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Abstract

Effective Hyperon-nucleon Two-Meson-Pair Exchange potentials are derived for the (mwp)i-pairs
etc. that figure in the Extended-soft-core (ESC) models for Baryon-baryon scattering [1, 2]. For
comparison we also give, in an appendix, the Fujita-Miyazawa three-nucleon potentials.

The pair-vertices contain: (i) heavy-boson effects, (ii) resonance effects, and (iii) negative-energy
baryon contributions. The first two effects have been discussed in [3, 4]. Item (iii) see [5, 6], where
it is shown that the negative energy intermediate state baryon contributions can be described by
an effective interaction Hamiltonian. The two-body integral equations for positive-energy baryons
becomes relativistic covariant.

The out-integration of the ”third” nucleon reduces the three-body contribution, and only from
the pair-interactions included in ESC04, ESCO08 the contributions from (77)o, (71), (7o) and (7w)
pairs survive. The G-matrix model GESC18 includes the multi-pomeron (MPP) repulsion, and we
added the meson-pair vertices (co), (VV) and (AA).

The results of the inclusion of the three-body interactions generated by the pair-interactions are:
(a) The (mn), (7o), (rw) pair interactions lead to Uy,e > +1.5; (b) The A-nucleus interaction is
strong enough to support the Isaka-Yamamoto calculations on A-hypernuclei; (c¢) The (oo) pair
interactions give the possibility of a sizeable attraction in EN(3S1,T = 1); (d) The MPP-strength

can be taken as large as to support the 2Mc, neutron stars.
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FIG. 1: Meson-pair description and low-energy approximation.

I. INTRODUCTION

Meson-Pair-Exchange (MPE) YNN potentials are derived for all meson-pairs that figure
in the Extended-soft-core (ESC) models for Baryon-baryon scattering [1, 2].
Two-meson-exchange three-body-potentials have been studied already for a long time, start-
ing with Primakov and Holstein [7], and followed by Drell and Huang [8], Miyazawa and
Fujita [9, 10]. The Tucson-Melbourne three-body force [11, 12] is based on extrapolations
of the pion-nucleon amplitudes, phenomenological input, and using PCAC and current al-
gebra for controlling the form of the (off-shell) pion-nucleon momenta, with an emphasis on
(broken) chiral-symmetry (BCS). However, these constructions are not done in close cor-
respondence with a realistic two-body force. Later Grange et al [13] worked out a rather
complete three-nucleon potential for the Paris potentials [14]. Here, important contributions
were alluded to nucleon-antinucleon (N N) pairs contributions.

It is the aim of this paper to derive the three-nucleon potential corresponding to the
dynamics contained in the ESC-models. Very early, pion-pair exchange in connection with
the three-nucleon potential was discussed and in principle consistent with the two-nucleon
force [8]. Especially, with the ESC-model, we are in an ideal position to derive three-body
BB-potentials, which are consistent with the two-body BB-potentials, because it is the only
realistic baryon-baryon interaction model that incorporates meson-pair-exchange as well as

one-boson-exchange (OBE). All the occurring parameters were fitted to the Nijmegen partial



wave analysis [15] for the two-nucleon scattering data for T},, < 350 MeV, and the low-energy
data, reaching x? ;,, = 1.09, see for details [16].

Now, because of the large cancellations that take place from the iterated OBE-potentials
in the three-body systems, a particular prominent role is played by the meson-pair interac-
tions. This was recognized already a long time agoo. In the fifties and sixties three-body
potentials were worked out already [8, 17], and also the effect of excited intermediate
states involving e.g. the Ass-resonance [9]. Since all the effects of the heavy-bosons and
meson-baryon resonances are implicitly included in the pair-interactions of the ESC-model,
a rather complete description of the three-body forces will emerge by working out all the

OBE-iterated, and mesoson-pair-exchanges (MPE).

It has been shown in [18] that the three-body potentials from the iterated OBE-exchanges
vanish in the absence of megative-energy nucleon-sates are absolutely suppressed, which
we assume in the ESC-model approach. Then, this brings forward the prominence of the

meson-pair contributions to the three-body force.

The methods used in this treatise on the three-nucleon force were developed in [19] and

applied in [3, 4].

The content of these notes is as follows: In section II the meson pair interactions Hamil-
tonians are defined, the BB matrix elements in Dirac and Pauli spinor space, and the YNN-
graphs are given. In section III the Feynman diagram calculation is worked out, taking the
(mp)-pair as an example. In section IV the three-particle potential in configuration space
is described. In section V the two-meson-pair exchange three-body potentials are listed for
all pair types. In section VI the effective two-body potentials in nuclear matter are derived
by the out-integration of the ”third” nucleon. In section VII the LNR-approximation is
applied, which leads to rather drastic reduction in the contributions. In section VIII the
configuration-space three-body induced hyperon-nucleon potentials are derived. In section
IX the multi-pomeron effective 2-body potentials are described. Sections X, XI the AN, XN,
and ZN G-matrix applications. Section XII gives the result for the nuclear saturation. Sec-
tions XIII and XIV contain the Conclusions, Outlook, and Discussion.

The notes contain a number of both technical and physics appendices: In appendix A the



eaxact reduction of Dirac-spinors to Pauli-spinors is given. Appendix D describes the Fourier
transformation for non-local potentials. Appendices E, F, and G contain differentiation for-
mules, Fourier integrals, and the transformation to configuration space. Appendix I gives
the SU(3) structure of the pair-couplings, and the meson mixing. Appendix J discusses
the SU(3) structure of the "effective” potentials. Appendix H treats the Fujita-Miyazawa
potential.

Appendix L and M derive the cV'V- and 0 AA-potentials respectively. Appendix N gives an
estimate of the ooo-coupling based on local chiral symmetry and mean-field (MF) models.
In appendix O the Pomeron contributions to the (o0), (VV), and (AA)q pair couplings is
estimated. Finally, in Appendix N the two-body potentials due to the (o0)g, (VV)e, and

(AA)g pairs are derived and discussed.

II. THE MESON-PAIR INTERACTIONS

Before we can proceed and calculate the pair-meson potentials, we have to define the
nucleon-nucleon-meson (NNm) and nucleon-nucleon-meson-meson (NNmims) Hamiltoni-

ans. For point couplings the nucleon-nucleon-meson Hamiltonians are [20)]

Hpy = 7{1—}3%5%7'1%8"(7513, (2.1a)
HV = gV@E/VuT@ZJ'qsl\L/ - Qf—]‘\}?ﬂzguvT@Z)'ay lll/ ) (2'1b>
Hs = gsyT- s (2.1c)

where ¢ denotes the pseudovector-, vector-, and scalar-meson field, respectively. For the

isospin I = 0 mesons, the isospin Pauli matrices, 7, are absent.



A. Meson-Pair Interaction Hamiltonians

For the phenomenological meson-pair interactions the Hamiltonians, for meson-pairs with

quantum numbers (J,P,C), are

JIO=0T s He = 9y [“7((2>O’T'7T+ Gy 0100 /2 + G600 | [, (2.22)

Heg = O1¢ - (gl + Yy ] /10, (2.2b)
JPC=1"7": Hy = g(m)ﬂ/—J%T@D (e x Otw) Jm2
f(ﬂ"fl')l 7 v " 2
Y Yo, TP - (T x0'T)/mz, (2.2¢)

JPC — 1++ . HA

g(wﬂ)l@z757,u7-w : (77 X pu)/mm (2'2d)

Hp = G V57TV - (700 — 00" 7) /m
+ PPV TY - (WO P — PO"m) m2, (22e)
JPC=1""1 Hyg = —igap V500" (7-p") /m2, (2.2f)
Hp = —igr) P50, TY - 0" (T W) /m3. (2.2g)

In Eq. (2.2¢) we have included the Pomeron contribution, but in recent ESC-models
9=p) = 0.
As for the scaling of the pair-coupling parameters, we have choosen the " -marss. For the
operators O*m(x) this follows the non-linear chiral models. The other scaling m,-factors
may be could be better replaced by M, the nucleon mass. This would presumably repre-
sent better the scale of the physics involved. For example pair-couplings from N N -pairs
(‘negative-energy staes’) would be parameterized more naturally this way. However, in our
works on the ESC-model we sofar always used the mr-mass as a scaling parameter, and

therefore we will do this also in this paper.

The transition from Dirac spinors to Pauli spinors is reviewed in Appendix C of [19].
Following this reference and keeping only terms up to order 1/M, we find that the vertex

operators in Pauli-spinor space for the NNm vertices are given by



/ . w /
A u(p) = ~i2" o1k or(0'+p)] (2:30)

_ pp i
a(p) T u(p) = gv H <1+ 4M2) - 4M2P’ X p~0} o

—LM{( +p)+z(l+mv)alxk}~¢v}, (2.3b)
a)rutp) = gs (1208 ) - f xpeo. (2.30)

where we defined k = p’ — p and ky = fy//gy. In the pseudovector vertex, the upper (lower)
sign stands for creation (absorption) of the pion at the vertex. In passing we note that the
inclusion of the 1/M?-terms is necessary in order to get spin-orbit potentials, like in the

case of the OBE-potentials.

Assigning always the momentum k; to the pion, the NNmjmq-vertices (2.2a)-(2.2g) result

in

a(p) T u(p) = 27 [ 4M2) P P a} , (2.42)
A u(p) = 42| (1-BR) o wpeo. (2.40)
(D) u(p) = 9"””1 (7o) { (14552 - w xpeo)

+M{q (k1 — ko) — (1 4+ K1)o - (kg X kg)H , (2.4¢)
a(P )T Pu(p) = girp), {a‘p— %a‘q po] s (2.4d)
a(B)Pu(p) = [a k) - ol F ) (2.4¢)
A(P)PPup) = igimpy, (w1 £wa)o-p+ o (ki +k)p"] fm?2, (2.4f)
u(p ) TPu(p) = 1(rw) [(j:wl +wy)o-w + o (kg + ko)w’] /m2, (2.4g)

where g = 3(p' + p) and k1 = (f/g)(rr),- Again, the upper (lower) sign in front of w;
and wy refers to creation (absorption) of the meson at the vertex. The (7w P)-pair can be

obtained from the (7wo)-pair simply by making the substitution gizoy — g(xp).

The (o0)-pair coupling is similar to (2.4a) but with the coupling g(,e)/mx, and the (7n)-pair
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coupling is similar to (2.4b), but with g(zy)/mx.

B. Non-vanishing Effective Meson-Pair YNN-graphs

In Fig. 2 and Fig. 3 are shown the graphs that picture the possible contributions to the
effective hyperon-nucleon potentials under the condition that the ”spectator nucleon” (Nj)
does not have a spin-flip nor a flavor change. This means that graphs with a pseudo-scalar

meson coupling to this N3 nucleon can not contribute.
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FIG. 2: The Born-Feynman direct-diagrams for Vi2.3, Vi3.2, Va3.1
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FIG. 3: The Born-Feynman exchange-diagrams for Vi2.3, V3.2, V23.1



III. THE FEYNMAN-DIAGRAM COMPUTATION

In this section we evaluate the Feynman-diagrams in Fig. 2 for two cases for the purpose

of illustration.

1. (mp)i-pair: Application of the Feynman-rules [20] we have for the diagram (a) in Fig. 2

—i(2m)*94(.....) Vies = (—i)? gi—Pm<Tl)i<72)j€ijk(T3)k'
m

T T

8 / (24:)14 / ((g;k)i (+i)ﬂ(Pl1)75 (v 'p/1 — - p1)ulpr) -

_ _ { fV v
<)) [+ ol o) | i)
X ! - (2m)* 6 (phy — p3 + k1 + k2) -
k:%—m?r—i—iek:%—m%—f—ie 3 ! 2
x (2m) 6 (py — p1 — k1) (2m)*6* (Pl — p2 — ko) | (3.1)
where we used
«a n no k*E® no
D NN = =+ e (3.2)
by P

Here we anticipated the fact that the vector-meson couples to a conserved current so that

the k#k®-term gives no contribution. From (3.1) we obtain

9(n .
‘/12;3 — +gvf_P(—p)1 (7/ 7-1 X TQ . 7-3) .

m mﬂ'

xMIF@D%Mmﬂ{M%Mw%@dl

_ A
XUJ(p/Q) |:7,u + mg_vo-;w

1 1
X
k¥ —m2 4 ie k3 —m2 + ic

<m—my}wmw

, (3.3)

where because of the J-functions in (3.1)

PL+pytps=pi+p2+ps, (3.4a)
kl = pll — D1, k2 == p/2 — P2, (34b)
Py —ps=ki+ky. (3.4¢)
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The exact transition from Dirac spinors to Pauli spinors is given in Appendix A. From
the expressions in A, keeping only terms up to order 1/M, and setting the scaling mass

M = M, we find that the vertex operators in Pauli-spinor space for the NNm vertices are

given by
i~ [(1252) - o ]
u(p)ysu(p) = —ﬁ[a-(p’ —-p)| = —ﬁ[a-k], (3.5b)
u(p' ) u(p) = Kl + Z;\;j) + 4]&21)’ xp- 0] : (3.5¢)
u(p)y u(p) = ﬁ [(p"+p) +io x (p'—p)], (3.5d)
u(p') sy u(p) = —ﬁ[m(p’ﬂ))} = —%[mq}, (3.5¢)
o 1 / pp

u(p')ysy ulp) = - {0’—0—4M2(0'~p) o (U.p)] _ Kl_ 4M2)U

_4]\142p/><p+4M2 (J-pp/+0‘.p/ p):| ~—0,, (35f)

where we defined k = p’' — p, q = (p' + p)/2, and ky = fy/gy. In passing we note that the
inclusion of the 1/M?-terms is necessary in order to get spin-orbit potentials, like in the

case of the OBE-potentials.

For the magnetic-coupling we use the Gordon decomposition
@) o = ) = ) {2307~ 5+ |t (3.6
We get

i u(p’) " (p' —p)oulp) =

1 1
p=0 : M{p’-p—§(p’2+p2)+ip’><p'a},, (3.7a)
. 1 i
p=i: — {§(p’+p)—§0X(p’—p)} (3.7b)



For the complete vector-vertex we obtain

BTup) = ) |2 + Spmeo - ] ur)

= a(p)) [(1 + Ry )Y — ;—]\Z(p’ +p)u] u(p) =

. pp p?+p* . p’xp-o
Iu:o . |:1+(1+2/{{/) 4M2 — Ry 4M2 +Z(1+2KJ\/)W s (38&)
1 1 )
p=ioc oo [g(p’+p)+%(1+ﬁv)ax(p’—p)]- (3.8b)
Using these expressions for the vertices, we find from (3.3
9(n )
Vigis ~ +9V7{l—iﬁ(l T1 X To-T3)"
7
><(0'1'k1){(0'3'(13—0'3'(12)4‘5(14-%&/) o2 X 03-ky
1
~ P (03 q3) [(1 +2ky) Py - P2 — kv (05 +p§)} } : (3.9)

Next, we add to (3.9) the expression for the Feynman-diagram (a) as in Fig. 3 where the

pion and rho are interchanged. Then we obtain the potential

f_P 9(mp)

Vieg =
12:3 +gv p—i

(i 71 X Ty T3) H(Ul'kl) (03'(13—03'612)

+ %(1 +ry) - (01 -ki)og x o3 - kz} GO, ky; p, ko)

- {(02'k2) (0'3'(13 —0'3'(11)

+ %(1 + HV) : (0'2 . k2)0’1 X O3 kl} C;(O)(p7 kl;ﬂ',kg):| s (310)

where

GO(m, ki3 p, ko) = Fr(k)F,(K3) Dio (wr (k) (Ko), (3.11)

pair

with w; = /k3 +m2 and wy = ,/k3 +m?2. Furthermore, ng(;)ir(wl,wg) = 1/(wiw?), and
F(k?) denotes the form factor. Also, in (3.10) we have omitted the terms proportinal to
1/M3.

The expressions corresponding to the diagrams (b) and (c) of Fig. 3 can be readily obtained

from (3.10) making the appropriate substitutions.
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2. (mm)o-pair: Application of the Feynman-rules [20] for the interaction of the (77)y-pairs
there are two different contributions.

a) Non-Derivative coupling: Similarly to the expression (3.3) one now has

vy, = Yo ( fp) (r1 - 7) (B} u(ps)] -

m3  \my
x4M? [a(ph)y5u(pe)] [a(py)ysulpe)] -
o 1 1
k¥ —m2 +ie ki —m2 +ie’

(3.12)

which gives, for the leading (1/M)°-terms,

gm‘r
‘/1(21’)3 = ( (fP) (T1 ‘7'2) (0'1 'k1 02'k2> G(O)<7T,k1;ﬂ',k2), (313)

m3  \my
where

GO (7, ky; 7, ko) = Fr(K2)Fr(k2) DO (wr (K1, wi(ks). (3.14)

pair

b) Derivative coupling: Similarly to the expression (3.3) one now has

v, = o S (f) (r1 - 72) (ks - k) [a(p)u(ps)]

m3  \my
x4M? [a(py)ysu(p2)] [a(ph)ysu(p2)] -
» 1 1
k¥ —m2 +iek? —m2 +ie’

(3.15)

which gives, for the leading (1/M)°-terms,

gTrﬂ'
V1(22;)3:+( (fp> (11-72) (01 - ky 02 - ko) -

m3  \my

X [w1w2 — k1 . kg] G(O)(’ﬂ', kl, T, kg) (316)

Note that in both cases there is an extra factor 2 because of "identical particles” comming

from the matrixz element of the 7 - 7w-operator.

The generalization of the interaction kernels to the case with a Gaussian (or any other)

form factor has been treated and explained in [19]. We make the substitution

o) 2
k2 — m2 + 6]~ —>/ a5 P (3.17)
0

— pu?+1id’
for each meson-exchange line in the Feynman diagrams. Here, p(¢?) is the spectral function,

representing the form factors involved in meson exchange. At low and medium energy, we
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have to a very good approximation t = k? ~ —k? < 0, and so for space-like momentum
transfers we can use Gaussian form factors F'(k?) = exp(—k?/A?), where A denotes the

cutoff mass. The Gaussian form factor is introduced by the substitution

/”d 2 p(p?) F(k?)

. 1
'qu—I—/ﬂHk?—l—m? (3 8)

The NNm and NNmymsy vertices have different form factors. We will use

FNNm1m2 (klv k2) - exp(—k%/ZA%) exp(—k%/?A%),
P () = exp(—K?/202), (3.19)

where Ay and As are the form factor masses for mesons m; and ms, respectively. A moti-
vation for this prescription could be that in “duality” the structure of the NNmmy vertex
is either saturated by heavy mesons or meson-nucleon resonances. In this last case, assum-
ing that the meson-nucleon resonance transitions all have roughly the same (inelastic) form

factor, the form (3.19) is a natural one.

Da Pe py Dq be Py
A (
-,
-,
-
L A
DPa Dec DPo DPa Pc Py

FIG. 4: Three-particle amplitude (a) and the Born-Feynman graph (i)

IV. THREE-PARTICLE POTENTIAL IN CONFIGURATION SPACE

The potential in configuration space is given by the Fourier transform

d’p; &,
V' (x), X5, X35 X1, Xg,X3) = i1 3 {/ W} Hy=rs {/ (27T)Jg} |

X exp (—i > p- X§> exp (H > pi xz') -V (P, Ph. P4 P1.P2.Ps)  (41)

i=1,3 i=1,3

12



Introducing the standard set of variables

1
@ =5Pi+p)  ki=pi—pi . > k=0, (4.2)
1=1,3

where the last condition comes from translation invariance momentum conservation. In

terms of these momenta one has
/ / / ]‘ /
pi‘Xi_pi'Xi:qi'(xi_xi)_iki'(xi‘i‘xi)a (4.3)
and therefore if the potential depends only the k;-variables, i.e.

V = V(ky, ko, k) (4.4)

the d®g;-integrals give §(r; — r;) and one obtains

4 (X/17X/27Xé; X17X27X3) = 5(X/1 - Xl)é(XIQ - Xz)é(xg — Xg) :
Bki g
X113 [/ (2ﬂ)3€ ki ’} . (4.5)

In the following sections we calculate the MPE-potentials in configuration space. In mo-

mentum space the MPE-potentials will be of the general form

V(ki, ko, ks) = (27)35(ky + ko + ks) V(ky, ko) (4.6)

Application of the simple result (4.5) to the potentials of the form (4.6) gives

V (x], X5, X5 X1, Xg, X3) = 0(X] — x1)d(x5 — X2)0(x5 — X3) -

dskl d3k2 ik ‘ V
—iky-(x1—x3) *1k2'(x27x3)Vk ko) . 4.7
X/(Qw)?’/(%)?’e ) ok o

In the following we will denote the position of particle 3 also by r3 = x3, and denote the

relative distances between particles 1 and 2 with respect to particle 3 by r; and ry. So
rr =X; —Xg , ' =X9—X3 , I's =Xs3. (48)

Here, a note on the partial derivatives is in order. Since we have by (4.6), and consequently
(4.7), that the functions we deal with are of the type v(x; — x3,%x2 — X3) = v(r1,r2) and

therefore

Vii=Vx,i = Vi, Vou=Vyi=Vy,, (4.9a)
V3,’i = vxg,i - - (vrhi _I_ VrQ,i) . (49b>

13



V. TWO-MESON-PAIR EXCHANGE POTENTIAL IN MOMENTUM-SPACE

To cover all three graphs in Fig. 3, we have starting from the results of section III for

the Vlg;g—potentials to make the appropriate substitutions. This implies that w.r.t. the

first term, for the second and third term we have to change labels of the isospin, spin, and

external momenta p;. The exchange momenta k; are unchanged. So, we have the scheme

given in Table I.

1217 —>m 01— 01 k1—>k1
V12;3—>V13;212—>37’2—>7’30'2—>03k2—>k3

3—>27‘3—>7’2 (73—>O'2k3—>k2

1—>21 —>m O’1—>02k1—>k2
V12;3—>V23;1:2—)37‘2—)7’302—>0’3k2—>k3

321173 —1 03 —01 ks >k

TABLE I: Substitution rules for permutation of the external nucleons.

(i) JPC = 07 (7m)o-Pair Exchange Potential: The adiabatic potentials Vig.3 for this pair-

interaction are

(1) 2
(‘71(2%)(0) (ki, ko) = _Jamo (i) (T1-7T2) (01 -ki)(o2 - ka) -

M My

X F(K3)F(k2) D' (wr,ws),

=2\ (@ I [ F
<V12;3> (ki, ko) = +—=~ ( ) (T1-72) (01-ki)(o2-ka) -

m3  \m,

X |:CL)1CL)2 — k1 . kg} F(k%)F(kg) D]()?l)ir(wl, WQ),

where
1

(w1,02) = Dy (w1,02) = Dy (wn,02) = ——
wiwy

pair pair

(5.1a)

(5.1Db)

(5.2)
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(ii) JP¢ =17~ (77);-Pair Exchange Potential: ¢

7 1) )1 Z
<‘/12;3) = +Zg(—) (f—P) (Tl X To - 7'3)(0'1 . kl)(O'Q . kg) .

(7)1 mfr 2M
x [ql ST k2] F(K)F(K3) DY) (wn,ws) | (5.3a)
< (2) g )1 2
<V12;3>(M)1 = _Z(m—fr) <2f—AP4> (T1 X T9-T3)(01 - ki1)(02 - ko) -

X B(PéﬂLps) (ki — ko) + (14 £1) o3 (ki X k2)} :

x F(K)F(2) DY (w,ws) . (5.3b)

pair

(iii) JP¢ = 17F (7p);-Pair Exchange Potential:

(Vaa) | = it (S0 s [0 1) o (9= 00+ 0= o)

(mp)1 My

—i(l1+ryv)(o1-ki)(oz- 02 X k2)} G(m, ki; p, ko)
- {(Uz -ks) o5 - ((pé —py) + (ps — p1)>

—i(l+/€v)(0’2 'kg)(0'3 01 X kl)} G(p,kl;ﬁ,kg):| . (54)

(‘713;2)2)1 - Hg?(;i)l (27{29]\‘/42> (71 X T3 72) H(Ul k) oy ((P’z —p3) + (P2 — P3))
—i(l1+ryv)(o1-ki)(o2 - 03 X ka)} G(m, ki; p, ks)
- {(Us -ks) o5 - ((p’g —p1) + (P2 — p1)>

—i(1+ ky)(os-ks)(og- o1 X kl)} G(p, ky;, kg)l : (5.5)

(V) = i (I (o msem) [{ ok o0 (9= 900+ (01— o)
i1 (o) o x ) | Gl k)
{ow ko (- + (o1 - pa))
—i(14 ry) (o3 - ks)(o1 - 03 X k2)} Gl(p, kQ;W,kg)l . (5.6)
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We note that these expresions can be used for the pair (mp)o by replacing the isospin factor

in front by 7, - 79, 71 - T3, and 75 - T3, for respectively (5.4), (5.5), and (5.6).

(iv) JPC = 1*F (7wo),-Pair Exchange Potential:

(1712;3>(1) = +M <@) [(a’l ‘ky) (o3 (k1 — ko)) (71 - 73) G(7,Kkq;0,ks)

(mo)1 m?r max
+ (0'2 . kQ)(O'g . (kQ — kl)(’Tg . 7'3) G(O’, kl, T, kg):| . (57&)
17 @ Y(no ngS
(‘/12;3> (mo)1 - 57’07231 <2m7rM2> |:(0-3 ' (pé " p3))(0-1 . kl)(Tl ' 7-3) G<7T7 kl; 7 k2)

+qu%+m»wykgwmrgawkﬁmbﬂ-

(‘Zs;z)il) = +m <fpgs) {(0'1 'k1)(0'2 : (k1 - ks))(7'1 : 7'2) G(W,kl;g, k3)

mo)1 777,72r max
+ (0’3 . k3)(0’2 . (kg — kl))(‘l'g . Tg)G(O, kl; 7T,k3):| s (58&)
~ (2) o)1 ,

+ (o2 - (Py 4+ p2)) (o3 - k3) (T2 - T3) G(o, k1;7r,k3)} -

X {2(11 -k + ki —2q3 - ks + ki} (5.8b)

(‘723;1>§1) ) = +9(7m)1 <ngS) {(0'2 : k2)(0'1 : (kz - ks))(Tl : 7'2) G(W, ky; o, k3)

o)1 ’fTL72r m
+ (0’3 . k3)(0’1 : <k3 - kg))(’rl . T3) G(O’, kg, , k3):| s (59&)
~ (2) — ,
(), = 5 (srche) [ 08 v b ko

+wy@Hpmwymmuw@QQMmmﬂ-
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(v) JPC = 17~ (nw),-Pair Exchange Potential:

<‘7 >(1) __ Ywn frov 1\
1253 (mw)1 m?r 2mﬂ-M2

X [0'3 - ((p’1 +p1) +i(l+ky) o1 X kl) (9 ko) (T2 T3) G(w, ky;m ko)

+o3- ((p’2 +p2) +i(l+ky) og X k2) (o1 -ki)(71-73) G(Wyklékaﬁ} '

X {(Zpl ki + ki) + (2p2 - ko + k;)] . (5.10a)
(5.10b)
<7 (2) W
(‘/12;3) = _g(_2)1 (M) o3 (ki +ky)-
(mw)1 my My

X {(0'1 ‘ky)(11-73) G(w, ky;m, ko) + (02 - ko) (72 - T3) G(7, k13w, kg):| . (5.10c)

7 @) o g(mu)1 ngV
(‘/13;2> (mw)1 N m?r 2mﬂM2
X {0'2 : ((pi +p1) +i(1+ ky) o1 X kl) (03 -k3)(T2 - T3) G(w, ky;7,ks)
+05- ((pg + pg) + Z(l + /ﬁ?v) O3 X kg) (0’1 . kl)(Tl . TQ) G(ﬂ',kl;w,kg)] .

X { (2p1 - ki +k7) + (2ps - ks + kg)} (5.11a)
(5.11b)

7 (2) W
(Via)? = Lo <ffﬂ> oy (ks + k) -

(mw)1 m2 My

X [(a’l ki) (71 7T2) Gw, ky;m, ko) + (05 - k) (72 - 73) G(m, ks w, kg):| (5.11c)
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e 1) o g(mu)1 ngV
<‘/23;1>(7rw)1 N m?r 27’fl7r]\/[2
X [0'1 : ((plz +p2) +i(l+Ky) og X k?) (o3 -ks)(T1-T3) G(w, ky; 7, ks)
+ 0o ((Pg +p3)+i(l+ky) o3 X k3) (o2 - ko)(T1-T2) G(W,kzswak3)] :

X { (2p2 ko +k3) + (2ps - ks + kg)} (5.12a)
(5.12b)

T7 @) W
<V23;1> = _Jmon <fpgv> o (kz + k3) :

(mw)1 m2 My

X {(0'2 ‘ko)(T1 - T2) G(w, ko;m, ks) + (03 - k3) (71 - 73) G(, kl;W(kg):| (5.12¢)

(vi) JFY = 0*F (00)-Pair Exchange Potential:

iyt Yoo
Via(k ko) = =272 g3 () F(i3) Dyl (w1, wa) (5.13)

™

VI. EFFECTIVE TWO-NUCLEON POTENTIALS

The complete three-nucleon MPE-potential is obtained by a sum over the permutations.

First summing over the cycles (123 gives

V3(MPE) = Vig3(MPE) + V315(MPE) + Va3, (M PE) . (6.1)

A. Momentum conservation restrictions.
1. In the Three-particle Feynman amplitude there is 3-momentum conservation, i.e.

P1 + P2 + P3 = Py + Py + Pj. (6.2)

In the Three-particle CM-system, one has moreover:

pP1+ P2+ P3 = p; + Py +p; =0, (6.3)
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and then q3 = —(q; + q2).

2. In the effective two-particle potential we must require momentum conservation, i.e.
P=p;+p:=p; +p; =P (6.4)

Combined with (6.2) this implies that p3 = p}, or k3 = 0. From (6.4) it follows that
qi +q2 =P. (6.5)

3. For the effective two-nucleon potential we are going to work in the two-particle CM-system,

SO
P=p;+p2) =p)+p>=0, p;=ps. (6.6)

The last relation follows from (6.2). This implies g2 = —q1, and ks = —k;, ks = 0. Then,

V(Pllapéapé;Plapmps) = ‘7(1{171{271{3;(117%7(13) = ‘7(1{1; —k1,0;qy, —Q1>Q3>- (6~7)

In nuclear matter one averages over ps = qs [22]. This means that only the quadratic term

survives and is replaced by

3 1 1

ps=q5 — (03) = —kp, D3ipsj — =(p3)0i; = -

= 2 k2. (6.8)

B. Effective Two-Nucleon Configuration-space Potentials

A very important application is the structure of the effective two-nucleon potential, which
can be used in computations of nuclear matter and for finite nuclei in e.g. local-density-
approximation (LDA). This is obtained by integrating out, for example, nucleon 3. Using
(4.7) we have

. 1 d*k 4’k
(es) _ g = ’ : ;
Visg” = gonu Tr / A T?‘/ ‘“"3/ <2w>3/ (2n)*

—iky-(x1—x3) ,—ika (x2—X3) 7/ 1 d3k —ik-(x1—X2) 7/
w e~ ik1-(x1=x3) o —ika-(x2 5)V(k1,k2) |k3:—k1—k2 :ZPNM T’l“/<2ﬂ_)3€ k-(x1 Q)V(k, _k)’

(6.9)
where pnar = 4pg = 4k3. /672, with kp = 1.4 fm™! for symmetric nuclear matter.

In (6.9) the Tr-symbol stands for the trace over the spin and isospin operators of

particle 8 (LNR-approximation [21, 22]). This amounts to the approximation neglecting
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spin-flip and charge change for particle 3. However, this still leaves the operators o3 ., T3 ..
The requirement of rotational- and isospin- invariance for the effective 2-body potential,
eliminates these operators. This fully justifies the Tr-operation. Note that this is a rather
drastic approximation eliminating many terms, because: o3, T3 — 0. For the reduced

potential forms: see Appendiz VII.

Vi2:3 Vis:2 Vasi1

exp [—iky - (x1 — x3)] | exp[—iky - (x1 — x2)] | exp[—ika - (x2 — x1)]

x exp [—ikg - (x2 — x3)]| X exp [—iks - (x3 — x2)]| X exp [—ik3 - (x3 — x1)]

(5(1(1 —|—k2) (5(k3) (5(1{3)

x exp [—iky - (x1 — x2)]| X exp [—ik; - (x1 — X2)]| X exp [—ik; - (x1 — x2)]

TABLE II: momentum transfer plane wave factors for the graphs in Fig. 3.

The same for the other terms in (6.1), using the plane-wave momentum transfer factors

in Table IT and integrating over z3, we arrive at the formula
3k

vern _ /
PN (2m)3

Note that because of ki + ks + ks = 0, for all three cases in Table II one has a k3 = 0, which

e_ik'(xl_XQ) {‘22;3(1{, —k) + ‘7'13;2(1{, —k) + %3;1(k7 _k)} (610)

is logical.

The specific momenta assignments in the three terms in (6.10) are

k; = +k ki = +k ki = +k
‘712;3(1{7 _k) : k2 =-k ) ‘713;2(1(7 _k) : k2 =-k ) "723:1(1(7 _k> : k2 =-k .
ks =0 ks =0 ks =0
(6.11)

C. Potentials 1712;3(k, —k),‘~/13;2(—k, 0),1723;1(0, +k) from Meson-Pair-Exchange

Here we give a list of the effective momentum-space potentials from meson-pair-exchange
(MPE). We apply the substitution given in Eq. 6.11 to the momentum-space potentials given

in section V.
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(i) JPC = 0FF (7m)o -

Vigh(k —k) = + (57) (r1-72) (1K) (o2 B FR () -
X {% - % k2} (W2 (K)w? (k)™ (6.12a)
My m3 e ’ '
Vih(k, —k) = Vagh(k, —k) =0, (6.12D)

Here w; = wy(ky) and wy = wo(ks), where ky and kj refer to the first and second argument

in ‘712;3 respectively. This also applies to the further formulas of this subsection.

(ii) JFC =177 (7m); : ¢

~ 2
P10 = <2 () (im mama) 1 ) 1)

mi \2M
X [((thqQ) ~k1 F2(K%) (PR)wik) ™, (6.13a)
V2 (k,—k) = 290 (ﬁ) (iT1 X To - 73)(01 - K)(05 - K) -
’ m; \2M
o K| F20¢) (2003000 (6.13b)
Vish(k, —k) = Vg (k,—k) =0, (6.13¢)
Vigh(k, k) = Vi (k,—k) = 0. (6.13d)
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(iii) JPC = 17+ (7p); :

Vigs(k, —k) = +

g7rﬂ ( ngV

my \2m.M

)(i71XT2'T3)'
X [2(0’1-k) o3 (43 —qz) — 2(02- k) o3 (a3 — qi)

+i(1+ Ry ((01 " K) (0 x 073 - k) + (07 - k) (0 X 05 - k))} :

X Fr(K?) F,(K?) (w?(k) w?(k)) ", (6.14a)

p

<7 gﬂ' 1 .
V) = ~2 (0 (i

» {zal Kers - (s — q3>} FL(062) F,(0) (w2(k) m2) ™

Y7 9(n .
Vish(k, —k) = =72 (2";’;’ %) (irs x 73 71) -

X {202 ko - (qq — q3)} F,(0) Fr(k?) (wﬁ(k)mi)*l . (6.14b)

(iv) JPC =1+ (7o), :

Vih(k, —k) = ok mg (fpgs> {(Ul'k‘f?)'k)(ﬁ'7'3)+(02'k03'k)(7'2'7‘3)} :

x Fr(k?) F, Z:;) (w? W) (6.15a)
Ve k) = 2o (9 [0, o quims ) (2 ko an) ()]

X {(q1+qg)~k+k2} Fr(k?) F,(K?) (w?w?), (6.15D)
VM -k = +222 (192 [l ki) (w2000 )]

x (k%) F,(0), (6.15¢)
Vi k) = 2% (L) (o ) (w200 )

X [qu-kl +k2} F.(k*) F,(0), (6.15d)
VA -k = +222 (292 [l ke ) (w2000 )]

x Fr (k) Fy(k2), (6.15¢)
Tk = 2% (I [, oy (w20 )]

X {2qQ-k2 +k§} F.(k*) F,(0). (6.15f)

22



(v) JPC =17~ (7w);:

‘71(2133(1{7 —k) _ +29(Tﬂu)1 < ngV ) |:(20-3 S — Z(l + KV) o1 X 0O3- k) (0-2 . k) (7-2 . TS)

2 2
mz  \2m,.M

—(203-q2+i(1+ky) o2 X 03-k) (01 - k) (11 -7'3)} .

< {(pl —p2) -k+k2] Fo(k2) Fu(k2) (w2 (k) wo(k)?) (6.16a)
Virh(k,—k) = 0, (6.16b)
Vi, —k) = —2m (27{; gM) [<2a2 ) (o1 k>} 71T (ke m))

y {(Qpl-kl) +k§] F.(k%) F.(0), (6.16¢)
P01 = ~2 () (3 (k) (2 ) (200 m2)

x F.(k*) F,(0), (6.16d)
T -0 = 2 (I [0 a0 (00 1m0 ) -

X {(ng ko + kg)] Fr(k*) F,(0), (6.16¢)

T2k, k) = —Jmeh (fﬂ) (01 K) (02 K) (71 - 72) (w2(k) m2)

2 ™
m2 My

x F.(k*) F,(0). (6.16f)

VII. LNR-APPROXIMATION TWO-MESON-PAIR EXCHANGE
POTENTIALS IN MOMENTUM-SPACE

The LNR-approximation [21] leads to a massive reduction of the number of terms in
the two-meson-pair exchange potentials given in section V. For example, the (77);- and
(mp)1-potentials vanish completely. In this section we give the reduced form of these MPE-

potentials after applying the Tr-operation: Trrs = Tros = 0.
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(i) JPC = 0*F (7)o -

PO, k) = + (7{1—) (r1-72) (oK) (02 K)F2() -
{ﬁ St '} (w2 0200) (7.12)
My m3 i 4 ’ )
Vigh(k, —k) = Vi) (k, —k) = 0. (7.1b)

Here wy = wi(ky) and wy = wa(ks), where k; and kj refer to the first and second argument
in 1712;3 respectively.
Remark: the (ngns)-potential is obtained from (7.4e) by the substitutions m, — m, and

(’Tl . ’T2) — 1.

(ii) JPC=1"" (mm)y :

Visalk, —k) = Vig (k,~k) =0, (7.2b)
Vish(k, —k) = Vi (k, —k) =0 (7.2¢)
Remark: (1) For NN there are no other pairs with the same quan-
tum numbers and having I = 0, see Appendix G; (2) Interaction term

(ivV3/2) o+ (KT §M K) gives for Vigg terms o« q3 — 0 and «x (qi + q2) — 0.

(iii) JPC = 11" (wp); :

Remark: (1) For NN there are no other pairs with the same quantum numbers and having
I = 0, see Appendix G, (2) Interaction —i(v/3/2)(KT-K4)¢s gives term o1 -k 03-q—0-q 075k
whose Fourier transform vanishes, (3) The interaction iv/3/2) fi (K- K* — K*T- K) gives

for Vi3 terms o< o3 — 0.
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(iv) JPC =1+ (7o), :

Visa(k, —k) = 0, Vigi(k, k) =0, (7.42)
Visalle k) = 773 <ng5) [<a1 k oy k) () (w2(K) ’”3)_1]'
kaQF (7.4b)

7O (k, k) — g(m)l ( frgs

5 ot e |

>{mym+ﬁ}amﬁmm% (7.4c)
Tk = +922 (L9 o bty ) (0 )]

x F(k?) F,(0), (7.4d)
V-1 = 2% (I8 o ko qur ) (2 )

>{m,b+@}am%nmy (7.4¢)

Remark 1: the (ngo)o-potential is obtained from (7.4e) by the substitutions m, — m, and
(’Tl T 2) — 1.
Remark 2: as discussed in section VIA (a) in the two-particle CM-system q; = g2 = q, and

(b) averaging gives p3 = q3 = 0. Therefore, we have

(02 q2)(q1 +q3) - k = —(02-q)(q - k)
(01 di)(az +q3) -k = —(01-q)(q- k). (7.5)

The final step to the configuration-space potentials is now standard and straightforward,

see Appendix B.
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(v) JPC =1 (7w);:

Viba(k, —k) = 0, Vii(k,~k) =0, (7.6a)
V) = % () o) (o0 Wt ma) (200 ) ]

X [2p1 : k+k2} F.(k*) F,(0), (7.6b)
V) k) =~ (L) [k 019 () (200 )]

x F.(k?) F,(0), (7.6¢)
VA k) = +22 (I) oq trs ) (209 m2) ]

X {ng ko + kg} F.(k*) F,(0), (7.6d)

T -0 =~ (20 [k (o 0 ) (200 m2) |

2
mi 2mg,

« Fr(K2) F,(0). (7.6¢)

Remark 1: the (ns¢s)o-potential is obtained from (7.6e) by the substitutions m, —
My, My —> My and (71 - 72) — 1.

Remark 2: as discussed in section VIA (a) (a) ps = q3 = 0, and (b) qs;ps; — k7 d;; in
nuclear matter. So, in (7.4e) the linear terms in either qs or ps vanish and for the quadratic

terms
1
(012 a3) (s - k) = ki (012 - k). (7.7)

With these proviso’s the derivation of the configuration potential is straightforward, see

Appendix B.

(vi) JPC¢ = 0%F (00)-Pair Exchange Potential:

=7 Yoo —1

Viallk, —k) = =% g3 F() (w3w2) (7.8a)
V9o(k, —k) = 290 2 [ (k2) F,(0) (w? m2) ™", (7.8D)
Vi (k, —k) = V3,(k, —k). (7.8¢)
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VIII. CONFIGURATION-SPACE THREE-BODY INDUCED
HYPERON-NUCLEON POTENTIALS

The so-called configuration-space effective nucleon-nucleon potentials from the previous
section VII are recorded below. In this part only the dominating terms are included, i.e. we

neglect the terms proportional to 1/M?. For the different J"“-types we obtain:

ad (i) JPC = 0t (77)o-Pair EXChange Potential: From (7.1b) one gets

(r) = — (47pxar) Iinmys ? (m7r

m3 47T A \ Mg+
1 d 0 Ar
8 2my dmy {mﬂ ve (mm V2 T)}
_ (47TPNM) f2 (7_ - ) my 2 1 d
B m3 47r ar T e 2y dimiy

o e )

- <47TpNM) fz( .7-2).(7"“)2.7”#.

m3 47r A Myt

X Ewlc <m,r, %,7’) (o1 09) + Uy (mﬂ, %,r) 5121 , (8.1)

where the functions % (m, A, 2) etc. are defined in Appendix D.

V(l)

(mm)o

)2.(7-1.7-2) (01-V 5-V) -

An alternative way for the presentation of this potential is as follows: Using

1 | ),

K2 +m2 k2 +m?

m’'—m

(%)t = I [

we have from (7.1b)

(4m PNM) o [2 [ ma
m3 47r A7 \ g

)2.(7-1.7-2) (01-V 05-V) -

0 A?T /10 / A7r 2 2
| ot S5 = ' ', S| o, (s2)

‘/(Tmr)g (T> = hmm’%m

Working out the differentiations and defining 500 = (m/my) ¢% we get

1) 2
4 Yixn 2 T
( 7TIONM) (7)o f_ . ( m ) . (Tl . 7_2) .

3
ms A 4m \ Mg+

‘/Y(THT)O (T) = hmm’—>m

<[{5or - odtm ) + 51 B}

_{éwl.az)%(mgr)wm %%mxmﬂ s (33)

)
m/2 _ m2
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where

~ d? 2 d ~0 ~ 1/ d? 1d ~
etmr) = (054 240 ) Bt B = 5 (55— 2 ) Felomin)

x dx
Using in (7.1b) the relation k? = w?(k) — m?2, the derivative interaction gives two contribu-
tions V(( and ‘/((7?7130 V((Ti‘:))o is obtained from V(( with the substitution gE )) — — g((i)Tr)O.

The other contribution is

2
(2b) B (4m ,ONM) o ST 2 My
V(W)o(r> =2 m3 47r Ar \ma+ ()
1
X gqblc(mﬁ, Ar,7) o1 - 09 + O (M, A, r)} . (8.4)

The weights of the graphs Fig. 2 are: w(12;3) = 1,w(13;2) = w(23;1) =0
Similarly potentials for the (ngns)-pair: f — f,,mrz — m,, and 71 - 7o — 1. We neglect

here the mixing angle 6p, i.e. ng ~ 1n(548).

ad (iv) JP¢ =17+ (70);-Pair Exchange Potential:

Urpvar) Gwon Jrs
m3 A Arm

V(Srlg)lO") = —2 T1-7T2) (01-V)(o2-V) -

X [mﬂ (b%(mmAmr)] ) (mi)_l

(47TPNM) 9(ro) frgs m?r
=2 m3 drm  Arm (r-m) \ 2 )

m2

lﬁb};(mm A7r7r>(0'1 . 0-2) + ¢%(mW7A7H T) 512:| ) (85&)
1 (47pnr) Gmon frgs ma
2 m3 A 4w M2
x [m3 ob(ma, Ar,m)] - (m2)
1
2

(4mpnpr) Gmo)s fPgs ma m
2 md 47 47TW<T1'7-2) m2 )

vE (r) = (T1-72) (01 V)(02- V) -

2
mg

égbé(mﬂ'a Aﬂvr)(o-l . 0'2) + gb’;(mﬂ)Aﬂ'yr) 812:| ) (85b>

where in the V(Siz)l—potential we only included the local contribution (see Appendix B for
more details).

The weights of the graphs Fig. 2 are: w(»¥(12;3) = 0,wM(13;2) = wM(23;1) = 1/2 and
w®(13;2) = w?(23;1) = 1/2.

Similarly for the (nso)-pair: f — f,,m; — m,, and 71 - 79 — 1.
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(v) JPC =17~ (nw);-Pair Exchange Potential:

(r) = +(47TT/:L]3VM) 9(2:)1 fpgv;irn(ev) (71 72) (01-V)(02-V) -

e ome )] - (2)

(4mpnamr) 9erw): frgv sin(by) ms
=t m3 (47r)1 47 (r-m2) |5 )

2
e,

1
X ggblc(mm A7)0 - 03) + 03 (Mg, Ay, 7) 512} : (8.6)
The weights of the graphs Fig. 2 are: w(12;3) = 0,w(13;2) = w(23;1) = 1/2.

Similarly for (a) (ns¢s)-pair: f — fy,mz — My, Gawysin(fv) = —Ggw)/2, gvsin(fd) —

gv cos(fy) and 71-T9 — 1, for (b) (mp)o-pair: gy sin(fy) = gv, My, = My, Girw) = +Y(mw)/2-

(vi) JPC = 0F (00)-Pair Exchange Potential: For this simplest case, i.e. (00)-pair (5.13),

we get

eff Y(oo) d _
V(Em)) = —pPNM e 9% [— mlz (7’12,77%,/\/\/5) + 2m* qboc(mg,/\g,r)]

2 2 2
_ o Wmpni) o) 95 (%) [¢00(m(,,/\o,r) - % D2 (ma, Ao/ V2, 7")} . (8.7)

m3  Ar 4w \m,
The weights of the graphs Fig. 2 are: w(12;3) = w(13;2) = w(23;1) = 1/3.

In the calculations we can use the explicit d/dm, differentiation as above, or the formula

1 1 9 9
k2 + m?2 _k2—|—m’2} /(m’ -m )’

(ww?)™ ! = lim [
m/—m

This gives, using again (EO =(m/ mw)¢007

(eff) _ 47TPNM 9(oo) gg‘ . ma¢%(moa Aoa T) - mggb%(mlm Am T)
1% = ————= = | lim
(o) My 4Am A | mh—me (m?2 —m2)

—|—2m;1 gzﬁoc(ma, A, 7‘)}

41 o) G2 my
) _( pNM) Joo) 95 {H_W 0% (Mg, A1) +

m3 A Am m2
: m72r o 70 /
+ mgl—l}’}ng m ¢C(m0'a Ao’a 7”) - gbC(ma-y AO’v T) “ My (88)
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TABLE III: ESCO08c (rationalized) coupling constants, F//(F + D)-ratio’s, mixing angles etc. The
values with %) have been determined in the fit to the Y N-data. The other parameters are theoretical
input or determined by the fitted parameters and the constraint from the N N-analysis. Parameter

set: parbbsc.mariusl7a.

mesons {1} {8} F/(F+ D) angles

ps-scalar f 0.2926 0.2686 ap =0.365 6p = —13.00° *)

vector g 3.4100 0.6908 af = 1.0 6y = 37.50°%

f —2.5085 3.8840 a$:0.475*)

axial(A) g —0.9633 —0.8289 a4 = 0.372 04 = +50.0° %)

f —2.8750 —2.5470 ofy = 0.372%)

axial(B) f —0.1027 -0.2054 ap = 0.40*) @p = 35.26° *)

scalar g 4.1821 0.6130 ag =1.00 0s = 37.26°%)

diffractive gp 3.3581 0.0000 ap = — apg = 0.25%

go 4484 0.0000 ap =— ¢Yp= 0.00%
fo —4.323 0.0000 ap = —
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IX. MULTI-POMERON EFFECTIVE 2-BODY POTENTIALS

The multi-pomeron potential (MPP) we tune to the MPb model used in [23]. In Ta-
ble IV we display the MPP parameters for the MPP ”effective 2-body” potentials MPa™,
MPa, MPb, MPc as employed in Ref. [23, 24], and the tuned MPP denoted as MP17
used a standard of the MPP in these notes on the G-matrix calculations. Fig. 5 shows
the comparison of MP17 and the MPP parameters used in [23]. We have made equal
Vivpp(M P17) = Vipp(M Pb) for x=1 fm.

TABLE IV: Parameters MP17, MPa™, MPa, MPb, MPc. For MP17 mp = 223.12MeV, and for
MPa/b/c mp = 234.6 MeV.

gp g3p g4p

MP17 : 3.054 3.00 64.0

MPa™ : 3.670 1.31 80.0
MPa :3.670 2.34 30.0
MPb :3.670 2.94 0.0
MPc :3.670 2.34 0.0

X. AN,XN, AND =N G-MATRIX APPLICATION (A)

In this section the couplings for the (VV)o- and (AA)g-pair are for the wvector and

axial-vector octets Vg and Ag respetively.

The ESCO08c parameters are used for the coupling constants in these notes are primarily
from the fit ESCO8c.marius17a with parbbsc.mariusl7a, denoted as ESC17a. The fitted pair
coupling parameters for the NN& YN data are

Girmo =0, Gy = —0.17249, g, = —0.04384, gy, = —0.04779. (10.1)

In the three-body ”effective two-body” potential we take g(rr),, which for clarity we denote
by G(xr),, as an adjustable parameter. (In the future, in order to achieve full consistency,
the well-depth’s Uy, Uy, and Uz should be fitted simultaneously with the ESC-model meson

and pair couplings.)
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FIG. 5: Comparison MPP Effective 2-body potentials: MP17, MPa*, MPa, MPb, MPc.
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In the results in the Tables below are obtained by treating the multi-pomeron triple and
quadruple couplings g3p and g4p recpectively as adjustable parameters. Furthermore, we
introduced a pair-vertex cut-off parameter A,., which is treated also as adjustable. This

makes the following form factor change in the Effective 2-body potentials
k? k? V2A

exp {——} = exp {——/} , N = :
A Az J1+202/A2,

A. AN G-matrix Application

(10.2)

In this section the couplings for the (VV)o- and (AA)g-pair are for the vector and azial-
vector octets Vy and Ag respetively.
In Table V we display the details for Uy for the previous ESCO8 model without Three-body
Effective two-body potentials. In Table VI and Table VII we display the details for Uy, Uy, for

TABLE V: Values of Up (pp) and partial wave contributions in 2541 ; states from the G-matrix cal-
culations (in MeV). The value specified by D gives the sum of 251D contributions. Contributions

from S-state spin-spin interactions are given by U,, = (Up(3S1) — 3UA(1Sp))/12.

15y 381 'P 3Py 3P, 3P, D| Up|U,,

ESC08c |—13.3 —25.4 2.6 0.0 1.1 —3.0 —1.6/—39.6|1.22
ESC08¢ct|-13.3 —25.6 3.0 0.2 1.5 —2.1 —2.3|—38.6/1.19

the GESC017 model, parameters parbbsc.mariusl7a, to see the effects of the TBF, MPP,
and FM-three-body forces. Here, &MPP means ESC17a+MPP etc., and the line TOT
means ESC17a+TBF+MPP.

B. XN G-matrix Application

In Table VII the partial wave contributions to the X-well-depth are shown for a variety

of Effective two-body potentials.
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TABLE VI: GESC17: Values of Up(po)(IK = 0) and partial wave contributions in 2*'L; states
from the G-matrix calculations (in MeV). Parameters Effective 2-body potential: (a) TBFO:
Grmyy = 0sGun = —0.17249, gy = —0.04384, g, = —0.04779, and A, = 450 MeV; (b) MPb:
gsp = 3.0,g4p = 64.0; (c) FM: App = 2000.0 MeV. Extended TBF: (1) TBFa: g(,q) = 0.15, (2)
TBFb: gy, = 0.15, (3) TBFc: gaa), = 0.30. GESCIT: g() = 040, gryy, = 0.2, g4y, = O-

15y 38, 'P, 3Py 3P, 3P, D| Up|l U,y

ESC17a |—15.9 —28.0 2.3 —0.1 +1.0 —3.1 —1.3|—45.4|+1.65

&MPb | —6.3 +0.3 4.3 +0.5 +3.4 +1.0 —0.5| +2.5|+1.60

&TBFO |—21.0 —18.1 2.7 —0.6 +2.0 —2.9 —1.6|—39.6|+3.73

&TBFa |—25.3 —34.6 2.0 —1.0 +1.1 —4.6 —1.9|—64.5|+3.44

&TBFDb |-20.0 —14.6 2.8 —0.2 +2.1 —1.8 —1.6|—33.4|+3.77

&TBFe |-20.9 —18.0 2.7 —0.6 +2.9 —2.9 —1.6|—39.5|+3.72

TOT -15.0 +0.5 4.0 +0.3 +3.5 +0.9 —-1.0| —7.0{+3.79

GESC17|-21.5 —25.5 2.9 —0.0 +2.0 —1.4 —1.4|—45.2|4+3.25

&FM —-15.2 =276 24 -0.1 +1.1 -3.2 —1.3|—-44.2|4+1.52

C. =N G-matrix Application

In Table VIII the partial wave contributions to the =-well-depth are shown for a variety

of Effective two-body potentials.
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TABLE VII: Values of Us/(po)(K = 0)-partial wave contributions in 2511 ; states from the G-
matrix calculations (in MeV). Parameters Effective 2-body potential: (a) TBFO: g(rr), = 0, gry =
—0.17249, gro = —0.04384, gy = —0.04779, and A,y = 450 MeV; (b) MPb: gsp = 3.0, g4p = 64.0,
app=2.6; (c) FM: Apy = 2000.0 MeV. Extended TBF: (1) TBFa: g(,,) = 0.15, (2) TBFb:
gwvy, = 0.15, (3) TBFc: ga4), = 0.30. GESCIT: g(ss) = 0.40, g(vvy, = 0.2, 9(44), = 0; GSE17a:

app=1.5, GSE17b: app=2.5. n.c.= no convergence 30 steps.

T| 1S 38, 'p 3Ry 3P, *P, D| Us| I's

ESC17a 1/2|4+10.5 —25.7 1.9 2.1 —54 —0.4 +0.7
3/2|—14.3 +38.0 —3.6 —2.2 +5.2 —3.1 —0.2| —7.8|28.5

&MPb  1/2| +9.8 —-8.0 2.5 2.3 -39 409 —04
3/2| —5.9 473.0 —0.1 —1.6 +6.5 +0.1 +0.7|4+76.1| n.c.

&TBFO  1/2|+11.4 —18.6 0.7 -3.1 +3.0 —2.1 +0.2
3/2]—-22.5 431.5 —2.6 +2.2 —1.6 —0.7 —1.1| —3.5/16.7

&TBFa  1/2| +9.7 =319 0.3 -3.5 +2.3 —3.3 +0.0
3/2|—29.5 +19.6 —4.1 +1.9 —2.7 —3.2 —0.5|—46.3|19.3

&TBFb  1/2|+11.0 —16.2 0.8 -2.9 +3.1 —1.5 +0.4
3/2|—20.3 +33.3 —2.3 +2.6 —1.2 +0.5 —1.1| +5.7|15.5

&TBFe  1/2|+11.4 —18.5 0.7 -3.1 +3.0 —2.1 +0.2
3/2|—22.3 +31.4 —2.6 +2.2 —1.6 —0.8 —0.3| —3.3|16.6

TOT 1/2{+13.3 —15.1 1.0 -2.5 +4.3 4+0.4 +0.5
3/2|—20.3 +48.6 +0.1 +2.6 —0.9 +1.2 —0.7|+32.6| n.c.

GESC17a 1/2|+13.5 —28.1 0.6 -2.6 +4.0 +0.2 +0.3
3/21—29.9 +45.1 —0.4 +2.3 —2.0 —1.2 —0.4| +1.0|20.5

GESC17b 1/2|+13.8 —26.6 0.7 -2.2 +4.8 +1.7 —0.5
3/2|—-31.9 +56.3 +1.4 +2.3 —2.0 —1.3 —0.2|+16.9|21.6

&FM 1/2|4+12.8 =30.6 2.6 2.0 —5.7 —0.9 —0.6

3/2] —9.7 +23.8 —2.5 —2.3 +5.0 —3.7 —0.2|—10.1|23.7
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TABLE VIII: GESC17: Values of U=(pg) and partial wave contributions in 2t1L; states from
the G-matrix calculations (in MeV). The TBF1a etc. potentials are ESC08 & TBF+MPP. Param-
eters Effective 2-body potential: (a) TBFO: g(rr), = 0,gry = —0.17249, gry = —0.04384, gr, =
—0.04779, and A, = 450 MeV; (b) MPb: g3p = 3.0, g4p = 64.0; (c) FM: Appr = 2000.0 MeV.
Extended TBF: (1) TBFa: g, = 0.30, (2) TBFb: gnv), = 0.15, (3) TBFc: geaa), = 0.30.
TOTY: g(re) = 0.6, grvy = giaa) = 0. TOT*): g(r0) = 0.6, gy = 0.125, g 4.4) = 0. GESC17=

TOT**): 9(o0) = 0.7, 9cvv) = 0.2, g14) = 0.

T| 'Sy, 358, P 3Py, 3P, 3P = I'=

ESC17a 0|—-19 -3.2 -0.3 —6.0 14 —14
1 79 28 1.0 0.6 -2.2-0.1] —-1.3 13.3

&MPb 0| 2.0 +6.3 0.6 —2.8 2.2 +0.3
1]124 271 3.5 1.5 405 4.5]458.1 13.5

&TBFO 0| -8.8 +2.6 -0.0 -1.3 -1.6 —0.2
11 9.0 -0.3 +1.0 -0.2 -1.1 -0.6] —1.5 1.7
&TBFa 0(-22.9 —4.7 -0.7 -1.6 -2.3 —1.2
1| 48-184 -04 -0.7 —2.7 -3.2|-54.0 0.9
&TBFb 0-11.1 +3.6 0.1 -1.4 -1.5 —0.1
11100 34 13 -0.1 -0.7 -0.0] +3.5 1.4
&TBFe 0| -8.7 2.6 -0.0 -1.3 -1.6 —0.2
11 92 -06 1.1 -0.1 -1.3 -0.6] —1.6 1.7

TOT 0-29.9 -2.1 -03 -1.5 -1.9 —-0.5
1| 80 -7.5+1.0 -0.3 —1.3 -0.7|-37.1| 0.99

TOT  0[-28.1 —1.5 -0.1 —1.9 -1.8 —0.4
1| 87 -5.0+41.2 -0.2 —1.0 -0.3/—30.4| 48.3**)

GESC17 0| 8.6 —3.9 -0.3 =3.8 -1.9 —0.8

1| 6.4-11.1 40.9 -0.4 —1.4 -0.9| —8.6/50.9"**)

36



XI. AN, XN, AND EN G-MATRIX APPLICATION (B)

In this section we extend the three-body interactions by the inclusion of the (wiws)-pair

etc. couplings. So we have, next to the pair interactions included in the ESC08-model, also

7{(0101)(37) = Yoi01 [wBin] O-%a H(wlwl)(x) = Juiw [wBin] w%a
Huaw (1) = 9w W’B@B] {P Pt 2K K* + wsws}
Hagas(T) = grasas) [VBUs] {Al AL+ 2K K+ Dyg D1,s} :

Like in the OBE-potentials this o1 and wy BB-coupling are not much different, and we can
take advantage of the w — o cancellations.

In Tables IX we give results for the ESC-parameters parbbsc.marius17a plus those of the
extra (o0), (VV) and (AA) pair interactions. In Table X similarly for parbbsc.marius17b.
In this last table we also show some results with the inclusion of the Fujita-Miyazawa
three-body interactions. The result for AUy, extra attraction ~ 6 MeV, is in accordance
to that given in [9]. Note that the contribution of the FM-potential is attractive to
Up,Us, and Uz as well and of the same size as for Uy. These new pair-couplings are
very reasonable following the discussion in appendices contained in these notes, taking
into account Kleinert’s paper and sigma-pomeron cancelations. The Uy still is a little
enigmatic in the case of parbbsc.marius17a, but not for parbbsc.marius17b!? The ESC08
with parbbsc.mariusl7a is more attractive than with parbbsc.marius17b.

Note: Always the MPP parameters are fixed G3p=3.0, G4p=064, giving an MPP potential
as used for neutron-star matter. The ESC parameters are parbbsc.mariusl7a (in most
cases) and parbbsc.marius17b. The latter fits the NN4+YN data best.

Looking at the differences between 17a and 17b it is clear that we can try to find an optimal
ESCO08c parameter set, which fits the different well-depth’s best.

Note that the couplings are rather close together, and in a simultaneous fit with the
ESC-parameters possibly can be taken to be the same for the Uy, Uy, Us and Ug!? This

eventually for the future!

Conclusion: It seems that the inclusion of the three-body effects can give a satisfactory Uz,
with dominant attraction in the ZN(3S;, T = 1) partial wave. (In order not to overload this

section I do not give here the partial wave contributions, but they look fine to me.) This
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TABLE IX: GESC17: Values of En,Up,Us and Uz for symmetric nuclear matter with density po,
kr = 1.35 fm. The potentials are ESC08 & TBF+MPP. ESC08 parameters are parbbsc.marius17a.
The Vg and Ag couplings are taken ggvg) = g(agas) = 2.5. Exn =Ty + Uy, Tn = 22.676 MeV.

Items with x) means n.c.

9oi01 |Gwiw En | Uy Uso| Us Uz |apB

0.725 0.70 |-15.0| — — | — | —
0.735/ 0.70 |-16.2| — — | — | —
0.750| 0.70 [-18.3| — — | — | —

0.725| 0.70 | — |-64.2 2.59| — | —

0.700| 0.70 | — |-57.5 2.68| — | —

0.700{ 0.80 | — |-41.8 2.86| — | —

0.550{0.80 | — | — — | +7.2| — [0.00
0.550{0.80 | — | — —— |+14%| — [0.33
0.550{ 0.80 | — | — — [+22%]| — [1.00
0.600/ 0.80 | — | — ——|+14%| — [2.50
0.700{0.80 | — | — — | 4+2.7| — [2.50

0.700{ 0.60 | — | — — | — |+3.7
0.750; 060 | — | — — | — |-9.0
0.750/0.575| — | — — | — |-17.8
0.750/ 055 | — | — — | — |-27.2

with at the same time (i) no deuteron-like b.s. (ruled out by Saclay-Rome-Vanderbilt) and
(i) small ZN scattering X-sections.

So far we have achieved a model for BB-interactions which consists of two parts: (i)
Two-body BB-potentials which describe all BB-scattering data succesfully, and (i1) ”Effective
two-body” BB-potentials, derived from three-body interactions based on SU(S3)-symmetric

interactions.
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TABLE X: GESC17: Values of Uy, Uy, Us, and U= for symmetric nuclear matter with density po,

kr = 1.35 fm. The potentials are ESC08 & TBF+MPP. ESC08 parameters are parbbsc.marius17b.

The Vg and Ag couplings are taken 9(VsVs) = Y(Asag) = 0.6. En =Ty + Un, Ty = 22.676 MeV.

Lines marked by (i) *) are with FM-potential included, (ii) **) FM-potential with D=0, (iii) ***)

FM-potential A LA [25].

Yoi01

Juwiw

En

Us.

Us T=

app

0.000
0.000
0.000
0.800
0.800
0.800
0.800

0.00
0.00
0.00
0.60
0.55
0.55
0.55

-19.7
-25.7
-24.7
-12.6
-16.2
-15.3
-16.1

*k)

0.000
0.000
0.700
0.750
0.800
0.800
0.800

0.00
0.00
0.70
0.60
0.60
0.55
0.55

47.5 0.61
53.2 2.10
6.72 1.98
273 1.72
35.4 1.62
42.5 1.54
41.2 0.97

0.000
0.000
0.600
0.700
0.700

0.00
0.00
0.80
0.70
0.70

-9.5
-25.0
+65.1
+19.6
+20.9

0.0
0.0 *
0.0

0.0

0.0 *)

0.000
0.000
1.200
1.500
1.500
1.200

0.00
0.00
0.45
0.60
0.65
0.45

+14.2 11.7
+6.4 5.5
-12.5 16.1
-18.7 13.6
-6.48 14.3
-12.5 15.5




TABLE XI: GESC17: Values of Uy, Uy, Us; and U= for symmetric nuclear matter with density po,

kr = 1.35 fm. The potentials are ESC08 & TBF+MPP. ESC08 with broad x(931), parameters are

parbbsc.kapgam14. The Vs and As couplings are taken g(vgvy) = g(as4s) = 0.6. En = TN + Un,

Tn = 22.676 MeV. Lines marked by: 1) with gy ;) = 0.90,g(a,44) = 0.60, 2) with gy, =

9(asas) = 0.0, and 3) with gygz) = 0, g(aga5) = 0.60. The nucleon energy is By = Ty + Uy, Tn =

22.676 MeV.

Yoi01

Juwiw

En

UA UO’O’

Us,

Uz TI=

app

0.000
0.800
0.600
0.600

0.00
0.55
0.55
0.60

-19.7
-50.1
-22.6
-18.6

0.000
0.600
0.600

0.00
0.60
0.60

44.1 1.03
44.5 2.18
47.2 2.22

0.000
0.500
0.550
0.550

0.00
0.70
0.75
0.80

-1.20
+16.0
+8.00

> 10

0.0
0.0
0.0
0.0

0.000
0.700
0.700
0.700
0.700
0.700

0.00
0.25
0.30
0.30
0.30
0.30

+19.5 7.7
-17.1 10.3
-3.9 10.3
-12.7 9.85
+13.6 11.1
+13.5 11.0

XII. NUCLEAR SATURATION APPLICATION

With a change of g») = 0.4 — 0.325, and all other pair-parameters the same as for

Ur,Us, and Uz, at kp = 1.35 fm™!, for symmetric nuclear matter we obtain Ty = 22.68

MeV, Uy = —38.18 MeV, giving Eror = Ty + Uy = —15.51 MeV. Experimentally one has
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TABLE XII: EN low-energy parameters for ESCO8c-model with parbbsc.17a-d. The V3 and As

couplings are taken g, o, = 1.20, gy w;, = 0.45, and g(zv) = g(agag) = 0.6.

aan(1S0)|azn (180, T = 1)|azn(3S1, T = 1)|azn (3581, T = 0)|| Uz T=
17a :| -1.23 0.44 0.02 -0.40 -101. 0.00
17b :| -0.61 0.52 0.11 -0.83 -12.5 16.1
17c ;| -0.59 0.55 0.14 -0.75 -9.56 14.8
17d :| -0.59 0.54 0.11 -0.79 -24.2 28.6

TABLE XIII: GESC17: Values of Un, Uy, Us, and Uz for symmetric nuclear matter with density
po, kr = 1.35 fm. The potentials are ESC08 & TBF+MPP. ESC08 with broad x(931), parameters
are parbbsc.newl?. A(exp) = U(exp) — U(ESC08 + EFF2).

Ay =450 MeV| AUy | AU, AUs, | AUz

Exp. -37.9 |+39.9 +20.0{-15.0

ESC08 -43.9|-44.9 -3.95 |+22.5
Alexp) 6.0 |+5.0 +19.0/-28.0
TBF | go,o, =0.3 |-28.5|-50.0 -90.0 |-41.0

Gurwr = 0.3 |+19.0/445.0 +56.0|+54.0

Jusws = 0.3 |+0.50|45.50 +4.50| -2.00

Garas = 0.6 | -1.50 |+5.50 +4.80(+2.00

MPP | g3p=3.0 |+4.20|+8.40 +6.70(+7.30

gap =26 |+79.0/ +128 +205| +127

FM -6.00 | -7.30 +8.70|+1.70

[26]

Eror = B/A=—16.3 MeV, agy, = 32.5 MeV.
With g(se) = 0.40 we got Eror = —21.95 MeV, and g(,+) = 0.30 gives Eror = —13.20 MeV.
These variations are due to the sensitivity of Uy, the kinetic contribution Ty remains the
same. It is obvious that we can tune the pair-coupling such as to hit the experimental point

exactly. The dependence is rather linear, and indeed with g, = 0.335 we get for kp = 1.35
fm~t: Ty = 22.68 MeV, Uy = —39.00 MeV, Eror = —16.32 MeV.
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XIII. CONCLUSIONS AND OUTLOOK

The three-body forces presented in these notes lead to “effective” potentials which con-
tains effective pseudoscalar [(7n), (7o), (tw)], scalar [(o0)], vector [VV')o], and axial-vector
[(AA)o] type of exchanges, covering the same quantum numbers as in the OBE-models.

In Table XIV the results on the well-depth’s in Tables VI, VII, and VIII are assembled to

give an overview.

TABLE XIV: Comparison G-matrix well-depths Uy, Us;, Uz for symmetric nuclear matter (in MeV).

Upn Tyl Us TI'yl U=z TI'=
ESC17a |—45.4 +1.65| —7.8 28.5| —1.3 13.3
&MPb | 4+2.5 +1.65|4+76.1 n.c.|+58.1 13.5
&TBFO |—39.6 +3.73| —3.5 16.7| —1.5 1.7.
&TBFa |—64.5 +3.44|—46.3 19.3|—54.0 0.9.
&TBFb |—33.4 +3.77| +5.7 15.5| +3.5 1.4
&TBFe |—39.5 +3.72| —3.3 16.6| —1.6 1.7.
GESC17|—45.2 +3.25|4+16.9 21.6| —8.6 50.9

Remarks:
(i) The (mn)-pair contribution to Uy, is > 0.

(ii) In the ESC08c/ESC16c models is g(rr), = 0. So far, we have put g, = 0 in ESC-

models, but there is no real reason for this.

(iii) From the "effective” two-body potentials, not shown in these notes, one sees that
SU(3) symmetry is rather badly broken. This is particularly so for F-M. One would
expect Vax(T = 3/2) be similar to Viyy (T = 1), but that is clearly not the case. The
reason is that symmetric nuclear matter is not SU(3) symmetric. In symmetric baryon

matter this would not be the case.

(iv) The Uy is still unclear. Making app=2.0 the iterations did not converge after 30
iterations in some cases. Around ite=16 it seems a bit stable with Us. &~ +9 MeV. The

same is true when app=2.5, giving ~ 16 MeV.
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(v) The Broken-Scale-invariance model [27] and MFT [26] determinations of the
9(oo)s (VV)e» 9(AA), couplings are ~ 1.0. In these derivations the role of the Pomeron
was not considered. Taking the o — P-cancellations into account one expects the
"effective” couplings §(s0), (vv)y, J(a4), couplings to be smaller. Therefore, the used

couplings in these notes seem quite acceptable.

(v) As for the nuclear saturation the attraction from (co)-pair is proportional to pyays,
whereas the repulsion from multi-pomeron has besides a py;- also a p%r,,-cotribution
from the triple- and quartic-vertex respectively. Therefore, at high density like in

NS-matter the (oo )-pair is (much) weaker than the multi-pomeron.

(vi) In order to give sufficient repulsion for Uy, the the Pauli-repulsion has to be enhanced,

even more that in the ESC08 models.

The well-depth U= when attractive in the absence of the "new” pair-interactions (notably
the (00 )-pair), only strong attractive contributions come from the ZN(3S7, T = 0) channel.
This is unfavorable for the production of S=-2 hyper-nuclei in a K~ K T-reaction. The J-
PARC EO05 experiment is aimed to produce b.s. peaks in the C(K~, K7) Be-reaction
[28]. The structure and production of p-shell Z-hypernuclei has been analyzed by Motoba
and Sugimoto [29], see also Motoba et. al. [30]. In this study they with the models NCH-D,
Ehime, ESC04d, and ESC08a. As can be seen from the Table VIII models TBF2c¢ and
TBF3c are may be similar to ESC04d. Then, the DWIA-spectra in Fig. 7 of Ref. [29]
could be expected from application of ESC16¢ in combination with the TBF and MPP
interactions. With the inclusion of the (co)-pair contribution this improves considerably!

In Table XV gives the comparison of the composition of Uz for the different models.

Notice the attraction in ZN (35}, T = 1)-channel for GESC17.

Note: The total well-depth’s get contributions from different partial waves. In hypernuclei
and (hyper) nuclear experiments specific partial waves are more important than other ones.
For example, in (K~, K*)-experiments may be selective w.r.t. the EN(3S;, T = 1) wave.

Similarly for the twin-hypernuclei of Kanazawa et al.

Finally: (1) The parameters for GESC17 need further tuning/fitting in order to have one

set of parameters for Uy, Us, and U=. The (o0)-pair plays an importent role in the results

43



obtained in these notes. The (VV')g, (AA) have hardly been explored so far. (2) Consistency
ESC and GESC: We introduced an additional cut-off parameter for the pair-vertices. So, in
a consistent GESC-model we have to introduce also this pair-vertex cut-off. Moreover, the

two-body counterpart of the (oo), (VV)g, (AA)y ought to be included.

TABLE XV: = single particle energies Uz and conversion width 'z at normal density for ESC04d,
ESCO08c, and GESC17. Contributions in GT+NES+I [ 1 states from the G-matrix calculations (in

MeV). The potentials GESC17 = ESC08.17a ¢ TBF+MPP, see Table VIII.

T|'S, 35|'P 3P, 3P, 3P| P Us r

[1]

ESC04d |0| 6.4 —19.6
11 64 —=5.0 —6.9]-18.7 11.4

ESCO08c |0| 1.4 —-8.0/-0.3 1.8 1.4 —-2.1
1|10.7 -11.1] 1.1 0.7 -2.6 -0.0 -7.0 4.5

GESC17|0| 8.6 —3.9/-0.3-3.8 -1.9 —0.8
1| 6.4 -11.1/ 0.9 -0.4 —1.4 -0.9 —8.6/50.9%*%)

44



XIV. DISCUSSION

We distinguish three contributions to the effective two baryon-baryon potentials: (i)
V(pair): pair-contributions; (ii) V'(t.,): ”t-channel” contributions from the two-ps cou-
plings of the €(760),5*(990) and pomeron P: and (iii) V(FM): the SU(3)-generalized
Fujita-Miyazawa (FM) potentials.

For the meson-pairs that couple to NN, see the interaction Hamiltonians in Appendix G.

In the FM-potentials we use a gaussian form factor with Apy, = 2 GeV/c?.

The plotted potentials are given for normal nuclear density py = 0.1589 fm =3, and
without the inclusion of the two-body-correlations [22]. The OBE-couplings are given in
Table III. Using these numbers the pure SU(3) octet and singlet couplings are determined
in the well known way [31]. The meson-nucleon coupling constants for the relevant (physical)

mesons are computed taking into account the meson-mixings, see Appendix G, giving

Pseudoscalar : fny. = 0.2686, fyny, = 0.1353, fnny = 0.2691,
Vector : gnn, = 0.6280, gnng = —1.2832, gnne = 3.3413,

Scalar : gnyag, = 0.6129, gnys+ = —1.5474, gnne = 4.0277. (14.1)

The (rationalized) ESC08c NN-pair-couplings are given by

Y(xmyo = 0 , ey = —0.1725,
g(wo)l = _00438 5 g(ﬂ'w)l = —00478’ (142)

and the coefficients of the pair-interaction Hamiltonians, see Appendix G.

Footnote: The o — P dominance of g, gives

9oNNYGorm 9gPNNYPrr

2
g(7T7r)0 = m2 - M2 fNN7r7

where the relative (-)-sign is due the repulsive character of the pomeron P. Assuming
chiral-symmetry means that the o and P contribution nearly cancel.

In Table XVI we give an illustration for the built-up of the xpr constants ¢; and c3 using
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TABLE XVI: Chiral coefficients ¢; and c3 from t-channel exchanges and s- and u-channel nucleon

and Asz exchange. For experimental values, see [32].

NLO Chiral-PT Model Pion-nucleon Constants

c(e) = -14.623 GeV=1  c3(e) = -7.284 GeV~!
a(S*) = 0.588 GeV~1  ¢3(5%) = 0.242 GeV~!
ca(P) = 19.067 GeV~!  ¢3(P)) = 3.501 GeV~!
ci((mm)o) = -0.000 GeV~! c3((nm))) = -0.000 GeV—!
ca((mm)) = -2.985 GeV~! c3((m)1)) = -0.207 GeV~!
c1(ESC08) = +2.047 GeV~! ¢3(ESCO08) = -3.748 GeV~!
c1(Ng) = -1.325 GeV™l  c3(IV,) = 0.000 GeV~!
c1(Ny) = -1.325 GeV™!  e3(N,) = 0.000 GeV~!
c1(dg) = -1.115 GeV™l e3(Ag) = -0.536 GeV~!
ca(d,) = +0.756 GeV™'  c3(A,) = -0.197 GeV~!
ci(tot) = -0.963 GeV~!  c3(tot) = -4.482 GeV~!
ci(exp) = —0.76+£0.07 GeV~! c3(erp) = —5.08+0.28 GeV~!

some recent version of the ESCO8-parameters. for the pomeron contributiuons some tuning
is done using the Prm-coupling. We note:

(i) The contribution from the pair terms is taken care off in these notes.

(ii) The Asz s-channel (Ag) and u-channel (A,) contributions are supposedly accounted
for by the Fujita-Miyazawa (FM) potentials.

(iii) The ¢,S* and pomeron P contributions are derived using the Lagrangians
L(omT) = gonzmy o(mw - w)/2, with g, = 10.468,3.005, and 3.690 for 0 = ¢, 5* and
P respectively. In Fig. 6 the contribution to the effective two-body potential by integrating-
out the ”third-nucleon” is illustrated. This contribution we denote by V.. in the following.
Vyar has the same form as that from the (77)¢-pair term contribution, see formula (8.1) of
the previous section. (NOGTEDOEN)

Note that c3 is dominated by ESC08c. What about ¢y 2%
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b3 DPe Po

FIG. 6: Three-body contribution from 7r,nm, and KK couplings of €(760), 5*(990) and P.

Remark low-energy properties hadron vertices: The pair-vertices from the o —
oo, V'V, AA-coupling are worked out in Appendices L,J, and K. They lead to "effective”
two-body potentials similar to the OBE potentials from the scalar, vector and azial-vector
bosons, see text for the scalar and Appendices J and K for the VV and AA respectively.
According to the derivations/estimations from broken scale invariance [27] and MFT [26]
these couplings are not small. In the Nigmegen OBE and ESC models the sigma-pomeron
cancellation is an important factor to keep in line with (broken) chiral-symmetry. Similarly,
we ought to consider also the P — oo, V'V, AA. Therefore, we expect substantial cancella-
tions from these couplings. In this work we do not work out the pomeron related oo, V'V, AA
Yeffective” potentials. Instead of this we treat the (c0)o—, (VV )o—, (AA)o—pair couplings as
free parameters, which according to the remarks above will be smaller than those derived in
[26, 27].

In line with this, we expect quite large cancellations in diagram (a) between the o — oo and
similar contributios due to P — PP. contributions. Therefore, we use only the (oo) part
of diagram (a) with an effective coupling g(,o), which is (quite) smaller than the estimate
made in Appendiz L. (Note: the PP-contribution in (a) is different in nature from the
triple-pomeron contribution.)

Another example where the 0 — P-cancellation plays possibly an important role is in the
triple- and quartic-sigma couplings, see Fig. 8. With positive g3, > 0,94, > 0, the triple
scalar-exchange gives an attractive 3BF, which leads eventually to ”extraneous” states of
nuclear matter [33]. Including also the multi-pomeron vertices, e.g. L3 = gg&[a + P)?
large cancellations occur and ”extraneous” states can be avoided. (Notice that the quartic

Ly = gff’;i [0 + P]* gives repulsion.)
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FIG. 7: Pair-diagrams from o — oo, V'V, AA couplings, and P — PP coupling (P=pomeron).

p1 P

p1 v p2 P

p / /

2 Py p3 p3

p / /

3 P3 y2z! Py
(a) Triple-scalar vertices (b) Quartic scalar vertices

FIG. 8: Multiple sigma and pomeron graphs. The wavy lines stand for either a o-line or a P-line.
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APPENDIX A: EXACT REDUCTION DIRAC-SPINORS TO PAULI-SPINORS

The transition from Dirac spinors to Pauli spinors is given here, without approximations.

We use the notations € = E+M and & = E'+ M’ where E = E(p, M) and E' = E(p/, M").
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Also, we omit, on the right-hand side in the expressions below, the final and initial Pauli

spinors }'T and y respectively, which are self-evident.

L &e p-p) pXxpo
“p)ulp) =\ g (1_ £'€ ) e 1
, &€ [op op
a(P)wuP) = —\ g & E |
g&E | pp pxp-o
aP ulP) =\ Ty (H gE ) e }
, & (P p (oxp oxp
u(p’)y u(p) = + AN M (§+E> +Z( g ¢ )},
&€ [op op
(P37 u(p) = — oL e T }
, e | o-
a(P)sy ulP) = —\ g 0+( p }
. ].ege I . pp > "X p
B AM'M | EE 55

™

(0~pp’+a-p’p)1 ~—0,,

~—

where we defined k = p’ —p, q = (p' + p)/2, and ky = fy/gv.

Using the the Gordon decomposition

~—

iu(p') o™ (p' —p

wwzmmﬁM+Mwu@wmﬁuw

one obtains for the complete vector-vertex

WTule) = 00h) |+ szmro (6 — o) o)
= a(p') KH M;LMRV) = /\V;l(p +p) ] u(p) =
w=0 4 41\84/34{(1

oM

) (75
o)

(E’+E)( 7 p" P }

iy Ee " M’+M o xp _oXp
p=t AM'M &

Ry , g - po' P
—W(P+P)( 1
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APPENDIX B: FOURIER TRANSFORMS NON-LOCAL POTENTIALS II

The Fourier-transform for the operator (o - k)(o3 - q)(q - k):

Vit (1) = / %k kugnar explia - (' — 1)) explik - (' +1)/2] 5(k%).  (B1)

The expression to be evaluated is

, dq d3k
(r|le;nl|,’7Z)) - / ( |lenl| /dS / k. kZQnQZ

X expliq - a] exp[ik - (r' — a/2)] )w(r —a)

- [ealf (;‘Tﬁ ) wml<r'—a/2> v’ a)

_ / P [Vor Vs 5(a)] - {wml(r’ a2 — a)}
= — / d*a §%(a) [vwva,l {wml(r' —a/2)y(r —a)H : (B2)

Above, introduced is the variable a
a=r'—-r, (+r)/2=r—a/2, (B3)

and

Wy (1) = / (;z:): Epky €T 5(k?) = —V,,Viu(r). (B4)

Working out the final expression in (B2) further is rather standard for the non-local potential

terms, see e.g. [34]. One obtains

(2 Vit 0) = i V.,V wo (7] () — % (anlwml(r) + wml(r)VnVl) (). (B3)

The local part of the potential is

Viewt — —i(al V) (02 V) [V2(r)]. (B6)

It is now apparent that the separation between the non-local and local part of the operator

of this section, apart from the overall factor (o - k), is as follows:

(q-K)(os-q) = [(q-k)(ag-q) 4 %k2 (0'2~k)] _ ik? (3 - K). (BT)

APPENDIX C: DIFFERENTIATION FORMULAS

(01 V(02 V) F(r) = % <2F’ + F) (r) (o - 3) +% (—%F + F) (r) Sho.
(C1)
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APPENDIX D: FOURIER INTEGRALS

1. The Fourier transformation for OPE with a Gaussian form factor
L(m, 7) = (27) / Pl e Ty (k2) | (D1)

with
_k2/A2

00 2
72 — 2 PI7) e D9
2( ) A d/“L k2 +1L62 k2 ¥+ m2 ) ( )

an approximation discussed in e.g. [19]. The Fourier-transform has been given in [34] with
the result
m o
Liim,\,r) = 4—¢C(m, A7) (D3)
7r

¢%(m,A7T> — eXp<m2/A2) [e*mr erfc (_% —+ %) — e™erfe (% + %)}

)

2mr
where the Erfe-function is defined in [35]. 2. In order to deal with Fourier integrals where
wk)™,n=1,3,... and/or powers of w(k;) + w(ks) appear in the denominators, we exploit

the following integral-representation [19]

1 2 [® d\
w(k)_E/o K2+ g2 4+ N2 (D4)

where w(k) = y/k? + p2. Apphcatlon for 1/w(k) gives

L(K?) = d d
00 = [Taegi =2 "o [Tl

e~ (K3X2)/A%

~ — dA\g——5 - D5
T /0 k? + 2 4+ A2 (D3)
The Fourier transformation gives
. €_k2/A2 2 [ 2 /A2
Li(m,r) = (27T)_3/d3/{561k'er) = %/ de™ N L(Vm2 + 22, 7). (D6)
0

Similarly, for the integral where w?3(k) occurs in the denominator, using again the integral

equation for 1/w(k), we obtain

L(m,r) = = /O i\ [Ig(m r) — e XN L(VmZ + 22, r)| (D7)

T 2
3. OBE: For integrals with 1/w?(k) we find
~ - : d < o)
Ik2: d2 p(lu) - d2PN
) A Pl T Tae ), e
6_k2/A2 1 €_k2/A2

12

— . D8
(k2+m2)2+A2k2+m2 (D8)
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The Fourier transformation gives

d 1
Ii(m,r) = g L(m,r)+ e L(m,r) . (D9)

4. TBF: integrals with 1/w?(k) we find
—2k2/A?

N T L 1 VI
a) = [t [ e e O

and the Fourier transformation gives

Ju(m, AJV2, 1) = —%b(m,/\/ﬁ, r). (D11)

5. The derivative w.r.t. the mass:

1 d m A?
J4(m,A,1") = —%%Ig(m,/\,r) = _E {(b%(m,/\,r) — m eXp(mZ/AQ)-
A A
X [em’" erfc (__r + %) + e™"erfc (77“ + %)] } JA? = —% Y&(m, A, r).  (D12)

This follows from the differentiation of the expression (D3):

d 2 A A
— I, = il I, + =z {—T {e‘mTErfc (__r + @) + et Erfc <—|—7T + @)}

dm A2 47 2 A A
1 Ar m\? . Ar m\? 2 /2
| _—mr I e mr . o e L om /A
i [ e " exp < 5 + A> + e exp (—I— 5 + A) ] } e /(2mr)

2m 1 2 /42 Ar m Ar m
_ 2 = m?/A —mr A e +mr - e
e I s © [e Erfc( 5 +A)+e Erfc(+2 -I—A)]

which leads to (D12).

APPENDIX E: TRANSFORMATION TO CONFIGURATION SPACE

The transformation to configuration space for the ESC-potentials is given in Ref. [34].
Here we review this for the k? and (o - k)(o; - k) terms to establish the formulas used
in the subroutines FUNPS2, FUNPHI, and FUNPSI, in the fortran programs. For a local

potential we have

Vi = [ e i (B
r) = - ™" u(k).
(2m)?
1. Central potential: with meson propagator and gaussian form factor
. k2 d3/€ eik~r k2 m m2
M — ~(1) _ ~Kk2/A% _ 1
T = 3 00 = [ G e = e s ), (2
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with

b = o) = (4 24 o)

m2 \dr?2 " rdr
2 2
M d 2d K7
_wfam 2dN E
m? (de * xdx) m ¢o(r) (E3)
where we introduced p= pion mass, x = ur, and ¢%(r) = (u/m)¢%(r). Then, this central
potential is
2 2 (A 2d\ ~

v :_ﬁﬂ.<ﬂ> BB R E4
c (r) dr M? \m dx? * x dx c(r) (E4)

2. Tensor potential: in this case the basic integral is
3 ik-r
‘7(40)(1{ _ / d°k € ]{71]{3] 6_k2/A2
(2m)3 k2 +m? A2
Viv]' A3k e'kr K2 /A2 VZV] m
— = ——— — . E5
A2 2r)P k2 + m2© 2 dn pc(r) (E5)

Now,

V.V;f(r) = |:(Vivj‘ - %@jVQ) + %V2 5@} f(r)

_ (w1 N (4 1d Lo (4 24d
n ( r2 3%) (dr2 rdr f(r)+35” dr2+rdr 1),

which leads to the tensor potential

m 1 ? 1d
Vi) = —— - (W_;$> e(r)

2 d? 1d ~
- () (1) R (E6)

APPENDIX F: LONG RANGE LIMITS OF THE POTENTIALS

APPENDIX G: PAIR COUPLINGS AND SU(3)-SYMMETRY

The SU(3) octet and singlet mesons, denoted by the subscript 8 respectively 1, are in

terms of the physical ones defined as follows:

(i) Pseudo-scalar-mesons:

m = cCoS epv’f], — sin van

ng = sin@pyn’ + cosOpyn
Here, ' and 7 are the physical pseudo-scalar mesons 7(957) respectively 7(548).
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(ii) Vector-mesons:

¢1 = cosbyw —sin by o

¢g = sinfyw + cosby @
Here, ¢ and w are the physical vector mesons ¢(1019) respectively w(783).

Below, o,a9,A;,... are short-hands for respectively the nucleon densities 1), T,
DY W T, -
Then, one has the following SU(3)-invariant pair-interaction Hamiltonians:

1. SU(3)-singlet couplings S§ = 550/\/5:

Hs,pp = gil/gP {77 . 7T+2KTK+778778} ¥es (G1)

2. SU(3)-octet symmetric couplings I, S§ = (Sg)§ = (1/4)Tr{S[P, P]; }:

gsspPpP
H =
SgPP \/6

+ ? {(KSTK) T+ h.c.} - % {(KSK)US + h.c.}
+ lfo (-7 — K'K — ngns) } (G2)

{ (ag - m)ns + ?ao (K'7TK)

[\]

3. SU(3)-octet symmetric couplings II, S§ = (Bg)§ = (1/4)Tr{B"[V,, P];}:

1
HBgVP = IBsVP { o [(BT : pu) ns + (BT ) 77#) ¢8}

NS
i ? B+ (K*'7K) + h.c.]
+ ? (KlrK*) -+ (KITK) - p+ e
_ i (5] Ky + (KT K)o+ e
i %HO {p.ﬂ_%(K*T-KJrh.c.)—qung} } (G3)

4. SU(3)-octet a-symmetric couplings I, AF = (V5)5 = (=i/V2)Tr{V*[P,0,P]_}:

1 o o
HVgPP = JAgpPP { §pu ~x Ot + §p,u : (K Ta#K)

+ 5 <KMT’T(K8’“7T) - h.c.) +27 (KMT-

(K- O'g) — h.c.) + %\/ﬁqﬁu(m 0K } (G4)
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5. SU(3)-octet a-symmetric couplings I, Af = (Ag)§ = (—i/V2)Tr{A*P,V,]_}:

Hagvp = gAgVP{ A -wxp
T %Al (K KT — (K7 K)]

—% ([(KTTKA) p+ (KiTK") - 71‘} — h.c.)

—z'\/; ([(KT K a)os + (K- K*)ng} _ h.c.)

+%\/§f1 (K7 K = KT K] } (G5)

6. SU(3)-singlet a-symmetric couplings II, A§ = 6§ = (1/+/3)Tr{[A*,0,P).0:

gagpPs

= - I A 1)8 1) ¢ 0.
o = L2 {A1 (KD E) (K E) + (f) n>} (G6)

The relation with the pair-couplings of [4] and paper I is gs, pp/V3 = Gxr)/Mrs Jagvp =

G(mp): /M €te.

Pc Do DPec Do Dec Py

(a) (b)

FIG. 9: Effective Two-body transition potential

APPENDIX H: SU3-IRREPS AND EFFECTIVE POTENTIALS

In Fig. 9 the connection of the two-body NN, YN, or YY system to the surrounding

nuclear medium is scetched. In the contribution (a) the pair-vertex operates on a member of
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the BB-system, whereas in (b) the pair-vertex operates on the ”third-nucleon”. The latter is
integrated out. Considering ”symmetric” nuclear matter, the dashed line denotes an isospin
zero meson. For example ng,ws or o. The SU(3) {8}-meson will cause transition between
the SU(3)-irreps of the two-body BB-system. For example transitions {27} <> {8,}. It will
not change the two-partile symmetry of the BB-system. Note that this SU(3)-breaking is
there because symmetric nuclear matter in not SU(3)-symmetric. Below, we work out the
different cases using the isoscalar factors given in [36, 37].

In the first subsection we give the connections between the BB-states and the SU(3)-states.
Also, for unbroken SU(3)-symmetry we give the connections for the potentials between the

two-baryon- and the SU(3)-irrep-potentials.

1. Effective interactions

In the process of integrating-out and summing over the ”third nucleon” in symmetric
matter only a few interaction terms in the pair hamiltonians, given in the previous section,

contribute effectively. These effective hamiltonians are:

1. He,pp = 9s:pP {m 7+ 2K'K +ngns } - o, (Hla)

V3

2. Hsepp = (Tf - K'K — 778778) } - fos (H1b)

12
3. H gssve | 1 o Lot i 170
. Hpyvp = §(B1'7"u)+1(K1'K+K -Kl)—iH ns ¢ ¢s, (Hle)

4. HVSPP = JagpPy T %\/§<KT 8‘“K> } -(ﬁ”, (Hld)
/3

5. Hagvp = gagvpy — 2% ((KT Ka— K- K) } * ¢s, (Hle)

6. Hayvp = g"‘jgs {A1 cm+ (KT K) 4+ (KT Ky + (A)s ng)} 0. (H1f)

So, apart from the cases 1) and 6), many terms in the pair interaction hamiltonians do
not contribute in symmetric nuclear matter. The operator on the ”third nucleon” can not
contain the isospin or spin operator for a non-zero contribution. Nor can it carry non-zero
strangeness. The couplings to the "third nucleon” are mediated only via o, fy, ¢s, ¢,. These

field-operators are written to the right in the formulas (H1). Note that the ng coupling gives
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a spin-operator and hence cannot contribute. Also, we notice that fy and ¢, are pair-vertices
which couple to the ”third nucleon”. Furthermore, the Hy-coupling to the ”third nucleon”
does not contribute because it is pseudoscalar-like and hence brings a spin operator at the
vertex. From the analysis and notes in section VII the interactions terms of 4. Hv,pp and

6. Hasvp do not contribute.

APPENDIX I: THE FUJITA-MIYAZAWA-POTENTIAL
The Hamiltonian for the Fujita-Miyazawa pion-nucleon pair-interaction reads [9, 10]
Hpy = —0 H ((A +B)V;1-Va+ D) 6ij — (A—B)o -V x VQEZ-jm} :
X7T177:(.'L‘)7T2,j($):| 1. (I1)

Here the spatial derivatives operate on the pion-fields, and the constants are

Pas eventueel numerieke zaken aan met deze A etc.! oct. 2015

5) 033 3 27
A=— [ —=d B=-A D=— 2 12
187 w]% P, 540 ((11 + a3)> ( )
with the numerical values [ os3/wy.dp = 3.7m*, and a, + 2a3 = —0.06m; "

1. The Feynman-diagram Computation FM-potential
Application of the Feynman-rules [20] we have for diagram Fig. 4 and the interaction (I1)

—i(2m) 5 () Vg = (—i)? (_ni{rp)Q / (ﬁf)z / gf;'

x [a(Py)ys (v - Py — v - po)ulpr)] - [@(@h)ys(y - vy — 7 - p2)u(pe)] -
X [Xg{2<—(A—|—B)k1~k2+D T1 -T2+ 2(A— B)os -k xky 71 XTQ'Tg}X3:| .

i i
S(2m)* et (ply — ki + ko) -
o i — 2 e 2O Wt kit k)
x (2m) 164 () — p1 — k1) (2m) 6% (py — p2 — ka), (13)
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which after performing the k-integrals

Vieg = — (%) [@(p))ys (v - Py — 7 - pr)u(pa)] - [@(ph)ys (v - Py — v - p2)u(pa)] -

X {Xé{Q(—(A—FB)kl-kQ‘FD)T1'T2+2<A—B)0'3'k1XkQTIXT2'T3}X3:|'
1 1

. (Ep’l - Ep1)2 - w% + i€ (Ep’g - Ep2)2 - w% + i€
2
= — (T‘};‘L—i> (0'1 kl) (0'2 kz) .
X |:{2(—(A+B)k1k2+D) Tl'T2—|—2(A—B)O'3'k1 Xk2 T1 X'TQ'T3}j| :
X DY i (wi, wy). (14)
Here, wis = \/ki, +m2, and D), (wi,ws) = 1/[wiw;]. The last form in (I4) represents the

operator for the FM-potential in Pauli-spinor space. Also, due to the ¢*(....)-functions in

(I3) one has k; = p} — p; and ko = p), — po.

2.  FM-pair= (77)33-Exchange Potential

Here only the Vis.3(k, —k)-term is non-vanishing. Therefore we obtain, rjs = x; — X,

‘ R L
V}gj\];f) = —2pNum (T1-T2) (m—i / (27r)3€ ke ( ).
F?(k?)
(¢ 5 m2)2
2
&Pk
= +2pNm (i—i) (t1-72) (01 - Vo - V)/ (ZW)?)B_“"“Q .
F?(k?) }

F2(k?)
(K* +m2) (k* +m2)?

x (o1 -k) (03 - k) [(A + B)k® + D]

X {(A + B) + (—(A+B)m2+ D)

2
— 20 () (71 7)1 92 9.

™

x [(A+ B)L(me, AV, 1) + (—(A+ Bym2 + D) Julma, A/V2,715)|

= 22 (B oy (a4 ) i ok AV ) (01 )

+ 3 (me, A/V2,712) 512} L2 [(A+ Bym2 — D] (C’\”‘_zr) .

X {%Wa(mm/\/\/z ri2) (01 02) + ¥ (ma, A/V2,712) SmH ) (15)
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which, using the point limits

1 —mr ]_ ]_
hm Iz(m,'f’, A) = 4_6 ) hm I4(m,r, A) = __efmr’ (16)
m

A—oco r A—oo 8T m

gives

2
lim V}i’;f) = —|-2pNME (t1-72)(61-Voy-V)-

A—oo 47
e "’ 1 2 —MyT
X {(AJFB) T (—=(A+B)m2+D)e }
2
= +2/)NMﬁ . mfr . (7-1 . 7-2) .
1 3 3 e M
A+ B)< = : 1
X {( + ){3(01 0’2)+( +m7r7”+(m,rr)2) 512} .
+1(—(A+B) >+ D) T2 (o Y+ (1+ L) s
2 M 3 Myl 19z Myr 12
xe_m”] (I7)

3. FM-pair= (ps — ps)s3-Exchange Potential

Next we consider ps-ps FM-interactions with different masses m; # msy. Again, only the

Vi2.3(k, —k)-term is non-vanishing. Similarly as above, we obtain

e f 1f 2 dgk —ik-(x1—X2
Vzgz\ﬁf) = —2pNm ( I;nQP (27T>36 o (o1 k) (0 -k) -
F?(k?)
(k2 + mi) (k> +m3)
ek, —
= +2pnum (L;fpg) (o1-Voy- V)/ e ™ M2 (mi —m3) ! F?(k?) -

X [(AJFB) k2+D]

2 (2m)3
XFM+BMﬁ—m_KA+Bm}Jﬂ
k2 4 m? k2 +m3
:=+mmM(§¥?)@n-meV)@ﬁ—m®4~

< {[(A+ Bym? = D] Limi, A/V2,r12) = [(A+ B)m§ = D] L(ma, A/v2,712) }
= olNM (fPlfPZ) my (mf — m%)*l :

m3 47

™

X [m? |:(A + B)m% — D:| {%¢1C(m1,A/\/§, 7’12) (0’1 . 0'2) + ¢%(m1, A/\/ﬁ, 7”12) Slg}

—mj [(A+ B)mj — D] {%G%(m% AJV2,115) (01 - ) + $F(ma, A/V/2,715) 512} :
(I8)
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Here we used the identity

K2 L, o1 m? m3
(k2 +m?) (k2 +m3) (i = m3) K2+m?2 K+m?f’
1 5 1 5

so that

k2 + m? k2 + m3

(A+BK*+D -1 [(A+B)mi—D (A+ B)m3—D
o J

/ /

p p
v

A Y’,’ A ’,’4’

tzﬁ@‘” = "”

~ \\
O—,P \\ \s\
~

A Voso A S ~a
|4

p p

FIG. 10: Scalar VV-coupling to baryons.

APPENDIX J: THE ¢VV-PAIR THREE-BODY POTENTIAL

1. Three-body Matrix Element: The oV V-interaction Hamiltonian density is [27]

Hovv(x) = —govv my o(x)V!(x)V,(z). (J1)

We note that g,yv has the same sign as in [27]. We define the scalar (VV)y-pair BB-

interaction Hamiltonian

H(VV)O(I) = 9o [¢¢)(I)] V”(I)Vu(x)/mﬁ. (J2)

Evaluating the diagrams in Fig. 10, including a factor 2 for choice of V of e.g. the incoming

vector-meson, we obtain the equation

. / 14 (_7/)2 T / Z
—i(N'.V'|M|N,V) = =22 goxngovymy [u(p')u(p)] [
g 0 — /
_ _2@—%” [a(p)u(p)] (J3)
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which gives, using the low-energy approximation, that

mq;my
Iy, = +gUNNg<7VV42mg : (J4)
Application of the Feynman-rules [20] we have for the diagram (a) in Fig. 2
. : gwv d*ky [ d'ky
—i(27)* 6% (....) Vias = (—1)® g% (mw)o / (2 / (2n)? [ (p5)u(ps)] -
x [a(py) Tvu(pr, pr) w(py)] [w(py) T% (P, p2) u(p2)] -
—nH —ap dgdq 1
2m)%0 — ky + ko) -
T Tic B —md e ) O P mps kit k)
x (2m) 64 (py — p1 — k1) (2m)18" (py — p2 — Kn), (J5)
where
iliv
Fl{i'(plap) = f}/'u + m s (pl - pl)ln (‘]6)
and we also used
« o Lo k*E® o
D Nep(N) = =1 + = = . (J7)
) p

and the fact that the vector-meson couples to a conserved current so that the k*k“-term

gives no contribution. From (J5) we obtain

Vs = 405 2% [t upn)]
x [a(ph) T (p1, 1) w(p)] [@(ph) Tvu(ph, p2) u(ps)] -
. 1 | s
ki —m3 +ie k3 —mi +ie’
where because of the J-functions in (3.1)
PL+pytps=pi+p2+ps, (J9a)
kl :pll — D1, k? :p/Q_pQ 5 (ng)
Py —p3=hki+ky. (J9c)

2. Effective Two-body Potential: Integrating over particle 3 etc. leads to k3 = 0 and hence

ky = —k;. Neglecting the 1/M-terms at the vertex of particle 3, i.e. the pair-vertex, leads

to

Vers(12:3) = +gb S22 [a(p) T (9, pa) u(pr)] [(ph) TPy p2) u(p2)] -

™

X <;)2 exp (—2k*/A?), (J10)

k? —m3 + ie
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with £ = p| — p1 = po — py,. Note that this is identical in form to OBE vector-exchange,

except from the meson denominator. Therefore, the ”effective” two-body potential becomes

(4mpnar) 9vvyo G 1 d
Vers(12:3) = —3 T Dﬁ m; —mmv( (k,my) (J11)

where in configuration space, see Ref. [34],

V) e oy { o+ 1+ (o K250 0+ (L)1 ) T 01 )
2
—<1+n'v><1+m’v>4]\”},§w¢T St2 = 8+ 2(k%y + )] girar 00 L+ S
+[1 +4(K} + Ky)] 16]\7%]\42 2 ¢TQ12} (J12)

Here, we neglected the k%-terms. In the calculations we can used the explicit d/dmy differ-

entiation or the formula

g Vi emy) =i [V (kmy) = Gk mi)| /= md),

2my dmy mi,—my
Like in the V{,q)-case, also for V|, there is possibly a contribution to the ”effective” two-

body potential with the pair-coupling in line 1 and 2. Then,

View = 2Vio(k,my)/m? + Tim  [V,(k,my) — V,(k,m)] /(mZ —m2). (J13)

m!,—mey w
This introduces some difference in the treatment of the w and the other vector mesons! Like

in the case of (o0) in the applications we include this potential, of course!

In Ref. [27], Eqn. (11.30), in a study of broken scale-invariance the V'V coupling is
derived as being [40]

2m72T My 2m
Jormr = —7 2 goNN = —7 s Gopp = —7 p' (J14)
ms Mg Mg

The analysis in Ref. [27] comes to the result that instead of v = —m,/f, &= —7, a better
value is 7 &~ —5. This means that g,yy > 0. Combining (J4) and (J13) we have

Jwve _ __ 7 YoNN mﬂmi
4m Var Ar m3

For the SU(3) structure of the oV'V-coupling we could choose an SU(3)-singlet coupling

~ +1 > 0l (J15)

(see G1, or an SU(3)-octet symmetric coupling (see G2). Since in Ref. [27] also a opp-

coupling is determined, we choose for the SU(3)-structure the interaction Hamiltonian

szggvv{p-p—i—ZK*T-K*—i—wgwg}-U (Jlﬁ)
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where the o(z)-field is an SU(3)-singlet.
Since the pomeron coupling to the w-meson will be of the same size as that to the o-meson,

we think that the 0 —ww coupling for wy will be similar to that to o1. Hence, we will introduce

two couplings: guyvyy and gevgvi) -

APPENDIX K: THE cdAA-PAIR THREE-BODY POTENTIAL

1. Three-body Matrix Element: The o AA-interaction Hamiltonian density is [27]

Hoaa(z) = —goaa ma o(x)A"(x)A,(z). (K1)

We note that g,a4 has the same sign as in [27]. We define the scalar (AA)q-pair BB-

interaction Hamiltonian

Hiann(®) = geany, [09)(2)] A*(2)Au(z)/mx. (K2)

Again, we evaluate the diagrams in Fig. 10, similar to the oV v-pair in the previous section,

which leads to the low-energy approximation

m;ma
9(AA), ~ +goNNgaAAW- (K3)
The corresponding three-body potential is
J(AA) |-
Vi = +954= 2 [alp)u(ps)]
1 1
X K4
ki —m% +ie ki —m? +ie’ (K4)
with
AN kA / n
D) ="y + = 75 (0 — )" (K5)

M
2. Effective Two-body Potential: Integrating over particle 3 etc. leads to ks = 0 and hence

ko = —k;. Neglecting the 1/M-terms at the vertex of particle 3, i.e. the pair-vertex, leads

to

Vers(12:3) = +g% 22 [a(ph) D4 pa) u(pn)] [0(ph) Toau(ph, p2) u(p2)] -

X (kﬂ;)z exp (—2k*/A?), (K6)

2 _ 2 ;
my + 1€
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with k& = p} —p; = po — pl,. Note that this is identical in form to OBE axial-vector-exchange,

except from the meson denominator. Therefore, the ”effective” two-body potential becomes

(4mpnmr) Gaay 94 o 1 d
Vorr(12:3) = ga S O K7
where in configuration space, see Ref. [1, 2],
3
VI (rma) = +ma Hqsg + 2+ (K4 + Kka)/2] M,Mgsc
/ mi 1 2 / 0
+/€A/€A 12M/2M2 ¢C ( ) - AM'M [ - (KZA + HA)] ¢T
/ m?é& 1 2
“Aamagg Or St gpg %o LS (K8)

In the calculations we can used the explicit d/dm 4 differentiation or the formula

1 d 3 . 3 3
o VA Gema) =l (V) = VA ml) | /(= ).

In Ref. [27], Eqn. (11.30), in a study of broken scale-invariance the 0 AA coupling is derived

as being [40]
2m2 My 2ma
Jorme = =V —% m2 y JoNN = _’ym_a JoAA = —7 (Kg)

The analysis in Ref. [27] comes to the result that instead of v = —m,/fr &~ —7, a better
value is v &~ —5. This means that g,44 > 0. Combining (K4) and (K9) we have

gade _ Y GonNN Mam

Ar an JAn md

~ +2 > 0l (K10)

APPENDIX L: THE oo-PAIR THREE-BODY POTENTIAL

The o3-interaction Hamiltonian density is

1
_'gcmo Mo 0-3(‘7:)' (Ll)

Haolr) = 35

We define the scalar (00 )¢-pair BB-interaction Hamiltonian

Ho0)0 () = Gioore [W1)(2)] 0% () /M7 (L2)
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Evaluating the diagrams in Fig. 10 we obtain the equation [39]
FNNJ(kZ)
k2 —m2 +ie

= 29 (' u(p)] Fyr(k?), (L3)

My

(N',0'|M|N,0) = gonnGooomo [a(p))u(p)]

which gives, using the low-energy approximation [k? + m2|~! ~ exp[—k?/m?2]/m2,

9(oo)o &~ _gGNNgmm%v Fpr(k2) = eka/AI%T, Azzwr = mi/(l + mi/A2>‘ (L4)

Comparing with the MFT described in Glendenning [26], p. 147-163 with the interaction
Lagrangian L3, = —(b/3) mygs yn 0° [40], gives

_ mzmpy
Yoo = +2mo-1mN b gglNNu g(ao’)o = - m2 b gj’NN (L5)

o

Here, the SU(3)-singlet oy coupling g,,nn/V4m ~ 4.14 in ESC. Using my = 940 MeV,
m, = 140 MeV, m, = 760 MeV, and b = (0.5 — 1.5) x 1072 we find g,oe = (39 — 120) and

Goor/4m = —0.23 (47D) 9o, nn/VAT]* & —(0.34 — 1.00) (L6)

In Ref. [27] formula (8.15), with f, = 95 MeV
m m?
s=43—7(1—-—Z) ~24. L7
oo =435 (1= 1) L
From Eq. (L4) and (L7) we get

3m m?2
N —gonN—— [ 1 — —Z ) &~ —31.2 L8
J(oo)o 9goNN 2f7r ( m2) 3 ( )

o

or g((m)/471' ~ —2.48.

Analog to the vector and axial-vector case, the ”effective” two-body potential becomes

o AToNy) Yoo) 9o o 1L d s
‘/;ff(12, 3) - m% A E my _2mgd—7ngva (k7m0') ) (LQ)

where in configuration space, see Ref. [34],

VS (r,mg) = +my { ¢S — m, be + g %0 L-S+ i 3 $9Q12
o A0 AM' M oM'M 16 M2 M?2 (m,r)?

(L10)
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FIG. 11: Pomeron induced MM-coupling to baryons.

APPENDIX M: THE POMERON CONTRIBUTION TO (00),(VV)o, (AA)-PAIR
COUPLINGS

CHECK FORMULAS/NUMBERS
The pomeron (P) induced meson-meson (MM) coupling to baryons is illustrated in Fig. 11.
Since the color content of all mesons is the same it seems to be justified to assume the

universality of the PMM-couplings: gpxr = 9roo = gpvv = gpaA-

1. The w N-amplitude from o- and P-exchange: The wr-coupling of the ¢ and P are defined
by

1 1
Lone = §gammﬂ[a (m-7)], Lpar = §gpmm7r[P (7 - )] (M1)

Then, in terms of the width g2 /47 = 2(m,/m,)*(Ty/p), where p = \/m2 — 4m2/2. In

Born-approximation one has

Gorrdo NN Qo 9PrnJPNN
M(t) = My WG t(l + bo’t) + Te Pt ; (M2)

where a zero in the N No form factor is included in accordance with the ESC-model. In the

following we use the notation

G(2T = YonnJoNN, G?D =: gPrrdPNN- (MB)

Since in the "effective” two-body potential ks = k; + ko = 0, we take t=0 and the 7N

amplitude becomes

G2 G2
MO = {_W + VZ} : (M4)
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The expression of the M matrix in the ¢; 3 parameters [32, 41] is

My t

M(t) = i (E)z {4(251 —C3) + 253@} , (M5)

where ¢; =: ¢;/M, with M=1 GeV /c?. The results obtained in 7N [41] and NN [32] sugggest

¢ — C3/2 =~ 1.24, giving

2 2
5 M2 oMy
s -Gz~ 08, (M6)

2. The Pomeron induced pair couplings: In analogy with the o-induced pair couplings we

G

g

have
/ . mzMme / o m;my
Yioo) = TIPNNIPoo s Y(vv)e T TIPNNIPVV S m (M7a)
mym 4
Jiany, = TYPNNIPAATS Y (M7b)

where we denoted the P-induced pair NN-couplings as ¢’. From the universality of the

PMM-coupling we have

QEVV)O/QEM) = my /M, gEAA)O/gEaa) =ma/m. (M8)

With gpyn/V4ar =~ 3.0 £ 0.5 and gp,./ViT ~ 4.3 we get gzw)/47r ~ —0.60 £+ 0.10. This
implies that the total strength of the (oo)-pair coupling is (o) = (1.25 — 0.60) = 0.65.

APPENDIX N: THE TWO-BODY POTENTIALS FROM (00), (VV)o, (AA)-PAIR
COUPLINGS

The two-body pair potentials in the ESC models are restricted to one-pair graphs, and
the (1/M)3-terms etc are neglected. The pair-vertex is

Hum = gounny, [00] M*M,/m, (N1)

where M* = o, V#* or A*. The two-body potential from the one-pair graph Fig. 12 is

W _ o Yo, [k dky .
VY2,MM = 9 m, /(27_‘_)4 (27T)4 [u<p1)u<p1)]

x [u(py) Ty (P, p2 — k1) u(p2 — k1)) [(pa — k1)Taru(p2 — ki, p2) w(ps)] -
1 1

2 2 ; 2 2 o

(N2)
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FIG. 12: One-Pair exchange graphs. The 'mirror’ graph of («) is (¢/).

The reduction of this expression to the matrix elements for the time-ordered graph’s in
Fig. 13 see [4, 19]. Since for the here considered mesons the matrix elements do not depend

on the time ordering the denominators for the diagrams can be added

1
DD (wy,wy) == DY + DV + DV = . (N3)
wWiws

From Ref. [4] Eq. (3.1) the configuration potentials can be written as

d*k d3k
Vi) = Cang 2000 [ [ CHCTE it

XFM(k%)FM(kg)OMM(kl, Wi, kg, (,UQ) D(l) (wl, (.UQ), (N4)

where Cyyp contains the isospin and spin-spin factor. Up to first order in (1/M) the scalar

pair vertex uu ~ 1. So, the pair-vertex gives a factor 1 to the Oy operator.
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FIG. 13: One-Pair exchange graphs («). Time-ordered graphs (a,b,c).

1. Vo po: In this case C,, =1 and T's = 1+ (1/M?) ~ 1. We get, see Ref. [4], formula (C3),

g oo
‘/2,00 = 2gNNa ’(ITL o UQ(moa AU)]z . (N5>

2. Vo yy: From the formulas in (A1) the vector part has a (1/M) at the vector-meson vertex,
giving contributions of order (1/M)?. Therefore, only y = 0 contributes which has T'Y, ~ 1.

So, the contribution is similar to that for (co)o,

agvv)

Voyvv = 2Cyvgnny O [Ly(my, Ay, 7)) (N6)

Here C),, = 3 and C,,, = 1.
3. Vo, aa: From the formulas in (A1) the ') has a (1/M) at the axial-vector-meson vertex,
giving contributions of order (1/M)?. Therefore, only p = 0 contributes which has 'y ~ —a;.

Again, this contribution is similar to that for (o),

Voaa = QCAAQNNAg;jj)O [y (ma, A, 7)) (N7)

™

Here CAlAl =9 and CD1D1 = 3.

(i) These two-body potentials are purely central, i.e.  no spin-spin, tensor, etc.,

and isospin independent. ' (i) The o, w etc. contributions have different sign’s:

! The one-pair (1/M?) potentials from the (o), (VV)g, and (AA)o graphs are central and spin-orbit.

Therefore, for S-waves there are only central-potential contributions.
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9oare < 0,9vvyy > 0,944y, > 0. Therefore, it is possible to have only a small effect on
NN scattering but tmportant contributions to the three-body potentials. In particular to the
spin-spin and tensor potentials. (iii) Since the pair-vertex is given by SU(3)-singlet o the

st-crossing matriz [38] implies that (ii) extends to all BB-channels.

To estimate the strength of these two-body potentials we calculate the volume integrals Iy

of these potentials. From (N4) one has

&k
Iy = / & Vaan(r) = g}, o / s Fin) DV (w. ) (N8)

The integral is

dgkf dgkf _OL2 /A2 -2
Jv = /(27?)3 F3(K?) D(l)(w,w) —/We 2K%/A (k2+m2)

_ (_d;:ﬂ) (_d%) [2_; /Ooo dk e (k:2+m2)1],

where a = 2/A%. Now

Jo = [ : } = (4mm)~" e*™ Erfe (vam) (N9)
This gives )
J(m,A) = (87m) ™" (1 + %) ™IV Brie (\/5%) . (N10)

Assuming the (almost) complete cancellation of the (co) etc volume integrals of the two-
body potentials, the ESCO8c fit remains the same while there is a considerable ”effective”
two-body spin-spin, tensor, spin-orbit force. The latter can be most useful to explain the

well-depth’s.

APPENDIX O: THE ¢-DECAY AND EFT LAGRANGIAN

As pointed out by Ko and Rudaz [43] besides the most simple Lagrangian £ = Jonn O
7 also the coupling with two derivatives appears in the linear o-model Lagrangian, which
is useful in keeping the scalar meson width’s within reasonable bounds as the scalar mass
increases. Also, such couplings and the corresponding contribution to the BB-potentials

were considered in the context of an SUf(3) generalization in [44]. This Lagrangian reads
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£, = G0 (0, - O"1) Also, such a coupling of the scalar mesons can give an account for
the cs-term in the (NN27 effective-field-theory (EFT) interaction Lagrangian [32, 45]

2
2T

E(l) = —ZB 8C1D71mﬂ. 2

+4c3D,, - D 4 2¢40,, 7 - DY x DY | 9, (01)

where D = 1+ #?/F? and D, = D~'0,x/F,, with F, = 2f, = 185 MeV. The c3-term has
been determined in e.g. nucleon-nucleon [46]. Notice that because we use the conventions of
[20] there is a minus sign in the cs-term. Since we have found elsewhere that tensor-meson
exchange can account only for 20% of the cs-coefficient, we assume that the remaining
part comes from scalar-meson exchange. This is the motivation for the derivation given in
this note of the nucleon-nucleon pair-potentials due to the derivative coupling of a scalar
(7)o-pair coupling.

Application of the cs-term NN-potential, with a gaussian cut-off A ~ 1 Gev/c?, to a fit
in nucleon-nucleon, using the ESC-model, reveals that it is impossible to reach a sensible
description of the NN-phases when we fix the value at ¢ = —5 GeV ™!, obtained in [46].
This is caused by the large oscillations of this potential below 1 fm. Only by making A much
smaller it should be possible to use such a potential in the ESC-model. In view of this fact,
we analyze an interpretation of this interaction in terms of scalar and diffractive exchange,
using an expansion of the 7 N-amplitude valid for low t-values. It turns out that the c3-term
can be ascribed largely to a form factor effect in the NN-system. As such this interaction is

to a large extend effectively already contained implicitly in the ESC-model.

The relation between the pair-coupling parameters g((jri))o and the EFT-coefficients ¢; 3 is
2 2
g((71r)7r)0 = 8(m7r/F7r) 1, g((72r)7r)0 = —4(m7r/F7r) €3, (02)
where F, = 185 MeV. With ¢ = —0.76 + 0.07 and ¢3 = —4.70 £+ 1.16 the couplings

would be g((jrzr)o = —0.43 and g((i)ﬁ)o = +1.70. As remarked already above, since effects of
this couplings are implicitly included in the ESC-models it is to be seen how strong these

couplings in ESC-models turn out to be.
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