Multi-Pomeron Exchange and the Universal Repulsion in Nuclear/Hyperonic Matter Triple-, Quadruple- and N-tuple-Pomeron Vertices

Th. A. Rijken
Institute for Mathematics, Astrophysics, and Particle Physics, Radboud University, Nijmegen, The Netherlands
(Dated: version of: September 2, 2018)

I. INTRODUCTION

In these notes we derive the effective two-body baryon-baryon (nucleon-nucleon, hyperonnucleon, hyperon-hyperon) force in matter from the triple-, quadruple-pomeron, and more general the N-tuple-pomeron, vertex.
General motivation: It was found by Nishizaki, Takatkska and Yamamoto [1] that the soft-core interactions tend to give a too low maximum for the neutron star mass, which is $M_{\max }=1.44 M_{\odot}$. To remedy this they add a repulsive universal TBF. This is all the more necessary since the discovery of the two-solar mass neutron stars [2, 3]

Like in Ref. [4], we consider the three- and also the four-body interactions between baryons as generated by the triple- and quadruple-pomeron vertex (see [5, 6] for references). Then, we integrate out one or two of the baryons to give an effective two-body potential.

In this note, we consider the triple-, quadruple-, and N-tuple-body interaction between baryons as a given by the triple-, quadruple-, and N-tuple-pomeron vertex. The framework we use is the description of the Pomeron with a scalar field $\sigma_{P}(x)$. It is a ghost-field in the sense that the propagator is gaussian with (-)-sign. So, the Pomeron does not propagate and gives only so-called 'contact' interactions with a Gaussian form factor. This is the picture used in [7] and also in the spirit of the Reggeon Field-theory formalism, see e.g. [6] and references.

Remarks: (i) We give two derivations of the effective two-body potentials: with (a) Cartesian coordinates \mathbf{x}_{i}, and with Jacobian coordinates \mathbf{x}_{α}. (ii) The multi-pomeron Lagrangians are without division by 3! and 4! for the triple- and quadruple-couplings respectively. As a consequence the effective two-body potentials get combinatorial factors 3! respectively 4!. (iii) The pomeron-vertices are defined with 'unrationalized couplings' $G_{P}, G_{3 P}$, and $G_{4 P}$ for the pomeron-baryon, the triple-pomeron, and qudruple-pomeron couplings respectively. The 'rationalized couplings' are defined as $g_{P}=G / \sqrt{4 \pi}, g_{3 P}=G_{3 P} /(\sqrt{4 \pi})^{3 / 2}$, and $g_{4 P}=G_{4 P} /(4 \pi)^{2}$.

The content of these notes is as follows. In section II we review the two-body potential from pomeron-exchange. In section III the three-body potential is given and the effective two-body is derived, using in configuration space simple cartesian vectors for the position of the baryons. Similarly, in section IV and section V this is done for the four-body and N-body potentials. In section VI we discuus the triple- and quadruple couplings in connection with the Regge field-theory perspective. In Appendix A the derivation of the configuration space potentials is reviewed, within the context of the used normalization of the non-relativistic one-particle states. In Appendix B the three-body configuration-space potentials are derived using Jacobian coordinates for the baryons. Similarly in Appendix C for the four-body potentials. Finally, in Appendix D the Jacobian coordinates are described in more detail.

Literature: Nishizaki, Takatsuka, Yamamoto, P.T.P. 105 (2001); ibid 108 (2002).
A.B. Kaidalov \& K.A. Ter-Materosyan, Nucl.Phys. B75 (1974).

Th.A. Rijken, Thesis, Nijmegen 1975 (unpublished).

FIG. 1: Pomeron and triple-pomeron exchange graphs

Combinatorial factors: Associate $\sigma(x)$ with the Pomeron, and the BBP coupling

$$
\begin{equation*}
\mathcal{L}_{B B P}=g_{P}[\bar{\psi}(x) \psi(x)] \sigma(x) . \tag{1.1}
\end{equation*}
$$

The triple and quartic pomeron self-interactions we define as

$$
\begin{equation*}
\mathcal{L}_{P P P}=g_{3 P} \sigma^{3}(x), \mathcal{L}_{P P P P}=g_{4 P} \sigma^{4}(x) \tag{1.2}
\end{equation*}
$$

a. Triple-pomeron exchange three-body force: 4th order diagram

$$
\begin{aligned}
\mathcal{M}_{3 P} & \sim \frac{1}{4!}\left[\mathcal{L}_{3 P}+\mathcal{L}_{B B P}\right]^{4} \Rightarrow 4 \times \frac{1}{4!} \mathcal{L}_{3 P} \mathcal{L}_{B B P}^{3} \\
& \rightarrow \text { Combinatorial factor diagram }: 4 \times \frac{1}{4!} \times 3!=1
\end{aligned}
$$

b. Quartic-pomeron exchange four-body force: 5th order diagram

$$
\begin{aligned}
\mathcal{M}_{4 P} & \sim \frac{1}{5!}\left[\mathcal{L}_{3 P}+\mathcal{L}_{B B P}\right]^{5} \Rightarrow 5 \times \frac{1}{5!} \mathcal{L}_{4 P} \mathcal{L}_{B B P}^{4} \\
& \rightarrow \text { Combinatorial factor diagram : } 5 \times \frac{1}{5!} \times 4!=1
\end{aligned}
$$

Conclusion: The Lagrangians in (1.2) give no extra combinatorial factors in the 3- and 4-body potential diagram.

II. TWO-BODY POTENTIAL FROM POMERON-EXCHANGE

Because of the universal coupling strength of the Pomeron to Baryons, we can restrict ourselves to nucleons, without loss of generality. We start from the pomeron-interaction.

The Lagrangian and the propagator, we take as [8]

$$
\begin{align*}
\mathcal{L}_{P} & =G_{P} \bar{\psi}(x) \psi(x) \sigma_{P}(x) \tag{2.1a}\\
\Delta_{F}^{P}\left(k^{2}\right) & =\exp \left(-\mathbf{k}^{2} / 4 m_{P}^{2}\right) / \mathcal{M}^{2} \tag{2.1b}
\end{align*}
$$

where the scaling mass $\mathcal{M}=1 \mathrm{GeV}$. Then, the matrix element for the graph of Fig. 1 in the CM-system is given by [9], see Appendix A,

$$
\begin{align*}
M_{P}\left(p_{1}^{\prime}, p_{2}^{\prime} ; p_{1}, p_{2}\right) & =G_{P}^{2}\left[\bar{u}\left(p^{\prime}\right) u(p)\right]\left[\bar{u}\left(-p^{\prime}\right) u(-p)\right] \cdot \Delta_{F}^{P}\left[\left(p^{\prime}-p\right)^{2}\right] \\
& \approx G_{P}^{2} \exp \left(-\mathbf{k}^{2} / 4 m_{P}^{2}\right) / \mathcal{M}^{2}, \tag{2.2}
\end{align*}
$$

where we used the CM-momenta, i.e. $\mathbf{p}_{1}=-\mathbf{p}_{2}=\mathbf{p}$, and $\mathbf{p}_{1}^{\prime}=-\mathbf{p}_{2}^{\prime}=\mathbf{p}^{\prime}$. We also introduced $\mathbf{k}=\mathbf{p}^{\prime}-\mathbf{p}$. Then, the potential in configuration space is given by

$$
\begin{align*}
V_{P}\left(r_{12}\right) & =\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{x}} M_{P}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \delta\left(\mathbf{k}-\mathbf{p}^{\prime}+\mathbf{p}\right) \\
& =\frac{G_{P}^{2}}{4 \pi} \frac{4}{\sqrt{\pi}} \frac{m_{P}^{3}}{\mathcal{M}^{2}} \exp \left(-m_{P}^{2} r_{12}^{2}\right) . \tag{2.3}
\end{align*}
$$

For the volume integral we get

$$
\begin{equation*}
I_{V}^{(2)}=\int d^{3} r_{12} V_{P}\left(r_{12}\right)=G_{P}^{2} / \mathcal{M}^{2} \tag{2.4}
\end{equation*}
$$

III. THREE-BODY POTENTIAL FROM THE TRIPLE-POMERON VERTEX

For the triple-pomeron vertex we take the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{P P P}=G_{3 P} \mathcal{M} \sigma_{P}^{3}(x) \tag{3.1}
\end{equation*}
$$

Then, the matrix element for the graph of 1 is given by

$$
\begin{align*}
M_{3 P}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime} ; p_{1}, p_{2}, p_{3}\right) & =G_{3 P} G_{P}^{3} \mathcal{M} \Pi_{i=1}^{3}\left\{\left[\bar{u}\left(p_{i}^{\prime}\right) u\left(p_{i}\right)\right] \Delta_{F}^{P}\left[\left(p_{i}^{\prime}-p_{i}\right)^{2}\right]\right\} \\
& \approx G_{3 P} G_{P}^{3} \mathcal{M} \Pi_{i=1}^{3} \Delta_{F}^{P}\left[\left(p_{i}^{\prime}-p_{i}\right)^{2}\right] . \tag{3.2}
\end{align*}
$$

The corresponding three-body potential in configuration space is given by

$$
\begin{align*}
V\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)= & \Pi_{i=1}^{3}\left[\int \frac{d^{3} p_{i}^{\prime}}{(2 \pi)^{3}} \frac{d^{3} p_{i}}{(2 \pi)^{3}} \cdot e^{-i\left(\mathbf{p}_{i}^{\prime} \cdot \mathbf{x}_{i}^{\prime}-\mathbf{p}_{i} \cdot \mathbf{x}_{i}\right)}\right] \\
& \times M_{3 P}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime} ; p_{1}, p_{2}, p_{3}\right) \delta\left(\sum \mathbf{p}_{i}^{\prime}-\sum \mathbf{p}_{i}\right) \tag{3.3}
\end{align*}
$$

Introducing now the combinations

$$
\begin{align*}
\mathbf{q}_{i} & =\frac{1}{2}\left(\mathbf{p}_{i}^{\prime}+\mathbf{p}_{i}\right) \quad, \quad \mathbf{k}_{i}=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{i} \tag{3.4a}\\
\mathbf{p}_{i}^{\prime} & =\mathbf{q}_{i}+\frac{1}{2} \mathbf{k}_{i}, \quad \mathbf{p}_{i}=\mathbf{q}_{i}-\frac{1}{2} \mathbf{k}_{i} \tag{3.4b}
\end{align*}
$$

Then, we have that $d^{3} p_{i}^{\prime} d^{3} p_{i}=d^{3} q_{i} d^{3} k_{i}$, and

$$
\begin{equation*}
\mathbf{p}_{i}^{\prime} \cdot \mathbf{x}_{i}^{\prime}-\mathbf{p}_{i} \cdot \mathbf{x}_{i}=\mathbf{q}_{i} \cdot\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}\right)+\frac{1}{2} \mathbf{k}_{i} \cdot\left(\mathbf{x}_{\mathbf{i}}^{\prime}+\mathbf{x}_{i}\right) \tag{3.5}
\end{equation*}
$$

The q_{i}-integrations can be done immediately,

$$
\int d^{3} q_{i} \exp \left\{\mathbf{q}_{i} \cdot\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right)\right\}=(2 \pi)^{3} \delta\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right)
$$

After this we get for the three-body potential

$$
\begin{align*}
& V\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \equiv V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \delta\left(\mathbf{x}_{1}^{\prime}-\mathbf{x}_{1}\right) \delta\left(\mathbf{x}_{2}^{\prime}-\mathbf{x}_{2}\right) \delta\left(\mathbf{x}_{3}^{\prime}-\mathbf{x}_{3}\right) \tag{3.6a}\\
& V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=G_{3 P} G_{P}^{3}\left[\Pi_{i=1}^{3} \int \frac{d^{3} k_{i}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{i} \cdot \mathbf{x}_{i}}\right] \cdot \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \cdot \\
& \times \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{3}^{2} / 4 m_{P}^{2}\right) \cdot \mathcal{M}^{-5} \tag{3.6b}
\end{align*}
$$

where the Pomeron propagator $\Delta_{F}^{P}\left[k^{2}\right]$ given in Eq. (2.1b) is used.

A. The triple pomeron effective two-body potential

To obtain the effective two-body potential in a baryonic medium, we integrate over the coordinate \mathbf{x}_{3} of the third nucleon. From (3.6b) it is evident that this gives a factor $(2 \pi)^{3} \delta\left(\mathbf{k}_{3}\right)$. Using this we get from (3.6b) the two-body potential

$$
\begin{align*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \rho_{N M} \int d^{3} x_{3} V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right), \tag{3.7a}\\
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & G_{3 P} G_{P}^{3} \frac{\rho_{N M}}{\mathcal{M}^{5}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{1} \cdot \mathbf{x}_{1}} e^{-i \mathbf{k}_{2} \cdot \mathbf{x}_{2}} . \\
& \times \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \\
= & G_{3 P} G_{P}^{3} \frac{\rho_{N M}}{\mathcal{M}^{5}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{6}} e^{-i \mathbf{k}_{1} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)} \cdot \exp \left(-\mathbf{k}_{1}^{2} / 2 m_{P}^{2}\right) \\
= & g_{3 P} g_{P}^{3} \frac{\rho_{N M}}{\mathcal{M}^{5}} \cdot \frac{8}{4 \pi} \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right) . \tag{3.7b}
\end{align*}
$$

In the last expression we introduced the rationalized couplings

$$
\begin{equation*}
g_{P}=G_{P} / \sqrt{4 \pi}, g_{3 P}=G_{3 P} /(4 \pi)^{3 / 2} \tag{3.8}
\end{equation*}
$$

Note that

(i) g_{P} is the Pomeron parameter in the Nijmegen potential program and papers.
(ii) result (3.7b) should be multiplied by the combinatorial factor: 3 !

From (3.7b) one sees that if $g_{3 P}>0$ this gives repulsion in a few/many-body system.

Comparing formula (3.7b) with formula (8.3) in the ESC08c paper [10]

$$
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=g_{3 P}^{\prime} g_{P}^{3} \frac{\rho_{N M}}{\mathcal{M}^{5}} \cdot \frac{1}{4 \pi} \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right),
$$

shows that $g_{3 P}^{\prime}=8 g_{3 P}$.

Now, one has that

$$
\begin{equation*}
\rho_{N M}=\frac{2 p_{F}^{3}}{3 \pi^{2}}, \rho_{0}=\frac{p_{F}^{3}}{6 \pi^{2}}, \rho_{N M}=4 \rho_{0} \tag{3.9}
\end{equation*}
$$

The volume integral of $V_{\text {eff }}$ is

$$
\begin{equation*}
I_{V, e f f}=g_{3 P}^{\prime} g_{P}^{3} \frac{\rho_{N M}}{\mathcal{M}^{5}} \cdot \frac{4}{\sqrt{\pi}}=g_{3 P}^{\prime} g_{P}^{3} \frac{2}{3 \pi^{2}}\left(\frac{p_{F}}{\mathcal{M}}\right)^{3} \cdot \frac{1}{\mathcal{M}^{2}} \cdot \frac{4}{\sqrt{\pi}} \tag{3.10}
\end{equation*}
$$

IV. FOUR-BODY POTENTIAL FROM THE QUADRUPLE-POMERON VERTEX

For the quadruple-pomeron vertex we take the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{4 P}=G_{4 P} \sigma_{P}^{4}(x) \tag{4.1}
\end{equation*}
$$

Then, the matrix element for the graph of 1 is given by

$$
\begin{align*}
M_{4 P}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime} ; p_{1}, p_{2}, p_{3}, p_{4}\right) & =G_{4 P} G_{P}^{4} \Pi_{i=1}^{4}\left\{\left[\bar{u}\left(p_{i}^{\prime}\right) u\left(p_{i}\right)\right] \Delta_{F}^{P}\left[\left(p_{i}^{\prime}-p_{i}\right)^{2}\right]\right\} \\
& \approx G_{4 P} G_{P}^{4} \Pi_{i=1}^{4} \Delta_{F}^{P}\left[\left(p_{i}^{\prime}-p_{i}\right)^{2}\right] . \tag{4.2}
\end{align*}
$$

The corresponding four-body potential in configuration space is given by

$$
\begin{gather*}
V\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}, \mathbf{x}_{4}^{\prime} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=\Pi_{i=1}^{4}\left[\int \frac{d^{3} p_{i}^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} p_{i}}{(2 \pi)^{3}} e^{-i\left(\mathbf{p}_{i}^{\prime} \cdot \mathbf{x}_{i}^{\prime}-\mathbf{p}_{i} \cdot \mathbf{x}_{i}\right)}\right] \\
\times M_{4 P}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime} ; p_{1}, p_{2}, p_{3}, p_{4}\right) \delta\left(\sum_{i=1}^{4} \mathbf{p}_{i}^{\prime}-\sum_{i=1}^{4} \mathbf{p}_{i}\right) \tag{4.3}
\end{gather*}
$$

Introducing now the combinations

$$
\begin{align*}
& \mathbf{q}_{i}=\frac{1}{2}\left(\mathbf{p}_{i}^{\prime}+\mathbf{p}_{i}\right) \quad, \quad \mathbf{k}_{i}=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{i}, \text { or } \tag{4.4a}\\
& \mathbf{p}_{i}^{\prime}=\mathbf{q}_{i}+\frac{1}{2} \mathbf{k}_{i}, \quad \mathbf{p}_{i}=\mathbf{q}_{i}-\frac{1}{2} \mathbf{k}_{i} . \tag{4.4b}
\end{align*}
$$

Then, we have that $d^{3} p_{i}^{\prime} d^{3} p_{i}=d^{3} q_{i} d^{3} k_{i}$, and

$$
\begin{equation*}
\mathbf{p}_{i}^{\prime} \cdot \mathbf{x}_{i}^{\prime}-\mathbf{p}_{i} \cdot \mathbf{x}_{i}=\mathbf{q}_{i} \cdot\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right)+\frac{1}{2} \mathbf{k}_{i} \cdot\left(\mathbf{x}_{\mathbf{i}}^{\prime}+\mathbf{x}_{i}\right) \tag{4.5}
\end{equation*}
$$

Again, the q_{i}-integrations can be done immediately, leading to the four-body potential

$$
\begin{align*}
& V\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}, \mathbf{x}_{4}^{\prime} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \equiv V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \Pi_{i=1}^{4} \delta\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right), \tag{4.6a}\\
& V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=G_{4 P} G_{P}^{4} \Pi_{i=1}^{4}\left\{\int \frac{d^{3} k_{i}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{i} \cdot \mathbf{x}_{i}}\right\} \cdot \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right) \cdot \\
& \times \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{3}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{4}^{2} / 4 m_{P}^{2}\right) \cdot \mathcal{M}^{-8} \tag{4.6b}
\end{align*}
$$

A. The quadruple effective two-body potential

To obtain the effective two-body potential in a baryonic medium, we integrate over the coordinate \mathbf{x}_{3} and \mathbf{x}_{4} of the third and fourth nucleon. From (4.6b) it is evident that this gives the factors $(2 \pi)^{3} \delta\left(\mathbf{k}_{3}\right)$ and $(2 \pi)^{3} \delta\left(\mathbf{k}_{4}\right)$. Using this we get from (4.6b the two-body potential

$$
\begin{align*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \rho_{N M}^{2} \int d^{3} x_{3} \int d^{3} x_{4} V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \\
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & G_{4 P} G_{P}^{4} \frac{\rho_{N M}^{2}}{\mathcal{M}^{8}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{1} \cdot \mathbf{x}_{1}} e^{-i \mathbf{k}_{2} \cdot \mathbf{x}_{2}} \\
& \times \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \\
= & G_{4 P} G_{P}^{4} \frac{\rho_{N M}^{2}}{\mathcal{M}^{8}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{6}} e^{-i \mathbf{k}_{1} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)} \cdot \exp \left(-\mathbf{k}_{1}^{2} / 2 m_{P}^{2}\right) \\
= & 8 g_{4 P} g_{P}^{4} \frac{\rho_{N M}^{2}}{\mathcal{M}^{8}} \cdot \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right) . \tag{4.7a}
\end{align*}
$$

Again, we introduced in the last line the rationalized 4-point coupling $g_{4 P}=G_{4 P} /(4 \pi)^{2}$, similar to the rationalized 3 -point coupling $g_{3 P}$.
Note that the result (4.7a) should be multiplied by the combinatorial factor 4 ! From (4.7a) it follows that if $g_{4 P}>0$ this gives repulsion in a few/many-body system.
Now, one has that

$$
\begin{equation*}
\rho_{N M}=\frac{2 p_{F}^{3}}{3 \pi^{2}}, \rho_{0}=\frac{p_{F}^{3}}{6 \pi^{2}}, \rho_{N M}=4 \rho_{0} \tag{4.8}
\end{equation*}
$$

The volume integral of $V_{e f f}$ is

$$
\begin{equation*}
I_{V, e f f}=g_{4 P}^{\prime} g_{P}^{4} \frac{\rho_{N M}^{2}}{\mathcal{M}^{8}}=g_{4 P}^{\prime} g_{P}^{4} \frac{4}{9 \pi^{4}}\left(\frac{p_{F}}{\mathcal{M}}\right)^{6} \cdot \frac{1}{\mathcal{M}^{2}} \tag{4.9}
\end{equation*}
$$

V. N-BODY POTENTIAL FROM THE N-TUPLE-POMERON VERTEX

The work of the foregoing sections is easily generalized to the case of an N-tuple-pomeron vertex. For the N-tuple-pomeron vertex we take the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{N}=G_{P}^{(N)} \mathcal{M}^{4-N} \sigma_{P}^{N}(x) \tag{5.1}
\end{equation*}
$$

The N-body potential is

$$
\begin{align*}
& V\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime} ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) \equiv V\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) \Pi_{i=1}^{N} \delta\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right), \tag{5.2a}\\
& V\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=G_{P}^{(N)} G_{P}^{N} \Pi_{i=1}^{N}\left\{\int \frac{d^{3} k_{i}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{i} \cdot \mathbf{x}_{i}}\right\} \cdot \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\ldots+\mathbf{k}_{N}\right) \cdot \\
& \times \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \ldots \exp \left(-\mathbf{k}_{N}^{2} / 4 m_{P}^{2}\right) \cdot \mathcal{M}^{4-3 N} \tag{5.2b}
\end{align*}
$$

Similarly to the section III the effective two-body potential in a baryonic medium is obtained by integrating over the coordinates $\mathbf{x}_{3}, \ldots, \mathbf{x}_{N}$ of the nucleons (baryons). From (5.2b) it is evident that this gives the factors $(2 \pi)^{3} \delta\left(\mathbf{k}_{3}\right) \ldots(2 \pi)^{3} \delta\left(\mathbf{k}_{4}\right)$. Using this we get from (5.2b) the two-body potential

$$
\begin{align*}
V_{e f f}^{(N)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \rho_{N M}^{N-2} \int d^{3} x_{3} \ldots \int d^{3} x_{N} V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{N}\right) \\
V_{e f f}^{(N)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & G_{P}^{(N)} G_{P}^{N} \frac{\rho_{N M}^{N-2}}{\mathcal{M}^{3 N-4}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{1} \cdot \mathbf{x}_{1}} e^{-i \mathbf{k}_{2} \cdot \mathbf{x}_{2}} . \\
& \times \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \exp \left(-\mathbf{k}_{1}^{2} / 4 m_{P}^{2}\right) \exp \left(-\mathbf{k}_{2}^{2} / 4 m_{P}^{2}\right) \\
= & G_{P}^{(N)} G_{P}^{N} \frac{\rho_{N M}^{N-2}}{\mathcal{M}^{3 N-4}} \cdot \int \frac{d^{3} k_{1}}{(2 \pi)^{6}} e^{-i \mathbf{k}_{1} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)} \cdot \exp \left(-\mathbf{k}_{1}^{2} / 2 m_{P}^{2}\right) \\
= & (4 \pi)^{(N-4) / 2} g_{P}^{(N)} g_{P}^{N} \frac{\rho_{N M}^{N-2}}{\mathcal{M}^{3 N-4}} \cdot \frac{8}{\pi \sqrt{\pi}} \cdot\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right) . \tag{5.3}
\end{align*}
$$

Therefore, if $g_{P}^{(N)}>0$ this gives repulsion in a few/many-body system. In (5.3) we introduced the rationalized coupling $g_{P}^{(N)}=G_{P}^{(N)} /(4 \pi)$.

VI. DISCUSSION AND CONCLUSION

The relation between the triple and quadruple couplings and the Regge residues is as follows:
(i) Triple-pomeron coupling: The relation between the pomeron coupling g_{P} and the residue of the pomeron is given by [7]

$$
\begin{equation*}
G_{P}^{2}=\gamma_{0}^{2}(0)\left(\frac{\bar{s}}{\mathcal{M}^{2}}\right)^{\alpha_{P}(0)} \tag{6.1}
\end{equation*}
$$

where $\bar{s} \approx(6-8) \mathcal{M}^{2}$. Analogously, the relation between the triple-pomeron coupling $g_{3 P}$ and the triple-residue is given by

$$
\begin{equation*}
G_{3 P}=r_{0}(0)\left(\frac{\bar{s}}{\mathcal{M}^{2}}\right)^{3 \alpha_{P}(0) / 2} \tag{6.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{G_{3 P}}{G_{P}}=\frac{r_{0}(0)}{\gamma_{0}(0)}\left(\frac{\bar{s}}{\mathcal{M}^{2}}\right)^{\alpha_{P}(0)} \approx(6-8) \frac{r_{0}(0)}{\gamma_{0}(0)} . \tag{6.3}
\end{equation*}
$$

According to [5] $r_{0}(0) / \gamma_{0}(0)=1 / 40$ and therefore we expect $G_{3 P} / G_{P} \approx(0.15-0.20)$. Comparing this with the result of the previous section implies that what is needed in the nuclear saturation is a factor two larger as expected from the triple-pomeron contribution. This leaves room for a contribution also from the change in the vector- (and scalar-) meson masses, which we used in [12].
(ii) Quadruple-pomeron coupling:

Similarly to the triple-pomeron vertex, taking the relation between the quadruple-pomeron coupling $g_{4 P}$ and the quadruple-residue q_{0} as given by

$$
\begin{equation*}
G_{4 P}=q_{0}(0)\left(\frac{\bar{s}}{\mathcal{M}^{2}}\right)^{2 \alpha_{P}(0)} \tag{6.4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{G_{4 P}}{G_{P}}=\frac{q_{0}(0)}{\gamma_{0}(0)}\left(\frac{\bar{s}}{\mathcal{M}^{2}}\right)^{3 \alpha_{P}(0) / 2} \approx(14.5-22.5) \frac{q_{0}(0)}{\gamma_{0}(0)} \tag{6.5}
\end{equation*}
$$

(iii) Quadruple-pomeron in Reggeon field theory:

In Reggeon field theory, see e.g. [6], the (bare) gap Δ_{0} of the pomeron intercept i.e. $\alpha_{P}(0)=1-\Delta_{0}$ and the (bare) triple- and quartic- couplings, respectively r_{0} and λ_{0}, is related by $\Delta_{0}=-r_{0}^{2} / \lambda_{0}$. For an estimate we identify: $g_{3 P}^{\prime}=r_{0}$ and $g_{4 P}^{\prime}=4 \lambda_{0}$. In comparing with Regge phenomenology of the total cross sections we do not distinguish here between 'bare' and 'renormalized' quantities. In fitting the high-energy pp cross sections, Donnachie and Landshoff [13] used the 'hard' and the 'soft' pomeron trajectories $\alpha_{0}(t)$ and $\alpha_{1}(t)$ respectively:

$$
\begin{aligned}
& \alpha_{0}(t)=1-\Delta_{0}+\alpha^{\prime} t \\
& \alpha_{1}(t)=1-\Delta_{1}+\alpha^{\prime} t
\end{aligned}
$$

For the soft pomeron they fitted $\Delta_{1}=-0.0667$, and for the hard pomeron $\Delta_{0}=-0.452$. Using the soft pomeron and the relation above from [6], we find

$$
G_{4 P}=-4 r_{0}^{2} / \Delta_{1} \approx 60 G_{3 P}^{2}
$$

which gives $G_{4 P} / 4 \pi \approx 30$ for $G_{3 P} / 4 \pi=0.2$. So, apart from the precise numbers for the parameters the result seems to be that $G_{4 P} \gg G_{3 P}$.

Remark: Also $G_{3 P}$ and $G_{4 P}$ are running coupling constants. Therefore for low energies these couplings may be larger than in the Regge-regime.
(iv) Polynomial-pomeron coupling:

Consider a general polynomial pomeron-vertex, using the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\text {Pol. }}=\sum_{N=3}^{\infty} G_{P}^{(N)} \mathcal{M}^{4-N} \sigma_{P}^{N}(x) \tag{6.6}
\end{equation*}
$$

Then, from the results above the effective two-body repulsion is given by

$$
\begin{align*}
V_{e f f}^{(P o l)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\sum_{N=3}^{\infty}\left[g_{P}^{(N)} g_{P}^{N} \frac{\rho_{N M}^{N-2}}{\mathcal{M}^{3 N-4}}\right] \cdot \frac{1}{4 \pi} \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right) \\
& \equiv \frac{1}{4 \pi} \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left(-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right) \cdot f\left(g_{P}, \rho_{M N}\right), \tag{6.7}
\end{align*}
$$

with the volume-integral

$$
\begin{equation*}
I_{V, e f f}^{(N)}=\sum_{N=3}^{\infty} g_{P}^{(N)} g_{P}^{N} \frac{\rho_{N M}^{N-2}}{\mathcal{M}^{3 N-4}}=f\left(g_{P}, \rho_{N M}\right) \tag{6.8}
\end{equation*}
$$

FIG. 2: CM One-boson-exchange graphs: The dashed lines with momentum \mathbf{k} refers to the bosons: pseudo-scalar, vector, axial-vector, or scalar mesons.

APPENDIX A: DERIVATION CONFIGURATION-SPACE POTENTIALS

In Fig. 2 the two time-ordered graphs are drawn for a scalar exchange proces. In momentum space the matrix element from (a) and (b) is, realizing that two time-ordered graphs are equivalent to a single Feynman graph,

$$
\begin{equation*}
\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| M\left|p_{1}, p_{2}\right\rangle=-G^{2} \delta^{3}\left(p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right) \frac{1}{\omega_{k}^{2}} \tag{A1}
\end{equation*}
$$

where we used that in the CM-frame energy conservation makes the energy transfer zero, and the notation $\omega_{k}=\sqrt{\mathbf{k}^{2}+m^{2}}$.

Splitting off the CM-motion goes as follows. With

$$
\begin{aligned}
& \mathbf{R}=\frac{1}{2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) \quad, \mathbf{r}=\mathbf{x}_{1}-\mathbf{x}_{2} \\
& \mathbf{p}=\frac{1}{2}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \quad, \mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}
\end{aligned}
$$

the two-particle wave function is

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \mathbf{p}_{1}, \mathbf{p}_{2}\right)=\exp \left[i\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \cdot \mathbf{R}\right] \cdot \exp \left[\frac{i}{2}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \cdot \mathbf{r}\right] .
$$

In configuration space

$$
\begin{align*}
& \left\langle x_{1}^{\prime}, x_{2}^{\prime}\right| M\left|x_{1}, x_{2}\right\rangle=\int \frac{d^{3} p_{1}^{\prime} d^{3} p_{2}^{\prime}}{(2 \pi)^{6}} \int \frac{d^{3} p_{1} d^{3} p_{2}}{(2 \pi)^{6}}\left(x_{1}^{\prime} \mid p_{1}^{\prime}\right)\left(x_{2}^{\prime} \mid p_{2}^{\prime}\right)\left(p_{2} \mid x_{2}\right)\left(p_{1} \mid x_{1}\right) \\
& \quad \times\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| M\left|p_{1}, p_{2}\right\rangle=(2 \pi)^{-12} \int d^{3} p_{1}^{\prime} d^{3} p_{2}^{\prime} \int d^{3} p_{1} d^{3} p_{2} \\
& \quad \times e^{-i\left(p_{1}^{\prime} \cdot x_{1}^{\prime}+p_{2}^{\prime} \cdot x_{2}^{\prime}\right)} e^{+i\left(p_{1} \cdot x_{1}+p_{2} \cdot x_{2}\right)}\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| M\left|p_{1}, p_{2}\right\rangle=(2 \pi)^{-12} \\
& \quad \times \int d^{3} P^{\prime} d^{3} p^{\prime} \int d^{3} P d^{3} p e^{-i\left(\mathbf{P}^{\prime} \cdot \mathbf{R}^{\prime}-\mathbf{P} \cdot \mathbf{R}\right)} e^{-i\left(\mathbf{p}^{\prime} \cdot \mathbf{r}^{\prime}-\mathbf{p} \cdot \mathbf{r}\right)}\left\langle\mathbf{p}^{\prime}, \mathbf{P}^{\prime}\right| M|\mathbf{p}, \mathbf{P}\rangle . \tag{A2}
\end{align*}
$$

With

$$
\left(\mathbf{p}^{\prime}, \mathbf{P}^{\prime}|M| \mathbf{p}, \mathbf{P}\right)=\delta\left(\mathbf{P}^{\prime}-\mathbf{P}\right) M\left(\mathbf{p}^{\prime}, \mathbf{p}\right)
$$

Performing the P and P^{\prime} integrations one obtains

$$
\begin{align*}
\left\langle x_{1}^{\prime}, x_{2}^{\prime}\right| M\left|x_{1}, x_{2}\right\rangle & =(2 \pi)^{-3} \delta\left(\mathbf{R}^{\prime}-\mathbf{R}\right)\left(\mathbf{r}^{\prime}|M| \mathbf{r}\right) \tag{A3a}\\
\left(\mathbf{r}^{\prime}|M| \mathbf{r}\right) & =(2 \pi)^{-6} \iint d^{3} p^{\prime} d^{3} p e^{-i\left(\mathbf{p}^{\prime} \mathbf{r}^{\prime}-\mathbf{p} \cdot \mathbf{r}\right)} M\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \tag{A3b}
\end{align*}
$$

Introducing the standard variables

$$
\begin{equation*}
\mathbf{q}=\frac{1}{2}\left(\mathbf{p}^{\prime}+\mathbf{p}\right), \mathbf{k}=\mathbf{p}^{\prime}-\mathbf{p} \tag{A4}
\end{equation*}
$$

and replacing $\int d^{3} p^{\prime} d^{3} p \rightarrow \int d^{3} q d^{3} k$, the q integrations can be executed immediately. One gets for $M(\mathbf{k})=-G^{2} / \omega^{2}(\mathbf{k})$

$$
\begin{align*}
\left(\mathbf{r}^{\prime}|M| \mathbf{r}\right) & =(2 \pi)^{-6} \iint d^{3} q d^{3} k e^{-i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}\right)} e^{-i \mathbf{k} \cdot\left(\mathbf{r}^{\prime}+\mathbf{r}\right) / 2} M(\mathbf{q}, \mathbf{k}) \tag{A5a}\\
& \Rightarrow \int \frac{d^{3} k}{(2 \pi)^{3}} e^{-i \mathbf{k} \cdot \mathbf{r}} M(\mathbf{k}) \tag{A5b}
\end{align*}
$$

For Pomeron exchange $-1 / \omega^{2} \rightarrow+\exp \left(-\mathbf{k}^{2} / \Lambda^{2}\right) / \mathcal{M}^{2}$. Then, one has with $\mathbf{r}_{12}=\mathbf{x}_{1}-\mathbf{x}_{2}$,

$$
\begin{align*}
\left\langle x_{1}^{\prime}, x_{2}^{\prime}\right| M_{P}\left|x_{1}, x_{2}\right\rangle & =(2 \pi)^{-3} \delta\left(\mathbf{R}^{\prime}-\mathbf{R}\right)\left(\mathbf{r}^{\prime}\left|V_{P}\right| \mathbf{r}_{12}\right), \\
V_{P}\left(r_{12}\right) & =\frac{G^{2}}{4 \pi} \frac{1}{2 \pi \sqrt{\pi}} \frac{\Lambda^{3}}{\mathcal{M}^{2}} e^{-m_{P}^{2} r_{12}^{2}}=\frac{G^{2}}{4 \pi} \frac{4}{\sqrt{\pi}} \frac{m_{P}^{3}}{\mathcal{M}^{2}} e^{-m_{P}^{2} r_{12}^{2}} \tag{A6}
\end{align*}
$$

which explains Eq. 2.3.

APPENDIX B: THREE-BODY CONFIGURATION-SPACE POTENTIALS, JACOBIAN-COORDINATES METHOD

The free three-particle wave function is

$$
\begin{equation*}
\psi_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\Pi_{i=1}^{3}\left[e^{i \mathbf{p}_{i} \cdot \mathbf{x}_{i}}\right] \tag{B1}
\end{equation*}
$$

The matrix element corresponding to the triple-pomeron graph in Fig. 1 is

$$
\begin{equation*}
\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}|M| p_{1}, p_{2}, p_{3}\right)=G_{3 P} G_{P}^{3} \mathcal{M} \Pi_{i=1}^{3}\left[\frac{e^{-\mathbf{k}_{i}^{2} / \Lambda^{2}}}{\mathcal{M}^{2}}\right]\left(\sum_{i} p_{i}^{\prime}-\sum_{i} p_{i}\right) \tag{B2}
\end{equation*}
$$

where $\mathbf{k}_{i}=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{i}$.
The Jacobi-coordinates in configuration and momentum space are defined as

$$
\begin{gather*}
\mathbf{x}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right), \mathbf{p}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \tag{B3a}\\
\mathbf{x}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}-2 \mathbf{x}_{3}\right), \mathbf{p}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-2 \mathbf{p}_{3}\right) \tag{B3b}\\
\mathbf{R}_{3}=\frac{1}{\sqrt{3}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\right), \mathbf{P}_{3}=\frac{1}{\sqrt{3}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}\right) \tag{B3c}
\end{gather*}
$$

One has

$$
\begin{gathered}
\sum_{i=1}^{3} \mathbf{p}_{i} \cdot \mathbf{x}_{i}=\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}+\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}+\mathbf{P}_{3} \cdot \mathbf{R}_{3} \\
\sum_{i=1}^{3} \mathbf{k}_{i}^{2}=\mathbf{k}_{\rho}+\mathbf{k}_{\lambda}^{2}+\left(\mathbf{P}_{3}^{\prime}-\mathbf{P}_{3}\right)^{2}
\end{gathered}
$$

The potential is given by

$$
\begin{align*}
& \left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\left|V_{3}\right| \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\Pi_{i=1}^{3}\left[\int d^{3} p_{i}^{\prime} \int d^{3} p_{i}\right] \psi_{3}^{*}\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}\right)\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\left|M_{3 P}\right| p_{1}, p_{2}, p_{3}\right) \cdot \\
& \times \psi_{3}^{*}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=(2 \pi)^{-18} \int d^{3} P_{3}^{\prime} d^{3} p_{\rho}^{\prime} d^{3} p_{\lambda}^{\prime} \int d^{3} P d^{3} p_{\rho} d^{3} p_{\lambda} \exp \left[-i\left(\mathbf{P}_{3}^{\prime} \cdot \mathbf{R}_{3}^{\prime}-\mathbf{P}_{3} \cdot \mathbf{P}_{3}\right)\right] \\
& \times \exp \left[-i\left(\mathbf{p}_{\rho}^{\prime} \cdot \mathbf{x}_{\rho}^{\prime}-\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}\right)\right] \exp \left[-i\left(\mathbf{p}_{\lambda}^{\prime} \cdot \mathbf{x}_{\lambda}^{\prime}-\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}\right)\right] \\
& \times G_{3 P} G_{P}^{3}\left[\mathcal{M}^{2}\right]^{-3} \exp \left\{-\left(\mathbf{k}_{\rho}^{2}+\mathbf{k}_{\lambda}^{2}\right) / \Lambda\right\} \\
& \times \exp \left\{-\left(\mathbf{P}_{3}^{\prime}-\mathbf{P}_{3}\right)^{2} / \Lambda^{2}\right\}(3 \sqrt{3})^{-1} \delta^{3}\left(\mathbf{P}_{3}^{\prime}-\mathbf{P}_{3}\right) \tag{B4}
\end{align*}
$$

Since everything factorizes we can perform all integrals in an elementary way. The integrals are

$$
\begin{align*}
I_{C M}= & (2 \pi)^{-3} \int d^{3} P_{3}^{\prime} d^{3} P_{3} \exp \left[-i\left(\mathbf{P}_{3}^{\prime} \cdot \mathbf{R}_{3}^{\prime}-\mathbf{P}_{3} \cdot \mathbf{P}_{3}\right)\right] \exp \left\{-\left(\mathbf{P}_{3}^{\prime}-\mathbf{P}_{3}\right)^{2} / \Lambda^{2}\right\} \\
& \times \delta^{3}\left(\mathbf{P}_{3}^{\prime}-\mathbf{P}_{3}\right)=\delta^{3}\left(\mathbf{R}_{3}^{\prime}-\mathbf{R}_{3}\right) \tag{B5a}\\
I_{\rho}= & \left.(2 \pi)^{-6} \int d^{3} p_{\rho}^{\prime} d^{3} p_{\rho} \exp \left[-i\left(\mathbf{p}_{\rho}^{\prime} \cdot \mathbf{x}_{\rho}^{\prime}-\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}\right)\right] \exp \left\{-\mathbf{k}_{\rho}^{2}\right) / \Lambda^{2}\right\} \\
= & \delta^{3}\left(\mathbf{x}_{\rho}^{\prime}-\mathbf{x}_{\rho}\right)\left(\frac{\Lambda}{2 \sqrt{\pi}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2} \mathbf{x}_{\rho}^{2}\right] \tag{B5b}\\
I_{\lambda}= & \left.(2 \pi)^{-6} \int d^{3} p_{\lambda}^{\prime} d^{3} p_{\lambda} \exp \left[-i\left(\mathbf{p}_{\lambda}^{\prime} \cdot \mathbf{x}_{\lambda}^{\prime}-\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}\right)\right] \exp \left\{-\mathbf{k}_{\lambda}^{2}\right) / \Lambda^{2}\right\} \\
= & \delta^{3}\left(\mathbf{x}_{\lambda}^{\prime}-\mathbf{x}_{\lambda}\right)\left(\frac{\Lambda}{2 \sqrt{\pi}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2} \mathbf{x}_{\lambda}^{2}\right] \tag{B5c}
\end{align*}
$$

Separating the δ-functions by defining

$$
\begin{equation*}
\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\left|V_{3}\right| \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\left[\Pi_{i=1}^{3} \delta^{3}\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right)\right] V_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \tag{B6}
\end{equation*}
$$

the potential becomes

$$
\begin{equation*}
V_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=(2 \pi)^{-9} G_{3 P} G_{P}^{3} \mathcal{M}\left(\frac{\Lambda}{\mathcal{M}}\right)^{6}\left(\frac{\pi}{\sqrt{3}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2}\left(\mathbf{x}_{\rho}^{2}+\mathbf{x}_{\lambda}^{2}\right)\right] \tag{B7}
\end{equation*}
$$

Integration over particle 3 gives

$$
\begin{equation*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\rho_{M N} \int d^{3} x_{3} V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) . \tag{B8}
\end{equation*}
$$

Translating the integrand back to the variables $\left.\mathbf{x}_{i}, i=1,2,3\right)$ we have

$$
f_{3} \equiv \mathbf{x}_{\rho}^{2}+\mathbf{x}_{\lambda}^{2}=\frac{2}{3}\left(\mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2}+\mathbf{x}_{3}^{2}-\mathbf{x}_{1} \cdot \mathbf{x}_{2}-\mathbf{x}_{1} \cdot \mathbf{x}_{3}-\mathbf{x}_{2} \cdot \mathbf{x}_{3}\right),
$$

which leads to the \mathbf{x}_{3}-integral

$$
\int d^{3} x_{3} \exp \left[-\frac{1}{6} \Lambda^{2}\left\{\mathbf{x}_{3}^{2}-\mathbf{x}_{3} \cdot\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)\right\}\right]=\left(\frac{6 \pi}{\Lambda^{2}}\right)^{3 / 2} \exp \left[\frac{1}{24} \Lambda^{2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)^{2}\right]
$$

giving

$$
\begin{align*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =(2 \pi)^{-9 / 2} G_{3 P} G_{P}^{3} \rho_{M N}(2)^{-3} \frac{\Lambda^{3}}{\mathcal{M}^{5}} \exp \left[-\frac{1}{8} \Lambda^{2}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}\right] \\
& =(2 \pi)^{-9 / 2} G_{3 P} G_{P}^{3} \rho_{M N} \frac{m_{P}^{3}}{\mathcal{M}^{5}} \exp \left[-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right] \tag{B9}
\end{align*}
$$

where we used $\Lambda=2 m_{P}$. Inserting the rationalized couplings $g_{P}, g_{3 P}$ defined by $G_{P}=\sqrt{4 \pi} g_{P}$ and $G_{3 P}=(4 \pi)^{3 / 2} g_{3 P}$ one has

$$
\begin{equation*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=g_{3 P} g_{P}^{3} \frac{\rho_{M N}}{\mathcal{M}^{5}} \cdot \frac{2}{\pi} \frac{4}{\sqrt{\pi}} \cdot\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left[-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right], \tag{B10}
\end{equation*}
$$

This formula agrees with (3.7b)!

APPENDIX C: FOUR-BODY CONFIGURATION-SPACE POTENTIALS, JACOBIAN-COORDINATES METHOD

The free four-particle wave function is

$$
\begin{equation*}
\psi_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\Pi_{i=1}^{4}\left[e^{i \mathbf{p}_{i} \cdot \mathbf{x}_{i}}\right] . \tag{C1}
\end{equation*}
$$

The matrix element corresponding to the triple-pomeron graph in Fig. 1 is

$$
\begin{equation*}
\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}|M| p_{1}, p_{2}, p_{3}, p_{4}\right)=G_{4 P} G_{P}^{4} \mathcal{M} \Pi_{i=1}^{4}\left[\frac{e^{-\mathbf{k}_{i}^{2} / \Lambda^{2}}}{\mathcal{M}^{2}}\right]\left(\sum_{i} p_{i}^{\prime}-\sum_{i} p_{i}\right) \tag{C2}
\end{equation*}
$$

where $\mathbf{k}_{i}=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{i}$.
The Jacobi-coordinates in configuration and momentum space are defined as

$$
\begin{align*}
& \mathbf{x}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right), \mathbf{p}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \tag{C3a}\\
& \mathbf{x}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}-2 \mathbf{x}_{3}\right), \mathbf{p}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-2 \mathbf{p}_{3}\right) \tag{C3b}\\
& \mathbf{x}_{\mu}=\frac{1}{\sqrt{12}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{4}\right), \mathbf{p}_{\mu}=\frac{1}{\sqrt{12}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}-3 \mathbf{p}_{4}\right) \tag{C3c}\\
& \mathbf{R}_{4}=\frac{1}{\sqrt{4}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{4}\right), \mathbf{P}_{4}=\frac{1}{\sqrt{4}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}+\mathbf{p}_{4}\right) . \tag{C3d}
\end{align*}
$$

One has

$$
\begin{aligned}
\sum_{i=1}^{4} \mathbf{p}_{i} \cdot \mathbf{x}_{i} & =\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}+\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}+\mathbf{p}_{\mu} \cdot \mathbf{x}_{\mu}+\mathbf{P}_{4} \cdot \mathbf{R}_{4} \\
\sum_{i=1}^{4} \mathbf{k}_{i}^{2} & =\mathbf{k}_{\rho}+\mathbf{k}_{\lambda}^{2}++\mathbf{k}_{\mu}^{2}+\left(\mathbf{P}_{4}^{\prime}-\mathbf{P}_{4}\right)^{2}
\end{aligned}
$$

The potential is given by

$$
\begin{align*}
& \left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}, \mathbf{x}_{4}^{\prime}\left|V_{4}\right| \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=\Pi_{i=1}^{4}\left[\int d^{3} p_{i}^{\prime} \int d^{3} p_{i}\right] \psi_{4}^{*}\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}, \mathbf{x}_{4}^{\prime}\right) \cdot \\
& \times\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}\left|M_{4 P}\right| p_{1}, p_{2}, p_{3}, p_{4}\right) \psi_{4}^{*}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)= \\
& (2 \pi)^{-24} \int d^{3} P_{3}^{\prime} d^{3} p_{\rho}^{\prime} d^{3} p_{\lambda}^{\prime} d^{3} p_{\mu}^{\prime} \int d^{3} P d^{3} p_{\rho} d^{3} p_{\lambda} d^{3} p_{\mu} \exp \left[-i\left(\mathbf{P}_{4}^{\prime} \cdot \mathbf{R}_{4}^{\prime}-\mathbf{P}_{4} \cdot \mathbf{P}_{4}\right)\right] \\
& \times \exp \left[-i\left(\mathbf{p}_{\rho}^{\prime} \cdot \mathbf{x}_{\rho}^{\prime}-\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}\right)\right] \exp \left[-i\left(\mathbf{p}_{\lambda}^{\prime} \cdot \mathbf{x}_{\lambda}^{\prime}-\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}\right)\right] \exp \left[-i\left(\mathbf{p}_{\mu}^{\prime} \cdot \mathbf{x}_{\mu}^{\prime}-\mathbf{p}_{\mu} \cdot \mathbf{x}_{\mu}\right)\right] . \\
& \times G_{4 P} G_{P}^{4}\left[\mathcal{M}^{2}\right]^{-4} \exp \left\{-\left(\mathbf{k}_{\rho}^{2}+\mathbf{k}_{\lambda}^{2}+\mathbf{k}_{\mu}^{2}\right) / \Lambda\right\} . \\
& \times \exp \left\{-\left(\mathbf{P}_{4}^{\prime}-\mathbf{P}_{4}\right)^{2} / \Lambda^{2}\right\}(4 \sqrt{4})^{-1} \delta^{3}\left(\mathbf{P}_{4}^{\prime}-\mathbf{P}_{4}\right) . \tag{C4}
\end{align*}
$$

Since everything factorizes we can perform all integrals in an elementary way. The integrals
are

$$
\begin{align*}
I_{C M}= & (2 \pi)^{-3} \int d^{3} P_{4}^{\prime} d^{3} P_{4} \exp \left[-i\left(\mathbf{P}_{4}^{\prime} \cdot \mathbf{R}_{4}^{\prime}-\mathbf{P}_{4} \cdot \mathbf{P}_{4}\right)\right] \exp \left\{-\left(\mathbf{P}_{4}^{\prime}-\mathbf{P}_{4}\right)^{2} / \Lambda^{2}\right\} \\
& \times \delta^{3}\left(\mathbf{P}_{4}^{\prime}-\mathbf{P}_{4}\right)=\delta^{3}\left(\mathbf{R}_{4}^{\prime}-\mathbf{R}_{4}\right) \tag{C5a}\\
I_{\rho}= & \left.(2 \pi)^{-6} \int d^{3} p_{\rho}^{\prime} d^{3} p_{\rho} \exp \left[-i\left(\mathbf{p}_{\rho}^{\prime} \cdot \mathbf{x}_{\rho}^{\prime}-\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}\right)\right] \exp \left\{-\mathbf{k}_{\rho}^{2}\right) / \Lambda^{2}\right\} \\
= & \delta^{3}\left(\mathbf{x}_{\rho}^{\prime}-\mathbf{x}_{\rho}\right)\left(\frac{\Lambda}{2 \sqrt{\pi}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2} \mathbf{x}_{\rho}^{2}\right] \tag{C5b}\\
I_{\lambda}= & \left.(2 \pi)^{-6} \int d^{3} p_{\lambda}^{\prime} d^{3} p_{\lambda} \exp \left[-i\left(\mathbf{p}_{\lambda}^{\prime} \cdot \mathbf{x}_{\lambda}^{\prime}-\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}\right)\right] \exp \left\{-\mathbf{k}_{\lambda}^{2}\right) / \Lambda^{2}\right\} \\
= & \delta^{3}\left(\mathbf{x}_{\lambda}^{\prime}-\mathbf{x}_{\lambda}\right)\left(\frac{\Lambda}{2 \sqrt{\pi}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2} \mathbf{x}_{\lambda}^{2}\right] \tag{C5c}\\
I_{\mu}= & \left.(2 \pi)^{-6} \int d^{3} p_{\mu}^{\prime} d^{3} p_{\mu} \exp \left[-i\left(\mathbf{p}_{\mu}^{\prime} \cdot \mathbf{x}_{\mu}^{\prime}-\mathbf{p}_{\mu} \cdot \mathbf{x}_{\mu}\right)\right] \exp \left\{-\mathbf{k}_{\mu}^{2}\right) / \Lambda^{2}\right\} \\
= & \delta^{3}\left(\mathbf{x}_{\mu}^{\prime}-\mathbf{x}_{\mu}\right)\left(\frac{\Lambda}{2 \sqrt{\pi}}\right)^{3} \exp \left[-\frac{1}{4} \Lambda^{2} \mathbf{x}_{\mu}^{2}\right] . \tag{C5d}
\end{align*}
$$

Separating the δ-functions by defining

$$
\begin{equation*}
\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}, \mathbf{x}_{4}^{\prime}\left|V_{4}\right| \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=\left[\Pi_{i=1}^{4} \delta^{3}\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}\right)\right] V_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \tag{C6}
\end{equation*}
$$

the potential becomes

$$
\begin{align*}
V_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)= & (2 \pi)^{-12} G_{4 P} G_{P}^{4} \mathcal{M}\left(\frac{\Lambda}{\mathcal{M}}\right)^{9}(\pi)^{9 / 2} \\
& \times \exp \left[-\frac{1}{4} \Lambda^{2}\left(\mathbf{x}_{\rho}^{2}+\mathbf{x}_{\lambda}^{2}+\mathbf{x}_{\mu}^{2}\right)\right] \tag{C7}
\end{align*}
$$

Integration over particle 3 and 4 gives

$$
\begin{equation*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\rho_{M N}^{2} \int d^{3} x_{3} d^{3} x_{4} V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) . \tag{C8}
\end{equation*}
$$

Translating the integrand back to the variables $\left.\mathbf{x}_{i}, i=1,2,3\right)$ we have

$$
\begin{aligned}
& f_{4} \equiv \mathrm{x}_{\rho}^{2}+\mathrm{x}_{\lambda}^{2}+\mathrm{x}_{\mu}^{2}=\frac{3}{4}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}\right) \\
& -\frac{1}{2}\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2}+\mathrm{x}_{1} \cdot \mathrm{x}_{3}+\mathrm{x}_{2} \cdot \mathrm{x}_{3} \mathrm{x}_{1} \cdot \mathrm{x}_{4}+\mathrm{x}_{2} \cdot \mathrm{x}_{4}+\mathrm{x}_{3} \cdot \mathrm{x}_{4}\right) \\
& =\frac{3}{4}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-\frac{2}{3} \mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)+\frac{3}{4}\left(\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}\right) \\
& -\frac{1}{2}\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) \cdot\left(\mathrm{x}_{3}+\mathrm{x}_{4}\right)+\mathrm{x}_{3} \cdot \mathbf{x}_{4}\right] \\
& =\frac{3}{4}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}-\frac{2}{3} \mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)+\frac{1}{2}\left(\mathrm{x}_{3}-\mathrm{x}_{4}\right)^{2} \\
& +\frac{1}{4}\left(\mathrm{x}_{3}+\mathrm{x}_{4}\right)^{2}-\frac{1}{2}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \cdot\left(\mathrm{x}_{3}+\mathrm{x}_{4}\right) .
\end{aligned}
$$

Introducing $\mathbf{x}=\left(\mathbf{x}_{3}+\mathbf{x}_{4}\right) / 2$ and $\mathbf{y}=\mathbf{x}_{3}-\mathbf{x}_{4}$ leads to the 34-integrals

$$
\begin{aligned}
& \int d^{3} x d^{3} y \exp \left[-\frac{1}{4} \Lambda^{2}\left\{\mathbf{x}^{2}-\mathbf{x} \cdot\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)\right\}-\frac{1}{8} \Lambda^{2} \mathbf{y}^{2}\right]= \\
& \left(\frac{8 \pi}{\Lambda^{2}}\right)^{3 / 2}\left(\frac{4 \pi}{\Lambda^{2}}\right)^{3 / 2} \exp \left[\frac{1}{16} \Lambda^{2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)^{2}\right]
\end{aligned}
$$

giving

$$
\begin{align*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =(2 \pi)^{-9 / 2} G_{4 P} G_{P}^{4} \rho_{M N}^{2} \frac{\Lambda^{3}}{\mathcal{M}^{8}} \exp \left[-\frac{1}{8} \Lambda^{2}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}\right] \\
& =(2 \pi)^{-9 / 2} G_{4 P} G_{P}^{4} \rho_{M N}^{2}(2 \sqrt{2}) \frac{m_{P}^{3}}{\mathcal{M}^{8}} \exp \left[-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right] \tag{C9}
\end{align*}
$$

where we used $\Lambda=2 m_{P}$. Inserting the rationalized couplings $g_{P}, g_{4 P}$ defined by $G_{P}=\sqrt{4 \pi} g_{P}$ and $G_{4 P}=(4 \pi)^{2} g_{4 P}$ one has

$$
\begin{equation*}
V_{e f f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=8 g_{4 P} g_{P}^{4} \frac{\rho_{M N}^{2}}{\mathcal{M}^{8}} \cdot \frac{4}{\sqrt{\pi}}\left(\frac{m_{P}}{\sqrt{2}}\right)^{3} \exp \left[-\frac{1}{2} m_{P}^{2} r_{12}^{2}\right], \tag{C10}
\end{equation*}
$$

This formula agrees with (4.7a)!

FIG. 3: Jacobi-coordinates of a four particle system.

APPENDIX D: JACOBI-COORDINATES A=4 SYSTEMS

For an N-body system the Jacobian coordinates \mathbf{r}_{i} are constructed via the following rules:

$$
\begin{align*}
\mathbf{r}_{1} & =\mathbf{x}_{1}-\mathbf{x}_{2}, \tag{D1a}\\
\mathbf{r}_{j} & =\sum_{k=1}^{j} \frac{m_{k}}{m_{0 j}} \mathbf{x}_{k}-\mathbf{x}_{j+1}, \quad m_{0 j}=\sum_{k=1}^{j} m_{k} . \tag{D1b}
\end{align*}
$$

Here, $\mathbf{x}_{N+1}=0$ and for $\mathbf{j}=\mathrm{N}$ this is defined as $\mathbf{r}_{N} \equiv \mathbf{R}$ the center of mass

$$
\begin{equation*}
\mathbf{R}=\frac{1}{M} \sum_{k=1} m_{k} \mathbf{x}_{k}, M=m_{0 N}=\sum_{k=1} m_{k} \tag{D2}
\end{equation*}
$$

For $\mathrm{N}=4$ this leads to the Jacobian coordinates

$$
\begin{align*}
& \mathbf{r}_{1}=\mathbf{x}_{1}-\mathbf{x}_{2} \tag{D3a}\\
& \mathbf{r}_{2}=\mathbf{R}_{12}-\mathbf{x}_{3}=\frac{m_{1} \mathbf{x}_{1}+m_{2} \mathbf{x}_{2}}{m_{1}+m_{2}}-\mathbf{x}_{3} \tag{D3b}\\
& \mathbf{r}_{3}=\mathbf{R}_{123}-\mathbf{x}_{4}=\frac{m_{1} \mathbf{x}_{1}+m_{2} \mathbf{x}_{2}+m_{3} \mathbf{x}_{3}}{m_{1}+m_{2}+m_{3}}-\mathbf{x}_{4} \tag{D3c}\\
& \mathbf{R}=\mathbf{R}_{1234}=\frac{m_{1} \mathbf{x}_{1}+m_{2} \mathbf{x}_{2}+m_{3} \mathbf{x}_{3}+m_{4} \mathbf{x}_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \tag{D3d}
\end{align*}
$$

The inverse of (D3) reads

$$
\begin{align*}
& \mathbf{x}_{1}=\mathbf{R}+\frac{m_{2}}{m_{1}+m_{2}} \mathbf{r}_{1}+\frac{m_{3}}{m_{1}+m_{2}+m_{3}} \mathbf{r}_{2}+\frac{m_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \mathbf{r}_{3} \tag{D4a}\\
& \mathbf{x}_{2}=\mathbf{R}-\frac{m_{1}}{m_{1}+m_{2}} \mathbf{r}_{1}+\frac{m_{3}}{m_{1}+m_{2}+m_{3}} \mathbf{r}_{2}+\frac{m_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \mathbf{r}_{3} \tag{D4b}\\
& \mathbf{x}_{3}=\mathbf{R}-\frac{m_{1}+m_{2}}{m_{1}+m_{2}+m_{3}} \mathbf{r}_{2}+\frac{m_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \mathbf{r}_{3} \tag{D4c}\\
& \mathbf{x}_{4}=\mathbf{R}-\frac{m_{1}+m_{2}+m_{3}}{m_{1}+m_{2}+m_{3}+m_{4}} \mathbf{r}_{3} . \tag{D4d}
\end{align*}
$$

1. Four-pomeron Potential

For the multi-pomeron potentials for the leading term we neglect the baryon massdifferences. Therefore we take $m_{1}=m_{2}=m_{3}=m_{4}$. Then,

$$
\begin{align*}
& \mathbf{r}_{1}=\mathbf{x}_{1}-\mathbf{x}_{2}=\sqrt{2} \mathbf{x}_{\rho} \tag{D5a}\\
& \mathbf{r}_{2}=\frac{1}{2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)-\mathbf{x}_{3}=\sqrt{\frac{3}{2}} \mathbf{x}_{\lambda} \tag{D5b}\\
& \mathbf{r}_{3}=\frac{1}{3}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\right)-\mathbf{x}_{4}=\sqrt{\frac{4}{3}} \mathbf{x}_{\mu} \tag{D5c}\\
& \mathbf{r}_{4}=\frac{1}{4}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{4}\right)=\sqrt{\frac{1}{4}} \mathbf{R} \tag{D5d}
\end{align*}
$$

with the inverse

$$
\begin{align*}
& \mathbf{x}_{1}=\mathbf{R}+\frac{1}{2} \mathbf{r}_{1}+\frac{1}{3} \mathbf{r}_{2}+\frac{1}{4} \mathbf{r}_{3}, \tag{D6a}\\
& \mathbf{x}_{2}=\mathbf{R}-\frac{1}{2} \mathbf{r}_{1}+\frac{1}{3} \mathbf{r}_{2}+\frac{1}{4} \mathbf{r}_{3}, \tag{D6b}\\
& \mathbf{x}_{3}=\mathbf{R}-\frac{2}{3} \mathbf{r}_{2}+\frac{1}{4} \mathbf{r}_{3}, \tag{D6c}\\
& \mathbf{x}_{4}=\mathbf{R}-\frac{3}{4} \mathbf{r}_{3} . \tag{D6d}
\end{align*}
$$

Analogous to the $A=3$ case we work with the configuration and momentum space Jacobivariables

$$
\begin{gather*}
\mathbf{x}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right), \mathbf{p}_{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right), \tag{D7a}\\
\mathbf{x}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}-2 \mathbf{x}_{3}\right), \mathbf{p}_{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-2 \mathbf{p}_{3}\right), \tag{D7b}\\
\mathbf{x}_{\mu}=\frac{1}{\sqrt{12}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}-3 \mathbf{x}_{4}\right), \mathbf{p}_{\mu}=\frac{1}{\sqrt{12}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}-3 \mathbf{p}_{4}\right), \tag{D7c}\\
\mathbf{R}=\frac{1}{4}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{4}\right), \mathbf{P}=\frac{1}{4}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}+\mathbf{p}_{4}\right) \tag{D7d}
\end{gather*}
$$

This gives

$$
\begin{equation*}
\sum_{i=1}^{4} \mathbf{p}_{i}=\mathbf{P} \cdot \mathbf{R}+\mathbf{p}_{\rho} \cdot \mathbf{x}_{\rho}+\mathbf{p}_{\lambda} \cdot \mathbf{x}_{\lambda}+\mathbf{p}_{\mu} \cdot \mathbf{x}_{\mu} \tag{D8}
\end{equation*}
$$

The connection with the Jacobi-coordinates used in the case of the triton is given by

$$
\begin{equation*}
\mathbf{r}_{1}=\boldsymbol{\rho}, \quad \mathbf{r}_{2}=\sqrt{\frac{3}{2}} \boldsymbol{\lambda} \tag{D9}
\end{equation*}
$$

which indeed yields

$$
\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}+\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right)^{2}+\left(\mathbf{x}_{2}-\mathbf{x}_{3}\right)^{2}=3\left(\boldsymbol{\rho}^{2}+\boldsymbol{\lambda}^{2}\right)
$$

In Fig. 3 the constellation of the different vectors are displayed. We note that only particle 4 is connected with the center of mass.
[1] Nishizaki, Takatsuka, Yamamoto, P.T.P. 105 (2001); ibid 108 (2002).
[2] P.B. Demorest, T. Pennuci, S.M. Ransom, M.S.E. Roberts, and J.W.T. Hessels, Nature(London) 467, 1081 (2010).
[3] Y. Yamamoto, T. Furumoto, N. Yasutake, and Th.A. Rijken, Phys. Rev. C 88, 022801(R) (2013); ibid C 90, 045805 (2014).
[4] Th.A. Rijken, Multiple-Pomeron Coupling and the Universal Repulsion in Nuclear/Hyperonic Matter. I. Triple-Pomeron Vertices, notes Nijmegen 2005.
[5] A.B.Kaidalov and K.A. Ter-Materosyan, Nucl. Phys. B75 (1974), 471.
[6] J.B. Bronzan and R.L. Sugar, Phys. Rev. D16, 466 (1977).
[7] Th.A. Rijken, Thesis, Nijmegen 1975 (unpublished).
[8] The normalization of the one-particle states is [7] $\left(\mathbf{p}^{\prime} \mid \mathbf{p}\right)=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}^{\prime}-\mathbf{p}\right)$, and the oneparticle wave function is $(\mathbf{x} \mid \mathbf{p})=\exp (+i \mathbf{p} \cdot \mathbf{x})$. This differs a factor $(2 \pi)^{3 / 2}$ compared to the normalization used in [9]. Important relations are

$$
\int d^{3} x|\mathbf{x}\rangle\langle\mathbf{x}|=1 \quad, \quad \int \frac{d^{3} p}{(2 \pi)^{3}}|\mathbf{p}\rangle\langle\mathbf{p}|=1
$$

and the relation of matrix elements in configuration and momentum space reads

$$
\begin{aligned}
\left(\mathbf{r}^{\prime}|V| \mathbf{r}\right) & =\iint \frac{d^{3} p^{\prime} d^{3} p}{(2 \pi)^{6}}\left(\mathbf{p}^{\prime}|V| \mathbf{p}\right)(\mathbf{p} \mid \mathbf{r}) \\
& =\iint \frac{d^{3} q d^{3} k}{(2 \pi)^{6}} e^{i\left(\mathbf{q} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}\right)\right.} e^{i\left(\mathbf{k} \cdot\left(\mathbf{r}^{\prime}+\mathbf{r}\right) / 2\right.} V(\mathbf{q}, \mathbf{k})
\end{aligned}
$$

where $\mathbf{q}=\left(\mathbf{p}^{\prime}+\mathbf{p}\right) / 2, \mathbf{k}=\mathbf{p}^{\prime}-\mathbf{p}$.
[9] J.D. Bjorken and S.D. Drell, I. Relativistic Quantum Mechanics and II. Relativistic Quantum Fields, McGraw-Hill Publishing Company 1965.
[10] M.M. Nagels, Th.A. Rijken, and Y. Yamamoto, "Extended-soft-core Baryon-Baryon Model ESC08c, I. Nucleon-Nucleon Scattering", in preparation.
[11] Th.A. Rijken, "Multi-Pomeron Couplings and the Universal Repulsion in Nuclear/Hyperonic Matter. III. Quadruple- and N-tuple-Pomeron Vertices.", Notes, December 2010.
[12] Th.A. Rijken and Y. Yamamoto, Phys. Rev. C73, 044008 (2006).
[13] A. Donnachie and P.V. Landshoff, Does the hard pomeron obey Regge factorisation?, arXiv:hep-ph/04022081.
[14] F. Mandl, Chapter 4 in Introduction to Quantum Field Theory, Interscience Publishers Inc., 1961

