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I. INTRODUCTION

In these notes we derive the effective two-body baryon-baryon ( nucleon-nucleon, hyperon-
nucleon, hyperon-hyperon) force in matter from the triple-, quadruple-pomeron, and more
general the N-tuple-pomeron, vertex.
General motivation: It was found by Nishizaki, Takatkska and Yamamoto [1] that the
soft-core interactions tend to give a too low maximum for the neutron star mass, which is
Mmax = 1.44M⊙. To remedy this they add a repulsive universal TBF. This is all the more
necessary since the discovery of the two-solar mass neutron stars [2, 3].

Like in Ref. [4], we consider the three- and also the four-body interactions between baryons
as generated by the triple- and quadruple-pomeron vertex (see [5, 6] for references). Then,
we integrate out one or two of the baryons to give an effective two-body potential.

In this note, we consider the triple-, quadruple-, and N-tuple-body interaction between
baryons as a given by the triple-, quadruple-, and N-tuple-pomeron vertex. The framework
we use is the description of the Pomeron with a scalar field σP (x). It is a ghost-field in the
sense that the propagator is gaussian with (-)-sign. So, the Pomeron does not propagate and
gives only so-called ’contact’ interactions with a Gaussian form factor. This is the picture
used in [7] and also in the spirit of the Reggeon Field-theory formalism, see e.g. [6] and
references.

Remarks: (i) We give two derivations of the effective two-body potentials: with (a) Carte-
sian coordinates xi, and with Jacobian coordinates xα. (ii) The multi-pomeron Lagrangians
are without division by 3! and 4! for the triple- and quadruple-couplings respectively. As
a consequence the effective two-body potentials get combinatorial factors 3! respectively
4!. (iii) The pomeron-vertices are defined with ’unrationalized couplings’ GP , G3P , and
G4P for the pomeron-baryon, the triple-pomeron, and qudruple-pomeron couplings respec-
tively. The ’rationalized couplings’ are defined as gP = G/

√
4π, g3P = G3P/(

√
4π)3/2, and

g4P = G4P/(4π)
2.

The content of these notes is as follows. In section II we review the two-body potential
from pomeron-exchange. In section III the three-body potential is given and the effective
two-body is derived, using in configuration space simple cartesian vectors for the position of
the baryons. Similarly, in section IV and section V this is done for the four-body and N-body
potentials. In section VI we discuus the triple- and quadruple couplings in connection with
the Regge field-theory perspective. In Appendix A the derivation of the configuration space
potentials is reviewed, within the context of the used normalization of the non-relativistic
one-particle states. In Appendix B the three-body configuration-space potentials are derived
using Jacobian coordinates for the baryons. Similarly in Appendix C for the four-body
potentials. Finally, in Appendix D the Jacobian coordinates are described in more detail.

Literature: Nishizaki, Takatsuka, Yamamoto, P.T.P. 105 (2001); ibid 108 (2002).
A.B. Kaidalov & K.A. Ter-Materosyan, Nucl.Phys. B75 (1974).
Th.A. Rijken, Thesis, Nijmegen 1975 (unpublished).
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FIG. 1: Pomeron and triple-pomeron exchange graphs

Combinatorial factors: Associate σ(x) with the Pomeron, and
the BBP coupling

LBBP = gP
[

ψ̄(x)ψ(x)
]

σ(x). (1.1)

The triple and quartic pomeron self-interactions we define as

LPPP = g3P σ3(x) , LPPPP = g4P σ4(x). (1.2)

a. Triple-pomeron exchange three-body force: 4th order diagram

M3P ∼ 1

4!

[

L3P + LBBP

]4 ⇒ 4× 1

4!
L3P L3

BBP

→ Combinatorial factor diagram : 4× 1

4!
× 3! = 1.

b. Quartic-pomeron exchange four-body force: 5th order diagram

M4P ∼ 1

5!

[

L3P + LBBP

]5 ⇒ 5× 1

5!
L4P L4

BBP

→ Combinatorial factor diagram : 5× 1

5!
× 4! = 1.

Conclusion: The Lagrangians in (1.2) give no extra combinatorial
factors in the 3- and 4-body potential diagram.

II. TWO-BODY POTENTIAL FROM POMERON-EXCHANGE

Because of the universal coupling strength of the Pomeron to Baryons, we can restrict
ourselves to nucleons, without loss of generality. We start from the pomeron-interaction.
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The Lagrangian and the propagator, we take as [8]

LP = GP ψ̄(x)ψ(x) σP (x) (2.1a)

∆P
F (k

2) = exp(−k2/4m2
P )/M2 , (2.1b)

where the scaling mass M = 1GeV. Then, the matrix element for the graph of Fig. 1 in the
CM-system is given by [9], see Appendix A,

MP (p
′

1, p
′

2; p1, p2) = G2
P [ū(p′)u(p)] [ū(−p′)u(−p)] ·∆P

F [(p
′ − p)2]

≈ G2
P exp

(

−k2/4m2
P

)

/M2, (2.2)

where we used the CM-momenta, i.e. p1 = −p2 = p, and p′

1 = −p′

2 = p′. We also
introduced k = p′ − p. Then, the potential in configuration space is given by

VP (r12) =

∫

d3k

(2π)3
eik·xMP (p

′,p)δ(k− p′ + p)

=
G2

P

4π

4√
π

m3
P

M2
exp

(

−m2
P r

2
12

)

. (2.3)

For the volume integral we get

I
(2)
V =

∫

d3r12VP (r12) = G2
P/M2 . (2.4)

III. THREE-BODY POTENTIAL FROM THE TRIPLE-POMERON VERTEX

For the triple-pomeron vertex we take the Lagrangian

LPPP = G3PM σ3
P (x) (3.1)

Then, the matrix element for the graph of 1 is given by

M3P (p
′

1, p
′

2, p
′

3; p1, p2, p3) = G3PG
3
P M Π3

i=1

{

[ū(p′i)u(pi)]∆
P
F [(p

′

i − pi)
2]
}

≈ G3PG
3
P M Π3

i=1∆
P
F [(p

′

i − pi)
2] . (3.2)

The corresponding three-body potential in configuration space is given by

V (x′

1,x
′

2,x
′

3;x1,x2,x3) = Π3
i=1

[
∫

d3p′i
(2π)3

d3pi
(2π)3

· e−i(p′

i
·x′

i
−pi·xi)

]

×M3P (p
′

1, p
′

2, p
′

3; p1, p2, p3) δ
(

∑

p′

i −
∑

pi

)

. (3.3)

Introducing now the combinations

qi =
1

2
(p′

i + pi) , ki = p′

i − pi, (3.4a)

p′

i = qi +
1

2
ki , pi = qi −

1

2
ki . (3.4b)
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Then, we have that d3p′id
3pi = d3qid

3ki, and

p′

i · x′

i − pi · xi = qi · (x′

i − x) +
1

2
ki · (xi

′ + xi) (3.5)

The qi-integrations can be done immediately,

∫

d3qi exp {qi · (x′

i − xi)} = (2π)3δ(x′

i − xi).

After this we get for the three-body potential

V (x′

1,x
′

2,x
′

3;x1,x2,x3) ≡ V (x1,x2,x3)δ(x
′

1 − x1)δ(x
′

2 − x2)δ(x
′

3 − x3) (3.6a)

V (x1,x2,x3) = G3PG
3
P

[

Π3
i=1

∫

d3ki
(2π)3

e−iki·xi

]

· δ (k1 + k2 + k3) ·

× exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

exp
(

−k2
3/4m

2
P

)

· M−5 (3.6b)

where the Pomeron propagator ∆P
F [k

2] given in Eq. (2.1b) is used.

A. The triple pomeron effective two-body potential

To obtain the effective two-body potential in a baryonic medium, we integrate over the co-
ordinate x3 of the third nucleon. From (3.6b) it is evident that this gives a factor (2π)3δ(k3).
Using this we get from (3.6b) the two-body potential

Veff (x1,x2) = ρNM

∫

d3x3 V (x1,x2,x3), (3.7a)

Veff (x1,x2) = G3PG
3
P

ρNM

M5
·
∫

d3k1
(2π)3

∫

d3k2
(2π)3

e−ik1·x1e−ik2·x2 ·

×δ(k1 + k2) exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

= G3PG
3
P

ρNM

M5
·
∫

d3k1
(2π)6

e−ik1·(x1−x2) · exp
(

−k2
1/2m

2
P

)

= g3P g
3
P

ρNM

M5
· 8

4π

4√
π

(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

. (3.7b)

In the last expression we introduced the rationalized couplings

gP = GP/
√
4π , g3P = G3P/(4π)

3/2. (3.8)

Note that

(i) gP is the Pomeron parameter in the Nijmegen potential program and pa-
pers.

(ii) result (3.7b) should be multiplied by the combinatorial factor: 3!
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From (3.7b) one sees that if g3P > 0 this gives repulsion in a few/many-body system.

Comparing formula (3.7b) with formula (8.3) in the ESC08c paper [10]

Veff (x1,x2) = g′3P g
3
P

ρNM

M5
· 1

4π

4√
π

(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

,

shows that g′3P = 8g3P .

Now, one has that

ρNM =
2p3F
3π2

, ρ0 =
p3F
6π2

, ρNM = 4ρ0 . (3.9)

The volume integral of Veff is

IV,eff = g′3P g
3
P

ρNM

M5
· 4√

π
= g′3P g

3
P

2

3π2

( pF
M
)3

· 1

M2
· 4√

π
(3.10)

IV. FOUR-BODY POTENTIAL FROM THE QUADRUPLE-POMERON VER-

TEX

For the quadruple-pomeron vertex we take the Lagrangian

L4P = G4P σ4
P (x) (4.1)

Then, the matrix element for the graph of 1 is given by

M4P (p
′

1, p
′

2, p
′

3, p
′

4; p1, p2, p3, p4) = G4PG
4
P Π4

i=1

{

[ū(p′i)u(pi)]∆
P
F [(p

′

i − pi)
2]
}

≈ G4PG
4
P Π4

i=1∆
P
F [(p

′

i − pi)
2] . (4.2)

The corresponding four-body potential in configuration space is given by

V (x′

1,x
′

2,x
′

3,x
′

4;x1,x2,x3,x4) = Π4
i=1

[
∫

d3p′i
(2π)3

∫

d3pi
(2π)3

e−i(p′

i
·x′

i
−pi·xi)

]

·

×M4P (p
′

1, p
′

2, p
′

3, p
′

4; p1, p2, p3, p4) δ

(

4
∑

i=1

p′

i −
4
∑

i=1

pi

)

. (4.3)

Introducing now the combinations

qi =
1

2
(p′

i + pi) , ki = p′

i − pi , or (4.4a)

p′

i = qi +
1

2
ki , pi = qi −

1

2
ki . (4.4b)

Then, we have that d3p′id
3pi = d3qid

3ki, and

p′

i · x′

i − pi · xi = qi · (x′

i − xi) +
1

2
ki · (xi

′ + xi) (4.5)
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Again, the qi-integrations can be done immediately, leading to the four-body potential

V (x′

1,x
′

2,x
′

3,x
′

4;x1,x2,x3,x4) ≡ V (x1,x2,x3,x4)Π
4
i=1δ(x

′

i − xi), (4.6a)

V (x1,x2,x3,x4) = G4PG
4
P Π4

i=1

{
∫

d3ki
(2π)3

e−iki·xi

}

· δ (k1 + k2 + k3 + k4) ·

× exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

exp
(

−k2
3/4m

2
P

)

exp
(

−k2
4/4m

2
P

)

· M−8 , (4.6b)

A. The quadruple effective two-body potential

To obtain the effective two-body potential in a baryonic medium, we integrate over the
coordinate x3 and x4 of the third and fourth nucleon. From (4.6b) it is evident that this
gives the factors (2π)3δ(k3) and (2π)3δ(k4). Using this we get from (4.6b the two-body
potential

Veff (x1,x2) = ρ2NM

∫

d3x3

∫

d3x4 V (x1,x2,x3,x4)

Veff (x1,x2) = G4PG
4
P

ρ2NM

M8
·
∫

d3k1
(2π)3

∫

d3k2
(2π)3

e−ik1·x1e−ik2·x2 ·

×δ(k1 + k2) exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

= G4PG
4
P

ρ2NM

M8
·
∫

d3k1
(2π)6

e−ik1·(x1−x2) · exp
(

−k2
1/2m

2
P

)

= 8g4P g
4
P

ρ2NM

M8
· 4√

π

(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

. (4.7a)

Again, we introduced in the last line the rationalized 4-point coupling g4P = G4P/(4π)
2,

similar to the rationalized 3-point coupling g3P .
Note that the result (4.7a) should be multiplied by the combinatorial factor 4!
From (4.7a) it follows that if g4P > 0 this gives repulsion in a few/many-body system.
Now, one has that

ρNM =
2p3F
3π2

, ρ0 =
p3F
6π2

, ρNM = 4ρ0 . (4.8)

The volume integral of Veff is

IV,eff = g′4P g
4
P

ρ2NM

M8
= g′4P g

4
P

4

9π4

( pF
M
)6

· 1

M2
. (4.9)

V. N-BODY POTENTIAL FROM THE N-TUPLE-POMERON VERTEX

The work of the foregoing sections is easily generalized to the case of an N-tuple-pomeron
vertex. For the N-tuple-pomeron vertex we take the Lagrangian

LN = G
(N)
P M4−N σN

P (x) (5.1)
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The N-body potential is

V (x′

1, . . . ,x
′

N ;x1, . . . ,xN) ≡ V (x1, . . . ,xN)Π
N
i=1δ(x

′

i − xi), (5.2a)

V (x1, . . . ,xN) = G
(N)
P GN

P ΠN
i=1

{
∫

d3ki
(2π)3

e−iki·xi

}

· δ (k1 + k2 + . . .+ kN) ·

× exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

. . . exp
(

−k2
N/4m

2
P

)

· M4−3N , (5.2b)

Similarly to the section III the effective two-body potential in a baryonic medium is obtained
by integrating over the coordinates x3, ..., xN of the nucleons (baryons). From (5.2b) it is
evident that this gives the factors (2π)3δ(k3) .... (2π)

3δ(k4). Using this we get from (5.2b)
the two-body potential

V
(N)
eff (x1,x2) = ρN−2

NM

∫

d3x3 . . .

∫

d3xN V (x1,x2, . . .xN)

V
(N)
eff (x1,x2) = G

(N)
P GN

P

ρN−2
NM

M3N−4
·
∫

d3k1
(2π)3

∫

d3k2
(2π)3

e−ik1·x1e−ik2·x2 ·

×δ(k1 + k2) exp
(

−k2
1/4m

2
P

)

exp
(

−k2
2/4m

2
P

)

= G
(N)
P GN

P

ρN−2
NM

M3N−4
·
∫

d3k1
(2π)6

e−ik1·(x1−x2) · exp
(

−k2
1/2m

2
P

)

= (4π)(N−4)/2g
(N)
P gNP

ρN−2
NM

M3N−4
· 8

π
√
π
·
(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

. (5.3)

Therefore, if g
(N)
P > 0 this gives repulsion in a few/many-body system. In (5.3) we introduced

the rationalized coupling g
(N)
P = G

(N)
P /(4π).

——————————————————————————–

VI. DISCUSSION AND CONCLUSION

The relation between the triple and quadruple couplings and the Regge residues is as
follows:

(i) Triple-pomeron coupling: The relation between the pomeron coupling gP and the residue
of the pomeron is given by [7]

G2
P = γ20(0)

( s̄

M2

)αP (0)

, (6.1)

where s̄ ≈ (6 − 8)M2. Analogously, the relation between the triple-pomeron coupling g3P
and the triple-residue is given by

G3P = r0(0)
( s̄

M2

)3αP (0)/2

. (6.2)

Therefore,
G3P

GP

=
r0(0)

γ0(0)

( s̄

M2

)αP (0)

≈ (6− 8)
r0(0)

γ0(0)
. (6.3)
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According to [5] r0(0)/γ0(0) = 1/40 and therefore we expect G3P/GP ≈ (0.15 − 0.20).
Comparing this with the result of the previous section implies that what is needed in the
nuclear saturation is a factor two larger as expected from the triple-pomeron contribution.
This leaves room for a contribution also from the change in the vector- (and scalar-) meson
masses, which we used in [12].

(ii) Quadruple-pomeron coupling:
Similarly to the triple-pomeron vertex, taking the relation between the quadruple-pomeron
coupling g4P and the quadruple-residue q0 as given by

G4P = q0(0)
( s̄

M2

)2αP (0)

. (6.4)

Then,
G4P

GP

=
q0(0)

γ0(0)

( s̄

M2

)3αP (0)/2

≈ (14.5− 22.5)
q0(0)

γ0(0)
. (6.5)

(iii) Quadruple-pomeron in Reggeon field theory:
In Reggeon field theory, see e.g. [6], the (bare) gap ∆0 of the pomeron intercept i.e.
αP (0) = 1 − ∆0 and the (bare) triple- and quartic- couplings, respectively r0 and λ0, is
related by ∆0 = −r20/λ0. For an estimate we identify: g′3P = r0 and g′4P = 4λ0. In com-
paring with Regge phenomenology of the total cross sections we do not distinguish here
between ’bare’ and ’renormalized’ quantities. In fitting the high-energy pp cross sections,
Donnachie and Landshoff [13] used the ’hard’ and the ’soft’ pomeron trajectories α0(t) and
α1(t) respectively:

α0(t) = 1−∆0 + α′t,

α1(t) = 1−∆1 + α′t,

For the soft pomeron they fitted ∆1 = −0.0667, and for the hard pomeron ∆0 = −0.452.
Using the soft pomeron and the relation above from [6], we find

G4P = −4r20/∆1 ≈ 60G2
3P ,

which gives G4P/4π ≈ 30 for G3P/4π = 0.2. So, apart from the precise numbers for the
parameters the result seems to be that G4P >> G3P .

Remark: Also G3P and G4P are running coupling constants. Therefore for low energies
these couplings may be larger than in the Regge-regime.

(iv) Polynomial-pomeron coupling:
Consider a general polynomial pomeron-vertex, using the Lagrangian

LPol. =
∞
∑

N=3

G
(N)
P M4−N σN

P (x). (6.6)

Then, from the results above the effective two-body repulsion is given by

V
(Pol)
eff (x1,x2) =

∞
∑

N=3

[

g
(N)
P gNP

ρN−2
NM

M3N−4

]

· 1

4π

4√
π

(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

≡ 1

4π

4√
π

(

mP√
2

)3

exp

(

−1

2
m2

P r
2
12

)

· f(gP , ρMN), (6.7)
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with the volume-integral

I
(N)
V,eff =

∞
∑

N=3

g
(N)
P gNP

ρN−2
NM

M3N−4
= f(gP , ρNM). (6.8)

p

p’

-p

-p’

k

(a) p

p’

-p

-p’

k

(b)

FIG. 2: CM One-boson-exchange graphs: The dashed lines with momentum k refers to the bosons:

pseudo-scalar, vector, axial-vector, or scalar mesons.

APPENDIX A: DERIVATION CONFIGURATION-SPACE POTENTIALS

In Fig. 2 the two time-ordered graphs are drawn for a scalar exchange proces. In momen-
tum space the matrix element from (a) and (b) is, realizing that two time-ordered graphs
are equivalent to a single Feynman graph,

〈p′1, p′2|M |p1, p2〉 = −G2 δ3(p′1 + p′2 − p1 − p2)
1

ω2
k

, (A1)

where we used that in the CM-frame energy conservation makes the energy transfer zero,
and the notation ωk =

√
k2 +m2.

Splitting off the CM-motion goes as follows. With

R =
1

2
(x1 + x2) , r = x1 − x2,

p =
1

2
(p1 − p2) , P = p1 + p2,

the two-particle wave function is

(x1,x2|p1,p2) = exp

[

i(p1 + p2) ·R
]

· exp
[

i

2
(p1 − p2) · r

]

.
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In configuration space

〈x′1, x′2|M |x1, x2〉 =
∫

d3p′1d
3p′2

(2π)6

∫

d3p1d
3p2

(2π)6
(x′1|p′1)(x′2|p′2)(p2|x2)(p1|x1) ·

×〈p′1, p′2|M |p1, p2〉 = (2π)−12

∫

d3p′1d
3p′2

∫

d3p1d
3p2 ·

×e−i(p′
1
·x′

1
+p′

2
·x′

2
) e+i(p1·x1+p2·x2)〈p′1, p′2|M |p1, p2〉 = (2π)−12 ·

×
∫

d3P ′d3p′
∫

d3Pd3p e−i(P′·R′−P·R) e−i(p′·r′−p·r) 〈p′,P′|M |p,P〉. (A2)

With

(p′,P′|M |p,P) = δ(P′ −P) M(p′,p)

Performing the P and P’ integrations one obtains

〈x′1, x′2|M |x1, x2〉 = (2π)−3δ(R′ −R) (r′|M |r), (A3a)

(r′|M |r) = (2π)−6

∫ ∫

d3p′d3p e−i(p′·r′−p·r) M(p′,p). (A3b)

Introducing the standard variables

q =
1

2
(p′ + p) , k = p′ − p, (A4)

and replacing
∫

d3p′d3p →
∫

d3qd3k, the q integrations can be executed immediately. One
gets for M(k) = −G2/ω2(k)

(r′|M |r) = (2π)−6

∫ ∫

d3qd3k e−iq·(r′−r)e−ik·(r′+r)/2 M(q,k) (A5a)

⇒
∫

d3k

(2π)3
e−ik·r M(k). (A5b)

For Pomeron exchange −1/ω2 → +exp(−k2/Λ2)/M2. Then, one has with r12 = x1 − x2,

〈x′1, x′2|MP |x1, x2〉 = (2π)−3δ(R′ −R) (r′|VP |r12),

VP (r12) =
G2

4π

1

2π
√
π

Λ3

M2
e−m2

P
r2
12 =

G2

4π

4√
π

m3
P

M2
e−m2

P
r2
12 . (A6)

which explains Eq. 2.3.

APPENDIX B: THREE-BODY CONFIGURATION-SPACE POTENTIALS,

JACOBIAN-COORDINATES METHOD

The free three-particle wave function is

ψ3(x1,x2,x3) = Π3
i=1

[

eipi·xi

]

. (B1)

11



The matrix element corresponding to the triple-pomeron graph in Fig. 1 is

(p′1, p
′

2, p
′

3|M |p1, p2, p3) = G3PG
3
PM Π3

i=1

[

e−k2

i
/Λ2

M2

](

∑

i

p′i −
∑

i

pi

)

, (B2)

where ki = p′

i − pi.

The Jacobi-coordinates in configuration and momentum space are defined as

xρ =
1√
2
(x1 − x2) , pρ =

1√
2
(p1 − p2) (B3a)

xλ =
1√
6
(x1 + x2 − 2x3) , pλ =

1√
6
(p1 + p2 − 2p3) (B3b)

R3 =
1√
3
(x1 + x2 + x3) , P3 =

1√
3
(p1 + p2 + p3). (B3c)

One has

3
∑

i=1

pi · xi = pρ · xρ + pλ · xλ +P3 ·R3,

3
∑

i=1

k2
i = kρ + k2

λ + (P′

3 −P3)
2.

The potential is given by

(x1,x2,x3|V3|x1,x2,x3) = Π3
i=1

[
∫

d3p′i

∫

d3pi

]

ψ∗

3(x
′

1,x
′

2,x
′

3) (p
′

1, p
′

2, p
′

3|M3P |p1, p2, p3) ·

×ψ∗

3(x1,x2,x3) = (2π)−18

∫

d3P ′

3d
3p′ρd

3p′λ

∫

d3Pd3pρd
3pλ exp [−i(P′

3 ·R′

3 −P3 ·P3)] ·

× exp
[

−i(p′

ρ · x′

ρ − pρ · xρ)
]

exp [−i(p′

λ · x′

λ − pλ · xλ)] ·
×G3PG

3
P

[

M2
]−3

exp
{

−(k2
ρ + k2

λ)/Λ
}

·
× exp

{

−(P′

3 −P3)
2/Λ2

}

(3
√
3)−1δ3(P′

3 −P3). (B4)

Since everything factorizes we can perform all integrals in an elementary way. The integrals
are

ICM = (2π)−3

∫

d3P ′

3d
3P3 exp [−i(P′

3 ·R′

3 −P3 ·P3)] exp
{

−(P′

3 −P3)
2/Λ2

}

·

×δ3(P′

3 −P3) = δ3(R′

3 −R3) (B5a)

Iρ = (2π)−6

∫

d3p′ρd
3pρ exp

[

−i(p′

ρ · x′

ρ − pρ · xρ)
]

exp
{

−k2
ρ)/Λ

2
}

= δ3(x′

ρ − xρ)

(

Λ

2
√
π

)3

exp

[

−1

4
Λ2x2

ρ

]

, (B5b)

Iλ = (2π)−6

∫

d3p′λd
3pλ exp [−i(p′

λ · x′

λ − pλ · xλ)] exp
{

−k2
λ)/Λ

2
}

= δ3(x′

λ − xλ)

(

Λ

2
√
π

)3

exp

[

−1

4
Λ2x2

λ

]

. (B5c)
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Separating the δ-functions by defining

(x1,x2,x3|V3|x1,x2,x3) =
[

Π3
i=1δ

3(x′

i − xi)
]

V3(x1,x2,x3) (B6)

the potential becomes

V3(x1,x2,x3) = (2π)−9G3PG
3
PM

(

Λ

M

)6 (
π√
3

)3

exp

[

−1

4
Λ2(x2

ρ + x2
λ)

]

(B7)

Integration over particle 3 gives

Veff (x1,x2) = ρMN

∫

d3x3 V (x1,x2,x3). (B8)

Translating the integrand back to the variables xi, i = 1, 2, 3) we have

f3 ≡ x2
ρ + x2

λ =
2

3

(

x2
1 + x2

2 + x2
3 − x1 · x2 − x1 · x3 − x2 · x3

)

,

which leads to the x3-integral

∫

d3x3 exp

[

−1

6
Λ2
{

x2
3 − x3 · (x1 + x2)

}

]

=

(

6π

Λ2

)3/2

exp

[

1

24
Λ2(x1 + x2)

2

]

giving

Veff (x1,x2) = (2π)−9/2G3PG
3
PρMN(2)

−3 Λ3

M5
exp

[

−1

8
Λ2(x1 − x2)

2

]

= (2π)−9/2G3PG
3
PρMN

m3
P

M5
exp

[

−1

2
m2

P r
2
12

]

, (B9)

where we used Λ = 2mP . Inserting the rationalized couplings gP , g3P defined byGP =
√
4πgP

and G3P = (4π)3/2g3P one has

Veff (x1,x2) = g3Pg
3
P

ρMN

M5
· 2
π

4√
π
·
(

mP√
2

)3

exp

[

−1

2
m2

P r
2
12

]

, (B10)

This formula agrees with (3.7b)!

APPENDIX C: FOUR-BODY CONFIGURATION-SPACE POTENTIALS,

JACOBIAN-COORDINATES METHOD

The free four-particle wave function is

ψ4(x1,x2,x3) = Π4
i=1

[

eipi·xi

]

. (C1)

The matrix element corresponding to the triple-pomeron graph in Fig. 1 is

(p′1, p
′

2, p
′

3, p
′

4|M |p1, p2, p3, p4) = G4PG
4
PM Π4

i=1

[

e−k2

i
/Λ2

M2

](

∑

i

p′i −
∑

i

pi

)

, (C2)
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where ki = p′

i − pi.

The Jacobi-coordinates in configuration and momentum space are defined as

xρ =
1√
2
(x1 − x2) , pρ =

1√
2
(p1 − p2) (C3a)

xλ =
1√
6
(x1 + x2 − 2x3) , pλ =

1√
6
(p1 + p2 − 2p3) (C3b)

xµ =
1√
12

(x1 + x2 + x3 − 3x4) , pµ =
1√
12

(p1 + p2 + p3 − 3p4) (C3c)

R4 =
1√
4
(x1 + x2 + x3 + x4) , P4 =

1√
4
(p1 + p2 + p3 + p4). (C3d)

One has

4
∑

i=1

pi · xi = pρ · xρ + pλ · xλ + pµ · xµ +P4 ·R4,

4
∑

i=1

k2
i = kρ + k2

λ ++k2
µ + (P′

4 −P4)
2.

The potential is given by

(x′

1,x
′

2,x
′

3,x
′

4|V4|x1,x2,x3,x4) = Π4
i=1

[
∫

d3p′i

∫

d3pi

]

ψ∗

4(x
′

1,x
′

2,x
′

3,x
′

4) ·

×(p′1, p
′

2, p
′

3, p
′

4|M4P |p1, p2, p3, p4)ψ∗

4(x1,x2,x3,x4) =

(2π)−24

∫

d3P ′

3d
3p′ρd

3p′λd
3p′µ

∫

d3Pd3pρd
3pλd

3pµ exp [−i(P′

4 ·R′

4 −P4 ·P4)] ·

× exp
[

−i(p′

ρ · x′

ρ − pρ · xρ)
]

exp [−i(p′

λ · x′

λ − pλ · xλ)] exp
[

−i(p′

µ · x′

µ − pµ · xµ)
]

·
×G4PG

4
P

[

M2
]−4

exp
{

−(k2
ρ + k2

λ + k2
µ)/Λ

}

·
× exp

{

−(P′

4 −P4)
2/Λ2

}

(4
√
4)−1δ3(P′

4 −P4). (C4)

Since everything factorizes we can perform all integrals in an elementary way. The integrals
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are

ICM = (2π)−3

∫

d3P ′

4d
3P4 exp [−i(P′

4 ·R′

4 −P4 ·P4)] exp
{

−(P′

4 −P4)
2/Λ2

}

·

×δ3(P′

4 −P4) = δ3(R′

4 −R4) (C5a)

Iρ = (2π)−6

∫

d3p′ρd
3pρ exp

[

−i(p′

ρ · x′

ρ − pρ · xρ)
]

exp
{

−k2
ρ)/Λ

2
}

= δ3(x′

ρ − xρ)

(

Λ

2
√
π

)3

exp

[

−1

4
Λ2x2

ρ

]

, (C5b)

Iλ = (2π)−6

∫

d3p′λd
3pλ exp [−i(p′

λ · x′

λ − pλ · xλ)] exp
{

−k2
λ)/Λ

2
}

= δ3(x′

λ − xλ)

(

Λ

2
√
π

)3

exp

[

−1

4
Λ2x2

λ

]

, (C5c)

Iµ = (2π)−6

∫

d3p′µd
3pµ exp

[

−i(p′

µ · x′

µ − pµ · xµ)
]

exp
{

−k2
µ)/Λ

2
}

= δ3(x′

µ − xµ)

(

Λ

2
√
π

)3

exp

[

−1

4
Λ2x2

µ

]

. (C5d)

Separating the δ-functions by defining

(x′

1,x
′

2,x
′

3,x
′

4|V4|x1,x2,x3,x4) =
[

Π4
i=1δ

3(x′

i − xi)
]

V4(x1,x2,x3,x4) (C6)

the potential becomes

V4(x1,x2,x3,x4) = (2π)−12G4PG
4
P M

(

Λ

M

)9

(π)9/2 ·

× exp

[

−1

4
Λ2(x2

ρ + x2
λ + x2

µ)

]

. (C7)

Integration over particle 3 and 4 gives

Veff (x1,x2) = ρ2MN

∫

d3x3d
3x4 V (x1,x2,x3,x4). (C8)

Translating the integrand back to the variables xi, i = 1, 2, 3) we have

f4 ≡ x2
ρ + x2

λ + x2
µ =

3

4

(

x2
1 + x2

2 + x2
3 + x2

4

)

−1

2
(x1 · x2 + x1 · x3 + x2 · x3x1 · x4 + x2 · x4 + x3 · x4)

=
3

4
(x2

1 + x2
2 −

2

3
x1 · x2) +

3

4
(x2

3 + x2
4)

−1

2
[(x1 + x2) · (x3 + x4) + x3 · x4]

=
3

4
(x2

1 + x2
2 −

2

3
x1 · x2) +

1

2
(x3 − x4)

2

+
1

4
(x3 + x4)

2 − 1

2
(x1 + x2) · (x3 + x4).
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Introducing x = (x3 + x4)/2 and y = x3 − x4 leads to the 34-integrals
∫

d3xd3y exp

[

−1

4
Λ2
{

x2 − x · (x1 + x2)
}

− 1

8
Λ2y2

]

=

(

8π

Λ2

)3/2(
4π

Λ2

)3/2

exp

[

1

16
Λ2(x1 + x2)

2

]

giving

Veff (x1,x2) = (2π)−9/2G4PG
4
Pρ

2
MN

Λ3

M8
exp

[

−1

8
Λ2(x1 − x2)

2

]

= (2π)−9/2G4PG
4
Pρ

2
MN (2

√
2)

m3
P

M8
exp

[

−1

2
m2

P r
2
12

]

, (C9)

where we used Λ = 2mP . Inserting the rationalized couplings gP , g4P defined byGP =
√
4πgP

and G4P = (4π)2g4P one has

Veff (x1,x2) = 8g4P g
4
P

ρ2MN

M8
· 4√

π

(

mP√
2

)3

exp

[

−1

2
m2

P r
2
12

]

, (C10)

This formula agrees with (4.7a)!

m1

m2

m3

m4

O
x1

x2

x3

x4

r1

r2

r3
R

FIG. 3: Jacobi-coordinates of a four particle system.

APPENDIX D: JACOBI-COORDINATES A=4 SYSTEMS

For an N-body system the Jacobian coordinates ri are constructed via the following rules:

r1 = x1 − x2, (D1a)

rj =

j
∑

k=1

mk

m0j

xk − xj+1, m0j =

j
∑

k=1

mk. (D1b)
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Here, xN+1 = 0 and for j=N this is defined as rN ≡ R the center of mass

R =
1

M

∑

k=1

mkxk, M = m0N =
∑

k=1

mk. (D2)

For N=4 this leads to the Jacobian coordinates

r1 = x1 − x2, (D3a)

r2 = R12 − x3 =
m1x1 +m2x2

m1 +m2

− x3, (D3b)

r3 = R123 − x4 =
m1x1 +m2x2 +m3x3

m1 +m2 +m3

− x4, (D3c)

R = R1234 =
m1x1 +m2x2 +m3x3 +m4x4

m1 +m2 +m3 +m4

. (D3d)

The inverse of (D3) reads

x1 = R+
m2

m1 +m2

r1 +
m3

m1 +m2 +m3

r2 +
m4

m1 +m2 +m3 +m4

r3, (D4a)

x2 = R− m1

m1 +m2

r1 +
m3

m1 +m2 +m3

r2 +
m4

m1 +m2 +m3 +m4

r3, (D4b)

x3 = R− m1 +m2

m1 +m2 +m3

r2 +
m4

m1 +m2 +m3 +m4

r3, (D4c)

x4 = R− m1 +m2 +m3

m1 +m2 +m3 +m4

r3. (D4d)

1. Four-pomeron Potential

For the multi-pomeron potentials for the leading term we neglect the baryon mass-
differences. Therefore we take m1 = m2 = m3 = m4. Then,

r1 = x1 − x2 =
√
2xρ, (D5a)

r2 =
1

2
(x1 + x2)− x3 =

√

3

2
xλ, (D5b)

r3 =
1

3
(x1 + x2 + x3)− x4 =

√

4

3
xµ, (D5c)

r4 =
1

4
(x1 + x2 + x3 + x4) =

√

1

4
R, (D5d)

with the inverse

x1 = R+
1

2
r1 +

1

3
r2 +

1

4
r3, (D6a)

x2 = R− 1

2
r1 +

1

3
r2 +

1

4
r3, (D6b)

x3 = R− 2

3
r2 +

1

4
r3, (D6c)

x4 = R− 3

4
r3. (D6d)
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Analogous to the A=3 case we work with the configuration and momentum space Jacobi-
variables

xρ =
1√
2
(x1 − x2) , pρ =

1√
2
(p1 − p2), (D7a)

xλ =
1√
6
(x1 + x2 − 2x3) , pλ =

1√
6
(p1 + p2 − 2p3), (D7b)

xµ =
1√
12

(x1 + x2 + x3 − 3x4) , pµ =
1√
12

(p1 + p2 + p3 − 3p4), (D7c)

R =
1

4
(x1 + x2 + x3 + x4) , P =

1

4
(p1 + p2 + p3 + p4). (D7d)

This gives
4
∑

i=1

pi = P ·R+ pρ · xρ + pλ · xλ + pµ · xµ (D8)

The connection with the Jacobi-coordinates used in the case of the triton is given by

r1 = ρ, r2 =

√

3

2
λ, (D9)

which indeed yields

(x1 − x2)
2 + (x1 − x3)

2 + (x2 − x3)
2 = 3(ρ2 + λ2).

In Fig. 3 the constellation of the different vectors are displayed. We note that only particle
4 is connected with the center of mass.

[1] Nishizaki, Takatsuka, Yamamoto, P.T.P. 105 (2001); ibid 108 (2002).

[2] P.B. Demorest, T. Pennuci, S.M. Ransom, M.S.E. Roberts, and J.W.T. Hessels, Na-

ture(London) 467, 1081 (2010).

[3] Y. Yamamoto, T. Furumoto, N. Yasutake, and Th.A. Rijken, Phys. Rev. C 88, 022801(R)

(2013); ibid C 90, 045805 (2014).

[4] Th.A. Rijken, Multiple-Pomeron Coupling and the Universal Repulsion in Nuclear/Hyperonic

Matter. I. Triple-Pomeron Vertices, notes Nijmegen 2005.

[5] A.B.Kaidalov and K.A. Ter-Materosyan, Nucl. Phys. B75 (1974), 471.

[6] J.B. Bronzan and R.L. Sugar, Phys. Rev. D16, 466 (1977).

[7] Th.A. Rijken, Thesis, Nijmegen 1975 (unpublished).

[8] The normalization of the one-particle states is [7] (p′|p) = (2π)3δ3(p′ − p), and the one-

particle wave function is (x|p) = exp(+ip · x). This differs a factor (2π)3/2 compared to the

normalization used in [9]. Important relations are
∫

d3x |x〉〈x| = 1 ,

∫

d3p

(2π)3
|p〉〈p| = 1

18



and the relation of matrix elements in configuration and momentum space reads

(r′|V |r) =

∫ ∫

d3p′d3p

(2π)6
(p′|V |p)(p|r)

=

∫ ∫

d3qd3k

(2π)6
ei(q·(r

′−r)ei(k·(r
′+r)/2V (q,k)

where q = (p′ + p)/2,k = p′ − p.

[9] J.D. Bjorken and S.D. Drell, I. Relativistic Quantum Mechanics and II. Relativistic Quantum

Fields, McGraw-Hill Publishing Company 1965.

[10] M.M. Nagels, Th.A. Rijken, and Y. Yamamoto, ”Extended-soft-core Baryon-Baryon Model

ESC08c, I. Nucleon-Nucleon Scattering”, in preparation.

[11] Th.A. Rijken, ”Multi-Pomeron Couplings and the Universal Repulsion in Nuclear/Hyperonic

Matter. III. Quadruple- and N-tuple-Pomeron Vertices.”, Notes , December 2010.

[12] Th.A. Rijken and Y. Yamamoto, Phys. Rev. C73, 044008 (2006).

[13] A. Donnachie and P.V. Landshoff, Does the hard pomeron obey Regge factorisation?,

arXiv:hep-ph/04022081.

[14] F. Mandl, Chapter 4 in Introduction to Quantum Field Theory, Interscience Publishers Inc.,

1961

19


