)? + M3AI%

F%f’2

(M +m — Mg) , (F15a)

(M +m + Mg) (F15b)

and the M-amplitude becomes in the CM-system, i.e. p’ = —q and p = —q,

(M +m)* — M3

M ~ f7? M+m—M
P VA PN 3 {( +m = Mr)
_ B o'q/a'q
M My) 24 24 F1
+ (M + m + Mg) o } (F16)

Then, the effective Lagrangian which reproduces the M-amplitude in first order reads
(M +m)? — M3
s — M32)? + MiT%

(M +m)+ Mg
X(Vl VQ)) (51] —+1 AM M

wR[((M+m—MR)+(M+m+MR>-

_ 12
‘Ceff - f AM'M

o-V;Xx V2€ijk7_k} YN Q1i¢2,. (F17)

Here, we inserted the isospin operators, because the effective Lagrangian must be hermitean.
In case of the n-mesons the spin-orbit term vanishes.

Compared with the parameters in the effective Lagrangian for the FM-interaction we
have

(M +m)*>+ M3 (M +m+ Mg)

A+ B = +f"? F18
LA Ty V- P Vel ATV VA (F18a)
M +m)?+ M3 (M +m+ Mg)
A-p — 1ot R F18b
+f (5+ M¢)?+ MR 4M'M ( )
M+m)*+ Mz
D = +f? O+ m)” & My (M +m — Mg) . (F18c)

(54 M3E)? + M3,
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