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Background: It appeared that the extended-soft-core (ESC) model BBM-couplings can be understood in the constituent
quark-model (CQM) by the application of the quark-pair creation (QPC) mechanism. Recently a connection was derived
between the one-boson-exchange (OBE) baryon-baryon-meson (BBM) and quark-quark-meson (QQM) interactions using
the CQM by adding at the quark-level only a few restricted interaction terms.

Purpose: The derivation of the two-meson-exchange (TME) potentials for the application of meson-exchange between quarks
a relativistic formulation in the framework of QCD of meson-exchange is desirable as well as for two-gluon-exchange. As
for the latter the focus is on Soft Two-vector-exchange (TVE) fermion-fermion potentials.

Method: This derivation is based on the formulation of Relativistic Quantum Field Theory as developed by Kadyshevsky.
Here, in contrast to the usual with Feynman graphs, the particles in the Kadyshevsky-graphs remain on-mass-shell. This
implies that Gaussian form factors, a characteristics of the soft-core models, can be handled easily in the Kadyshevsky-
formalism, in contrast to the standard formulation using Feynman graphs.

The framework of this application to low momentum transfer physics is the constituent quark model (CQM) in the
context of the liquid-instanton structure of the QCD-vacuum.

Results: Explicit momentum-space expressions for two-fermion-exchange potentials are derived. This can be used in
momemtum-space calculations using the Kadyshevsky quasi-potential two-body integral equations. Given are also the
adiabatic and first-order non-adiabatic expressions, useful for configuration-space calculations. Finally, we apply these
potentials to the derivation of the Pomeron potential in Quark-quark and Nucleon-nucleon scattering, leading to a
connection between the QCD- and the phenomenological Pomeron-parameters used in the ESC-potentials.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.4+y

I. INTRODUCTION

The general aim of this work is to give a relativistic formulation of the two-meson-exchange (TME) interactions
for fermion-fermion (spin 1/2-1/2) in the Extended-soft-core (ESC) model [1, 2]. For this purpose the formulation of
relativistic quantum field theory (RQFT) as given by Kadyshevsky [3—6] is used. In this first paper we derive the Two-
vector-Exchange (TVE) using the formulation of relativistic quantum field theory (RQFT) as given by Kadyshevsky
[3-6].

In the Kadyshevsky formulation of field theory, in contrast to the usual one using Feynman propagators, the particles

stay always on the mass-shell. The consequence of this is that there is no four-momentum conservation at the vertices.
Besides non-conservation of energy, as happens in the Lippmann-Schwinger equation for the intermediate states, there
is in principle also non-conservation of three-momentum, in general. The motive for taking this formulation RQFT
as the starting point is that for nucleon-nucleon we have composite particles and not elementary ones. Therefore,
a relativistic formulation of a theory using phenomenological form factors which possibly suppress the transition
between positive and negative energy states is desirable. Below we will give an example of such form factors, the
consequences of which can be proved easily in the on-mass-shell formulation.
The derivation of the TVEP starts from the relativistic two-body equation [7-9], where the interaction kernel is given
by the two-nucleon-irreducible Feynman diagrams. The relativistic Kadyshevsky two-body equation is analogous to
the Bethe-Salpeter equation (BSE) [9], and leads in the center-of-mass system to the Kadyshevsky quasi-potential
equation. This is an three-dimensional integral equation similar to the Lippmann-Schwinger and Thompson [10]
equation. This is reviewed for spinless nucleons, and we refer to Ref. [1] for spin 1/2-1/2. The latter system is treated
furtheron in this paper.

The diagrams which we calculate are the parallel and crossed TVE-diagrams. In carrying through the analytic
derivation of our formulas, we generalize the techniques used in Ref’s. [11-13] deriving formulas for the amplitudes
where the three-momenta of the two mesons are separated using integral representations. The procedures, indicated
above, are first carried out for pointlike vertices. Then, we generalize the results for the presence of the Gaussian
form factors.

We apply the results ontained in this paper for the TVE-potential to two-gluon-exchange (TGE) in the two-quark
systems at low energy. This in the constituent quark model (CQM) in the context of the liquid-instanton picture
of the QCD-vacuum. We indentify the TVE-potentials with the Pomeron, analogously to the Low-Nussinov [14, 15]
two-vector picture.



The content of this paper is arranged into eight sections and six appendices. Section II reviews the CQM from
the instanton point of view. In sections III, IV, and V the general approach within the framework of relativistic
quantum mechanics is presented. Especially the connection between the relativistic two-body equation description
and that of the three-dimensional formalism is reviewed. In section VI and Appendix F the vector interactions
and vertices are given. In section VII the CM-momenta are defined. In section VIII p — w-exchange kernels are
derived for point-interactions. This for fermion-fermion and fermion-antifermion intermediate states. Section IX
contains the application to two-gluon-exchange between constituent quarks. In section IX A using folding the two-
gluon-exchange is applied to derive Pomeron-exchange between baryons. A discussion and conclusions are given in
section X. Appendix A contains a review of the Kadyshevsky rules in momentum space. In Appendix B the orientation
of the momenta in the Kadyshevsky graphs for positive and negative energy are given. In appendices C, D, and E the
fourth-order Kadyshevsky graphs are given for respectively positive-positive, positive-negative, and negative-negative
energy intermediate states. Appendix G the folding of the quark-quark matrix elements with the baryon constituent
quark wave-functions is described.

II. CONSTITUENT QUARKS AND INSTANTONS

According to the two-scale picture of Manohar and Georgi [16] the effective degrees for the 3-flavor QCD at distances
beyond that of SCSB (A;é 5 ~ 0.2—0.3 fm), should be the constituent quarks and mesons. The two non-perturbative
effects in QCD are confinement and chiral symmetry breaking. The SU(3)L,®SU(3) g chiral symmetry is sponteneously
broken to an SU(3), symmetry at a scale A,sp ~ 1 GeV. The confinement scale is Agcp ~ 100 — 300 MeV, which
roughly corresponds to the baryon radius =~ 1 fm. The pseudoscalar octet are the Goldstone bosons associated with
the hidden (approximate) chiral symmetry of QCD. The SU(3) singlet pseudoscalar i’ decouples from the original
nonet because of the U(1) anomaly [17, 18].

Due to the complex structure of the QCD vacuum, which can be understood as a liquid of BPST [19] instantons and
anti-instantons [20-22], the valence quarks, and also the gluon, acquire a dynamical or constituent mass [16, 17, 21—
23]. The interaction between the instanton and the anti-instanton is a dipole-interaction [24], similar to ordinary
molecules: weak attraction at large distances and strong repulsion at small ones. With the empirical value of the
gluon condensate [25] as input the instanton density and radius become [24] n. = 8-10~* GeV*, p. ~ 0.3 fm. Also, with
these parameters the non-perturbative vacuum expectation value for the quark fields is (vac|yp|vac) ~ —1072 GeV?
and the quark effective mass =~ 200 MeV. In the calculation of light quarks in the instanton vacuum [22, 26] the
effective quark mass mq(p = 0) = 345 MeV was calculated, which is remarkably close to the constituent mass My /3
L. Furthermore, the gluon mass in this non-perturbative = ”physical vacuum” is mg(p = 0) ~ 420 MeV [26].

These masses are used in this paper in the evaluation of the TGE-diagrams within the Kadyshevsky formalism, which
according to the Low-Nussinov [14, 15] can serve as a description of the Pomeron.

III. RELATIVISTIC TWO-BODY EQUATION

‘We consider the nucleon-nucleon reaction
Na(Pas 8a) + No(D, 55) = Ny (04 50) + Nyl 53) - (3.1)
Introducing, as usual, the total and relative four-momentum for the initial and final state

P=pstp P =p,+p,,
_ 1 _ S WA (32)
p_g(pa pb) y P _2(pa

We use in the following the notation Py = W and P; = W’. In the Kadyshevsky formulation one introduces
four-momenta spurions, making formally four-momentum conservation at the vertices. These are described by quasi-
particle states |x), normalized by (k'|x) = §(k’ — k). Then the four-momentum of such a state is kn*, where n* is

1 Note that for mg = Mpn/3 a relation between the OBE-couplings of the ESC-models and the meson-couplings at the quark level
can be derived such that the 1/M-expansion is reproduced in detail (M=baryon mass) [27]. To achieve this a few extra terms in the
quark-quark-meson interactions have to be added for the vector-, scalar-, and axial-vector-mesons. For example, in order to get the
spin-orbit correct an interesting new term in the quark-quark-axial-vector coupling has to be added.



time-like with n® > 0 and n? = 1. So, we consider the process in (3.1) with non-conservation of the four-momentum,
i.e. off-momentum-shell. This off-shellness is given by

Pa+po+ K0 =Dl +p, + K'n (3.3)

In the following, the on-mass-shell momenta for the initial and final states are denoted respectively by p; and ps. So,

pio = E(pi) = \/p} + M? and pjo = E(py) = |/p} + M>.
In the Kadyshevsky-formulation the particles are on-mass-shell in the Green-functions. The on-mass-shell propa-
gator S(*)(p) of a spin-0 particle can be written as

1
() () = 2 MDY=
S9p) = 6200~ M%) = b 0 T B(p) (3.4)
with 64 (p? — M?) = 0(£p®)§(p* — M?). The propagator Go(k) for the quasi-particles is given by [4]
Gol) = (1/2m) [1/ (s — i6)] (35)

In the Kadyshevsky-formalism the rules for the computation of the off-shell S-matrix, denoted by R, corresponding
to the analogs of the Feynman graphs are given [4, 5]. We introduce the usual M-matrix by

Ryt (Pl Phs Pas ) = 8(k" — £)3(pf, = pa)d(py, — pv) — (2m) 46" (5'n + ply + Pl — Pa — pp — ki) -
X Myt 1 (P> Phi Pas Pb) - (3.6)
Notice that the S-matrix is given by Ry [4]. We also observ that
0(K" = K)O(P, — Pa)d(py, — py) = O(P' + K'n — P — kn)d(p, — pa)d(ph — ) (3.7)

showing the overall 4-momentum conservation for the R-matrix, including the momentum spurions.
The M-amplitude satisfy the equation

My (Pl Dy Pas Pb) = Imf,n(pfppé;pa’pb)+/d4p;’/d4pé’/dm”l,m'/(pfz,pé;pii,p?f)-
X G (P, 04 )M (D, P 3 Par D) - 0 (P + 1y + K1 — pa — py — Kn) (3.8)

Here the propagation of the two nucleons and of the quasi-particle is described by

Gﬁ(paapb)a',ﬁ/;a,ﬁ = (277)2 5(1’2 - M(?)a(pg - Mb2) . GO(K/) . (39)

IV. QUASI-POTENTIAL EQUATION

The Kadyshevsky analog (3.8) of the Bethe-Salpeter equation we write in the form

Myt 1 (Ply Dlyi Par o) = n/,n(p’a,pé;pa,pb)Jr/d‘*pZ d4p2’/df<c”-
X Lot 5 (Do P Daa> Py )Gt (Deg» Dy ) Mo 1 (Dty DYy 3 Pas D) -
x6(pll +py +K"'n —pa —pp — k) . (4.1)
In the CM-frame we have
P=(W,0) , p=(0,p) ; P'=W'0), p'=(0,p). (4.2)

Following [4, 6] we assume that the unit vector n*, which defines the time axis, is collinear to P = p, + p, and hence
also to P’ = p/, + pj,. Then 2
i + Hw i + Y
nt= Lol Pa 7B M ) (4.3)

vV (Pa + pb)? (), + p},)?

2 Notice that with this choice for n#, the four-velocity of the system is conserved even off the energy-shell.



In the CM-variables, equation (4.1), for the (4, +)-components only, reads

Mn’,m(plv Wl?]% W) = In’,n(p/7 W/§pa /dW”/d4 ///d‘%//
XIK/7R// (p/7 W/; p//’ W”)GK”( " W//) K”( 1" W”, P, W
X6 (W' =W + (k" — K)ng| . (4.4)

In the CM-frame, the two-nucleon propagator (3.9) becomes
" /! _1 ]‘ " // i ]‘ " /! i "
G,{(W ,p ) = Wa §W +p0 _Ea 1) §W — Po _Eb GO(H ) . (45)
Now, the integrations over W, p(/, and k" can be carried through in (4.4) giving
d3p//

Mn/,ﬁ(pla W/;pa W) = Iﬁ’,fi(plvwl;pvw) + / W :

MaMb> 1
EIE]) V& — (st n) —ic

XIN/A,K”(pI7WI;p//7WN) < Mn”,n(p//aW/I§p7W) ’ (46)

with the constraints

= Vs, W=Vs=\s+r—r,W'=Vs'=E'+E. (4.7)

We notice that the left-half-off-shell M-matrix satisfies an integral equation of the type
MR/,O = IK,’,O —|—/ IR/,K,” GH” MK/',O
where the x’s are all fixed in terms of the momenta of the particles, since

K/:\/—_\/?) H//:\/—_\/?.

Defining the T-matrix etc. in terms of the left-half-off-shell M-matrix , and the quasi-potential K in terms of the
both left and right off-shell interaction kernel I, by

T(pl7 p) = H’,H:O(pla W/; p, W) P K(pI7 p) = Ig/ k=0 (p/a W/; p, W) ) (48)

we will have, instead of (4.6),

E
T(p',p) = K(p’ap)+/<2:) K(p',p") (%Z?) \/yl_ﬁT(p”,p), (4.9)

which is the so-called 'quasi-potential” equation. Compare this equation given in [28], equations (I1.26) and (IL.27).
Notice, that for x = 0, one has &’ = /s — V/s', and so &' is fixed by p = |p| and p’ = |p/|.

For equal masses, i.e. M, = M, = M, we have
B, = B =E(p") s =4E%(p) = 4(p" + M?) ,s" = 4E*(p") = 4(p"* + M?). (4.10)
Then, (4.9) goes over into the equation

/ _ / L d3p” ] M?
Tp) = Kp'\p)+ (27r)3/2E(p”) K®'P") g 15w - Bp) —id

where is the quasi-potential equation of Kadyshevsky, see [5] equation (3.33).

T(p".p), (4.11)



V. RELATIVISTIC LIPPMANN-SCHWINGER AMPLITUDE AND EQUATION

The Lippmann-Schwinger amplitude is obtained from (4.11) by the transformation
T, p)=N(@) T/, p) Np), V@' p)=N@) K@, p) NpP), (5.1)

with N(p) = M/(v2E(p)). The non-relativistic Lippmann-Schwinger equation is obtained by using in the Green-
function and the potential the non-relativistic approximation E(p) ~ M + p?/2M giving

/ o / 1 dgp// o M "
TP, p) = V(P»P)‘Fw/m V(p',p )mT(P ,P). (5.2)

For the details of the formalism of spin 1/2-1/2 scattering, using the expansion in Pauli-invariants, we refer to the
papers of the ESC-model e.g. [1].

VI. THE VECTOR-EXCHANGE FERMION-FERMION INTERACTION

The fermion-fermion-vector (J“ = 177) interaction Hamiltonian reads [29]

fv

Hy = gvipyubdly + W@Uwiﬁ(aﬂﬁbxy/ —9"9%), (6.1)

where 0, =4[y, 7]/2, and the scaling mass M, will be taken to be the proton mass. In Appendix F the reduction
for all types of Dirac-vertices in Pauli-spinor operators is give.
When the fermion-fermion-vector form factor F'(x’ — x) is included, the interaction density becomes modified

Hi(x) = /d?’x'F(x’ —x)H(x'). (6.2)

The form of the potentials in momentum space is the same as for point interactions, except that the coupling constants
are multiplied by the Fourier transform F'(k?) of the form factor, where k is the momentum transfer at the NNV-vertex,
where V= p, ¢, w or gluon. We use for space-like momentum transfers a Gaussian parameterization of the form factors
in the one-vector-exchange amplitudes, i.e. F(k?) ~ exp(—k?/A?). Until section VI we treat the point-coupling limit
of the interactions, which makes the discussion less complicated. In section VI we implement the Gaussian form
factors by employing a dispersion representation for the OPE-amplitude, valid for all momentum transfers.

VII. CM THREE-MOMENTUM SPACE FORMULAS

In the CM, choosing n* as in (4.3), we have n* = (1,0), and
Po = —Pb=P , P, =P, =P . (7.1)
The integration over the zero-components can be done using the d-functions, which means that

Pa,0 = Ea(P) , Pbo = Eb(P)
Poo=Ea(®') , pho=Es(p’) . (7.2)

Also, the three-momenta of the intermediate state are now fixed in terms of the external momenta and the two meson
momenta kj . For example in graphs (a), (a’), (b), the relation is

d=q,=-q,=p—ki =p' + ko, (7.3)

and always q, = —qp = q. For the other graphs (b’), (¢), and (¢’) it is a little different, because of the direction of
the meson four-momenta is otherwise, see figures in Appendices C-E. The direction of the three-momenta can always
be choosen the same.



For the planar and crossed fourth-order Kadyshevsky graphs the matrix elements can be written in the general
form 3

,a d k dSk "
M(S'/}é f@)(pa7pb7paapb) 27T 3 4/d3 / L /( 2 N/(/)(p/’p7q) .

2 320.)1 27’1’)32&]2
%03 (k1 —p+q) 6@ (ke + p' — q) DYL") (wi,w2), (7.4a)
d3k A3k
M(X’,a) D, +(2 3 4/d3 / 1 / 2 N(U) N
ok’ K (pa7pb7p apb) 7T I 32w1 (271')32(.02 X (p =p7q)
X0 (ki — pa +da) 6 (ko + P, + da) Dc(m’ L(Wl, w2), (7.4b)

where the numerators N/(7)(p' ,p;q) and N )(;T )(p’ ,D;q) contains the vertex factors and the fermion Dirac-operator.
They depend on ¢ = ++,+—, —+, —— referring to a fermion (+) and antifermion (-) in the intermediate state.

The expressions for the fourth-order Kadyshevsky graphs are given in Appendices C-E, where the denominators
D//’ are given for 0 = ++,+—, ——.

Slnceythe spinor-numerator factors for all parallel, respectively crossed, graphs can be made to be the same, the
fourth-order kernels K (p’, p) have the denominators

DY) (w1 ws) = ST DYL wr,ws), (7.5a)
a=a,a’,b,b’,c,c’
DY), (wi,wn) = ST DU (wr,wn), (7.5b)

j— ’ / ’
a=a,a’,b,b’ c,c

The application of two-meson-exchange K® -kernel in this paper will be in configuration space. Henceforth we consider
only the on-energy-shell matriz elements, i.e. k =k’ = 0.

3 In (7.4) the arguments in the 5G)_functions can have a different sign for the meson momenta. Since the rest of the integrand via the
w-variables depends on the squares of the three-momenta, by a simple sign change in the relevant meson momenta the arguments can be
made as in (7.4). Then, the performance of the d>q-integral leads to identical expressions for the numerators Ng(p’,p;q) for G = //
and G = X i.e. the parallel and crossed graphs respectively.
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FIG. 1: CM-three-momenta graphs o = ++. The solid lines denote baryons. The dashed lines refers to the vector mesons,
ki =k, and k2 = k,,. The intermediate state momenta are p” = p +ki =p’ — k2 and p”’ =p + k2 =p’ — ki.

VIII. VECTOR-VECTOR-EXCHANGE POTENTIALS
A. Rho-Omega exchange

The formalism below is very similar to that used in [11-13]. This because for ' = k = 0, i.e. on-energy-shell

potentials, the expressions of the energy denominators Dy, are identical to those obtained in the Macke-Klein
formalism. In Appendix C-E the two-meson exchange Kadyshevs graphs are evaluated. On-energy-shell the results
are identical to those obtained of the old-fashioned perturbation theory (OPT) BW- and TMO-graphs graph’s in e.g.
Ref. [12] Fig’s 1 and 2.
To be explicit we derive the pw-exchange potential. The other vector-vector exchange potentials can then be obtained
by a simple transcription and change of the isospin structure. We will evaluate the potentials up to order 1/M?.
Although the expansion of N-factors in Eq. (5.1) takes care of the normalization factors of the nucleon Dirac spinors
of the initial and final nucleons, we still have to include the normalization factors of the nucleon Dirac spinors in the
intermediate two-nucleon state, which also contribute a factor of order 1/M?2.

In the following, (ki,w;) refers to the p meson and (ka,ws) refers to the w meson. Using the vertex operators as
given in Table VIIT A, the planar (BW+TMO) graphs Fig. 1 give

- d3kdk i
V() = +ONE (DG p9Rine / / L2 it BLa) 1, (k3) DY (wr,wa) -

X {qusg,; + Aw . ¢w}{A2¢2 + Ap : ¢p} {Bg¢g + Bw : ¢w}{B2¢2 + Bp ! ¢P} (8'1)

1. Fermion-fermion in the intermediate states: Here, with £, = fNNpw/dNNpw, the (a)-line factors (A, Ay)
and (b)-line factors (BY, By ) are given in Table VIIIA. We note that the factors in (8.1) can be commuted freely,

4 For the sign compare with formulas in [12], and see footnote in Appendix A.



TABLE I: Planar graphs A- and B-operators fermion lines vector-vector exchange

AD(/)+) =1+ [p' -p +ior - p x p"]/(4M?) — k., [(p' = P")? — 2ion - P’ x p”]/(4M?)
BO/),4) = 1+ [p/-p” +ioz-p' x p"]/(4M?) — ko [(p' — P")? — 2i02 - p’ x p"]/(4M?)
AP/, 4) = 1+ [p-p" +io1 - p x p']/AM?) = k, [(p — P")? + 2ic1 - p x P"] /(4M?)
B{(//,+) = 1+ [p-p" —ios-p x p"]/(AM?) = k, [(p — P")? + 2ic> - p x P"] /(4M?)
Au(/),+) = —[(® +pP") +i(l+Ku) o1 x (p' —p")]/(2M)

Bu(//,+) = +[(@' +p")+i 1+/~cw) o2 x (p' —p")]/(2M)

Ay(/),+) = [(p”+p (1+kp) o1 % (p” —p)]/(2M)

B,(//,+) = +[(®" +p) +i(l+ky) o2 x (p” —p)]/(2M)

CO(X,4) =1+ [p p'" +ios p x p"]/(AM?) — Ky [(p— P")? — 2i0> - p x p"'] /(4M?)
C(X,+) = 1+ [p -p" —io2-p' x p"]/(4M?) — K, [(p' — p"")? + 2ic2 - p' x p]/(4M?)

Cu(X,4) = +[(Pp+P") +i(l+kw) o2 x (p—p")]/(2M)
Co(X,+) = +[(P" +p)+i(l+k,) o2 x (p” —p')]/(2M)

because the corrections are of order (1/M)*.
Neglecting terms with k; x ko, which do not contribute much in the d®k;d>ks-integrals since A, = A, we get

0 0 ~
~AOB)+ A, B, & —1- oo

—i(3 + 4/%,,)(0’1 + 0'2) -qxky

1
[fsq2 —6q -k + k3 — §(k% +k3) + 2k3 — 2r,ki

—(1+k,)*{(o1 - 02)ki — 01 -kio - kl}} )

—A°BY 4+ A, B, ~ —1—
wDuw 4 M2 2

—i(3+4l€w)(01 +02) -q X k2

—(1+ /{w)2 {(o-1 . 02)k§ — o1 koo - kg}:| .

1
{6q2 +6q-k; — = (kI +k3) + 2kT — 2r,.k3

We have, using ¢(€/ . Q, = -1, ¢v - ¢ = +1 etc., in a concise form,
VI =+ [ [ CRE 0 B 00 R0
X {—Ang + A, - Bw}{—ASBS +A,- BP}D//(M,WQ).
Multiplying these expressions and keeping terms up to order (1/M)? we obtain

d%dkz g
(/) ~ 4O (D gm o / / 1z i) 12) () Dy (wrws) -

1
X {1 + [12q2 + (ki +k3) — 2(f<opk? + ruk3)
—Z'(3+4lip>(0'1 +0’2)-q><k1—(1+l<ap)2{(0'1 0'2)1{ — o1 -kjoy- k1}

7i(3+4/€w)(0'1 +0‘2) -q X kg — (1 +I€w)2 {(0’1 . O-Q)kg — 01 ‘k20‘2 kg} .

(8.2)

(8.3)



The crossed BW graphs of Figs. 1 (b) (and their “mirror” graphs) give

(+4) d?”fld k2 pilkitka)r o (12
Vs (X)) = +CNN gNNpgNNw F,(k})F,(k3) Dx (wi,ws) -

X {Ag¢g + A, - ¢w}{A2¢2 +A,- ¢p}{02¢2 +C,- ¢p}{cg¢g +C, - ¢w}. (8.4)

Here the (a)-line A-factors are the same as for the parallel graph, and the (b)-line C-factors are given in Table VIITA.
Again, the factors in (8.4) can be commuted freely, because the corrections are of order (1/M)%. Therefore

(+4) (0 d?’k?ld kz pikatko)r 2 2
pr (X) ~ +Cw ( gNNpgNNw Fp(k1)Fw(k2)
X {—A308+Aw~cw}{—AgCg +A,: CP}DX(M,WQ). (8.5)

The form factors are given by F, (ki ,) = Fay, (ki ). The Kadyshevsky energy denominators D;(wy,ws) can be
found in Appendix C1 equations (C2) and (C5).

Remark: In quark-quark scattering the iterated one-vector-exchange is included For the TMO graphs we

have to subtract the Born iteration K1(30)rn
(++) .

forinin D )X in (9.5). This does not apply in the case of the application to the pomeron for baryon-baryon scattering,.

as described in Ref. [12]. This subtraction has already been accounted

Using the CM-momenta p = q — (k1 + k2)/2, p’ = q + (k1 + k2)/2, the momenta for the intermediate nucleon lines

A m

p”, —p"" are given by
p’ = p+ki=p' -k, p=p+ke=p -k,
P’ = a+ (ki —k2)/2, p"” = q— (ki —k2)/2. (8.6)

From these relations we get

p+p" =29—k;, p+p” =2q—k,
P +p" =2q+k;, p'+p" =2q+ky,

1

p-p”=q2—q-kz——(k?—k§),
" __ _ 2 2

pp'=d"—q- ki +- (k - k3),
pp'=d’+q- k1+4(k2 K3),
p’-p”'=q2+q-k2—Z(k?—kg),

1
p’><p"=—q><k2—§k1 X ko, p”' xp=—p' xp”,

1
p”><p=—q><k1—§k1><k2,

1
p/Xpmz—qul—F§k1Xk2. (87)

Neglecting terms with k; x ks, which do not contribute much in the d>k;d>ks-integrals since A, = Ay, we get

1
402

1
—AYC)+A,-C, ~ —1— [6q2 - 5(k% +k3) — 2k,k] —i(3+4k,) (01 + 02) - q x ky
—(1 +l€p)2 {(0’1 . O'Q)k% — 01 'k10'2 'kl}:|,

1

~A°CY +A,-C, ~ —1—
U.)OW+ 4M2

1
{6012 — 5(kf +k32) — 2k,Kk3 —i(3+ 4k, (01 +02) -q x ko

—(1+ /iw)2 {(0'1 . O'Q)k% — o1 - koo - k2}:| .
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TABLE II: Kinematic relations momenta planar and crossed diagrams.

p+p’' =29k , P+pP" =29k
p,+p/l72q+k1 ’p/+p///:2q+k2

p-p’ —q —q-ko — 7 (ki —k3)

p-p” =qd’—q-ki + 3(ki —k3)
p"p”:q2+Q‘k1+i(k%—k§)

PP = +q -k — 2(ki—k3)
p'xp’=-gxks—ikixks , p”" xp=—p xp”

p’ xp=—-qxki —tkixks , p'xp” =—qxki+ iki xky

Keeping terms up to order (1/M)? we obtain

d3k1d 14;2 Jilkite)r

VER(X) ~ +089 (160 / / F,(2)F, (k)

1
" {1 e [12(12 — (ki +k3) —i(3+4k,) (01 +02) -a x ki
—i(3+4l€w)(01 +0'2) -q X kg — (]. +/€p)2 {(0’1 GQ)k? — 01 'k10'2 kl}

—(1 + Faw)Q {(0‘1 . UQ)k% — o1 - kooo k2}j| } -Dx(wl,wg). (88)

To the expressions in Eqgs. (8.1) and (8.4) we have to add the “time-reversed” diagrams, which are those of Figs. 1
and 2, but with the p line and w line interchanged. The latter contributions cancel all terms in Eqgs. (8.1) and (8.4)
that are forbidden because of time-reversal invariance, and double the allowed terms.

It is convenient to write the final result of the (1/4M?) contributions as a sum of three terms proportional to 1,
(3+4kK,0), and (1+ k)2, respectively. We refer to these as the electric-electric (e, e), the electric-magnetic (e, m),
and the magnetic-magnetic (m,m) terms. We can then write the resulting potential as

(++) (2) d3k1d k2 z(k1+k2) r 2 2
Vi = Z Caw (I gNNpgNNw Fr(ky)Fp(ks) -
i=//,X

y [(1+3(q2]\;‘2/4))+4]\142{0< +0%), + 0% }(kl,kg)} Dy(wr,ws), (8.9)

where the operators O (k;,ks) can be read off from Egs. (8.3) and (8.8).
The full separation of the k; and ko dependence of the Fourier integrals can be achieved as shown in Ref. [11], and
has been discussed above. Accordingly, we derive from Eq. (8.9) the form

i ; 3 :
V;1(u++) - Z C](\U)V(I)QJQ\INpg%VNw lim [1+ M2 (qQ_ ZV2)>

7// x ri,ro—r
1 B ) . i
+op {ogf; +0%, + og,g{m}(—ivl, —ng)} BN (71,72), (8.10)

where V. = V; + Vo, In [12], Appendix A a set of explicit formulas are given such that the result for
OW(—iV,—iV3)F(r1)G(rs) can be evaluated. The non-local term g2 4 k?/4 can be evaluated by operating on the

function B J\Z,NW (r,7), similar to the treatment of the non-local terms in the OBE-potentials.

2. Fermion-antifermion in the intermediate states: Taking the antifermion in the (b)-line we apply the rules
for the momentum diagrams in Fig. 2 as given in Appendix A Table VII. Then for an antifermion in line (b) one gets



11

A
©
-c\
A
®
A
®
A
©

®----p----@
&
)
®----p----9
x

A
|
T
|
T
A
[ ]
w
®
A
|
kel

FIG. 2: CM-three-momenta graphs for 0 = +—. The solid lines denote baryons. The dashed lines refers to the vector mesons,
k1 :kp andkgzk

the B-factors as given in Table VIIT A. Keeping terms up to 1/M? we get

1 1 _
~A)B)+A, B, ~ 2M{"2 p’ — (1+2x)) o9 -p)} I (" +p)+i(l+ky)o1 x (p” —p)] -
x[(1+ K)oz — ko2 (p” +p) (P” — D)), (8.11a)
1
—A’BY+ A, B, ~ oM {02 p’ — (1+2x}) o9 -P’)} — —— (' +p") +i(l + ru)or x (p' —p")] -

4
x[(1+k,)o2 — klos- (" +P) (P — P

]. (8.11b)

This gives up to 1/M? in a concise form,

_ &k d k2 g
VEI(/)) ~ O (D, e / / 1R it p () (2)
X {Ang+Aw~Bw}{ ~A%BY+A,-B }D// ) (w1, ws), (8.12)

and similar for V(Jr )(//)
For an antlfermlon in line (b) respectively in line (a) the products in (8.12), using Tables VIITA and VIIT A, up to
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TABLE III: Planar graphs A- and B-operators antifermion lines vector-vector exchange
AL/}, =) = =(1 4 ko) [or - (0" = p')/(2M)
[o2 - (p" —P")/(2M)

BO(/),-) = +(1+ kw)

AD(/), =) = —(L+K,) o1 (p” — P)/(2M)

BY(//,—-) = +(1+K,) o2 (p" — )/ (2M)

Au(/), =) = +[(1+ r0)o1 + ke o1+ (p” +P)(" — P)]/(2M)
B.(//,~) = +[(1+l)o2+ a2 (0" —p)(P" +p)]/(2M)
A(/).-) = +[A+rp)o1 + 5, a1+ (" +p)(p” —p)]/(2M)
B,(//,—) = +[(1+rKy)o2+ kK, o2+ (p” — P)(P" + p)]/(2M)

1/M? become

Q

B Bk d3k )
VEI(/)) =+ (1D g3, 6 / / g T UL ()

1
e {p~2_(1+2f€&) o3-p o2-p” = (1+2k,) 02-p" 03P
+(14267,)(1 4 257,) o2 - p' 02 -p} DS/ ) (wr,wa), (8.13a)

Vo))

Q

d3k1d ks .
+C gNNpgNNw // Gatke)r B (kD) (k3) -
1
X {p”Q—(1+2/¢;) o1-p al-p”—(1+2/1;,) o1-p’ oy p

+(1426),)(1+25;,) o1 -p' o1 -p} Dﬁ/ )<UJ]_,W2)7 (8.13b)
(8.13¢)

Working out the products in (8.13) with the momenta relations (8.6) and (8.7) gives

1 1 1
(+-) : {...}:4;-;;/@; q2—1(1+2n’p)(1+2/€;) K* — 4ir Kk, o - qu+2(I€ — K, )(kf—kg)—ikl-kz
—2k.,(q - ki) + 2+ (q ko) — 2ik., 09 - q x ki — 22/1 o9 -q X ko,

and with the substitution o9 — o1 the same expression for ( { } Here we used the notation i, = ky (M/M)
for V=uw,p.

For an antifermion in line (a) the A-factors are given in Table VIITA. The crossed BW graph (b) of Figs. 2, and a
similar one with the antifermion in line (a), give

_ Plidks r
V) & +CN ekt [ [t e 08P ()
x {—Agcg(—)+Aw-cw}{—A202+Ap.Cp}Dx(wl,w2)7 (8.14)

and similar for V(+ )( X). The form factors are given by F,,(ki,) = Fin,.(ki,). The Kadyshevsky energy
denominators D;(w1,ws) can be found in Appendix D, equations (D2) and (D4).

Notice that by reversing the b-line of the crossed graphs one can relate the spinor matriz elements to correspond to an
incoming fermion with momentum —p’ and outgoing fermion with momentum —p. This can be seen as follows

[a(—p" )T pu(—p"") u(—p" )T u(-p)]" = a(=p) (YI'Lr0) w(=p") - a(=p") (I}0) u(—p').



TABLE IV: Crossed graphs C-operators for fermion and antifermion lines vector-vector exchange

CO(X,+) = 1+ [p-p” +ioz-p x p"]/(4M?) — ks [(p — P")? — 2ic2 - p x p"'] /(4M?)
C(X,+) = 1+ [p'-p” —ioa-p x p"]/(AM?) — r, [(p' — p"')? + 2ic2 - p’ x "] /(4M?)

Cu(X,+) = +[(p+p")+i(l+ ko) o2 x (p—p")]/(2M)
Co(X,+) = +[(@"+p)+i(l+k,) o2 x (p"” —p)]/(2M)

CP(X, =) = +(1 + k) [0'2 p”

CHN(X, =) = +(1 4+ ry)[o2 -

Cu(X,~) = +[(1 +kw) o2 + K T2 - (p”’ - p)(p"” +p]/(2M)
Co(X,—) = +[(A+5y) o2+, 02- (p” —p)(p” +P']/(2M)
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For an antifermion in line (b) respectively in line (a) the products in (8.14), using Tables VIII A and VIIT A, up to

1/M? become

(+-) (X) d3k’1d k2 eilkitka)r 2 2
pr (X) ~ +CNN( )gNNpgNNw T 9.\6 Fﬂ(kl)Fw(kQ) :

1
402

+(1426))(1+25,) o2 -p o2 - p'} . Dg?f)(wl,wg),

{p///2_(1+2,€;) 0'2-p0'2-pm—(1—|—2/£/p) 0'2'1)/” 0'2~p’

(—+) col d3k1d kz pillr ko) 2 2
Vow (//) = +Cyy (I gNNpgNNw Fy(ki)Fo(k3) -

X 4M2 {p —(1+2k,) o1-p o1-p" = (1+2)) oy

+(14267)(1+25;,) o1 -p' o1 p} : Dg;ﬂ(wl,wz).

Working out the products in (8.15) with the momenta relations (8.6) and (8.7) gives

1 1
(+-) {...}:4/{;,%; q2—1(1+21~e’p)(1+2/€;) K® +diklk), 02 qx k4 = (k2—|—k2) §k1~k2

L1
2

1 1
(—+) { }4/<;n q *4(1+2H/p)(1+21€;) K® +dikk), 02 - qx k+ - (k2+k2)f§k1~k2

L1
2

p'o1-p

(kl, — kL) (kT — k3) + 2k0,(q - k1) — 26,(q - ko) + 2ik), 02 - q X ki + 2ik), 03 - q X ka,

(K, — k0, (kT — k3) — 2k0,(q - k1) + 26,(q - ko) — 2ik), 02 - q x ki — 2iK), 0 - q X ka,

(8.15a)

(8.15b)

3. Addition p—w interchange: For the total potentials the contribution of the graphs with p <+ w, i.e. VQE;‘) (//,X).

hier
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IX. TWO-GLUON EXCHANGE

Application to two-gluon exchange between constituent quarks, with x, = 0, gives for the parallel graphs

(++) 4 d3k1d3k2 i(ki+ksa)r 2 2
Vg (/)) = g5 Cyy Wa Fy(k1)Fy(k3) Dyj(wi,wz) -

1 ;
X {1 + 07 [12q2 + (k¥ +Kk3) — 3i(oy + 02) - q x (k1 + ko)
—{(0’1 . Ug)k% — 01 - k10'2 . kl} - {(0’1 . 0‘2)1{% — 07 - kQO'Q . kg}:| } (91)
For the crossed graphs

a3k d k
V(X)) ~ gt Ox // LE T2 pitkitko) T | (kY F(K2) D (wh, wa) -

x {1+4M2 [12(1 — (K} +k3) — 3i(01 + 02) - q x (k1 + ko)

,{(0-1 .0'2)1(% —o1-kios - kl}f{(o'l . O’Q)k% — o1 - koo - k2}:| } (9.2)

For the different possibilities of the intermediate fermions (o = ++, +—, —+, ——)

- Bhid3ks o
il & / / e C T B)E ()

[C// (ww&) +Cx DY (w17w2):|7 (9.3)

where o = ++,4+—, —+, ——. Labeling the incoming and outgoing fermions by (i) and (j), The color factors are [31]
2 1 o . . 1 /o

Crp = 5+5; ;1 daae (A +20) - = (AD- A0, (9.4a)
2 1 & , , 1 . .

Cx = S+ Z daae (AD +20)) + = (AD-A0). (9.4b)

1

Since only the first term is used in the following, which has the unit operator in color space, the color labels of the
quarks are not altered and can be neglected henceforth.

The adiabatic approximation gives, putting M = mg, see Appendix C-D, the following denominators:

la. The planar-box diagram, with TMO:

1 1 1 1
DEJ/F+):+ 22[_+__ ]’
2wiws w1 w2 w1t w

e 1 { 1 { 1 ., 1
7T 2wiws | wy + wo wi (w1 +2mg)  walws +2mg

[w1 + wa + 2mg)] } (9.5)

wiwa (w1 + 2mg)(we + 2mg)

1b. The planar-box diagram, no TMO: Grouping the TMO-graphs in NN together with two-gluon-exchange
between different quarks giving Van-der-Waals forces implies

(++) (BW) _ 1 1
D D = 9.6
p =Dy 200%8 w1 T o3 (9:6)
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2. The crossed-box diagram: The adiabatic approximation gives the contributions

1 [1 1 1
Dﬁf“:——[—jt—— }

2wiwd w1 w2 w1t ws

) 1 { 1 { 1 1 ]
D) = "
X 2wiws w1 + w2 [w1(we +2mg)  wa(wr +2mg)
{ (w1 + mq) (w2 + mq) } 2 }

wiwa (w1 + 2mg) (w2 + 2mg) | mq

(9.7)

A. Pomeron exchange in baryon-baryon: NN, YN, YY

The application to the Low-Nussinov [14, 15] two-vector-exchange pomeron model involves the folding of the
two-gluon-exchange between quarks with the constituent quark model baryon(N,Y) wave functions. Since the baryons

are color singlets one has €/, = Cx = 2/9. Then it follows that: For C,, = Cx the adiabatic potential Vg(;rﬂ
is of the order (1/M?) as is also the case for the adiabatic potential 1/;(;7). They both give repulsion.

1. Adiabatic Contributions ¢ = ++ The two-gluon exchange with two positive-energy quark in the intermediate
state gives for the central potential

d3kdk .
VD~ gt [ [T e 0 E )

x [kf + k3] [C// D(++)(w1,w2) +Cx D (w1, wo)

A3y d3k .
e [ [ e m 0 [ ]

1
—s — = . 9.8
X 2w1w§ [wl wy  wi+ wJ (9.8)
Separation of w; and ws is achieved using the identities
r / dA 1 1 1 B
w3 o fy A% [w? w24 A2 w%w§w1+w2_
2 / N IS S I I
7o A |w? WA |wE Wi+ A2
one obtains
1 dX 1 1
pitH — = / - 9.9
/7 T Jo A2 w2 (w? +A2) (w2 + A2) (9:9)

Then, the Fourier transform in (9.8) of (9.9 gives

d\
Byg(ri,re) = ;/0 2 [IQ(mgaTl) Ir(mg,72) — Fg()‘arl)Fg(/\vm)]’

with Io(m,r) = (m/4m)¢&(m, r) the Fourier transform of 1/w? [30], and Fy(A,r) = exp[—=A*/Ag] Io(1/m2 + A2, 7).
This gives the potential

8qt .
VG~ 2% dim [V 4 V3] Byy(ri,ra). (9.10)
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In the case of no TMO-graphs we get

/ d3k d k
Vi = g [ [T RS

x[k% —i—k%} {C// D W)(wl,Luz) +Cx DQH(wl,wz)

d3k:dk y .
= / R ik £ (08)F,(1) (16 1]

2
—2 — 4+ — = . (9.11)
2wiws (w1 wp w1t ws

The Fourier transformation can be worked out using the identities above, etc. Note that without TMO the repulsion
is weaker.

2. Adiabatic Contributions ¢ = +—, —+ The two-gluon exchange with one negative-energy quark in the interme-
diate state gives in the adiabatic approximation, since for x, = 0 all expressions { . } — —(ky - ko),

d%dk 5
VTR g // e C T By (D) F, ()
Q

X [kl . kg] |:C// Dﬁf)(wl,wg) + CX Dg;ri) (wl,wg)} (912)

In the adiabatic approximation the energy-denominators are

e _ 1 { 1 { 1 . 1 }
/! C 2wiwo | Wy Fwo |wr (Wi + 2mg)  wa (w2 +2mg)
1 [ 1 1
+
w1 +ws +2mg w1 (w1 +2mg)  wa (w2 + 2mg)

1 1
Nl
+(w1 +2mg) (w2 + 2mg) + wlwz} }’ (9.13)

and

(+-) 1 1 1 1
D7) = n
X 2(.«)1(4)2 w1+ wo | Wy (CUQ + 2mQ) w2 (wl + QmQ)

1 1 1
+
2mg [wl (w2 +2mg)  wz (w1 +2mg)

1 1
+ + . 9.14
(w1 +2mq) (w2 + 2mgq) wlwz] } (9.14)
The QQ-amplitude becomes, see [31],
4
+ 9s +— 4+
Mo = T (k1 - ko) [C//Dﬁ/ '+ x DY )} : (9.15)

Here, and in the following, a factor of 2 has been included coming from an identical contribution from o = (—+).
For all terms in Eq. (9.13-9.14) the separation of the k; and ks dependence using integral representations has been
given in [11, 12], except for (w1 + wa + 2mg]~!. For this a rather complicated formula is required. We note that for
ma ~ mg we have the bounds 2(mg+mg) < [w1 +ws+2mg| < 2(w1 +ws), and we choose to make the approximation
~ 2(w; + wg). Furthermore, using the splitting [w(w + 2mg)] ™! = [1/w — 1/(w + 2mg)]/2mq we can rewrite the
denominator for the parallel graphs as

(40) 1 1 3 3 1 1
by~ = + + +
dwyws w1 +we |wi(wr +2mg)  wo(ws +2mg) (w1 +2mg)(ws +2mg)  wiwe

- B(wf + wj) + 2wiwa + 8mg(wi +w +4m2]
4&1%&}% (w1+2mQ)<w2+2mQ> UJ1+W2 |: ( 1 2) 1w2 Q( 1 2) Q

o 3 1 |:1 w12 T a (1 5W1w2 >:|
 dawiw? (w1 +a)(ws +a) 3wy + ws) (w1 +a)(wa+a))]|
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where a = 2mg. Then, in configuration space we obtain the the 2-gluon exchange potential

4
V/(/Jr_)(rl’rz) - 43,;%2 Cry (Vi-V3) {3H072(a77"177"2) +3Hz0(a,71,72)

+2H1,1(a, 1, 7‘2) + 8mQ G271(a, 7"1)0271((1, 7"2) + 4m?Q H272(a’ r1, 7"2)}’ (9163)

392

= 3 Cyy (V1:-Va) L(mg,r1)l2(ma,m2) — Gia(a,m1)Gra(a,2)
Q
a

~3 [5H22(a,71,1m2) — Haa(a = 0,71,72)] } (9.16b)

The denominator for the crossed graphs can be written as

_ 1
D) — 1 Wi w2 wiwsz
X 2wiw? + w1 + 2mg + wa + 2mg + (w1 + 2mg) (w2 +2mg) | 2mg

2 wiwz + mg(wi + wa) }

4 9.17
w1 + wa (w1 + 2mg) (w2 +mq) ( )

Then, the configuration space 2-gluon exchange potential from the crossed graphs is,

4
V)((+_)(r1,7"2) = 27922 Cx (V1-V3) { {Iz(ma, r)lo(ma,r2) + Ia(ma,m1)G1,1(a, r2)
Q

1
—|—G171(a, ’/‘1)[2(771@, 7“2) + H171(a, r1, 7“2):| % + 2H171(a, 1, 7“2) + ZmQ Gg,l(a, T1)G271(6L, 7”2)}. (918)

Then, the total potential is Vz(fg_lion(r) = limy, ppyr [V/(/Jr_)(rl, r9) + V)((+_)(7"1, 7‘2)]
Conclusion: the adiabatic two-gluon exchange contribution for 0 = +—,—+ to two colorless baryons interaction is
repulsive.

3. Non-Adiabatic Contributions The 1/mg-contribution denominators we can copy from [1] since the Kadyshevky
denominators for o = ++ are the same as those in the Macke-Klein formalism. The non-adiabatic energy denominators
are [12]

1) _ 1 1 1
D))} (wrvw2) = +55 {—w% + =, (9.19)
1 1 1
pW _ 9.20
X (w17w2) w%w% |:w% + w%:| ) ( )

and the matrix element has a factor ky -ka/2M w.r.t. the non-adiabatic matrix element, and DEO) — Dl(l) (i=//,X).
Then, for the QQ-amplitude we obtain

4),1 1 1
Mg = g4 |Cyy DY) +Cx DY
2 (ky-ky) gt 1 1
—= - E 9.21
= 9 2M Qw%wg w? w% ’ ( )

which leads to a potential with a sign opposite to that for scalar-meson exchange. Therefore, the non-adiabatic
two-gluon exchange contribution to two colorless particles interaction is repulsive.

The QCD coupling oy = g2 /47 ~ 0.33 at the confinement scale u =~ 200 MeV. The double fourier transform typically
leads to the so-called rationalized coupling, and for the strength we get ~ 24a2 ~ 2.2 which is of the same order as
used for the pomeron coupling in ESC-models.

The form (9.21) implies the interquark potential

na 2 4 . 2 4
VS5 () = Soap i (V1Y) | L) Ta(ra) + Ia(ry) La(ra)| = 520 i) T3 (). (9.22)
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NA=986.6 MeV: Two-gluon Voo(++0, Voo(+-), Voo(na), Voolgg)

(++) _—
+-) —
(na
160 - @a) n
140 -
120 —
100 i
=
[<5)
=
= 80 B
60 —
40 -
20 —
o - —— " .
0.8 1 1.2 1.4

r [fm]

FIG. 3: Two-gluon and Pomeron(ESC16) potentials. as = 0.30, A = 986.6 MeV, my = 320 MeV, mqg = 315 MeV, gp = 2.72,
mp = 212 MeV.

2

This form implies that Voo ~ r° near the origin. The corresponding Vpp ~ constant near the origin

due to the folding.
For the BB-potential there is an extra factor 9 from the summation over the valence quarks in a baryon.

3. Numerical Evaluation In Fig. 3 are plotted the adiabatic Vog(++), Voo(+—), the non-adiabatic Vgg(na),
and the total 2-gluon-exchange quark-quark potential Voo(2¢). In Fig. 4 are plotted the adiabatic Vgg(++),
Vog(+—), the non-adiabatic Vgg(na), and the total 2-gluon-exchange baryon-baryon potential Vzg(2g). In Fig. 4
are plotted Vg (29), VBy(2g), and compared with the Pomeron-exchange potential Vpoas in ESC08¢/ESC16 and
Veomir in Ref. [30]. Here, oy = 0.30 and the cut-off A = 986.6 MeV, which gives good agreement with the me-
son couplings from the ESCI16 fit using the QPC-mechanism, see [32] We note that ESC16 has a rather weak pomeron.

4. Quark-Quark Potential: In Fig. 3 the Voo (++, Voo(+—), Vog(na), and the total QQ-potential Vg (tot) are
shown. This for the parameters used in the quark-pair-creastion (QPC) model in ESC08¢ for the CQM-computation
of the meson-baryon-baryon coupling constants.

5. Baryon-Baryon Potential: For making the connection with the baryon-level a folding with the CQM wave
functions is necessary. To facilitate this we make a Gaussian fit for the potential functions Vgp(++) and Vgo(+—) +
Voo (na) separately. The latter gives a Gaussian o r?, as shown in Fig. 3 and Fig. 4. Then, we perform the folding
with the quark wave-functions. Denoting the CM positions of the baryons by R; and Ry and the positions of the
quarks inside the baryons by r; and r; respectively, the quark positions are at

x;, =Ry +r; , X; = Ry + rj. (923)

The fit with Gaussians gives the QQ-potentials, as a function of the distance x;; = x; — x;, in the form

Voo,ij(rij) = ZA"»’“ X eXp[—Ai)k ij] (n=0,2). (9.24)
k
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TABLE V: Gaussian fit parameters

Ay 250 350 450 550 650 750

A1|-0.009D0 -0006D0 -0.006D0 +-0.528D0 +0.259D0 +4-0.015D0
A2|+0.019D0 +0.1480 +0.702D0 +1.357D0 +0.763D0 -0.058D0
As3[40.038D0 +0.0700 +0.386D0 40.378D0 -0.058D0 -0.033D0

)

The BB-potential is obtained by folding the inter-quark potential with the baryonic quark wave functions, i.e.

Vee(R) = <‘I’2B VQq,ij(xi — ;)

\1/23>. (9.25)

The overlap integral for the matrix element (9.25) is worked out in Appendix G1. The folded potential for n=0
becomes

3
n=0: Vgs(R)=) Ao (%) exp[—U&kRz)} (9.26)
k

)

Here, Uy = AnAy \/3/(3/\?\, + 4/\3“6)7 where Ay = 1/R%.

The Pomeron-potential depends on the parameters: (Rp,as, mg, mag,A). Here Rp is the (effective) quark radius
in a baryon, and A = Aggc the quark-gluon form factor cut-off. From the ESC-model [32] with the quark-pair
creation constant v = 2.19 one has as = 0.30. Furthermore Rp = 0.7 fm and A = 986.6 MeV. Since the constituent
quark mass for Mp/3 is important for the connection between the baryon and quark-level potentials, we have choosen
to vary the gluon mass. The instanton-model gives mg ~ 420 MeV [26]. It appears that for mg = 320 MeV the
phenomenological Pomeron-potential in ESC08¢/ESC16 is reproduced.

In Table IX A the fit of the two-gluon exchange potentials are perfectly fitted to a set of 6 Gaussians. Separately
fitted are (i) Voo(++), (i) Voo(+—) + Vog(na), and (iii) the sum of these two, called Vog(tot). The parameters
Ay, Ay, Az coreespond to the cases (i), (ii), and (iii) respectively.

In Table IX A the two-gluon exchange QQ-potentials are shown, together with the folded BB-potentials. Also is
shown the Pomeron-potential from ESC08c/ESC16-model, where the iow-energy gluon mass is adjusted. Compared
to the instaton-model value 420 MeV [26] the difference is within the uncertainty of the latter value.

In Fig. 4 the Vgg(tot) potential and the Pomeron potential Vp in ESC08c-model are shown. Below, the folded
Voo (tot) is shown to match rather accurately with the phenomenological Vp in ESC08c.

X. DISCUSSION AND CONCLUSIONS

The advantage of the Kadyshevsky formalism is that it is relatistic and at the same time in its appearance close
to the so called old perturbation theory. An important feature is that the particles in the intermediate states are
on-mass-shell, which is ideal for the implementation of form factors, in particularly Gaussian ones. In momentum
space one can do the calculations taking the full relativistic momentum dependence of the fermions and mesons into
account.

In this paper the application of two-gluon exchange to the Pomeron is in the spirit of the Low-Nussinov model [14, 15].
Our goal is to explain the Pomeron-exchange potential as used in the soft-core Nijmegen baryon-baryon potentials.
The constituent quark model is essential for this calculation, and is justified because of the instanton structure of the
QCD vacuum. The latter implies for low-momentum transfer physics the rather heavy gluon mass mg, leading to a
rather short-range TVE-potential.

It is found that there are three types of repulsive contributions of order (1/ m2Q): (i) The first from intermediate states
with two fermions (0 = ++) giving a Gaussian-Yukawa type of potential. (ii) The second from intermediate states
with a fermoin and an antifermion in the intermediate states (o0 = +—, —+) giving a Gaussian-Yukawa potential with
a zero in the origin. (iii) The third contribution from the non-adiabatic terms for ¢ = ++, also a Gaussian-Yukawa
potential with a zero in the origin.

It is found that the strength of the Pomeron from the Low-Nussinov TVE-mechanism in QCD explains the phe-
nomenological Pomeron as used in the soft-core Nijmegen potential, see Table IX A.
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TABLE VI: Input Vg and output folded Vg potentials. The parameters are s = 0.30, Rp = 0.7 fm, mg = 320 MeV,
mqg = 345 MeV, and Agge = 986.6 MeV.

r[fm]| Voo (++) Ver(++)|Voq(+-na) Ver(+-;na)|Vog(tot) Vag(tot) || Ve (ESCO8c)
0.10 | 140.798  73.803 5.364 83.444 146.184 157.461 156.105
0.20 | 107.463 70.892 17.166 81.148 124.674 152.248 150.792
0.30| 68.666  66.290 26.880 77.458 95.582  143.947 142.335
0.40| 36.756 60.339 29.358 72.569 66.153  133.094 131.287
0.50 | 16.361 53.457 25.410 66.730 41.827  120.355 118.332
0.60 | 5.841 46.089 18.763 60.223 24.657  106.460 104.221
0.70| 1.414 38.662 12.482 53.340 13.926  92.129 89.698
0.80| -0.065 31.547 7.813 46.367 7.765  78.018 75.438
0.90| -0.394 25.030 4.759 39.559 4.388  64.668 61.996
1.00| -0.369 19.302 2.890 33.126 2.552 52.483 49.787
1.10| -0.274 14.458 1.773 27.231 1.529  41.720 39.069
1.20| -0.188 10.509 1.105 21.978 0.936  32.497 29.959
1.30| -0.124 7.405 0.699 17.420 0.577 24.816 22.449
1.40| -0.079 5.050 0.447 13.564 0.354 18.589 16.438
1.50| -0.049 3.325 0.286 10.380 0.215 13.667 11.762
1.60 | -0.030 2.107 0.182 7.810 0.128 9.869 8.223
1.70| -0.017 1.278 0.114 5.781 0.074 7.005 5.619
1.80| -0.010 0.736 0.071 4.212 0.042 4.891 3.751
1.90 | -0.005 0.396 0.042 3.023 0.023 3.363 2.447
2.00| -0.003 0.193 0.025 2.139 0.012 2.278 1.560
A=986.6 MeV: Two-gluon Voo(29), Vee(29), Veom: Veomir
: I
Leo I POomM) 1
140 |
120 B
100 .
5
=
= 80 E
60 B
a0 B
20 .
°o o2 oa o6 o8 1 1.2 1a
r [fm]

FIG. 4: Two-gluon QQ, BB and Pomeron(ESC08c potentials. as = 0.30, A = 986.6 MeV, my = 320 MeV, mg = 315 MeV,
gp =2.72, mp = 212 MeV.
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APPENDIX A: KADYSHEVSKY-RULES IN MOMENTUM-SPACE

In this appendix the rules for the Kadyshevsky-diagrams [3-5] are given. We follow the set up of the appendices
B in [29] where the rules for the Feynman-graphs are given. The differences will then come to the surface in a most
transparant manner. Starting from the expression of the S-operator, one has

oo i\" [t 400
1+Z (h) / / 0(x0 — 20 )00, — 2% ,)...0(x5 —Y)-

n=1

S

XLp(xn) Lr(Tp—1)...Lr(x1) Az, .. drr

1+ i S, (A1)
n=1

we follow [3] and introduce the time-like vector n# with n? = n2 —n% = 1,ny > 0. Then (A1) can be brought into a

completely 4-dimensional form by the replacement
0(z°) = 0(x-n) , n-x=np2’ —n-x. (A2)

This gives (h=1)

+oo “+oo
Sp = 2"[ [ On - (xn — xn-1)0n " (Tn-1 — Tpn_2)]...0[n- (x2 —x1)] -
X Ly(zy) El(xn,l)...ﬁl(xl)od4xn...d4m1 . (A3)

From the expression (A3) one can work out the rules for the Kadyshevsky graphs in a way which parallels the
derivation of the Feynman rules. The differences come from the treatment of the #-functions. In the case of the
Feynman graphs one includes the #-functions into the propagators by applying the Wick-expansion to the T-products
of the field operators. In the case of the Kadyshevsky graphs one employs a four-dimensional form of the #-functions,
exploiting (A2),

1 [T exp[—ik(n- )]

; (A4)

K+ i€
and one applies the Wick-expansion to the ordinary products of the field operators. Then, the propagators are given
by

4

Ol6(x)6)|0) = DD (z —y) = / ©0(g0)d(¢* — 1)

Gy
4
(0 4,(2) A, ()[0) = DS (@ —y) = —gu / (;ZT‘)Q,wqo)a(q?)
4
O (@) 9 @)al0) = S (@ —y) = / ((2171)939(170) F +m) g0 6% — m?) . (A5)

In the Kadyshevsky-graph theory the considered Hilbert-space is enlarged by admitting states containing ’quasi-
particles’. The latter carry only 4-momentum, and serve to have formally four-momentum conservation at each vertex.
The quasi-particles refer to the x-variables in the Fourier transforms (A4) of the §-functions appearing in (A3). These
quasi-particle states |k1,...) are normalized by

(K. k1, ) = 0(K) — K1) ... (A6)

The #-functions in (A3) connect only internal points of the graphs. In order to handle integral equations, occurring
in for example the Bethe-Salpeter- and Schwinger-Dyson-equations, one needs to consider amplitudes with external
quasi-particles as well as internal quasi-particles. The external quasi-particle entering a vertex is included only into
the four-momentum conservation rule of that vertex, including both the external and the internal quasi-particle
4-momentum.

After these preliminary remarks we now list the momentum-space rules for the computation of the —M,/ .-
amplitudes, defined by

Seie =Ly — (271')42'54(Pf +K'n — Py — kn) My .. (A7)



22

The invariant amplitude —M, ,, is computed by drawing all connected Feynman graphs for the considered process.
The amplitude °

—@2m)*6(> _piout + K1 =D piin — kn) M 1 (G) (A8)

corresponding to graph G is built up by associating factors with the elements of the graph, which we list below:
I. Those factors, independent of the specific details of the interactions, are given by the following rules:

1. Draw the Feynman graph G. Arbitrarily number its vertices and orient each internal line from the vertex
with the larger number to the vertex with the smaller number, assigning to it a 4-momentum p. Then, without
changing the orientation, change the (single) internal fermion lines to double (antifermion) lines such as to conserve
the fermion number in every vertex.

2. Connect with thin lines the first vertex with the second, the second with the third, etc. Orient them in the
direction of increasing numbers and assign to them a 4-momentum xsn, where s = 1,2,...,n—1 is the number of the
vertex which a given dotted line leaves. Attach to the first vertex an incoming external dotted line with 4-momentum
k;n, and to the last vertex n an outgoing external dotted line with 4-momentum rsn.

3. For incoming (outgoing) boson and fermion lines: identical to the rules for Feynman graphs [5, 29], see
Table VII.

TABLE VII: Kadyshevski rules internal lines.

Line Particle |State Factor in m.e.

e ——<——qa | fermion in [[(27)%/2//2q0] ua(q)

e =—=<=== g a|antifermion| in |[(27)%/?/v/2q0] Ta(q)
e — —— < ———k| meson in [(271')3/2/\/2/%]

——<——epp | fermion | out |[(27)32/\/2po] us(p)
==<==ep 3 |antifermion| out |[(27)>/?/\/2po] vs(p)

T ok meson out [(QW)S/Q/\/%]

4. For each internal dotted line with momentum xn a factor

Golk) = —— . (A9)

K+ i€

5. For each internal boson line with momentum ¢ a factor
A () = 0(g0)0(q* — p1*) - (A10)

6. For each internal fermion line with momentum p and positive energy a factor

SS () = (B +m) 4, 0(p0)S (0> — m?) . (A11)

For each internal fermion line with momentum p and negative energy a factor

S50 (0) = (B — m) o O(—p0)d(p* — m?), (A12)

5 Notice here the (-)-sign, which is due to the (-)-sign in (AT7).
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TABLE VIII: Kadyshevski rules internal lines.

Line Particle Pairing Factor in m.e.

je——<——ej | fermion |¢p(qyta(p;)ii’ <i| S5 (ps, M)

j'e ===<=== e j |antifermion | (p;vs(q;);§ < j Sé‘;)(q‘j7 —M)

Gle e j| meson d(kyp(k;);d' < j A<+)(kfj)

in accordance with Table VIII [5].
7. For each internal photon line, using the Feynman gauge, a factor

DM(q) = — 9, 8(90)3(¢%) - (A13)

8a. For each vertex, number s, a factor

(277)464 (Z Diout + Ks41 — Zpi,in - Ks) s (A14)
[ %

where p; out and p; s, are the outgoing respectively the incoming momenta at the vertex with number s.
8b. Integrate over each internal particle line , momentum I: [ d*l/(2m)3.

9. Integrate over each internal quasi-particle (dotted) line with momentum rgn: fj;o drs/(2m).

10. Not a factor —1 for each closed loop.

11. A factor —1 between graphs which differ only by an interchange of two-external fermions. This not only
for the interchange of identical fermions in the final state, but also the interchange of e.g. an initial fermion and a
similar anti-fermion in the final state.

12. Repeat the operations (1)-(11) for all n! numberings of the vertices of the given Feynman graph and sum.

II. Those factors coming from the structure and type of vertices are, given for each vertex by the matrix element
(...1£7(0)]...). Therefore, they are, apart from a factor (—%), identical to that given in [29], appendices B.

APPENDIX B: ORIENTATION KADYSHEVSKY GRAPHS FOR THE PLANAR AND CROSSED BOX
DIAGRAMS

Here, we use the Kadyshevsky prescription [3-5] for the orientation of the internal lines in the Jth order graphs for
fermion-fermion scattering. In the figure below we order the vertices for the 4! = 24 box-graphs, and find that only
six configurations have exlusively positive baryons, i.e. correspond to BB-scattering/interaction. There are 12 graphs
with one anti-fermion in the intermediate states, and 6 graphs with two anti-fermions in the intermediate states. The
latter correspond to the so-called 1Z- and 2Z-graphs, which are important for Quark-quark (QQ) interactions.

In Fig. 5 at the left corners of each graph there are incoming positive-energy nucleon lines, and at the right corners
there are outgoing positive energy nucleon lines. If at any vertex the arrows of the nucleon lines are opposisite, the
pair-suppression mechanism makes these graphs negligible in the case of BB-scattering. However, for Quark-quark
interaction this is not the case.

Inspectation of the graphs in Fig. 5 shows that there are only six graphs that survive in the limit of strong
pair-suppression. They are: the first three graphs in row one, the third and fifth graph in row two, and the fyfth
graph in the row five.

In the two-fermion scattering processes the incoming lines enter from the right and the outgoing lines leave the graphs
on the left. We index the graphs with (r,c) wher r= row number, and c-column number for the internal fermion lines.

1. The (+,+)-graphs are: (1,1), (1,2), (1,3), (2,3), (2.5), (3,5).
2. The (4, —)-graphs are: (1,4), (1,5), (1,6), (2,4), (2,6), (3,6).
3. The (—,—i—)-gmphs are: (271)7 (3}1); (3)2)7 (471)7 (473)} (4;5)
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1 2 1 3 1 4 1 2 1 3 1 4

< < < <o 9—4—, <o
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3 4 2 4 2 3 4 3 4 2 3 2
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e SR i S e B 2 e B o
SRS S UGS S GHPE S UGS S S S SIS
3 4 4 3 1 4 4 1 1 3 3 1
3 1 3 1 3 2 3 2 3 4 3 4
o TEE s S el BEE et BN S S
GNP S GHUND S RS S GNP S SRS S S
2 4 4 2 1 4 4 1 1 2 2 1
4 1 4 1 4 2 4 2 4 3 4 3

P2 o D>—9 oD—9 o D—90 o D90 oD>—e

SR S GNOD S GRS S SIUD S SR S S
2 3 3 2 1 3 3 1 1 2 2 1

FIG. 5: Kadyshevsky vertex configurations. The solid filled-arrow lines denote baryons with positive energy, and the solid
open-arrow lines denote baryons with negative energy. The dashed lines refers to the mesons.

4- The (_7_)'graph5 are: (272)7 (3;2); (3,4), (472)7 (4;4)? (4;6)

The crossed graphs are obtained by simply crossing the meson lines in the graphs.

APPENDIX C: FOURTH-ORDER KADYSHEVSKY GRAPHS o = [++]
1. The planar-box graphs

Following the rules of Appendix A we have drawn the planar two meson echange graphs in Figs. 6-8. Here, the
numbering of the vertices can be readoff by following the quasi-particle lines, beginning with the entering x-line. The
quasi-particle lines x; for i = 1,2,3 are then defined according to Appendix A. Then, again following the rules of
Appendix A we list below the resulting amplitudes.
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FIG. 6: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons.

Graph (a) in the planar-box Feynman-Kadyshevsky diagrams Fig. 6 gives for the fourth-order kernel ¢

4 4
dcd ¢ / / (//a) _ d*qa d*qp
(2m)*6% (pl, + pp, + K'n — po — Pp — KN) M7 /(2ﬂ)3/(2ﬂ)3.

d4k1 d k2 2 2 2 2 () ()
x / (2m)3 / (2m)3 04 [k m1] 04 [kg - mg] ~SF+ (qa) Sy ' (q)

% / d/ﬁl / dHQ / dlig 1 1
_ 2’/TI€1*’L€KJQ*Z€I€3716

x(21)46% (kin + pl, — qo — ko — kn) (2m)26* (kan + pa — qa — k1 — K'n) -

1
x (2m)*6* (:‘izn — 5(,4 + 8N — (qa + @) +

1
5(29; + P+ Pa +pb)> :
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(C1)

With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components can be
carried out, thanks to the on-mass-shell §-functions. We will do so in the CM-system, where we can use the specific
form of the n*-vector. We note that the expression for the amplitude in (C2) for only positive-energy nucleons in the

intermediate state is manifest covariant.

similar calculations are carried through for the graphs (a’),(b),(b’),(c), and (¢’). In the CM-system this leads to the

6 In (C1) there are 3 Go(k)-factors giving a factor (—)2 = —1. This sign is canceled against the (-)-sign in (A8). The same is the case for

all other 4th-order graphs treated in this apaper.
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v

FIG. 7: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin lines
denote the quasi-momentum particles.

denominators (o = [++])

(//.a) 1 1
DY/’ = . .
a1 02) = b e T Fa(p)] + e wa+ r+ [Ba(q) — Ea(')] + i
1
X —, C2a
T + 1) + (Ba@) + Eo(@)] = S (Bo(0) + Bal0) + Bo(p) + Balp) 1 i’ 02
, 1 1
DY () wy) = + : :
TR K (w1, w2) w1+ K + [Ey(q) — Ep(p)] + i wa + K+ [Ep(q) — Ep(p’)] + ic
1
X , C2b
T ) 1 (Eu(@) + Bo(a) — 1 E®)  Bal®) § Bo(p) § Bup) i’ )
(//:b) _ 1 . 1 .
Do nlwrwa) = 4 o o~ Fa(p) i wa & r+ [Ba(a) — Bal0)] + i
1
X , C2
o1 T+ 100 1R+ L BoD) = Ba(p) = Bu(p) + Ealp] + ic (C2c)
(//.b) _ 1 1
DY/’ = . .
gt (W1 02) = e T Fa(p) e wat rF [Bola) — Bo()] + i
1
X , C2d
w1 +wa + 5 (K + K) + 3 [Ea(P') — Ey(p') — Ea(p) + Ep(p] + ic (C2e)
(//.e) 1 1
D e , — — . — .
mo (1) = e — B(p)] + i wa T A+ (Bala) — Bu(p)] + ic
1
X )
(K + k) + [Ba(q) + Ev(q)] — 2 [Eb(p') + Eo(P') + Eb(p) + Eu(p)] + ie
(//.¢) 1 1
DY/’ = . .
gt (W1 02) = b e T Fa(p) e wa+ r ¥ [Bola) — Bo()] + i
1
(C2e)

"I+ 8) + [Ba(@) + Eo(q)] — L [Bo(D) + Ea(D') + By(p) + Ea(p] + i€
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FIG. 8: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the pseudo-scalar mesons. The
thin lines denote the quasi-momentum particles.

2. Relation Macke-Klein formalism

To make the connection with the Macke-Klein formalism in [11] we consider elastic scattering, and we rewrite the
factors in the denominator D((T/;éjg) (w1, ws) in Eq. (C2) as follows:

1. w1 + Ey(q) — Eqo(p) = w1 + Eu(q) + Ey(p) — [Ea(p) + Eb(p)] =
w1 + [Eo(q) + Ep(p)] =W = wy + A+ A",

2. wy + Eyp(q) — Ep(p') = wa + Ep(q) + Eu(p') — [Eb(p’) + Ea(p)] =
wa + [Ep(q) + Eo(p)] =W = wey + A"+ B”,

3. witws+ % [Eo(p') — Eb(p') — Ea(p) + Eb(p)] =
w1 +wa + % 2E4(p") — (Ea(P') + Eb(p)) — (Ea(p) + Eu(p)] + 2E4(p)] =

w1 +wa + (Eo(p') + Ep(p)) — W) = wy +wa + A" + A.

Here = means taking equal masses M, = M, and A = E(p)-W/2, A’ = E(p")-W'/2, A” = E(q)-W/2, B" = A".
The expressions for the on-shell denominators become

DY (@i ws) = (wi+A+A") " (wa+ A+ A7) 2477

DL (@i wa) = (wi+ A+ AT (wa+ AT+ A" 2477

Dt()'/é(l]) (Wi, w2) = (w1 +A+A”)_1 (w2+A’+A”)_1 (w1 +w2)™ ",
DYs o) wiwe) = (Wi + A+ AN (wrt A+ AT (wr+we)

DY (wi,we) = (w1 + A+ A" (we+ A+ A" 24777,
DYLE (wiywa) = (w1 + A+ A" (wa+ A4+ AN 24778 (C3)

This demonstrates that the Macke-Klein formalism, at least for equal fermion masses, leads to equivalent expressions
for the potentials as in [11].
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3. The crossed-box graphs

Following the rules of Appendix A we have drawn the crossed two-meson echange graphs in Figs. 9-11. Here, the
numbering of the vertices can be read off by following the quasi-particle lines, beginning with the entering k-line.
The quasi-particle lines k; for i = 1,2,3 are then defined according to Appendix A. Then, again following the rules
of Appendix A we list below the resulting amplitudes.

Graph (a) in the crossed-box Feynman-Kadyshevsky diagrams Fig. 9 gives for the fourth-order kernel, with only
positive energy spinors for the intermediate nucleons,

(X a) d4Qa d4Qb d4k1 d4k2
My woripem) = [ o055 [ 003 | @rp | @rp
X8y [k —mi] 64 [k —m3] - o4 [qﬁ—Mf] 0+ [ai — M|

/oo dlil/ dHQ/ ng 1 1
o K1 — 1€ Ko — 1€ K3 — 1€

x (27)*6% (k1 + pl, — qu — ko — wn) (2m)*6* (k3n 4 pa — qa — k1 — K'n) -

1 1
><(27T)454 (@n - 5(5/ +r)n — (k1 + ko) + 5(272 + Pl + Do+ Pa) — (¢a + %)) . (C4)

With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components can be
carried out, thanks to the on-mass-shell J-functions.

Pa

Dby

KR

FIG. 9: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons.
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Pa

Py

K

FIG. 10: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the pseudo-scalar mesons.
The thin lines denote the quasi-momentum particles.

Similar calculations are carried through for the graphs (a’),(b),(b’),(c), and (¢’). In the CM-system this leads to

TR+ [Ea(;) — Eo(p)] +ie wa+r+ [Ea(ql) — E.(p)] +ie
Yot 39 4 R) + Bala) + By(a) - :-; Balo) + B0 + Bolp) 4 Ba(p) w0V
+w1 + K+ [Eb(ql) — By(p))] +ie ws+r + [Eb(;) — By(p)] + ic
x LK +K) +wi + w2 — L [Eu(p') +Eb(p/1) T E.0) T BB T B T i (C5b)
T [Ea(ql) — E,(p')] +ie wp+r + [Eb(;) — Ey(p)] +ic
Cn (W R) et [Elb(p’) — Ea(p') = Eo(P) + Ea(p)] + i€’ (Ce)
Tor Rt [Eb(;) — (p))] +ic wi + K + [Ea(;) — Eo(p)] +ic
Mot J W R) Fun T wn [f;a(l)’) — By(p') — Ea(p) + By(p)] + ic’ (Cod)
+w2 + K+ [Ea(ql) — E.(p)] + i€ ws+K + [Eb(;) — Ey(p)] + i€
“T00 + 1) + (Balq) + w1 + w2 — 1 [Bo(p) + Ela(p/) T+ Eo(p) + Ea(p)] + [Ea(Q) + Bs(q) (€50
Tt [Eb(ql) —Ey(p)] +ie wi+r+ [Ea(;) — Eo(p)] +ic

- (C5f)

. $(K + k) + w1 + w2 — 3 [Bo(p) + Ea(p') + Eo(p) + Eo(p)] + [Ea(q) + Ep(q)] + i€’
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FIG. 11: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the pseudo-scalar mesons.

The thin lines denote the quasi-momentum particles.

4. Relation Macke-Klein formalism

Taking equal masses M, = M,, and the notation used in [11] A = E(p) — W/2, A’ = E(p') - W'/2, A" =

E(q) —W/2, B”" = A”, the expressions for the on-shell denominators become

1 1

1 1

’

wo 4+ A+ A" wo + A+ A wi +wsy + 24",

1 1

w1 + wa + 2A”)71 )

wp+ A + A wi+A+ A"

DS, ws) = (i + A +A) " (wo+ A+ A (0 +ws +247) 71
DY (@i, we) = (wi+ A+ A (ot A+ AT (W +ws +247) 7T
DY (wi,we) = (wa+ A+ AN (wa+ A+ AT (wr +wa)
DUGY (wr,wn) = (n + A+ AN (@ + A+ AT (w0 Fwa)

( ) = ( ) ( ) (

M(wiw) = ( )7 ( )7 (

5. Adiabatic Approximations

In the adiabatic approximation A = A’ = 0. The expressions for the denominators become:

Planar-graphs:

1 1 1 ’ 1 1 1
DYL§ (ad) = — — DYYe ) (ad) = — o —
;0,0 (a’ ) w1 2A// wo ? ;0,0 (a’ ) w1 2A// w27
1 1 1 / 1 1 1
DYH (ad) = — — , DY) (ad) = — =,
;0,0 ( ) W1 Wi+ ws wsy ;0,0 ( ) W1 Wi+ ws wo
1 1 1 / 1 1 1
D(/./7C) d) = — D(/./ac) d) = — _
30,0 (ad) w1 247 wy y 50,0 (ad) w1 24" wy

(C6)

(C7)
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Crossed-graphs:

1 1 1 / 1 1 1
DX (gq) = — — ., DX () = — -,
;0,0 ( ) W1 W1+ ws wy ;0,0 ( ) W1 W1+ ws wy
1 1 1 Xb) 1 1 1
DY (gq) = — — D)) = — S
;0,0 ( ) Wo W1+ ws woy ;0,0 ( ) W1 w1+ ws wi
1 1 1 : 1 1 1
DS (ad) = — — , DSGo (ad) = — — (C8)

Wy w1+ wy wo w1 w1t w2 w

Notice that the spinor-numerator factors for the parallel graphs are the same, and so we have the symmetry wy <> wo
as can be seen from the expressions above, and similarly for the crossed graphs.

Defining D((T/;é?o(ad) =3 , DU/:9 (ad). Similarly D((T);gfo(ad) for the crossed graphs. We have for the parallel

y — ’ 7
i=a,b,c,a’ b’ ,c

graphs
1 4 1 2 1
DY) (ad) = — — . C9
"’O’O(Q ) wy 2A7 wo  wiws wi + wo (©9)
and for the crossed graphs
2 1
DY) (ad) = {1 + 9} . (C10)
O wiw2 wy w1 | witwe

Comparison: The denominators D(//’“)(ad), D(//’“,)(ad) correspons to the so-called TMO-graphs. Subtracting the
one-meson-exchange iterated graph DU/:® (ad), D/ ’“/)(ad) = 0. This subtraction avoids ”double counting”, when
used in the integral equations. Taking into account the leading non-adiabatic corrections, see for details [11], one
obtains in total

’ 1 1 1
DY (ad) + DYLE) (ad) = o <w_1 + W—Q) . (C11)

contributions, including the 1/M corrections from the TMO-graphs, for the planar graphs in formulas (8.1)-(9.4)

1 1 1 1
DYD(ad) = _ - _ =
(ad) wiwe (w1 +we  wi  wa]’

and for the crossed graphs in formulas (8.3)-(8.5)

DX (ad) =

w1 W2 w1t ws

! {1 1 ! ]:_DU/)(ad),
w12

APPENDIX D: FOURTH-ORDER KADYSHEVSKY GRAPHS o = (+-)

1. The planar-box graphs

Following the rules of Appendix A we have drawn the planar two meson echange graphs in Figs. 12-14. Here, the
numbering of the vertices can be readoff by following the quasi-particle lines, beginning with the entering x-line. The
quasi-particle lines k; for ¢ = 1,2,3 are then defined according to Appendix A. Then, again following the rules of
Appendix A we list below the resulting amplitudes.
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FIG. 12: Planar Kadyshevsky graphs. The solid line denote the baryon, the thin double-line the antibaryon. The dashed lines
refers to the mesons. The thin lines denote the quasi-momentum particles.

Graph (a) in the planar-box Feynman-Kadyshevsky diagrams Fig. 12 gives for the fourth-order kernel

4 4
4cd (/) _ [ 4 d*qy
()80 3t = =) MY = [ e [

d*ky d*ky - -
X/W/(%T) O [ - mf]tﬂ[k%- R S (aa) S5 (a)

% / d/ﬁ?l / dKJQ / dlﬁ)g 1 1
_ 271',%1—26112—26,%3—26

x(21)46% (kin + pl, — qo — ko — kn) (2m)*6* (k3n + pa — qa — k1 — K'n) -

x (2m)*5* (Hgn — 1(/{’ +r)n — (k1 + ko) +

1
5 —(pl, — Py, + Pa —m)) . (D1)

2
With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components can be
carried out, thanks to the on-mass-shell J-functions. We will do so in the CM-system, where we can use the specific
form of the n*-vector. We note that the expression for the amplitude in (D1) for only positive-energy nucleons in the
intermediate state is manifest covariant.

Similar calculations are carried through for the graphs (a’),(b),(b’),(c), and (¢’).
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FIG. 13: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin lines
denote the quasi-momentum particles.

In the CM-system this leads to the denominators [0 = (+—)])

P/

!
ok K

pU/a)

gl
ok, K

P/

!
oKk K

P/

!
ok K

pU//)

gl
oKk K

pU/e)

ok K

(w1, w2)

(wla w2)

(w1, w2)

(w1, w2)

(w1, w2)

(w1, w2)

8 wi +wz + 3(K + K) + (Ea(q) + Ey(q)) + 5 [Eo(p') — Ea(p') + Eo(p) — Ea(p)] + i€

oAt [Ea(;) — Eo(p)] +ic wot K+ [Ea(ql) — E.(p)] +ie
“ 1+ wa (5t R) + [Ba() + By() +1% SR oy PR 1E! —.(D2a)
T [Eb(pl) + Ey(q)] +i€ wy + K+ [Eb(pl’) + Ey(q)] +ie
ot w35+ )+ [Bala) + By(q)] +1% [Ey(p') — Ea(p') + Ey(p) — Ea(p)] + i€ (D2D)
Py [Ea(p%) — Bo(@)] +ie wy +# + [Eb(pl') + Ey(q)] + e
s+ 3w )+ ] [Eb(p’)l— Ea(p') — Ey(p) + Ea(p] + i€’ (D2c)
Tor R [Eb(pl) + By(q)] +ie wi+ K — [Ea(;) — Eo(q)] +ie
e N T I B R B (2
jPEr. [Ea(pl) — Eo(q)] +ic wy +r + [Eb(pl’) + Ey(q)] + e
ot T ws+ 37 1) + [Ba(@) + Eo(a)] +1% o) B T Bl —Eatpl v ie P2
Tor Rt [Eb(pl) + Ey(q)] +ie wi+r - [Ea(;) — Eu(q)] + i€

: . (D2f)
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vl < Pa Pa = Do
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FIG. 14: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin lines
denote the quasi-momentum particles.

2. The crossed-box graphs

Graph (a) in the crossed-box Feynman-Kadyshevsky diagrams Fig. 15 gives for the fourth-order kernel, with only
positive energy spinors for the intermediate nucleons,

D i - [ [ [ 5t
arPi Pas (2m)3 ) (2m)® ) (2m)3 ) (2m)3
x4y [kf —m3i] 64 [k3 —m3] - 65 [qi — M?2] 64 [qf — M)

« / d/ﬁ)l / dKJQ / dlﬁlg 1 1
_ 2T K1 — zeﬁg—zefig—ze

x(2m)26* (kin + pl, — qa — ko — k) (2m)26% (kan + pa — qo — k1 — K'n) -

1

X(27T)4(54 (Iign - 5(5/ + K/)n - %(p;) _pfl + Dy _pa) - (Qa + Qb)> . (DS)

With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components can be
carried out, thanks to the on-mass-shell é,-functions.
Similar calculations are carried through for the graphs (a’),(b),(b’),(c), and (¢’). In the CM-system this leads to
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FIG. 15: Crossed-box Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin
lines denote the quasi-momentum particles.

the denominators [ = (+—)])

D(X’,a) (wl WQ) = 4+ 1 . 1 .
TR ’ Wa + R + [Ea(q) - Ea(p/)] + ie w1 + "5/ + [Ea(q) - Ea(p)] + 7;6
1
X , D4a
00 1) & Eala) £ Bo(@) 1 LB — Falo) + Bolp) — Balp) 1 i’ 04
, 1 1
D) (wr,we) = + : :
TRk (w1, w2) w1+ K+ [Ep(q) + Ep(p)] + i€ wo + &' + [Ep(q) + Ep(p’)] + ic
1
X , D4b
T ) 7 Eala) 7 o) + LEp) — Bup) + Brle) B v i )
(X,b) _ 1 . 1 .
Doelenwn) = G R — Bap) [ T ie o T+ [Bo(@) + Bo(p)] T ic
1
X , D4c
o1 T ont 1+ 1)+ T [Eo0) = Ba(p') = Bo(p) & Ealp)] + i€ (bde)
(X,b') o 1 1
D et 5 - + T T
ro W) = R @ ¥ B (D) T i w1 T 7 [Bald) — Balp)] T i
1
X , D4d
o r b 500 R) L (ED) ~ (o)~ Eulp) + Ealp)] +ie (i
(X,e) 1 1
D o , — — . — .
ron (1 02) = A Q) — Ba(p)| T i€ w1 + % & [Bo(q) + By(p)] + i€
1
X , D4e
T 1)+ (Ba(@) + Bola)) + LB — Balo) + Bolp) — Bulp)] Fic” %)
(X,c') 1 1
D ! 5 - - T
mon W) = e R @ F B (0] T i w1 7 [Bald) — Ba(p)] T ic
! (Daf)

“TH + 1)+ (Ba(q) + Eo(@) + L [Bo(p) — Ea(p') + Eo(p) — Ea(p)] + i€
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FIG. 16: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin lines
denote the quasi-momentum particles.

3. Adiabatic Approximations
In the adiabatic approximation A = A’ = A” =0, B” = 2M. The expressions for the denominators become:

Planar-graphs:

Dy (ad) = wil m w% DY (ad) = w1 +12M w1 +wi +2M ws +12M’
D((,;é:g)(ad) T w0 +12M w1 iwg WLQ ’ D‘(’;é:gl)(ad) - wil wq Jlrwg w1 Jr12M’
DYfiad) = o e = DY ) = e (D5)
Crossed-graphs:
Do (ad) = wil ﬁ w% . DGy (ad) = w1 +1 oM ﬁ ws +1 oM’
D‘(’)?B”%)( d) = w1 —&—12M w1 j—wQ wig ’ Dg);%’%/)(ad) - wil w1 j—wg wa —1-12M’
DY) (ad) = ﬁ o7 wiQ . DD (ad) = wil . ﬁ (D6)

Notice that the spinor-numerator factors for the parallel graphs are the same, and so we have the symmetry wy <> wo
as can be seen from the expressions above, and similarly for the crossed graphs.

Defining D((T/;é?o(ad) => , DUY/:9) (ad). Similarly Dggzo(ad) for the crossed graphs. We have for the parallel

grapgs

y— ’ /
i=a,b,c,a’ b’ ,c

1 1 1 1 1
+ + +
wiwso w1 (wl + 2M) (UQ(WQ + 2M) (wl + QM)((,UQ +2M) | w1 +ws+2M
1 1 1
+ + ,
wi(wr +2M)  wo(ws +2M) | wy + we

DYftad) = |

(D7)
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FIG. 17: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The thin lines
denote the quasi-momentum particles.

and for the crossed graphs

x 1 1 1 1 1
D((,;O)@(ad) = [

+ + + —
w12 w1 (WQ + QM) 0%} (w1 + 2M) (w1 + QM) (UJQ + QM) 2M

+ ! + ! ! (D8)
w1 (OJQ + 2M) (w1 + QM)LUQ w1 + wo ’
For the antifermion in the a-line identical contributions are obtained so that we get a factor 2 in the
sum.

APPENDIX E: FOURTH-ORDER KADYSHEVSKY GRAPHA o = [——]

1. The planar-box graphs

Following the rules of Appendix A we have drawn the planar two meson echange graphs in Figs. 18-20. Here, the
numbering of the vertices can be readoff by following the quasi-particle lines, beginning with the entering x-line. The
quasi-particle lines k; for ¢ = 1,2,3 are then defined according to Appendix A. Then, again following the rules of
Appendix A we list below the resulting amplitudes. In these notes we select the graphs with two antinucleons in the
intermediate states.
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vl < Pa Pa = Do
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FIG. 18: Planar Kadyshevsky graphs. The solid line denote the baryon, the thin double-line the antibaryon. The dashed lines
refers to the mesons. The single thin lines denote the quasi-momentum particles.

Graph (a) in the planar-box Feynman-Kadyshevsky diagrams Fig. 18 gives for the fourth-order kernel
ML) / d'qa / diq,
ok’ K (27T)3 (271’)3
d*k; d*ks ~(+ —
| oy | e 0+ - mf] . (K~ m3] - 55(a0) 557 (an)

/oo dlﬁ:l/ dl‘dg/ dl€3 1 1
2 m—zeng—zemg—ze

x (27)*6* (k1 — pa — qa — k1 — Kn) (21)*6* (kan — p) — qy — ko — K'n) -

1 1
X(27‘r)464 (/»QQT'L - 5(/@/ + K})TL — (kl + ka) =+ i(p; — p;) — Pa +pb)> . (El)

Now, in (E1) there are four delta-functions from which we obtain the overall four-momentum conservation, including
k and k’. With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components
can be carried out, thanks to the on-mass-shell 6 -functions. We will do so in the CM-system, where we can use the
specific form of the n*-vector. Similar calculations are carried through for the graphs (a’), (b), (b’), (c), and (¢’).
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FIG. 19: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The single thin

lines denote the quasi-momentum particles.

Performing the k;-integrals (i=1,2,3) leads to the denominators (o = [——])

a 1 1
DY wnw2) = o TR+ [Ba(P) + Ba(@)] + i w2+ # + [Bo(®) + By(q)] +ic
1
ot w15+ R) + 4 (Bb(p') — Ba(D') — By(D) + Ba(p)] + ic
: 1 !
Dg/u/e”(,ln) (wi,w2) = +w1 Tk + [Eo(p) + En(q)] + i w2+ & + [Ey(q) + Ea(p))] + i€
1
St w3 R) + 5 Ea(P) — Eo(P) + Eo(p) — Ba(p)] + i€’
L 1
DYk, wa) = o T A+ [Ba(p) L Ba(@)] L ic wat 7 + [Bo(D') - Bo(q)] +ic
1
CL R [Ba(@) + By(a)] + 5 [E(p) + Ea(p) + Ey(p) + Ea(p] +ic
, 1 !
ij{é;?ﬁ)(wl,m) - +w1 Tk + [Eo(p) + Ep(qQ)] + ic wa + K + [Ea(p' + Ea(q)] + i€
1
“T + 1) + [Ba(@) + Bol(Q)] + L [Ea(p') + Eo(P) + Ba(p) + Eolp] + i€’
c 1 1
G T2 (3 RN 2N ) BE TR P 1oX ) RN )
1
“TW 4 1) + L Eo(P) + Ba(P) + Eo(p) + Ba(p] + (Ea(q) + By(a)) + i€
c 1 :
DL i wa) = o At [BoD) T Eo()] T e wat A+ [Bo®) + By(a)] T ic
1
X

3K + k) + [Ea(q) + Eo(q)] + 5 [Es(p') + Ea(p') + Eb(p) + Ea(p] + ic’

(E2a)

(E2b)

(E2¢)

(E2d)

(E2e)

(E2f)
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FIG. 20: Planar Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The single thin
lines denote the quasi-momentum particles.

2. The crossed-box graphs

Graph (a) in the crossed-box Kadyshevsky diagrams Fig. 21 gives for the fourth-order kernel, with only positive
energy spinors for the intermediate nucleons,

4 4 4 4
(X.a) (1 7. _ d"qa de/dkl/de.
Ma;n’,n (pavpbvpavpb) _/(271')3 / (27’(’)3 (27‘(’)3 (27‘_)3
X5+ [k2—mﬂ (5_;,_ I:kgf 2} '5_;,_ I:qasza?] 54_ [qg*sz]

/oo dlﬁ:l/ dlig/ dﬁg 1 1
2 ml—zeﬁg—zeﬁg—ze

x (2m)26% (kin — pa — qa — k1 — k) (2m)26% (k3n — p) — qy — k1 — &'n) -

1 1
x (2m)4o% (,@271 — 5(/4 +r)n — (w1 +ws) — E(p;7 —ph+ o — pa)) ) (E3)
With the delta-functions all k-integrals can be carried out. Also, the integrations over the zero-components can be

carried out, thanks to the on-mass-shell é,-functions.
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FIG. 21: Crossed-box Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The single
thin lines denote the quasi-momentum particles.

In the CM-system this leads to the denominators

D(X7/a) (w1 LUQ) = + L : ! :
iR wi+ K+ [Ea(q) + Ea(p)] +ie w1+ K + [Ey(q) + Ey(p')] + i€
1
X —, E4a
o s + L0 4 1) - L En(p) — BalD) — En(p) & Ea(p)] + ic (Eda)
' 1 1
D (wrwe) = + : -
mt W1 w2) = e @) T B (p)] T i wa + [Bala) + Ea(p)] T ic
1
X , E4b
wi + w2+ 3(K + k) + 3 [Ea(p') — Ep(p') — Ea(pP) + Eb(p)] + ic (E4b)
1 1
DD (wi,ws) = + : :
mot (W1 02) = T Fa(p)] T i w1 - 7 [Bu(@)  Bo(p)] T e
1
X W T p p —, (E4c)
w1 +wo + 5(K +K)+ 5 [Es(p') + Ea(P') + Eb(p) + Ea(p)] + [Ea(aq) + Eb(q)] + i€
, 1 1
oint (W1, w2) wa + i+ [Bp(qQ) + Ep(p)] +ic wat & + [Ba(q) + Ea(p')] +ic
1
X T T - - — (EA4d)
wi +wa + 5(K + k) + 435 [Ea(p’) + Ep(p') + Eo(p) + Ep(P)] + [Ea(q) + Ep(q)] + ie
1 1
DO (wi,w2) = + : :
mo w1 02) = ) T Ba(p)] e ¥ 7+ [Bala) + Ba(0)] 7+ ie
1
X T T —, (Ede)
wi +wa + 5(K + k) + 5 [Ey(P') + Eo(P') + Ep(P) + Eo(p)] + [Ea(a) + Ep(q)] + i€
' 1 1
G wa + i+ [Bo(q) + Ep(p)] +ic wr+# + [Ep(q) + Ey(p)] + ic
1
(E4f)

“r w2+ )+ L [Bo(D) + Ba(D) + Eo(P) + Ba(p)] + [Ba(@) + By(a)] + ic
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FIG. 22: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The single thin
lines denote the quasi-momentum particles.

3. Adiabatic Approximations

In the adiabatic approximation the expressions for the denominators become:

Planar-graphs:

1 1 1 , 1 1 1
DY () = DY) (qd) =
;0,0 (a ) w1 + 2M w1 + wo wo + 2M ’ ;0,0 (a ) w1 + 2M w1 + wo wo + 2M’
1 1 1 , 1 1 1
DY (ad) = — DY (ad) = —
30,0 (a ) w1 +2M 4AM we +2M » 7030,0 (a ) wy +2M 4M we +2M’
V6 on_ 1 S 1 . 1 1
Do (@d) = =537 T0T oy 5 200 » Dotio ad) = Z—on T I wy F 20 (E5)
Crossed-graphs:
1 1 1 , 1 1 1
DL (ad) = DY) (ad) =
30,0 (a ) w1 + 2M w1 +wa wi + 2M ’ ;0,0 (a ) wo + 2M w1 + w2 wa + 2M’
1 1 1 , 1 1 1
DY (ad) = DY (ad) =
000 (00) = o o s T AM o 1 20 » Do (ad) = o s T AN s f 20
X,c 1 1 1 X,c 1 1 1
DG (ad) = . DYSY(ad) = (E6)

w1 +2M wi +wy +4AM wy +2M T we +2M wy 4wy +4M wy 4+ 2M

Notice that the spinor-numerator factors for the parallel graphs are the same, and so we have the symmetry wy <> wo
as can be seen from the expressions above, and similarly for the crossed graphs.

Defining D((,/;é’)o(ad) =3
grapgs

, DU/ (ad). Similarly Df,fg?o(ad) for the crossed graphs. We have for the parallel

y — ’ /
i=a,b,c,a’ b’ ¢

1 2 4
z:00(ad) (1 + 2M0)(wz + 20) |1 +wz | 4M "
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FIG. 23: Crossed Kadyshevsky graphs. The solid lines denote baryons. The dashed lines refers to the mesons. The single thin
lines denote the quasi-momentum particles.

and for the crossed graphs

x) 1 2 1 101
D d) = e
”’O’O(G ) [(wl +2M> + <w2+2M) }wl + wy

! + ! : ! (E8)
w1+2M w2—|—2M w1+w2+2M'

APPENDIX F: EXACT REDUCTION DIRAC-SPINORS TO PAULI-SPINORS

The transition from Dirac spinors to Pauli spinors is given here, without approximations. We use the notations
E=FE+Mand & =F + M', where E = E(p, M) and E' = E(p', M'). Also, we omit, on the right-hand side in the
expressions below, the final and initial Pauli spinors T and y respectively, which are self-evident. The expressions

below are derived using the Dirac spinors [29]
_ |E+M X _ JE+M [ 75

JoR




With these Dirac spinors we have

o &e | pP-p\ pPxpo
wP)uP) =\ g (1 g ) e
& [op op
( )75’“( ) = = AM' M & _T ’
&e | pp pxXp-o
a(P)’uP) = H\ g (1+ e R it
& (P p (oxp oxp
)y ulP) = +\ Gz <_/+E “( g~ e )|
&€ [op op
B ue) = oy | T+ 7).
g&e | o-p)o(oc-p
_ ] &g ~pp) _ .pP’Xp
o AM'M E'E Ee

where we defined k = p’ — p, q = (p’

The Gordon decompositions used in this paper read

e

iu(p') o™ (p' = p)Lu(p)

i o(p') " (=p’ = p)oulp)

For (4+4)-vertices the complete vector-vertex is

= ap) { o+ by -

+p)/2, and Ky = fv/gv.

W4} o)

o(p) {(M’ + M)+~ p)“} u(p).

a(p")Tyulp) = u(p') {7*‘ + ﬁnva"”(p’ —p)u} u(p)

= u(p) Kl + M;LM

&e (M
AM'M
W op o
2M<E+E)< 373
e 1+M’+M
S S V]

_kv 1.9 PoP p o
2M(p+p)( g€

/€v> -

p=0 : +

X/l(p +p) } u(p) =

o) (1 TR
%))

{5+ 8) i (7
)|
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(F2a)
(F2b)
(F2c)
(F2d)

(F2e)

(F2f)

(F3a)

(F3b)

(F4a)

(F4b)
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_ &€ [op op
o@)ulp) = N\ orar 17 — F | (F5a)
_ &e | pp P xp-o
/ = —_— _ —
oP)rsulp) = =\ (1 gE > e | (F5b)
& [op op
o) up) = +\ pag ot 7} ; (F5¢)
/ _ &g [ (o-p)o(o-p)
vy ulP) = o _a+ FE
Y LN T 0 -5 P .3
AM'M | &'e &e
+%(0 pp +o-p p)} ~ +o, (F5d)
_ &e pp p Xp-o
N 0 _
vy uP) =\ g KH oz ) g (F5e)
_ Ee P p oxp _oXp
/ = —_— J—
vy wlP) = g Kg, + 5) —|—z< = = : (F5f)
and for the ul'v one can use the identity @(p’)T v(p) = v(p) [v0l'T o] u(p’) 7.
For (4-)-vertices the complete vector-vertex is
/ 1 v /
o(p)Thulp) = o(p) {’y“+ agrver (=p p)y] u(p)
_ M + M Ky
— / yn YWV
= v(p){(lJr—QM KJV)V o p)#} u(p) =
o EE M +M o-p o-p
p=0 4M'M[(1+ oM Y (5' T
Vo gy (TP 9P
i £'e M+ M (0-p) o (o-p)
p= : + 4M’M|:(1+ oM Hv){0’+ 05
o-p o-p
+W(P -p) < o T)] (F6b)

APPENDIX G: FOLDING AND THE BARYON-BARYON POTENTIAL

We consider a nuclon having a momentum P and label the 3 quarks by a,b, c. The quark momenta are denoted by
Das Db, Pe- The spatial part of the composite nucleon wave funtion is taken to be [33]

N N 5\ 3/2 )
Y(Paspyspe) = P(p1,p2,p3) = <\/§R ) exp _%Z(pi—pj)Q - (G1)

™ .
1<J

7 Note the relations v(p) = 75 u(p) and ¥(p) = —@(p)~ys, which explains the connections between the (F2f) and (F5f) expressions.
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(a) (b)

FIG. 24: Two-gluon exchange in NN-scattering. The bubbles at the corners are the nucleon wave functions. Graphs with
exchange of two gluons between the same quarks (a) correspond to the Pomeron (b). Experiment finds that to a good
approximation in each nucleon only one quark couple to the gluons, i.e. dominance of the graphs of type (a).

ks - - K,
ko = = kb
k1 > ® > K,

1

]

1

1

1

]

1

1
q > @ > qi
g2 B B> 7
qs s > q3

FIG. 25: External and internal momenta for pomeron-exchange

1. Overlap Integrals, Vertex functions

We consider the spin 1/2 baryon-baryon graph for pomeron-exchange between the constituent quarks of the two
nucleons. In the following we will use, instead of indices a,b,c, the indices i=1,2,3.

In Fig. 25 we have given the momenta for the initial and final nucleons, and the assigned momenta of the quarks.
From momentum conservation we have

pr=ki+ka+ks , pp=q+q+aqg,

pl=ki+k,+ K, ph=dqi+d+d, (G2)
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For meson-exchange with p; — pj = p, — p2 = k, we have for the matrix-element of the potential

P15V Ip1p2) = / H d*k; 5<p1 k7;> / H K} 6 p'lek’j
i J

i=1,3 j=1,3

X

[V RTRI TS S B B TR A o1

1=1,3 j=1,3

X

1/;;/1 (K'1, K2, k') @;é (d'1,9'5,4'3) '&pl (k1. ko, ks) 1/;192 (q1,492,93) -
6% (K2 — k) 0° (k'3 —ks) 6°(d'y —a2) 6°(d's —aq3) -

kK k k:q,
gl 1k21l;(2 WD) 501 k) & (k) — ) | (G3)
M

X

In (G3) the 7’s denote the vertex functions. For pomeron-exchange (k*m?) — M?2. Using the gaussian wave function
of equation (G1), we find for the exponent, denoted by fy, taking into account that the momenta of the ’spectator
quarks 2 and 3 do not change, the expression

R2
fn = exp [—TN {(kl - kz)z + (k1 — k3)2 + (k2 — k3)2
(1 — @)’ + (@1 — @) + (¢ — g3)°
(k) — k2)” o (K] — ks)” + (k2 — k)’

2 2
+ (@ — 02)° + (6 — a0)° + (@2 — 05)°}] (G4)
In (G4) k1 = k; etc. Introducing the 3-momenta

Py =ko+ks , Roz=¢q2+g3,
Koz =ky—ks , Qa3=q—qs3, (G5)

for the ’spectator quarks’, and the 3-momenta for the ’active’ quarks the momenta Q and S defined as

k=k -k klzé(Q*k)
Q=lki+K , K= (@Q+k)
k=q—q; , qlzé(SJrk)
S=ai+a; , q’1=%(s—k) (G6)

Expressed using these momenta, fy becomes
R2
N = exp {—%{ (Q* +k*) —2P33 - Q + (P35 + K35) + 2K35
+(S*+Kk*) —2Ra3- S+ (R33 + Q33) + 2Q§3H . (G7)
In terms of the new variables defined in (G5) and (G6) the integration over the quark-momenta becomes
1\
<§> /de d*S d®Py3 d®* Koz d®Ros d>Qo3 -
®) 1 ®) 1
X0 p1+§(k‘—Q)—P23 1) p2—§(k‘+5)—R23 .

%) (p’1 — % (k+Q) — st) 0 (Plz + % (k—5)— R23) (G8)
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From these d-function constraints one immediately gets
3P (ph —pr = k) 8@ (ph —pa+ k) =
3P (0} —pr = k) 8P (0} + Py —p1 — p2) (G9)

i.e. overall 3-momentum conservation and the fixing of k in terms of the external momenta.
Next we go over to the CM-variables. We have

1
pi = —p2=p , k=p'—p , p=q-gk,

1 1
P, = —pPr=p , q=§(p+p’) 7 p’=q+§k- (G10)

Then using (G5), we find for the expression between the curly brackets in (G6) the following expression
9
{} = {2(q2+k2) +7(Q°+5°%) —3q-(Q ) +3 (K3, + Q3) } (G11)

Now since the potential matrix elements will not depend on K53 and @23, apart from the appearance of these momenta
in the exponential, we can integrate these variables out,with the result:

3 3 RY (ro2 2 2 \°
/d Ko d Qgg exp |:7 (K23 + Q23):| = < > . (G12)

Ry

Collecting all results of the section, we find

"l 1\ (2r)’ 4 [ 13, 3 RY (o 12
ipalVip2) = \g) () N /d Q d38 - exp _7((1 R
N

X exp {%{%(QMS%SQ(QS)H.

where Vo (Q, S; q, k) denotes the QQ-potential which contains the MQQ-vertices and the Pomeron ”propagator”.
For central two-gluon exchange potential Vg = Voo (k), and therefore the d3@Q d3S-integrals can be carried out

3
Jo = /dSQ d*S exp {a{i (Q*+S?) —3q- (QS)H = (;“O:) e=209’,
This gives
N/ 270\ / 87 \? R2 ~
(05 VIpips) = (—) (—) (—) A exp [——N k?} Voo(k) 5 (0} + ph — p1 — pa)
172 8 R% 3R3, 3 LR
R2 -
= exp {—YN kQ] Voo(k) 6 (p] +ph — p1 — p2) (G14)

This is what is expected, because of the normalization for k? — 0 the result must be ‘N/QQ(O),

2. Application QQ-potential

From the fit in terms of Gaussians in configuration space

VoQ.ij(Xi —%;) = > Anjk (xi — ;)" exp {Ai (xi — Xj)Q] ; (G15)
n,k



where n=0,2. Since this is a local potential it depends ony on kj —k; =q; —q' = k.
Therefore, in momentum space

Voq.ij(k) = ;An,k (—d%l?)nm { <ﬁ> " exp {—kz/(4Ai)} }

Omitting the overall 4-function the overlap results is

3/2
T
n=0 : (Pip5|V]pip2) = ZAO,k (AT> exp {kQ/(élUg’k)} )
k k.n

3/2
v

n=2: (Piph|Vipip2) =Y Agy <A2 ) '
A k.n

><i 1—k—2 exp|—k?/(4U3,)
202, | 6AZ, ] P 20|

with Up i, = AvAp i \/3/(3A?V + 4A31,k)7 where Ay = 1/R%. In configuration space

U 3

U 3
n=2:V(R)= ZAQJC (ﬁ) exp [—UikR2)} .
k) 9

()2 )]
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(G16)

(G17a)

(G17b)

(G18a)

(G18b)

For Voo(+—) and Vgg(na), which have a zero at the origin, the form of V(R) for n=2 in (G18) shows that the

folding eliminates for BB the zero at the origin from the QQ-potential.
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