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The Quark-quark (QQ) interactions in this paper are derived from the Extended-soft-core (ESC)
interactions. The meson-quark-quark (MQQ) vertices are determined in the framework of the con-
stituent quark-model (CQM). These vertices are such that upon folding with the ground-state
baryonic quark wave functions the one-boson-exchange amplitudes for baryon-baryon (BB), and
in particularly for nucleon-nucleon (NN), are reproduced. This opens the attractive possibility to
define meson-quark interactions at the quark-level which are directly related to the interactions at
the baryon-level. The latter have been determined by the baryon-baryon data. Application of these
”realistic” quark-quark interactions in the quark-matter phase is presumably of relevance for the
description of highly condensed matter, as e.g. neutron-star matter.

These quark-quark potentials consist of local- and non-local-potentials due to (i) One-boson-
exchanges (OBE), which are the members of nonets of pseudo-scalar-, vector-, scalar-, and axial-
mesons, (ii) Diffractive exchanges, (iii) Two pseudo-scalar exchange (PS-PS), and (iv) Meson-Pair-
exchange (MPE). Both the OBE- and Pair-vertices are regulated by gaussian form factors producing
potentials with a soft behavior near the origin. The assignment of the cut-off masses for the BBM-
vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar
scheme for MPE.

Like previous ESC models, the recent ESC16 describes nucleon-nucleon (NN), hyperon-nucleon
(YN), and hyperon-hyperon (YY) in a unified way using broken SU(3)-symmetry. Novel ingredients
are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector
meson form factors. These innovations made it possible to keep the parameters of the model closely
to the predictions of the quark-antiquark pair creation (QPC) model, with a dominance of the 3P0-
pair creation. This is also the case for the flavor SU(3) F/(F +D)-ratio’s. In this QPC-model to the
couplings in the framework of the CQM the mesons are coupled directly to the quarks. Therefore, it
is most natural to consider meson-exchange on the quark-level as the basis for the meson-exchange
BB-potentials. In this paper we derive the QQ-interactions for the two-quark channels of the basic
triplet i.e. U,D, and S quarks: (i) UU-, UD-, and DD-, (ii) US- and DS-, (iii) SS-channels.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

The Quark-quark interactions in this paper are derived
from the Extended-soft-core (ESC) interactions. In [1, 2]
we have determined the meson-quark-quark (QQM) ver-
tices in the framework of the constituent quark-model
(CQM) [3–6]. These QQM-vertices are such that upon
folding with the effective ground-state baryonic harmonic
oscillator quark wave functions, the one-boson-exchange
amplitudes for nucleon-nucleon (NN) are reproduced.
This opens the attractive possibility to define meson-
quark interactions at the quark-level which are directly
related to the interactions at the baryon-level. The lat-
ter have been determined by the baryon-baryon data.
As an application of these ”realistic” quark-quark inter-
actions to the quark-matter phase as presumably is rel-
evant for the description of highly condensed matter, as
e.g. neutron-star matter.
In QCD two non-perturbative effects occur: (i) con-

finement and (ii) chiral symmetry breaking. The
SU(3)LxSU(3)R chiral symmetry is spontaneously bro-
ken to an SU(3)v symmetry at some scale ΛχSB ≈ 1
GeV. Below this scale there is an octet of pseudoscalar
Goldstone-bosons: (π,K, η). The confinement scale
ΛQCD ≈ 100 − 330 MeV. The complex QCD-vacuum
structure can be described as an BPST instanton/anti-
instanton liquid giving the valence quarks a dynamical
or constituent effective mass ≈ MN/3 [7, 8]. This corre-
sponds to the CQM [6], which is the basis for the quark-
quark interactions proposed in this paper.
The QQ-interactions in this paper consist of local-

and non-local-potentials due to (i) One-boson-exchanges
(OBE), which are the members of nonets of pseudo-
scalar-, vector-, scalar-, and axial-mesons, (ii) Diffractive
exchanges, (iii) Two pseudo-scalar exchange (PS-PS),
and (iv) Meson-Pair-exchange (MPE). Both the OBE-
and Pair-vertices are regulated by gaussian form factors
producing potentials with a soft behavior near the ori-
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gin. The assignment of the cut-off masses for the BBM-
vertices is dependent on the SU(3)-classification of the
exchanged mesons for OBE, and a similar scheme for
MPE.
The ESC-models in general, and so also the recent ver-

sion ESC16 [9–11], describe nucleon-nucleon (NN) and
hyperon-nucleon (YN) in a unified way using broken
SU(3)-symmetry. Novel ingredients in ESC16 are the in-
clusion of (i) the axial-vector meson potentials, (ii) a zero
in the scalar- and axial-vector meson form factors. These
innovations made it possible for the first time to keep the
parameters of the model closely to the predictions of the
3P0 quark-antiquark creation (QPC) model [3, 5]. This is
also the case for the F/(F +D)-ratio’s. The application
of the QPC model to the couplings was executed in the
framework of the constituent quark-model. Therefore, it
is most natural to consider meson-exchange on the quark-
level. In this paper we derive the QQ-interactions for the
two-quark channels of the basic triplet i.e. U,D, and S
quarks: (i) UU-, UD-, and DD-, (ii) US- and DS-, (iii)
SS-channels.
The BBM-vertices are described by coupling constants

and form factors, which correspond to the Regge residues
at high energies [12]. The form factors are taken to be
of the gaussian-type, like the residue functions in many
Regge-pole models for high energy scattering. Although
the gaussian quark wave functions lead to gaussian type
of form factors, also in (nonrelativistic) quark models
(QM’s) a gaussian behavior of the form factors is most
natural, because the mesons are Reggeons. These quark-
quark-meson form factors evidently guarantee a soft be-
havior of the potentials in configuration space at small
distances.
In the ESC models, see e.g. [13], the assignment of the

cut-off parameters in the form factors is made for the
individual baryon-baryon-meson (BBM) vertices, con-
strained by broken SU(3)-symmetry. The same scheme
we follow here for the QQM-vertices.
Confinement is related to the infrared behavior of

QCD. This plays an important role when the quarks are
not close together. In quark-matter the quark-density is
high and therefore the quark-quark interaction is domi-
nantly of short range. So, the infrared behavior can be
ignored, being the justification for the use of the same
formalism for quarks in (dense) quark matter as for nu-
cleons in nuclear matter.
The contents of this paper are as follows. In section II

we review some facts about the ”constituents quarks”,
within the context of spontaneously broken chiral sym-
metry (Nambu-Goldstone), and the complex structure of
the QCD vacuum. In section III the relation between
the ESC BBM-couplings and the QQM-couplings is ar-
gued for the CQM. In section IV we give the Bruckner
G-matrix formalism for quark matter. The relativistic
Thompson-type Bethe-Goldstone equation is introduced
and with the Macke-Klein transformations brought into
the more standard Lippmann-Schwinger type equation.
Here also the reduction to the Pauli-spinor amplitudes is

given. In section VII the ESC meson-quark-quark inter-
action Hamiltonians are displayed, both for the QQM-
vertices as well as for the pair-vertices QQMM. Here
also the meson-pair interaction Hamiltonians are given
in the context of SU(3). Expressions for the meson-pair-
exchange (MPE) graphs are given, again in an immedi-
ately programmable form.
In section VIII we describe the S = 0,−1,−2 QQ-

channels on the isospin (i) and hypercharge (y) and par-
ticle basis. Here also the SU(3)-structure of the QQM-
couplings are given both in the matrix and cartesian de-
scription. Outlined is the (numerical) evaluation of the
couplings which occur in the OBE-, TME-, and MPE-
diagrams. The QQM -couplings are discussed both in the
3× 3-matrix and the cartesian-octet representation. The
SU(3)-couplings of the OBE- and TME-graphs are given
in a form suitable for a digital evaluation. In section XI
the one-gluon-exchange (OGE) potential is given. In sec-
tion XII the instanton-eschange potential is described. In
section IVA the full SU(3) structure of the MPE pair-
couplings (QQMM) is given. In section X the relation
between the QQM- and BBM-couplings is given. In sec-
tion V the quark-pair creation (QPC) model connection
with the ESC-couplings is discussed. In section VI the
simultaneous NN ⊕ Y N fitting procedure of the meson-
exchange parameters is briefly reviewed, and the results
for the coupling constants and F/(F +D)-ratios for OBE
and MPE are given. In section XIV a summary and an
outlook is given.
In Appendix A the the Bethe-Goldstone-Kadyshevsky
equation and the correspondent G-matrix are described.
In Appendix B a simple model for the relation between
the meson-couplings using the Fierz-transformation is
described. In Appendix C the complete meson-quark
vertices in Pauli-spinor space are given. In Ap-
pendix D the one-boson-exchange quark-quark potentials
in momentum- and configuration-space are given for the
vertices which also occur at the baryon-level. In Ap-
pendix E the additional quark-quark potentials are given,
which are due to the extra meson-vertices at the quark-
level. Next we included some miscellaneous topics: In
Appendix F discusses the inclusion of the Z-graphs in
the MPE-ineteraction is implicit.

II. CONSTITUENT QUARKS AND
INSTANTONS

The spectra of the nucleons, ∆ resonances and the hy-
perons Λ,Σ,Ξ are descibed in detail by the Glozman-
Riska model [14]. This is a modern version of the CQM
[4] based on the Nambu-Goldstone spontaneous chiral-
symmetry breaking (SCSB) with quarks interacting by
the exchange of the SU(3)F octet of pseudoscalar mesons
[14]. The pseudoscalar octet are the Nambu-Goldstone
bosons (NGB’s) associated with the hidden (approxi-
mate) chiral symmetry of QCD. The confining potential
is chosen to be harmonic, as is rather common in con-
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stituent quark models. In line with this, we used har-
monic wave functions in the derivation of the connection
between the meson-baryon and meson-quark couplings
[1]. The η′, which is dominantly an SU(3) singlet, decou-
ples from the original nonet because of the U(1) anomaly
[15, 16]. According to the two-scale picture of Manohar
and Georgi [6] the effective degrees for the 3-flavor QCD
at distances beyond that of SCSB (Λ−1

χSB ≈ 0.2−0.3 fm),

but within that of the confinement scale Λ−1
QCD ≈ 1 fm,

should be the constituent quarks and chiral meson fields.
The two non-perturbative effects in QCD are confinement
and chiral symmetry breaking. The SU(3)L⊗SU(3)R chi-
ral symmetry is sponteneously broken to an SU(3)v sym-
metry at a scale ΛχSB ≈ 1 GeV. The confinement scale
is ΛQCD ≈ 100−300 MeV, which roughly corresponds to
the baryon radius ≈ 1 fm. Due to the complex structure
of the QCD vacuum, which can be understood as a liquid
of BPST instantons and anti-instantons [7, 8, 17, 18], the
valence quarks acquire a dynamical or constituent mass
[6, 8, 15, 18, 19]. The interaction between the instanton
and the anti-instanton is a dipole-interaction [20], similar
to ordinary molecules: weak attraction at large distances
and strong repulsion at small ones. With the empirical
value of the gluon condensate [21] as input the instan-
ton density and radius become [20] nc = 8 · 10−4 GeV−4,
and ρc = (600 MeV)−1 ≈ 0.3 fm respectively. Also,
with these parameters the non-perturbative vacuum ex-
pectation value for the quark fields is 〈vac|ψ̄ψ|vac〉 ≈
−10−2 GeV3 and the quark effective (u,d) masses ≈ 200
MeV, i.e. much larger than the almost massless ”current
masses”. In the calculation of light quarks in the instan-
ton vacuum [8] the effective quark massmQ(p = 0) = 345
MeV was calculated, which is remarkably close to the
constituent mass MN/3.
Very notable is the role of the instantons for the

light meson spectrum. They give a non-perturbative
gluonic interaction between quarks in QCD. For exam-
ple the instanton-induced interaction, as proposed by ’t
Hooft [16], generates at low momenta the constituent
quark mass [8], i.e. breaks chiral symmetry. This in-

teraction supplies a strong attractive attraction in the
pseudoscalar-isovector quark-antiquark system - pions -,
which makes them anomalously light, with zero mass in
the chiral limit. This is the mechanism by which the
pions, being quark-antiquark bound states, appear as
Nambu-Goldstone bosons of the SCSB symmetry. This
strongly attractive interaction is absent in vector mesons
[22, 23], making the masses of the vector mesons ≈ 2mQ

in accordance with mρ ≈ mω ≈ 2mQ. Since αs ≈ 0.3
the one-gluon-exchage (OGE) is weak, and therefore the
π− ρ mass splitting is not due to the perturbative color-
magnetic spin-spin interaction between the quark and an-
tiquark [22]. Besides explaining the π−ρ mass difference,
the ’t Hooft interaction also in a natural way solves the
UA(1) problem, and gives the reason why the η′ is heavy,
as distinct to the NGB pseudoscalar octet.
The ’t Hooft four-fermion instanton mediated interac-

tion for the light flavor doublet ψ = (u, d), in the form of
a generalized Nambu-Jona-Lasinio Lagrangian [24], is

LI = GI

[
(ψ̄ψ)2 − (ψ̄γ5τψ)

2 − (ψ̄τψ)2 + (ψ̄γ5ψ)
2
]
.

(2.1)
Here, the strength of the interaction GI and the ultravi-
olet cut-off scale 1/r0 are related in the instanton liquid
model [25]. In this model GI = λud/4 = 2n+/〈ψ̄ψ〉)2. In
[26] Glozman and Varga show that the t-channel iteration
of the instanton interaction (2.1) leads to isoscalar and
isovector pseudoscalar and scalar exchange quark-quark
potentials. Since these potentials are already included in
our model, the four-fermion instanton interaction does
not lead to extra potentials.
In this paper we extend the meson-exchange between

quarks by proposing to include, besides the pseudoscalar,
all meson nonets: vector, axial-vector, scalar etc. Since
all these meson nonets can be considered as quark-
antiquark bound states, there is no reason to exclude any
of these mesons from the quark-quark interactions. Fur-
thermore, our preferred value for the constituent quark
mass has a solid basis in the instanton-liquid model of
the QCD vacuum.

III. ESC-POTENTIALS AND THE CONSTITUENT QUARK-MODEL

The fitted ESC16-couplings and the QPC-couplings agree very well as shown in [9]. In particular, the SU(6)-
breaking improves the agreement significantly. The calculation of Table II in Ref. [9] uses the constituent quark
model (CQM) in the SU(6)-version of [3]. In Appendix B a simple model for the quark-antiquark creation process
exhibits the main features of the meson-coupling pattern in the ESC models. Since such calculations implicity uses
the direct coupling of the mesons to the quarks, it defines the QQM-vertex. Then, OBE-potentials can be derived
by folding meson-exchange with the quark wave functions of the baryons. Prescribed by the Dirac-structure, at the
baryon level the vertices have in Pauli-spinor space the 1/MB-expansion

ū(p′, s′)Γu(p, s) = χ′†
s′

{
Γbb + Γbs

σ · p
E +M

− σ · p′

E′ +M ′Γsb −
σ · p
E +M

Γss
σ · p′

E′ +M ′Γsb

}
χs

≡
∑

l

c
(l)
BB

[
χ′†
s′Ol(p

′,p) χs

]
(
√
M ′M)αl (l = bb, bs, sb, ss). (3.1)
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This expansion is general and does not depend on the internal structure of the baryon. A similar expansion can be

made on the quark-level, but now with quark masses mQ and coefficients c
(l)
QQ. It appears that in the CQM, i.e.

mQ =MB/3, the QQM-vertices can be chosen such that the ratio’s c
(l)
QQ/c

(l)
BB are constant for each type of meson [1]

Then, these coefficients can be made equal by (i) scaling the couplings, (ii) introducing some extra couplings at the
quark level, and (iii) introducing a QQM gaussian form factor. Ipso facto this defines a meson-exchange quark-quark
interaction.

IV. KADYSHEVSKY EQUATIONS IN MOMENTUM SPACE

We envisage the interaction between two (constituent) quarks in a dense medium of baryons and/or quarks. In such
a condition it is appropriate to consider the QQ-correlations in the G-matrix formalism in the setting of the Bethe-
Goldstone equations [27, 28]. To make contact with the 3-dimensional potental formalism we employ the Kadyshevsky
formalism [29].

A. Relativistic Two-Body Equation

We consider the nucleon-nucleon reaction

Qa(pa, sa) +Qb(pb, sb) → Q′
a(p

′
a, s

′
a) +Q′

b(p
′
b, s

′
b) . (4.1)

Introducing, as usual, the total and relative four-momentum for the initial and final state

P = pa + pb , P ′ = p′a + p′b ,
p = 1

2 (pa − pb) , p′ = 1
2 (p

′
a − p′b) ,

(4.2)

We use in the following the notation P0 ≡ W and P ′
0 ≡ W ′. In the Kadyshevsky formulation one introduces

four-momenta spurions, making formally four-momentum conservation at the vertices. These are described by quasi-
particle states |κ〉, normalized by 〈κ′|κ〉 = δ(κ′ − κ). Then the four-momentum of such a state is κnµ, where nµ is
time-like with n0 > 0 and n2 = 1. So, we consider the process in (4.1) with non-conservation of the four-momentum,
i.e. off-momentum-shell. This off-shellness is given by

pa + pb + κn = p′a + p′b + κ′n (4.3)

In the following, the on-mass-shell momenta for the initial and final states are denoted respectively by pi and pf . So,

pi0 = E(pi) =
√

p2
i +M2 and pf0 = E(pf ) =

√
p2
f +M2.

In the Kadyshevsky-formulation the particles are on-mass-shell in the Green-functions. The on-mass-shell propa-
gator S(±)(p) of a spin-0 particle can be written as

S(±)(p) = δ±(p
2 −M2) =

1

2E(p)
δ (p0 ∓ E(p)) , (4.4)

with δ±(p2 −M2) ≡ θ(±p0)δ(p2 −M2). The propagator G0(κ) for the quasi-particles is given by [30]

G0(κ) = (1/2π) [1/(κ− iδ)] . (4.5)

In the Kadyshevsky-formalism the rules for the computation of the off-shell S-matrix, denoted by R, corresponding
to the analogs of the Feynman graphs are given [30–32]. 1 We introduce the usual M -matrix by

Rκ′,κ(p
′
a, p

′
b; pa, pb) = δ(κ′ − κ)δ(p′a − pa)δ(p

′
b − pb)− (2π)4iδ4(κ′n+ p′a + p′b − pa − pb − κn) ·

×Mκ′,κ(p
′
a, p

′
b; pa, pb) . (4.6)

1 For a general field-theoretical treatment of the Kadyshevsky approach to relativistic two-body scattering, see Refs. [33, 34].
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Mκ′

Pf ,Mf

pf ,mf

Pi,Mi

pi, mi

= Vκ′

Pf ,Mf

pf ,mf

Pi,Mi

pi,mi

+

4

κn

kn,Mn

−kn,mn

κ′
V

Pf ,Mf

pf ,mf

M

Pi,Mi

pi,mi

FIG. 1: M-matrix: Kadyshevsky-Integral Equation

Notice that the S-matrix is given by R0,0 [30]. We also observe that

δ(κ′ − κ)δ(p′a − pa)δ(p
′
b − pb) = δ(P ′ + κ′n− P − κn)δ(p′a − pa)δ(p

′
b − pb) , (4.7)

showing the overall 4-momentum conservation for the R-matrix, including the momentum spurions.
The M-amplitudes satisfy the Kadyshevsky equation

Mκ′,κ(p
′
a, p

′
b; pa, pb) = Iκ′,κ(p

′
a, p

′
b; pa, pb) +

∫
d4p′′a

∫
d4p′′b

∫
dκ′′Iκ′κ′′(p′a, p

′
b; p

′′
a, p

′′
b ) ·

×Gκ′′(p′′a, p
′′
b )Mκ′′,κ(p

′′
a, p

′′
b ; pa, pb) · δ(p′′a + p′′b + κ′′n− pa − pb − κn), (4.8)

which is displayed in Fig. 1. Here the propagation of the two nucleons and of the quasi-particle is described by

Gκ(pa, pb)α′,β′;α,β =
−1

(2π)2
δ(p2a −M2

a )δ(p
2
b −M2

b ) ·G0(κ) . (4.9)

V. THREE-DIMENSIONAL TWO-BODY EQUATIONS

The Kadyshevsky analog (4.8) of the Bethe-Salpeter equation we write in the form

Mκ′,κ(p
′
a, p

′
b; pa, pb) = Iκ′,κ(p

′
a, p

′
b; pa, pb) +

∫
d4p′′a

∫
d4p′′b

∫
dκ′′ ·

×Iκ′,κ′′(p′a, p
′
b; p

′′
a, p

′′
b )Gκ′′(p′′a, p

′′
b )Mκ′′,κ(p

′′
a, p

′′
b ; pa, pb) ·

×δ(p′′a + p′′b + κ′′n− pa − pb − κn) . (5.1)

In the CM-frame we have

P = (W,0) , p = (0,p) ;P ′ = (W ′,0) , p′ = (0,p′) . (5.2)
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Following [30, 32] we assume that the unit vector nµ, which defines the time axis, is collinear to P = pa + pb and
hence also to P ′ = p′a + p′b. Then

2

nµ =
pµa + pµb√
(pa + pb)2

=
p′µa + p′µb√
(p′a + p′b)

2

CM−→ (1,0) . (5.3)

In the CM-variables, equation (5.1), for the (+,+)-components only, reads

Mκ′,κ(p
′,W ′; p,W ) = Iκ′,κ(p

′,W ′; p,W ) +

∫
dW ′′

∫
d4p′′

∫
dκ′′ ·

×Iκ′,κ′′(p′,W ′; p′′,W ′′)Gκ′′(p′′,W ′′)Mκ′′(p′′,W ′′; p,W ) ·
×δ [W ′′ −W + (κ′′ − κ)n0] . (5.4)

In the CM-frame, the two-nucleon propagator (4.9) becomes

Gκ(W
′′, p′′) =

−1

(2π)2
δ

(
1

2
W ′′ + p′′0 − E′′

a

)
δ

(
1

2
W ′′ − p′′0 − E′′

b

)
G0(κ

′′) . (5.5)

Now, the integrations over W ′′, p′′0 , and κ
′′ can be carried through in (5.4) giving

Mκ′,κ(p
′,W ′;p,W ) = Iκ′,κ(p

′,W ′;p,W ) +

∫
d3p′′

(2π)3
·

×Iκ′,κ′′(p′,W ′;p′′,W ′′)

(
MaMb

E′′
aE

′′
b

)
1√

s′′ − (
√
s+ κ)− iǫ

Mκ′′,κ(p
′′,W ′′;p,W ) , (5.6)

with the constraints

W =
√
s , W ′ =

√
s′ =

√
s+ κ− κ′ , W ′′ =

√
s′′ = E′′

a + E′′
b . (5.7)

We notice that the left-half-off-shell M -matrix satisfies an integral equation of the type

Mκ′,0 = Iκ′,0 +

∫
Iκ′,κ′′ Gκ′′ Mκ′′,0

where the κ’s are all fixed in terms of the momenta of the particles, since

κ′ =
√
s−

√
s′ , κ′′ =

√
s−

√
s′′ .

Defining the T -matrix etc. in terms of the left-half-off-shell M -matrix , and the quasi-potential K in terms of the
both left and right off-shell interaction kernel I, by

T (p′,p;W ) = Mκ′,κ=0(p
′,W ′;p,W ) , K(p′,p;W ) = Iκ′,κ=0(p

′,W ′;p,W ) , (5.8)

we will have, instead of (5.6),

T (p′,p;W ) = K(p′,p;W ) +

∫
d3p′′

(2π)3
K(p′,p′′;W )

(
MaMb

E′′
aE

′′
b

)
1√

s′′ −√
s
T (p′′,p;W ), (5.9)

which is the so-called ’quasi-potential’ equation. The quantity K playing the role of a potential is in general a
complicated function of the energy W and is called a ’quasi-potential’. Notice, that for κ = 0, one has κ′ =

√
s−

√
s′,

and so κ′ is fixed by p = |p| and p′ = |p′|.

For equal masses, i.e. Ma =Mb =M , we have

E′′
a = E′′

b = E(p′′) , s = 4E2(p) = 4(p2 +M2) , s′′ = 4E2(p′′) = 4(p′′2 +M2). (5.10)

Then, (5.9) goes over into the equation

T (p′,p;W ) = K(p′,p;W ) +
1

(2π)3

∫
d3p′′

2E(p′′)
K(p′,p′′;W )

M2

E(p′′) ]E(p′′)− E(p)− iǫ]
T (p′′,p;W ), (5.11)

which is the quasi-potential equation of Kadyshevsky, see [31] equation (3.33).
In Appendix A the Bethe-Goldstone-Kadyshevsky equation and the corresponding ”relativistic” G-matrix are given.

2 Notice that with this choice for n
µ, the four-velocity of the system is conserved even off the energy-shell.
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VI. LIPPMANN-SCHWINGER AND BETHE-GOLDSTONE EQUATION

The Lippmann-Schwinger amplitude is obtained from (5.11) by the transformation

T (p′,p) = N(p′) T (p′,p) N(p) , V(p′,p) = N(p′) K(p′,p) N(p), (6.1)

with N(p) = M/(
√
2E(p)). Then, the non-relativistic Lippmann-Schwinger equation is obtained by using in the

Green-function and the potential the non-relativistic approximation E(p) ≈M + p2/2M giving

T (p′,p) = V(p′,p) +
1

(2π)3

∫
d3p′′

2E(p′′)
V(p′,p′′)

M

(p′′2 − p2 − iǫ)
T (p′′,p). (6.2)

For the details of the formalism of spin 1/2-1/2 scattering, using the expansion in Pauli-invariants, we refer to the
papers of the ESC-model e.g. [35, 36].

p

p’

-p

-p’

k

(a) p

p’

-p

-p’

k

(b)

FIG. 2: One-boson-exchange graphs: The dashed lines with
momentum k refers to the bosons: pseudo-scalar, vector,
axial-vector, or scalar mesons.

The corresponding Bethe-Goldstone equation reads

G(p′,p) = V (p′,p) +

∫
d3p′′

(2π)3
V (p′,p′′) ·

×QP (p
′′; pF ) g(p

′′;W ) G(p′′,p) (6.3)

with the standard Green function and Pauli projection
operator

g(p;W ) =
Mn

p2
i − p2 + iδ

, QP (p
′′; pF ) = 1− nF (p

′′).

(6.4)

The corrections to the approximation E
(+)
2 ≈ g(p;W )

are of order 1/M2, which we neglect henceforth.

The transition from Dirac-spinors to Pauli-spinors, is
given in Appendix C of Ref. [37], where we write for
the the Bethe-Goldstone equation in the 4-dimensional
Pauli-spinor space

G(p′,p) = V(p′,p) +

∫
d3p′′

(2π)3
V(p′,p′′) ·

×QP (p
′′; pF ) g(p

′′;W ) G(p′′,p) . (6.5)

The G-operator in Pauli spinor-space is defined by

χ
(a)†
σ′

a
χ
(b)†
σ′

b

G(p′,p) χ(a)
σa
χ(b)
σb

=

ūa(p
′, σ′

a)ūb(−p′, σ′
b) G̃(p

′,p) ua(p, σa)ub(−p, σb).

(6.6)

and similarly for the V-operator. Like in the derivation
of the OBE-potentials [38–40] we make the off-shell and
on-shell the approximation, E(p) = M + p2/2M and

W = 2
√
p2
i +M2 = 2M + p2

i /M , everywhere in the
interaction kernels, which, of course, is fully justified for
low energies only. In contrast to these kinds of approx-
imations, of course the full k2-dependence of the form
factors is kept throughout the derivation of the TME.
Notice that the gaussian form factors suppress the high
momentum transfers strongly. This means that the con-
tribution to the potentials from intermediate states which
are far off-energy-shell can not be very large.
Because of rotational invariance and parity conserva-

tion, the G-matrix, which is a 4×4-matrix in Pauli-spinor
space, can be expanded into the following set of in general
8 spinor invariants, see for example Ref. [41]. Introducing
[42]

q =
1

2
(p′ + p) , k = p′ − p , n = p× p′, (6.7)

with, of course, n = q × k, we choose for the operators
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p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’

-p’’

k

k’

(b)

p

p’

-p

-p’

p’’

-p’’

k

k’

(c)

p

p’

-p

-p’

p’’
-p’’

k

k’

(d)

FIG. 3: BW two-meson-exchange graphs: (a) planar and (b)–
(d) crossed box. The dashed line with momentum k1 refers
to the pion and the dashed line with momentum k2 refers to
one of the other (vector, scalar, or pseudoscalar) mesons. To
these we have to add the “mirror” graphs, and the graphs
where we interchange the two meson lines.

Pj in spin-space

P1 = 1, P2 = σ1 · σ2,

P3 = (σ1 · k)(σ2 · k)−
1

3
(σ1 · σ2)k

2,

P4 =
i

2
(σ1 + σ2) · n, P5 = (σ1 · n)(σ2 · n),

P6 =
i

2
(σ1 − σ2) · n,

P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q),
P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q). (6.8)

Here we follow Ref. [40], where in contrast to Ref. [39],
we have chosen P3 to be a purely ‘tensor-force’ operator.

p

p’

-p

-p’

p’’

-p’’

k

k’

(a)

p

p’

-p

-p’

p’’ -p’’

k

k’

(b)

FIG. 4: Planar-box TMO two-meson-exchange graphs. Same
notation as in Fig. 3. To these we have to add the “mirror”
graphs, and the graphs where we interchange the two meson
lines.

The expansion in spinor-invariants reads

G(p′,p) =
8∑

j=1

G̃j(p
′2,p2,p′ · p) Pj(p

′,p) . (6.9)

Similarly to (6.9) we expand the potentials V . In the
case of the axial-vector meson exchange there will occur
terms proportional to

P ′
5 = (σ1 · q)(σ2 · q)−

1

3
(σ1 · σ2)q

2. (6.10)

The proper treatment of such a (non-local) Pauli-
invariant has been developed for the ESC16-models,
which is described in [9], Appendix B . For the treat-
ment of the potentials with P8 we use the identity [43]

P8 = −(1 + σ1 · σ2)P6. (6.11)

Under time-reversal P7 → −P7 and P8 → −P8. There-
fore for elastic scattering V7 = V8 = 0. Anticipating
the explicit results for the potentials in section IVA we
notice the following: (i) For the general BB-reaction
we will find no contribution to V7. The operators P6

and P8 give spin singlet-triplet transitions. (ii) In the
case of non-strangeness-exchange (∆S = 0), V6 6= 0 and
V8=0. The latter follows from our approximation to ne-
glect the mass differences among the nucleons, between
the Λ and Σ’s, and among the Ξ’s. (iii) In the case of
strangeness-exchange (∆S = ±1), V6, V8 6= 0. The con-
tributions to V6 come from graphs with both spin- and
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particle-exchange, i.e. Majorana-type potentials having
the PfPσP6 = −PxP6-operator. Here, PfPσ reflect our
convention for the two-particle wave functions, see [38].
The contributions to V8 come from graphs with particle-
exchange and spin-exchange, because P8 = −PσP6.
Therefore, we only have to apply Pf in order to map
the wave functions after such exchange onto our two-
particle wave-functions. So, we have the PfP8 = +PxP6-
operator. Here, we used that for BB-systems the allowed
physical states satisfy PfPσPx = −1.
In the SU(6) quark model [3], instead of the Pauli-
spinors, one uses for the quarks the Dirac-spinors

u
(0)
i (pi) =

√
Ei +mi

2mi

[
1

σi·pi

Ei+mi

]
⊗ χi, (6.12)

where pii denotes the three-momentum of the quarks in
e.g. the CM-system.

VII. EXTENDED-SOFT-CORE
MESON-QUARK-QUARK INTERACTIONS

In the ESC-model there are single- and pair-meson
quark-quark couplings. They are the basis for the OBE,
TME and MPE potentials. The meson-quark couplings
are designed such as to reproduce the ESC-potentials for
baryon-baryon when folded in with the constituent quark
wave functions of the SU(6) quark-model. Strictly, for
the TME and MPE potentials a modification should be
made in the presence of quark matter. In this paper such
quark density corrections are omitted.

A. Meson-quark-quark Interactions

The potential of the ESC-model contains the con-
tributions from (i) One-boson-exchanges, (ii) Uncorre-
lated Two-Pseudo-scalar exchange, and (iii) Meson-Pair-
exchange. In this section we review the potentials and
indicate the changes with respect to earlier papers on
the OBE- and ESC-models. The spin-1 meson-exchange
is an important ingredient for the baryon-baryon force.
In the ESC16-model we treat the vector-mesons and the
axial-vector mesons according to the Proca- [44] and the
B-field- [45, 46] formalism respectively. For details, we
refer to [9], Appendix C.

B. One-Boson-Exchange Interactions in
Momentum Space

The local interaction Hamilton densities for the
different couplings are [47]

a) Pseudoscalar-meson exchange (JPC = 0−+)

Hpv(x) =
fpv
mπ+

q̄(x)γµγ5q(x)∂
µφP (x). (7.1)

This is the pseudovector coupling, and the relation with
the pseudoscalar coupling is gp = 2mQ/mπ+ , where mQ

is the quark mass.

b) Vector-meson exchange (JPC = 1−−)

H1)
v = gv q̄(x)γµq(x)φ

µ
V +

fv
4M q̄(x)σµνq(x)(∂

µφνV − ∂νφµV )

=

[
(q̄(x)γµq(x)) f1,v +

i

2

(
q̄(x)

↔
∂µ q(x)

)
f2,v

]
· φµV ,

(7.2)

where σµν = i[γµ, γν ]/2, and f1,v = gv +
(mQ/M)fv, f2,v = −fv/M. The scaling mass M will
be taken to be the proton mass. The Gordon decompo-
sition

∂ν [q̄(x)σ
µνq(x)] = 2m̄Qq̄(x)γ

µq(x) + iq̄(x)
↔
∂
µ

q(x)

with m̄Q =
(
m′

Q +mQ

)
, shows that the magnetic-

coupling consists of a pure vector and scalar bilinear
quark-field part. As deduced in [1], an extra interaction
is needed in order to give the correct structure of the
baryon-baryon potential. Therefore, on the quark-level
we add the interaction

H2)
v = − �

4m2
Q

[
[q̄(x)γµq(x)]f

′
1,v+

(
iq̄(x)

↔
∂µ q(x)

)
f ′2,v

]
·φµV ,

where f ′1,v = (4/9)f1,v, f
′
2,v = (4/9)f2,v. Then, the total

vector-exchange interaction is

Hv = ḡv q̄(x)γµq(x)φ
µ
V +

f̄v
4M q̄(x)σµνq(x)(∂

µφνV − ∂νφµV ),

ḡv = gv

(
1− g′v

gv

�

4m2
Q

)
, f̄v = fv

(
1− f ′v

fv

�

4m2
Q

)
.

(7.3)

An attractive alternative to the inclusion of the (g′v, f
′
v)-

couplings would be to have a zero in the QQV form
factors. For g′v/gv = f ′v/fv = 4/9 this zero is at
k2 =M2

N , i.e. a short range effect.

c) Axial-vector-meson exchange ( JPC = 1++, 1st kind):

H(1)
a = ga[q̄(x)γµγ5q(x)]φ

µ
A +

ifa
M [q̄(x)γ5q(x)] ∂µφ

µ
A.

(7.4)
We impose axial-current conservation by the relation

fa =
(
m2

A1
/(2mQM

)−1
ga [48]. The details of the treat-

ment of the axial-vector mesons are given in [9], Ap-
pendix B. It was found in [1] that the correct reproduc-
tion of the baryon-baryon spin-orbit potential obtained
by a folding of the axial-exchange between quarks re-
quires the additional interaction

H(2)
a = −i g

′
a

M2

{
εµναβ [∂

αq̄(x)γν∂βq(x)]
}
· φµA (7.5)



10

with g′a = ga.

d) Axial-vector-meson exchange ( JPC = 1+−, 2nd kind):

Hb =
ifb
mB

[q̄(x)σµνγ5q(x) ∂
νφµB . (7.6)

Like for the axial-vector mesons of the 1st-
kind we include an SU(3)-nonet with members
b1(1235), h1(1170), h1(1380). In the quark-model
they are QQ̄(1P1)-states.

e) Scalar-meson exchange (JPC = 0++):

Hs = gs

{
gs −

g′s
gs

�

4m2
Q

}
[q̄(x)q(x)] · φS , (7.7)

with g′s/gs = −8/9. Again, the requirement from
the folding of meson-exchange between quarks into the
baryon gives g′s ≈ −gs. It is clear that inclusion of the
g′s does not introduce a zero in the scalar-quark-quark
coupling. The additional contribution from the g′s cou-
pling is taken onto account easily. In the ESC-models we
include a zero in the form factor, which we also keep in
the quark-quark potential.
f) Pomeron-exchange (JPC = 0++): The vertices for this
‘diffractive’-exchange have the same Lorentz structure as
those for scalar-meson-exchange.

g) Odderon-exchange (JPC = 1−−):

HO = gO[ψ̄γµψ]φ
µ
O+

fO
4M [ψ̄σµνψ](∂

µφνO−∂νφµO). (7.8)

Since the gluons are flavorless, Odderon-exchange is
treated as an SU(3)-singlet. Furthermore, since the
Odderon represents a Regge-trajectory with an intercept
equal to that of the Pomeron, and is supposed not to
contribute for small k2, we include a factor k2/M2 in
the coupling.

Including form factors f(x′−x) , the interaction hamil-
tonian densities are modified to

HX(x) =

∫
d3x′ f(x′ − x)HX(x′), (7.9)

for X = P, V, A, and S (P = pseudo-scalar, V = vector,
A = axial-vector, and S = scalar). The potentials in
momentum space are the same as for point interactions,
except that the coupling constants are multiplied by the
Fourier transform of the form factors.
In the derivation of the Vi we employ the same approx-

imations as in [39, 40], i.e.

1. We expand in 1/M : E(p) =
[
k2/4 + q2 +M2

] 1
2

≈ M + k2/8M + q2/2M and keep only terms up

to first order in k2/M and q2/M . This except
for the form factors where the full k2-dependence
is kept throughout the calculations. Notice that
the gaussian form factors suppress the high k2-
contributions strongly.

2. In the meson propagators (−(p1 − p3)
2 + m2) ≈

(k2 +m2) .

3. When two different baryons are involved at a
BBM -vertex their average mass is used in the po-
tentials and the non-zero component of the momen-
tum transfer is accounted for by using an effective
mass in the meson propagator (for details see [40]).

Due to the approximations we get only a linear depen-
dence on q2 for V1. In the following, separating the local
and the non-local parts, we write

Vi(k
2,q2) = Via(k

2) + Vib(k
2)(q2 +

1

4
k2), (7.10)

where in principle i = 1, 8.
The OBE-potentials are now obtained in the standard

way (see e.g. [39, 40]) by evaluating the BB-interaction
in Born-approximation. We write the potentials Vi of
Eqs. (7.10) in the form

Vi(k
2,q 2) =

∑

X

Ω
(X)
i (k 2) ·∆(X)(k2,m2,Λ2). (7.11)

Furthermore for X = P, V

∆(X)(k2,m2,Λ2) = e−k2/Λ2

/
(
k2 +m2

)
, (7.12)

and for X = S,A a zero in the form factor

∆(S)(k2,m2,Λ2) =
(
1− k2/U2

)
e−k2/Λ2

/
(
k2 +m2

)
,

(7.13)
and for X = D,O

∆(D)(k2,m2,Λ2) =
1

M2
e−k2/(4m2

P,O). (7.14)

In the latter expression M is a universal scaling mass,
which is again taken to be the proton mass. The
mass parameter mP controls the k2-dependence of the
Pomeron-, f -, f ′-, A2-, and K⋆⋆-potentials. Similarly,
mO controls the k2-dependence of the Odderon.

In the following we give the OBE-potentials in
momentum-space for the hyperon-nucleon systems.
From these those for NN and YY can be deduced easily.
We assign the particles 1 and 3 to be hyperons, and
particles 2 and 4 to be nucleons. Mass differences among
the hyperons and among the nucleons will be neglected.
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C. The Meson-Pair Interactions

For the phenomenological SU(2) meson-pair interactions the Hamiltonians, for meson-pairs with quantum numbers
(J,P,C), for the non-strange quarks i.e. below q(x) ≡ Q1(x), are

JPC = 0++ : HS = q̄(x)q(x)
[
g(ππ)0π ·π + g(σσ)σ

2
]
/mπ, (7.15a)

HE = q̄(x)τ q(x) · π
[
g(πη)η + g(πη′)η

′] /mπ, (7.15b)

HS2
= q̄(x)q(x) h(ππ)0∂µπ ·∂µπ/m3

π, (7.15c)

JPC = 1−− : HV = g(ππ)1 q̄(x)γµτ q(x) · (π×∂µπ)/m2
π

−f(ππ)1
2M q̄(x)σµντ q(x)∂

ν · (π×∂µπ)/m2
π, (7.15d)

JPC = 1++ : HA = g(πρ)1 q̄(x)γ5γµτ q(x) · (π × ρµ)/mπ, (7.15e)

HP = g(πσ)q̄(x)γ5γµτ q(x) · (π∂µσ − σ∂µπ)/m2
π

+ g(πP )q̄(x)γ5γµτ q(x) · (π∂µP − P∂µπ)/m2
π, (7.15f)

JPC = 1+− : HH = −ig(πρ)0 q̄(x)γ5σµνq(x)∂ν(π ·ρµ)/m2
π, (7.15g)

HB = −ig(πω)q̄(x)γ5σµντ q(x) · ∂ν(π ωµ)/m2
π. (7.15h)

For the SU(3) generalization see Ref. [36] section III.
In Eq. (7.15) also the Pomeron contribution is listed, but in recent ESC-models g(πP ) = 0. The same is true for

the HS2
interaction, which we will discuss in connection with the FM three-body force [49, 50].

As for the scaling of the pair-coupling parameters, the π+-mass was choosen. For the operators ∂µπ(x) this follows
the non-linear chiral models. The other scaling mπ-factors may be could be better replaced by M , the nucleon mass.
This would presumably represent better the scale of the physics involved. For example pair-couplings from NN̄ -pairs
(’negative-energy states’) would be parameterized more naturally this way. However, in our works on the ESC-model
we sofar always used the mπ-mass as a scaling parameter, and therefore we will do this also in this paper.

VIII. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Channels and Potentials

In this paper we consider the quark-quark reactions with strangeness S = 0,−1,−2

Q(ya, ia) +Q(yb, ib) → Q(y′a, i
′
a) +Q(y′b, i

′
b) (8.1)

where the hypercharge is deoted by y and the 3-component of the isospin by i. Like in Ref.’s [40] we will also refer
to a and a′ as particles 1 and 3, and to b and b′ as particles 2 and 4. For the kinematics and the definition of the
amplitudes, we refer to papers [35, 36] of the series of papers on the ESC04 model. Here we note that both the
BB- and QQ-channels are of the same type, nanely spin-1/2-spin 1/2 scattering. Similar material can be found in
[40]. Also, in paper I the derivation of the Lippmann-Schwinger equation in the context of the relativistic two-body
equation is described.
For the three (U,D,S)-quarks, there are three channels with different strangeness, deoted by S:

S = 0 :





q = +4/3 : UU → UU,
q = +1/3 : UD → UD,
q = −2/3 : DD → DD,

(8.2a)

S = −1 :

{
q = +1/3 : US → US,
q = −2/3 : DS → DS,

(8.2b)

S = −2 : q = −2/3 : SS → SS. (8.2c)
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Like in [40], the potentials are calculated on the isospin basis. For S = 0 there are only two isospin channels: (i)

I = 1 : (UU, (UD +DU)/
√
2, DD), and (ii) I = 0 : (UD −DU)/

√
2. For the S=-1 channels (US,UD) I = 1

2 , and
(iii) I = 0 for the S=-2 channel SS.
In this work we give the QQ-potentials for the Lippmann-Schwinger equation in momentum space, and the

Schrödinger equation in configuration space.
The momentum space and configuration space potentials for the ESC models have been described in papers [35]

and [9] for baryon-baryon in general. Also in the ESC-model, the potentials are of such a form that they are exactly
equivalent in both momentum space and configuration space. The treatment of the mass differences among the quarks
are handled exactly similar as is done in [40]. Also, exchange potentials related to strange meson exchange K,K∗ etc.
, can be found in these references.
The quark mass differences in the intermediate states for TME- and MPE- potentials will be neglected for QQ-

scattering. This, although possible in principle, becomes rather laborious and is not expected to change the charac-
teristics of the quark-quark potentials much.

B. QQM-couplings in SU(3), Matrix-representation

The Q = (U,D, S)-quarks are in the fundamental {3}-irrep, and in matrix notation represented by a collumn.
In previous work of the Nijmegen group, e.g. [40], the treatment of SU(3) has been given in detail for the BBM
interaction Lagrangians and the coupling coefficients of the OBE-graphs. However, for the ESC-models we also need
the coupling coefficients for the TME- and the MPE-graphs. Since there are many more TME- and MPE-graphs
than OBE-graphs, an computerized computation is desirable. As in the baryon-baryon papers, here the so-called
’cartesian-octet’-representation for the mesons is quite useful. Therefore, we give an exposition of this representation,
its connection with the matrix representation used in our previous work, and the formulation of the coupling coefficients
used in the automatic computation.
The various meson nonets (we take the pseudoscalar mesons with JP = 0+ as an example), see e.g. [51, 52], are

represented by

P = P{1} + P{8}, (8.3)

where the singlet matrix P{1} has elements η0/
√
3 on the diagonal, and the octet matrix P{8} is given by

P{8} =




π0

√
2
+

η8√
6

π+ K+

π− − π0

√
2
+

η8√
6

K0

K− K0 −2η8√
6



. (8.4)

The SU(3)-invariant BBP-interaction Lagrangian can be written as [51]

HI = g8

8∑

p=1

[
Q̄a (λp)abQb

]
φ8,p + g1

[
Q̄Q
]
φ9. (8.5)

where g8 and g1 are the singlet and octet couplings. We write the octet coupling in the form of the meson matrix M:

HI(8) = g8
√
2
[
Q̄M (8)Qb

]
, M

(8)
ab =

8∑

p=1

(λp)ab φ8,p. (8.6)

The convention used for the isospin doublets is

n =

(
u
d

)
, K =

(
K+

K0

)
, Kc =

(
K0

−K−

)
. (8.7)
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Working out (8.5) on the isospin basis we have

HI(8) = g8
√
2
(
ū, d̄, s̄

)



π0

√
2
+ η8√

6
π+ K+

π− π0

√
2
+ η8√

6
K0

K− K̄0 − 2η8√
6






u
d
s




= g8

[
n̄(τ · π)n+

√
2
(
(n̄ ·K)s+ s̄(K̄ · n)

)
+

1√
3
(n̄ n)η8 −

2√
3
(s̄s)η8

]

= gnnπ n̄(τ · π)n+ gsnK
(
(n̄ ·K)s+ s̄(K̄ · n)

)
+ gnnη(n̄n)η8 + gssη(s̄s) η8. (8.8)

Here, we introduced the isospin-basis couplings

gnnπ = g8 , gsnk =
√
2g8 , gnnη =

1√
3
g8 , gssη = − 2√

3
g8. (8.9)

These couplings are similar to the OBE-couplings in baryon-baryon, and convenient for the transcription of the
OBE-potentials from baryon-baryon to quark-quark.
The precise connection with the couplings of ESC models is given in Appendix B, where the (g8, g1) are defined in
the framework of the quark-pair-creation (QPC) model. Furthermore, the connection between QQM-couplings in the
constituent quark-model (CQM) and the BBM-couplings gives a direct determination of the QQM-couplings from the
NN and YN data fitting.
For the numerical evaluation of the TME and MPE potentials we use the cartesian-octet presentation, see below.

TABLE I: Octet Representation Mesons States and Fields.

|π+〉 = −π+†|0〉 π+ = 1√
2
(φ1 − iφ2)

|π−〉 = π−†|0〉 π− = 1√
2
(φ1 + iφ2)

|π0〉 = π0†|0〉 π0 = φ3

|K+〉 = K+†|0〉 K+ = 1√
2
(φ4 − iφ5)

|K0〉 = K0†|0〉 K0 = 1√
2
(φ6 − iφ7)

|K−〉 = K−†|0〉 K− = 1√
2
(φ4 + iφ5)

|K̄0〉 = K̄0†|0〉 K̄0 = 1√
2
(φ6 + iφ7)

|η8〉 = η†
8|0〉 η = φ8

C. Cartesian-octet Representation

For the numerical evaluation of the TME and MPE
diagrams the cartesian-octet presentation is very conve-
nient. The particle states created by the field operators
are given in Table I [51]. Here also the annihilation op-
erators corresponding to the pseudo-scalar SU(3) octet-
representation {8} are given in terms of the cartesian
octet fields. For the pseudo-scalar mesons these are de-

noted by φi(i = 1, 2, . . . , 8) [51, 52]. Similar expressions
hold for the vector, axial-vector, and scalar mesons. The
connection between the matrix-representation (8.5) and
the cartesian-octet representation is

P a
b =

1√
2

8∑

i=1

(λi)abφi , φi =
1√
2

3∑

a,b=1

(λi)abP
a
b (8.10)

where λi, i = 1, 8 are the Gell-Mann matrices [51, 52],
and where the indices (a, b = 1, 2, 3). Similar expressions
hold for the vector-, scalar-, and axial-mesons. The Gell-
Mann matrices satisfy the the following commutation and
anti-commutation relations

[λi, λj ] = 2ifijk λk, {λi, λj} =
4

3
δij + 2dijk λk .(8.11)

where fijk are the totally anti-symmetric SU(3)-
structure constants, and dijk are the totally symmetric
constants.
The quark-quark matrix elements can now be computed
using the cartesian octet states

〈Q3, Q4|M |Q1, Q2〉 = C∗
3jC

∗
4n M(j, n; i,m) C1iC2m ,

(8.12)
where C-coefficients relate the particle states to the carte-
sian states, see Table I, and M(j, n; i,m) depends on
the structure of the graph. Below, we work out the
M -operator for OBE-, TME-, and MPE-graphs in the
cartesian-octet representation. Then, the physical two-
baryon matrix elements in (8.12) can be obtained easily.
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D. Computations for OBE-, TME-graphs
SU(3)-factors

• One-Boson-Exchange: The SU(3) matrix element
for the OBE-graph Fig. 5 is given by

Mobe(j, n; i,m) =

′∑

p

H
(a)
1 (j, i; p) H

(a)
2 (n,m; p) , (8.13)

where a = P, V,A, S and

Ha(j, i; p) = g
(a)
8 λ

(p)
ji +

g
(a)
1√
6
δjiδp9. (8.14)

The summation over p determines which mesons con-
tribute to (8.14), and the prime indicates that one may
restrict this summation in order to pick out a particular
meson. This is in general necessary because within an
SU(3) nonet the mesons have different masses, and we
need their couplings separately for a proper calculation
of the potentials.
To illustrate this method of computation we consider

π-exchange in the quark charge-exchange reaction U +
D → D + U . We have for the isospin matrix element

〈d, u|Mπ|u, d〉 =
8∑

i,j,m,n=1

3∑

p=1

〈d|qj〉〈u|qn〉〈qjqn|Mπ|qiqm〉 ·

×〈qi|u〉〈qm|d〉 =
8∑

i,j,m,n=1

3∑

p=1

δ2jδ1nδi1δm2 ·

×
{
g8λ

(p)
ji

} {
g8λ

(p)
nm

}
= 2g28 . (8.15)

Similarly, one gets 〈d, u|Mπ|u, d〉 = −g2a, which combined
with (8.15) gives for the I=0 UD-state −3g2a, as expected.

• Two-Meson-Exchange: The SU(3) matrix ele-
ments for the parallel (//) and crossed (X) TME-graphs
Fig. 6 and Fig. 7 are given by

M
(//)
tme (j, n; i,m) =

′∑

p,q,r,s

H2(j, r; q) H1(r, i; p)

× H2(n, s; q) H1(s,m; p) (8.16)

M
(X)
tme(j, n; i,m) =

′∑

p,q,r,s

H2(j, r; q) H1(r, i; p)

× H1(n, s; q) H2(s,m; p) (8.17)

Again, like in the OBE-case, the numerical values of
the SU(3) matrix elements for TME can be computed
easily making a computer program.

i

m

j

n

p

FIG. 5: Octet representation indices OBE-graphs. The solid
lines denote quarks with labels i,m, j, n. The dashed lines
with label p refers to the bosons: pseudo-scalar, vector, axial-
vector, or scalar mesons.

i

m

j

n

p q

r

s

FIG. 6: Octet representation indices TME-parallel-graphs.
The solid lines denote quarks with labels i,m, j, n, r, s. The
dashed lines with labels p, q refers to the pseudo-scalar
mesons.

IX. MPE INTERACTIONS AND SU(3)

A. Pair Couplings and SU(3)-symmetry

The SU(3) octet and singlet mesons, denoted by the
subscript 8 respectively 1, are in terms of the physical
ones defined as follows:

i

m

j

n

p q

r

s

FIG. 7: Octet representation indices TME-crossed-graphs.
The solid lines denote quarks with labels i,m, j, n, r, s. The
dashed lines with labels p, q refers to the pseudo-scalar
mesons.
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i

m

j

n

p q

s

FIG. 8: Octet representation indices MPE one-pair-graphs.
The solid lines denote quarks with labels i,m, j, n, s. The
dashed lines with labels p, q refers to the pseudo-scalar etc.
mesons.

(i) Pseudo-scalar-mesons:

η1 = cos θPV η
′ − sin θPV η

η8 = sin θPV η
′ + cos θPV η

Here, η′ and η are the physical pseudo-scalar
mesons η(957) respectively η(548).

(ii) Vector-mesons:

φ1 = cos θV ω − sin θV φ

φ8 = sin θV ω + cos θV φ

Here, φ and ω are the physical vector mesons
φ(1019) respectively ω(783).

Similarly for the scalar and axial-vector mesons. The
meson mixing angles are given in Ref. [10] Table IV. The
SU(3)-invariant pair-interaction Hamiltonians is given in
Ref. [36] section III.

B. Computations MPE-graphs SU(3)-factors

The SU(3) matrix elements for the graphs with meson-
pair vertices, the so-called MPE-graphs Fig. 8 and
Fig. 9 are, using the cartesian-octet representation in sec-
tion VIIIC, given by

M(1−pair)(j, n; i,m) =
′∑

p,q,r,s

Hpair(j, i, s) O(q, p, s)

× H2(m, r, q) H1(r,m, p) (9.1)

M(2−pair)(j, n; i,m) =
′∑

p,q,r,s=1

Hpair(j, i, s) O(q, p, s)

× O(q, p, r) Hpair(n,m, p) (9.2)

Again, like in the OBE-case, the numerical values of
the SU(3) matrix elements for MPE can be computed
straightforwardly making a computer program.

i

m

j

n

p q

FIG. 9: Octet representation indices MPE two-pair-graphs.
The solid lines denote quarks with labels i,m, j, n. The
dashed lines with labels p, q refers to the pseudo-scalar etc.
mesons.

C. Form Factors

Also in this work, like in the NSC97-models [53], the
form factors depend on the SU(3) assignment of the
mesons, In principle, we introduce form factor masses
Λ8 and Λ1 for the {8} and {1} members of each meson
nonet, respectively. In the application to Y N and Y Y ,
we allow for SU(3)-breaking, by using different cut-offs
for the strange mesons K, K∗, and κ. Moreover, for the
I = 0-mesons we assign the cut-offs as if there were no
meson-mixing. For example we assign Λ1 for η′, ω, ǫ, and
Λ8 for η, φ, S∗, etc.

X. RELATION QQM- AND BBM-COUPLINGS

In [1] the relation between the QQM- and BBM-
couplings is determined by requiring that the 1/M-
expansion of the baryon-baryon potentials is reproduced
by folding, using the SU(6) quark-model [3]. The
relations are

(a) Pseudoscalar mesons:

fpQQπ = fPBBπ, (10.1)

and similar relations for the η,K, η′. This follows from
gpQQπ = gpBBπ/3 and mq =MB/3.

(b) Vector mesons:

gvQQρ =
1

3
gVBBρ , f

v
QQρ =

1

3
fVBBρ, (10.2)

and similar relations for φ,K∗, ω.

(c) Scalar mesons:

gsQQa0
=

1

3
gSBBa0

, (10.3)

and similar relations for f0(993), κ, ǫ = f0(620).

(d) Axial-vector mesons (I):

gaQQA1
=

1

3
gABBA1

, faQQA1
=

1

3
fABBA1

, (10.4)
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TABLE II: Color and Spin matrix elements, F = λ/2.

S I C 〈λ1 · λ2〉 〈σ1 · σ2〉

0 0 {3∗} -8/3 -3

0 1 {6} +4/3 -3

1 0 {6} +4/3 +1

1 1 {3∗} -8/3 +1

and similar relations for D1(1285), KA(1336), E1(1420).

(e) Axial-vector mesons (II):

f bQQB1
=

1

3
fBBBB1

, (10.5)

and similar relations for D1(1285), KB(1300), and
E1(1420).

(f) Diffractive exchanges: Under the usual assumption
of the quark-additivity of the pomeron couplings [4] one
has gQQP = gNNP /3, and similarly for the odderon cou-
plings.

XI. GLUON AND CONFINING POTENTIALS

The one gluon-exchange (OGE) has the form

VOGE = A (λ1 · λ2) VV (mG, r,ΛG), (11.1)

where VV is the OBE vector exchange potential. Here,
mG = 480 MeV, which is the mass of the gluon propaga-
tor in the ”liquid instanton model” [54]. In [55, 56] the
confining potential is taken to be a scalar color-octet ex-
change potential. In [57] the confining potential is color-
singlet scalar exchange of the form

Vconf = C0 + C1 (λ1 · λ2) r
2, (11.2)

where C0 is adjusted to give the 939 MeV for the nucleon
mass, and depends on the other parts of the total Q-Q

potential. For the GBE-model [14, 58] in [57] table III
the fitted GBE parameters are C0= -416 MeV, C1= 2.33.
Since the GBE-model approach is also that of Manohar-
Georgi, we choose in this work the confining potential in
(11.2).

XII. SU(3) NJL-FORM INSTANTON
POTENTIALS

For SU(2) with ψ = (u, d) and τ0 = 1, the ’t Hooft
quark-quark interaction reads

Lud = GI

[
(ψ̄τ0ψ)

2 + (ψ̄iγ5τψ)
2 − (ψ̄τψ)2 − (ψ̄iγ5τ0ψ)

2

]
,

(12.1)
The SU(3) generalization of the ’t Hooft interaction for
the (u,d,s) quarks in the NJL-form reads

Luds = GI

[
(ψ̄λ0ψ)

2 + (ψ̄iγ5λψ)
2 − (ψ̄λψ)2 − (ψ̄iγ5λ0ψ)

2

]
,

(12.2)
with GI = λud/4, and where ψ = (u, d, s) i.e. the flavor

{3}-irrep spinor field, λ0 =
√

4/3 1, and λa, a = 1, 8 are
the Gell-Mann matrices.

1. Diagonal Potentials: Working out the diagonal
terms we have

Luds ⇒ GI

(
λ0,1λ0,2 − λ1 · λ2

) [
(q̄iqi)

2 + (q̄iγ5qi)
2

]
,

with i=u,d,s. In the CM-system assigning the momenta
(p,−p) in the initial state and (p′,−p′) in the final state
one has

(q̄q)2 → 1− 1

4M2

[
2p′ · p+ i(σ1 + σ2) · p′ × p

]
,

(q̄γ5q)
2 → − 1

4M2
σ1 · (p′ − p) σ2 · (p′ − p)

Using the variables k = p′ − p and q = (p′ + p)/2 the
potential becomes

Ṽ (p′,p) = −2GI

(
λ0,1λ0,2 − λ1 · λ2

)[
1 +

(
1− 1

3
σ1 · σ2

)
k2

4M2
− q2 + k2/4

2M2

− 1

4M2

(
σ1 · kσ2 · k− 1

3
σ1 · σ2 k2

)
+

i

4M2
(σ1 + σ2) · n+

1

16M4
(σ1 · n)(σ2 · n)

]
,

(12.3)

where n = q× k, and the quadratic-spin-orbit term is added for completenes.
Adding a gaussian cut-off FI(k

2) = exp
[
−k2/(Λ2

]
, with mI = Λ/2, the local instanton potentials become, apart from
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the flavor factor,

VI = − 2gI
π
√
π

m3
I

Λ2

[
1 +

m2
I

2M2

(
3− 2m2

Ir
2
)(

1− 1

3
σ1 · σ2

)
+

m2
I

3M2
(mIr)

2 S12

+
m2

I

M2
L · S+

m4
I

M4
Q12

]
exp
[
−m2

Ir
2
]
. (12.4)

Taking Λ = 1 GeV/c2, GI = λud/4 the coupling gI = GIΛ
2 = 2.0− 2.5.

For u,d quarks the flavor factor becomes, see also (2.1),
(1− τ1 · τ2), which gives 0 and 4 for I=1 and I=0 respec-
tively. For mI = 200 MeV and M = mQ =MN/3 ≈ 315
MeV, the factor (1 + 3m2

I/2M
2) ≈ 1.6. This gives

VI(
1S0, I = 1) = 0 and VI(

3S1, I = 0) < 0 for r=0.
In analyzing the U(1)-problem, Weinberg [15] chooses

λ0 =
√
2/3 1 giving for u,d quarks (1/3− τ1 · τ2) which

is -2/3 and 10/3 for I=1 and I=0 respectively. This gives
repulsion and attraction for respectively 1S0(I = 1) and
3S1(I = 0).
The non-local term in (12.3) has the same sign as for
scalar and vector exchange, and opposite to Pomeron ex-
change. Therefore, compare [39] formula (34), one has

Vn.l.(r) = −GI

{
∇

2 exp

[
−1

4
Λ2r2

]
+ exp

[
−1

4
Λ2r2

]
∇

2

}

≡ −
[
∇

2 φ(r)

2Mred
+

φ(r)

2Mred

]
, (12.5)

which, with Mred =M/2, gives

φ(r) = +(GIM
2)

(
Λ

2
√
πM

)3

exp

[
−1

4
Λ2r2

]
.(12.6)

Now, (Λ/2
√
πM) ≈ 0.85 and 0.56 for the u,d and s

quark respectively. For gI = GIM
2 = 2.0 − 2.5 the

non-local function φ(r) is not small.
The flavor factor for the non-strange quarks becomes
(1− τ1 · τ2), which is due to the choice for λ0.

2.1. Non-diagonal Potentials: There are no non-
diagonal terms!? For example s→ u:

(ψ̄λψ)2 → (ψ̄λ4ψ)
2 + (ψ̄λ5ψ)

2 → (ūs)2 − (ūs)2 = 0, etc.

XIII. ESC16-MODEL: FITTING
NN ⊕ Y N ⊕ Y Y -DATA

In the simultaneous χ2-fit of the NN -, Y N -, and YY-
data a single set of parameters was used, which means the
same parameters for all BB-channels. The input NN -
data are the same as in Ref. [35], and we refer the reader
to this paper for a description of the employed phase shift
analysis [59, 60].
It appeared that the OBE-couplings could be con-

strained successfully by the ’naive’ predictions of the
QPC-model [3, 5]. Although these predictions, see sec-
tion V, are ’bare’ ones, the policy was to keep the many

OBE-couplings in the neighborhood of the QPC-values.
Also, it appeared that we could either fix the F/(F +D)-
ratios to those as suggested by the QPC-model, or apply
the same restraining strategy as for the OBE-couplings.

A. Fitted BB-parameters

The treatment of the broad mesons ρ and ǫ was sim-
ilar to that in the OBE-models [39, 40]. For the ρ-
meson the same parameters are used as in these refer-
ences. However, for the ǫ = f0(620) assuming mǫ = 620
MeV and Γǫ = 464 MeV the Bryan-Gersten parame-
ters [61] are used. For the chosen mass and width they
are: m1 = 496.39796 MeV, m2 = 1365.59411 MeV, and
β1 = 0.21781, β2 = 0.78219. Other meson masses are
given in Table III. The sensitivity for the values of the
cut-off masses of the η and η′ is very weak. Therefore we
have set the {1}-cut-off imass for the pseudoscalar nonet
equal to that for the {8}. Likewise, for the two nonets of
the axial-vector mesons, see table III.
Summarizing the parameters for baryon-baryon (BB)

are:
(i) NN Meson-couplings: fNNπ, fNNη′ , gNNρ, gNNω,
fNNρ, fNNω, gNNa0

, gNNǫ, gNNa1
, fNNa1

, gNNf ′

1
,

fNNf ′

1
, fNNb1 , fNNh′

1

(ii) F/(F +D)-ratios: αm
V , αA

(iii) NN Pair couplings: gNN(ππ)1 , fNN(ππ)1 , gNN(πρ)1 ,
gNNπω, gNNπη, gNNπǫ

(iv) Diffractive couplings and masslike parameters gNNP ,
gNNO, fNNO, mP , mO

(v) Cut-off masses: ΛP
8 = ΛP

1 , Λ
V
8 , Λ

V
1 , Λ

S
8 , Λ

S
1 , and ΛA

8

= ΛA
1 .

The pair coupling gNN(ππ)0 was kept fixed at zero.
Note that in the interaction Hamiltonians of the pair-
couplings (7.15) the partial derivatives are scaled by mπ,
and there is a scaling mass MN .
The ESC models, are fully consistent with SU(3)-

symmetry using a straightforward extension of the NN-
model to YN and YY. This is the case for the OBE- and
TPS-potentials, as well as for the Pair-potentials. All
F/(F + D)-ratio’s are taken as fixed with heavy-meson
saturation in mind.
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TABLE III: Meson couplings and parameters employed in the
ESC16-potentials. Coupling constants are at k2 = 0. An
asterisk denotes that the coupling constant is constrained via
SU(3). The masses and Λ’s are given in MeV.

meson mass g/
√
4π f/

√
4π Λ

π 138.04 0.2684 1030.96

η 547.45 0.1368∗ ,,

η′ 957.75 0.3181 ,,

ρ 768.10 0.5793 3.7791 680.79

φ 1019.41 –1.2384∗ 2.8878∗ ,,

ω 781.95 3.1149 –0.5710 734.21

a1 1270.00 –0.8172 –1.6521 1034.13

f1 1420.00 0.5147 4.4754 ,,

f ′
1 1285.00 –0.7596 –4.4179 ,,

b1 1235.00 –2.2598 1030.96

h1 1380.00 –0.0830∗ ,,

h′
1 1170.00 –1.2386 ,,

a0 962.00 0.5393 830.42

f0 993.00 –1.5766∗ ,,

ε 620.00 2.9773 1220.28

Pomeron 212.06 2.7191

Odderon 268.81 4.1637 –3.8859

B. Coupling Constants, F/(F +D) Ratios, and
Mixing Angles

In Table III we give the ESC16 meson masses, and
the fitted couplings and cut-off parameters [9, 10]. Note
that the axial-vector couplings for the B-mesons are
scaled with mB1

. The mixing for the pseudo-scalar, vec-
tor, and scalar mesons, as well as the handling of the
diffractive potentials, has been described elsewhere, see
e.g. Refs. [40, 53]. The mixing scheme of the axial-
vector mesons is completely similar as for the vector
etc. mesons, except for the mixing angle. As mentioned
above, we searched for solutions where all OBE-couplings
are compatible with the QPC-predictions. This time the
QPC-model contains a mixture of the 3P0 and 3S1 mech-
anism, whereas in Ref. [35] only the 3P0-mechanism was
considered. For the pair-couplings all F/(F +D)-ratios
were fixed to the predictions of the QPC-model.
One notices that all the BBM α’s have values rather

close to that which are expected from the QPC-model.
In the ESC16 solution αA ≈ 0.38, which is close to
αA ∼ 0.4. As in previous works, e.g. Ref. [39], αe

V = 1
is kept fixed. Above, we remarked that the axial-nonet
parameters may be sensitive to whether or not the heavy
pseudoscalar nonet with the π(1300) are included.

In Table III we show the OBE-coupling constants and
the gaussian cut-off’s Λ. The used α =: F/(F + D)-
ratio’s for the OBE-couplings are: pseudo-scalar mesons
αpv = 0.365, vector mesons αe

V = 1.0, αm
V = 0.472, and

scalar-mesons αS = 1.00, which is calculated using the
physical S∗ =: f0(993) coupling etc..

TABLE IV: Pair-meson coupling constants employed in the
ESC16 MPE-potentials. Coupling constants are at k2 = 0.
The F/(F+D)-ratio are QPC-predictions, except that α(πω) =
αP , which is very close to QPC.

JPC SU(3)-irrep (αβ) g/4π F/(F +D)

0++ {1} g(ππ)0 — —

0++ ,, g(σσ) — —

0++ {8}s g(πη) -0.6894 1.000

1−− {8}a g(ππ)1 0.2519 1.000

f(ππ)1 –1.7762 0.400

1++ ,, g(πρ)1 5.7017 0.400

1++ ,, g(πσ) –0.3899 0.400

1++ ,, g(πP ) — —

1+− {8}s g(πω) –0.3287 0.365

In Table IV we list the fitted Pair-couplings for the
MPE-potentials. We recall that only One-pair graphs are
included, in order to avoid double counting, see Ref. [35].
The F/(F+D)-ratios are all fixed, assuming heavy-boson
domination of the pair-vertices. The ratios are taken
from the QPC-model for QQ̄-systems with the same
quantum numbers as the dominating boson. For exam-
ple, the α-parameter for the axial (πρ)1-pair could fixed
at the quark-model prediction 0.40, see Table IV. The
BB-Pair couplings are calculated, assuming unbroken
SU(3)-symmetry, from the NN -Pair coupling and the
F/(F +D)-ratio using SU(3). So, in addition to the 14
parameters used in Ref. [62] we now have 6 pair-coupling
fit parameters. In Table IV the fitted pair-couplings are
given. The (πρ)1-coupling is large as expected from A1-
saturation, see Ref. [62]. In Table IV we show the MPE-
coupling constants. The used α =: F/(F + D)-ratio’s
for the MPE-couplings are: (πη) pairs α({8s}) = 1.0,
(ππ)1 pairs αe

V ({8}a) = 1.0, αm
V ({8}a) = 0.400, and the

(πρ)1 pairs αA({8}a) = 0.400. The (πω) pairs α({8s})
has been set equal to αpv = 0.365.
Assuming heavy-meson dominance of the meson-pair
couplings, similarly to the QQM-couplings all QQ meson-
pair couplings get a factor 1/3, i.e. gQQm1m2

=
GBBm1m2

/3.

XIV. SUMMARY AND OUTLOOK

The ESC-approach to the baryon-baryon interactions
is able to make a connection between the available
baryon-baryon data on the one hand, and on the other
hand the underlying quark structure of the baryons and
mesons. Namely, a succesfull description of both the
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FIG. 10: G-matrix: Kadyshevsky-Bethe-Goldstone Equation

NN - and YN -scattering data is obtained with meson-
baryon coupling parameters which are almost all ex-
plained by the QPC-model, which implicitly makes use
of the CQM. The finding that in the CQM it is pos-
sible to derive the ESC baryon-baryon meson-exchange
potentials from meson-exchange between quarks via fold-
ing with the ground-state baryon quark wave functions
opens the way to derive meson-exchange quark-quark po-
tentials almost parameter free.
The method followed in this paper is based on these

observations. The potentials are worked out in a 1/mQ-
expansion. For quark masses significantly smaller than
the constituent quarks the Kadyshevsky formalism in
momentum space provides a suitable framework for rel-
ativistic calculations. In this case the 1/mQ-expansion

can be avoided by using the complete formulas for the
Kadyshevsky diagrams. This lowering of the quark mass
will happen in dense quark-matter, and therefore a rel-
ativistic many-body theory is eventually needed. Sim-
ilar to the Dirac-Bruckner Theory, the Kadyshevsky-
Bethe-Goldstone equation for the G-matrix is obtained
in momentum-space, which can be solved using standard
methods.
Application of this work, for example, can be the study

of neutron-star (NS) matter modeled as a mixture of
quark and baryon matter. The G-matrices of both kinds
of matter are described with largely common parameters.
Finally, we mention the possibility to derive an ΩΩ-
potential by folding the QQ-potentials with the Ω three-
quark wave function.

APPENDIX A: KADYSHEVSKY G-MATRIX EQUATION

In a fermi-system, e.g. quark matter, the Kadyshevsky-Bethe-Goldstone-Kadyshevsky equation (BGKE) is depicted
in Fig. 10, and reads

F(p′,p;W ) = K(p′,p;W ) +
1

(2π)3

∫
d3p′′

2E(p′′)
K(p′,p′′;W ) ·

× M2

E(p′′) [E(p′′)− E(p)− iǫ]
QP [nF (p

′′)] F(p′′,p;W ),

(A1)
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which corresponds to Eq. (5.11). Then, the Bethe-Goldstone-Kadyshevsky two-particle wave function reads

ψ(p;W ) = ψ(0)(p) +

∫
d3p′′

2E(p′′)(2π)3
·

× M2

E(p′′) [E(p′′)− E(p)− iǫ]
QP [nF (p

′′)] ψ(p′′;W ), (A2)

where ψ(0)(p;W ) corresponds to the two-particle plane-wave product state |φ0(p1)〉|φ0(p2)〉, with P = p1 + p2, p =
p1 − p2, and W = p01 + p02. Here, φ(0)(p) is the plane wave in the case of matter or a model wave function for finite
nuclei.
Then, the corresponding G-matrix is introduced in the standard way by defining G(p;W ) = 〈ψ(0)|Kop |ψ(p;W )〉,
giving the equation

G(p′,p;W ) = K(p′,p;W ) +
1

(2π)3

∫
d3p′′

2E(p′′)
K(p′,p′′;W ) ·

× M2

E(p′′) [E(p′′)− E(p)]
QP [nF (p

′′)] G(p′′,p;W ).

(A3)

This integral equation for the G-matrix is similar to that in the Dirac-Bruckner theory, see e.g. [63, 64]. Notice that
in the non-relativistic limit M/E = 1 and Eqn. (A3) corresponds to the usual employed G-matrix equation in the
many-body problem. In fact, the difference with Eqn. (1) of Refs. [65, 66] is largely a factor (M/E(p′′))2 under the
integral, and the use of an effective density dependent mass in the Dirac spinors. Therefore, the momentum space
evaluation of the G-matrix partial waves is wel known.
For a quark pair with flavor quantum numbers f1, f2 in quark matter the G-matrix equation for partial waves in short
notation reads

Gcc0(ω) = Kcc0 +
∑

c′

[
mQ

(ǫf ′

1
+ ǫf ′

2
)

]2
Kcc′

Qy′

ω − ǫf ′

1
− ǫf ′

2

Gc′c0(ω), (A4)

where c denotes the ’relative’ state (y, T, L, S, J) with y = (f1, f2). S and T are spin and isospin quantum numbers,

respectively. The energies are ǫfi =
√
k2fi +m2

Q − mQ, i=1,2. The quark single particle (s.p.) energy ǫf in quark

matter is

ǫf (kf ) =
[√

k2f +m2
Q]−mQ

]
+ Uf (kf ), (A5)

where kf is the f-quark momentum (~ = c = 1). The potential energy Uf is (ontained self-consistently) in terms of
the G-matrix as

Uf (kf ) =
∑

|kf′ |
〈kfkf ′ |Gff ′ (ω = ǫf (kf ) + ǫf ′(kf ′) |kfkf ′〉. (A6)

The kinetic, potential, and total energies per quark are given by averaged quantities of Tf , Uf , and Ef = Tf + Uf in
a Fermi sphere.

APPENDIX B: BBM-COUPLINGS IN THE QPC-MODEL

The BBM-couplings in the ESC models fit very well with the 3P0⊕3S1 quark-pair creation (QPC) model. A simple
(effective) QPC interaction Lagrangian is

LI = γ


A



∑

j

q̄j qj


 ·

(
∑

i

q̄i qi

)
+B



∑

j

q̄jγµ qj


 ·

(
∑

i

q̄iγ
µ qi

)
 , (B1)
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where γ, A, and B are given in Ref. [9] Table II. To see the meson couplings we make the Fierz transformation of
(B1) which gives [67]

LI = −γ
4

∑

i,j

[
(A+ 4B)q̄i qj · q̄j qi + (A− 4B)q̄iγ5qj · q̄jγ5qi

+(A− 2B)q̄iγµqj · q̄jγµqi − (A+B)q̄iγµγ5qj · q̄jγµγ5qi

−(A/2) q̄iσµνqj · q̄jσµνqi

]
. (B2)

Identifying the q̄q pairs with the mesons

χS
ij ∼ q̄j qi , χ

P
ij ∼ q̄jγ5 qi , χ

V
µ,ij ∼ q̄jγµqi , χ

A
µ,ij ∼ q̄jγ5γµqi (B3)

the QQM-couplings are defined. For example, the pseudoscalar couplings are

HP = g
(p)
8

√
2
[
Q̄M

(8)
P Q

]
+ g

(p)
1

[
Q̄M

(1)
P Q

]
/
√
3, (B4)

where g
(p)
8 = −γP (A− 4B)/4.

APPENDIX C: MOMENTUM-SPACE MESON-QUARK-QUARK VERTICES

1. Pauli-reduction Dirac-spinor Γ-matrix elements

The transition from Dirac spinors to Pauli spinors is given here, without approximations. We use the notations
E = E +M and E ′ = E′ +M ′, where E = E(p,M) and E′ = E(p′,M ′). Also, we omit, on the right-hand side in the
expressions below, the final and initial Pauli spinors χ′† and χ respectively, which are self-evident.

ū(p′)u(p) = +

√
E ′E

4M ′M

[(
1− p′ · p

E ′E

)
− i

p′ × p · σ
E ′E

]
, (C1a)

ū(p′)γ5u(p) = −
√

E ′E
4M ′M

[
σ ·p′

E ′ − σ ·p
E

]
, (C1b)

ū(p′)γ0u(p) = +

√
E ′E

4M ′M

[(
1 +

p′ · p
E ′E

)
+ i

p′ × p · σ
E ′E

]
, (C1c)

ū(p′)γ u(p) = +

√
E ′E

4M ′M

[(
p′

E ′ +
p

E

)
+ i

(
σ × p′

E ′ − σ × p

E

)]
, (C1d)

ū(p′)γ5γ
0u(p) = −

√
E ′E

4M ′M

[
σ ·(p′

E ′ +
σ ·(p
E

]
, (C1e)

ū(p′)γ5γ u(p) = −
√

E ′E
4M ′M

[
σ +

(σ · p′) σ (σ · p)
E ′E

]

= −
√

E ′E
4M ′M

[(
1− p′ · p

E ′E

)
σ − i

p′ × p

E ′E

+
1

E ′E (σ · p p′ + σ · p′ p)

]
≈ −σ, , (C1f)

where we defined k = p′ − p, q = (p′ + p)/2, and κV = fV /gV .

Using the the Gordon decomposition

i ū(p′) σµν(p′ − p)νu(p) = ū(p′)

{
(M ′ +M)γµ − (p′ + p)µ

}
u(p) (C2)
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one obtains for the complete vector-vertex

ū(p′)Γµ
V u(p) ≡ ū(p′)

[
γµ +

i

2MκV σ
µν(p′ − p)ν

]
u(p)

= ū(p′)

[(
1 +

M ′ +M

2M κV

)
γµ − κV

2M (p′ + p)µ

]
u(p) =⇒

µ = 0 : +

√
E ′E

4M ′M

[(
1 +

M ′ +M

2M κV

)(
1 +

σ · p′ σ · p
E ′E

)

− κV
2M (E′ + E)

(
1− σ · p′ σ · p

E ′E

)]
, (C3a)

µ = i : +

√
E ′E

4M ′M

[(
1 +

M ′ +M

2M κV

){(
p′

E ′ +
p

E

)
+ i

(
σ × p′

E ′ − σ × p

E

)}

− κV
2M (p′ + p)

(
1− σ · p′ σ · p

E ′E

)]
. (C3b)

2. 1/M-expansion Γ-matrix elements

The exact transition from Dirac spinors to Pauli spinors is given in Appendix C 1. From the expressions in C 1,
keeping only terms up to order 1/M , and setting the scaling mass M = M , we find that the vertex operators in
Pauli-spinor space for the NNm vertices are given by

ū(p′)u(p) =

[(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

]
, (C4a)

ū(p′)γ5u(p) = − 1

2M
[σ ·(p′ − p)] = − 1

2M
[σ ·k] , (C4b)

ū(p′)γ0u(p) =

[(
1 +

p′ · p
4M2

)
+

i

4M2
p′ × p · σ

]
, (C4c)

ū(p′)γ u(p) =
1

2M
[(p′ + p) + iσ × (p′ − p)] , (C4d)

ū(p′)γ5γ
0u(p) = − 1

2M
[σ ·(p′ + p)] = − 1

M
[σ ·q] , (C4e)

ū(p′)γ5γ u(p) = −
[
σ +

1

4M2
(σ · p′) σ (σ · p)

]
= −

[(
1− p′ · p

4M2

)
σ

− i

4M2
p′ × p+

1

4M2
(σ · p p′ + σ · p′ p)

]
≈ −σ, , (C4f)

where we defined k = p′ − p, q = (p′ + p)/2, and κV = fV /gV . In passing we note that the inclusion of the
1/M2-terms is necessary in order to get spin-orbit potentials, like in the case of the OBE-potentials.

For the magnetic-coupling we use the Gordon decomposition

i ū(p′) σµν(p′ − p)νu(p) = ū(p′)

{
2Mγµ − (p′ + p)µ

}
u(p) (C5)

We get

i ū(p′) σµν(p′ − p)νu(p) =⇒

µ = 0 : −M
[(

1− p′ · p
4M2

)
+

(p′2 + p2)

2M2
− i

4M2
p′ × p · σ

]
, (C6a)

µ = i : −
[
1

2
(p′ + p)− i

2
σ × (p′ − p)

]
. (C6b)
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For the vector-vertex with direct and derivative coupling one has

ū(p′)Γµ
V u(p) ≡ ū(p′)

[
γµ +

i

2M
κV σ

µν(p′ − p)ν

]
u(p)

= ū(p′)
[
(1 + κV )γ

µ − κV
2M

(p′ + p)µ

]
u(p) =⇒

µ = 0 :

[
(1 + κV )

(
1 +

p′ · p
4M2

+
i

4M2
p′ × p · σ

)

−κV
Ep′ + Ep

2M

(
1− p′ · p

4M2
− i

4M2
p′ × p · σ

)]
≈

[
1 + (1 + 2κV )

{
p′ · p
4M2

+
i

4M2
p′ × p · σ

}
− κV

p′2 + p2

4M2

]
, (C7a)

µ = i :
1

M

[
1

2
(p′ + p) +

i

2
(1 + κV )σ × (p′ − p)

]
. (C7b)

3. Complete Meson-vertices in Pauli-spinor space

The transition from Dirac spinors to Pauli spinors is reviewed in Appendix C of [37]. Following this reference and
keeping only terms up to order (1/M)2, we find that the vertex operators in Pauli-spinor space for the QQm vertices
are given by

ū(p′)Γ(1)
P u(p) = −i fP

mπ

[
σ1 ·k± ω

2M
σ1 ·(p′ + p)

]
, (C8a)

ū(p′)Γ(1)
V u(p) = gV

[{(
1 +

p′ · p
4M2

)
− i

4M2
p′ × p · σ

}
φ0V

− 1

2M

{
(p′ + p) + i(1 + κV )σ1×k

}
·φV

]
, (C8b)

ū(p′)Γ(1)
A u(p) = gA

[
− 1

2M
{σ · (p′ + p)} φ0A

+

{
σ +

1

4M2
(σ · p′) σ (σ · p)

}
·φA

]
, (C8c)

ū(p′)Γ(1)
S u(p) = gS

[(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

]
, (C8d)

where we defined k = p′ − p and κV = fV /gV . In the pseudovector vertex, the upper (lower) sign stands for creation
(absorption) of the pion at the vertex. In passing we note that the inclusion of the 1/M2-terms is necessary in order
to get spin-orbit potentials, like in the case of the OBE-potentials.

The complete quark-meson verices are:
(i) Scalar mesons: Including the extra quark-level coupling

ū(p′)ΓSu(p) = gS

(
1− k2

4m2
Q

)[(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

]
, (C9)

(ii) Vector mesons: For the complete vector-meson coupling to the quarks

Γµ
V = Gmγ

µ +
1

MGe(p
′ + p)µ, Gm,v = gv + fv , Ge,v = −fv

[
1 +

k2

8m2
Q

]
,
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and writing ΓV = Γ
(m)
V + Γ

(e)
V ,

ū(p′)Γ(m)
V u(p) = Gm,v

[{(
1 +

p′ · p
4M2

)
+

i

4M2
p′ × p · σ

}
φ0V

+
1

2M

{
(p′ + p) + iσ1×k

}
·φV

]
, (C10a)

ū(p′)Γ(e)
V u(p) = Ge,v

[E ′ + E
M

{(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

}
φ0V

+
(p′ + p)

M

{(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

}}
·φV

]

≈ Ge,v

[
2
M

M

{(
1 +

p′2 − p′ · p+ p2

4M2

)
− i

4M2
p′ × p · σ

}
φ0V +

(p′ + p)

M

}
·φV

]
(C10b)

(iii) Axial-vector mesons: The extra QQ axial-coupling has the vertex

ū(p′)Γ(o)
A u(p) =

g′a
M2

[
1

M

{
(p′ · p− p2)σ · p′ + (p′ · p− p′2)σ · p

}
φ0A − 2ip′ × p ·φA

]

=
ga

4M2

[
1

M

{
(q · k σ · k− k2 σ · q

}
φ0A + 2iq× k · φA

]

≈ ga
2M2

· iq× k · φA, (C11)

i.e. a purely spin-orbit contribution. Using

(σ · p′) σ (σ · p) = p′ (σ · p) + p (σ · p′)− p′ · p σ − ip′ × p =

2q(σ · q)− 1

2
k (σ · k)− (q2 − k2/4) σ + iq× k.

we obtain for the complete axial-vertex, with M =M ,

ū(p′)ΓAu(p) = gA

[
− 1

M
(σ · q)φ0A +

{
σ

(
1− q2 − k2/4

4M2

)

+
1

4M2

(
2q(σ · q)− 1

2
k(σ · k)

)
+

3i

4M2
q× k

}
·φA

]
. (C12)

APPENDIX D: ONE-BOSON-EXCHANGE QUARK-QUARK POTENTIALS

1. Non-strange Meson-exchange

For the non-strange mesons the mass differences at the vertices are neglected, we take at the Y YM - and the
NNM -vertex the average hyperon and the average nucleon mass respectively. This implies that we do not include
contributions to the Pauli-invariants P7 and P8. For vector-, and diffractive OBE-exchange we refer the reader to

Ref. [40], where the contributions to the different Ω
(X)
i ’s for baryon-baryon scattering are given in detail.

(a) Pseudoscalar-meson exchange:

Ω
(P )
2a = −gp13gp24

(
k2

12MyMn

)
, Ω

(P )
3a = −gp13gp24

(
1

4MyMn

)
, (D1a)

Ω
(P )
2b = +gp13g

p
24

(
k2

24M2
yM

2
n

)
, Ω

(P )
3b = +gp13g

p
24

(
1

8M2
yM

2
n

)
, . (D1b)

PV-formulas:

Ω
(P )
2a = −fpv13 fpv24

(
k2

3m2
π+

)
, Ω

(P )
3a = −fpv13 fpv24

(
1

m2
π+

)
, (D1c)

Ω
(P )
2b = +fpv13 f

pv
24

(
k2

6m2
π+MyMn

)
, Ω

(P )
3b = +fpv13 f

pv
24

(
1

2m2
π+M2

yM
2
n

)
, . (D1d)
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(b) Vector-meson exchange:

Ω
(V )
1a =

{
gv13g

v
24

(
1− k2

2MyMn

)
− gv13f

v
24

k2

4MMn
− fv13g

v
24

k2

4MMy

+ fv13f
v
24

k4

16M2MyMn

}
, Ω

(V )
1b = gv13g

v
24

(
3

2MyMn

)
,

Ω
(V )
2a = −2

3
k2 Ω

(V )
3a , Ω

(V )
2b = −2

3
k2 Ω

(V )
3b ,

Ω
(V )
3a =

{
(gv13 + fv13

My

M )(gv24 + fv24
Mn

M )− fv13f
v
24

k2

8M2

}
/(4MyMn),

Ω
(V )
3b = −(gv13 + fv13

My

M )(gv24 + fv24
Mn

M )/(8M2
yM

2
n),

Ω
(V )
4 = −

{
12gv13g

v
24 + 8(gv13f

v
24 + fv13g

v
24)

√
MyMn

M − fv13f
v
24

3k2

M2

}
/(8MyMn)

Ω
(V )
5 = −

{
gv13g

v
24 + 4(gv13f

v
24 + fv13g

v
24)

√
MyMn

M + 8fv13f
v
24

MyMn

M2

}
/(16M2

yM
2
n)

Ω
(V )
6 = −

{
(gv13g

v
24 + fv13f

v
24

k2

4M2
)
(M2

n −M2
y )

4M2
yM

2
n

− (gv13f
v
24 − fv13g

v
24)

1√
M2MyMn

}
.

(D2)

(c) Scalar-meson exchange:

Ω
(S)
1a = −gs13gs24

(
1 +

k2

4MyMn

)

Ω
(S)
1b = +gs13g

s
24

[
1

2MyMn

]
, Ω

(S)
4 = −gs13gs24

[
1

2MyMn

]

Ω
(S)
5 = gs13g

s
24

[
1

16M2
yM

2
n

]
, Ω

(S)
6 = −gs13gs24

(M2
n −M2

y )

4M2
yM

2
n

. (D3)

(d) Axial-vector-exchange JPC = 1++:

Ω
(A)
2a = −ga13ga24

[
1− 2k2

3MyMn

]
+

[(
gA13f

A
24

Mn

M + fA13g
A
24

My

M

)
− fA13f

A
24

k2

2M2

]
k2

6MyMn

Ω
(A)
2b = −ga13ga24

(
3

2MyMn

)

Ω
(A)
3 = −ga13ga24

[
1

4MyMn

]
+

[(
gA13f

A
24

Mn

M + fA13g
A
24

My

M

)
− fA13f

A
24

k2

2M2

]
1

2MyMn

Ω
(A)
4 = −ga13ga24

[
1

2MyMn

]
, Ω

(A)
6 = −ga13ga24

[
(M2

n −M2
y )

4M2
yM

2
n

]

Ω
(A)′

5 = −ga13ga24
[

2

MyMn

]
(D4)

Here, we used the B-field description with αr = 1, see [13] Appendix A. The detailed treatment of the potential

proportional to P ′
5, i.e. with Ω

(A)′

5 , is given in [13], Appendix B.
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(e) Axial-vector mesons with JPC = 1+−:

Ω
(B)
2a = +fB13f

B
24

(Mn +My)
2

m2
B

(
1− k2

4MyMn

)(
k2

12MyMn

)
, Ω

(B)
2b = +fB13f

B
24

(Mn +My)
2

m2
B

(
k2

8M2
yM

2
n

)

Ω
(B)
3a = +fB13f

B
24

(Mn +My)
2

m2
B

(
1− k2

4MyMn

)(
1

4MyMn

)
, Ω

(B)
3b = +fB13f

B
24

(Mn +My)
2

m2
B

(
3

8M2
yM

2
n

)
.

(D5)

(f) Diffractive-exchange (pomeron, f, f ′, A2):
The ΩD

i are the same as for scalar-meson-exchange Eq.(D3), but with ±gS13gS24 replaced by ∓gD13gD24, and except
for the zero in the form factor.

(g) Odderon-exchange: The ΩO
i are the same as for vector-meson-exchange Eq.(refeq2), but with gV13 → gO13, f

V
13 →

fO13 and similarly for the couplings with the 24-subscript.

As in Ref. [40] in the derivation of the expressions for Ω
(X)
i , given above, My and Mn denote the mean hyperon

and nucleon mass, respectively My = (M1 + M3)/2 and Mn = (M2 + M4)/2, and m denotes the mass of the
exchanged meson. Moreover, the approximation 1/M2

N + 1/M2
Y ≈ 2/MnMy, is used, which is rather good since the

mass differences between the baryons are not large.

2. One-Boson-Exchange Interactions in Configuration Space I

In configuration space the BB-interactions are described by potentials of the general form

V =

{
VC(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VSO(r)L · S+ VQ(r)Q12

+VASO(r)
1

2
(σ1 − σ2) · L− 1

2MyMn

(
∇

2V n.l.(r) + V n.l.(r)∇2

)}
· P, (D6a)

V n.l. =

{
ϕC(r) + ϕσ(r)σ1 · σ2 + ϕT (r)S12

}
· P, (D6b)

where for non-strange mesons P = 1, and

S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2), (D7a)

Q12 =
1

2

[
(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)

]
, (D7b)

φ(r) = φC(r) + φσ(r)σ1 · σ2, (D7c)

For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [39, 40]. For the
details of the Fourier transform for the potentials with P ′

5, which occur in the case of the axial-vector mesons with
JPC = 1++, we refer to Ref. [13] Appendix B.
(a) Pseudoscalar-meson-exchange:

VPS(r) =
m

4π

[
gp13g

p
24

m2

4MyMn

(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P, (D8a)

V n.l.
PS (r) =

m

4π

[
gp13g

p
24

m2

4MyMn

(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P. (D8b)
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(b) Vector-meson-exchange:

VV (r) =
m

4π

[{
gv13g

v
24

[
φ0C +

m2

2MyMn
φ1C

]

+

[
gv13f

v
24

m2

4MMn
+ fv13g

v
24

m2

4MMy

]
φ1C + fv13f

v
24

m4

16M2MyMn
φ2C

}

+
m2

6MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ1C + fv13f

v
24

m2

8M2
φ2C

}
(σ1 · σ2)

− m2

4MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ0T + fv13f

v
24

m2

8M2
φ1T

}
S12

− m2

MyMn

{[
3

2
gv13g

v
24 + (gv13f

v
24 + fv13g

v
24)

√
MyMn

M

]
φ0SO +

3

8
fv13f

v
24

m2

M2
φ1SO

}
L · S

+
m4

16M2
yM

2
n

{[
gv13g

v
24 + 4 (gv13f

v
24 + fv13g

v
24)

√
MyMn

M + 8fv13f
v
24

MyMn

M2

]}
·

× 3

(mr)2
φ0TQ12 −

m2

MyMn

{[(
gv13g

v
24 − fv13f

v
24

m2

M2

)
(M2

n −M2
y )

4MyMn

− (gv13f
v
24 − fv13g

v
24)

√
MyMn

M

]
φ0SO

}
· 1
2
(σ1 − σ2) · L

]
P, (D9a)

V n.l.
V (r) =

m

4π

[
3

2
gv13g

v
24 φ

0
C

+
m2

6MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ1C

}
(σ1 · σ2)

− m2

4MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ0T

}
S12

]
P. (D9b)

Note: the non-local tensor and ”associated” spin-spin terms are not included in ESC16 model.

(c) Scalar-meson-exchange:

VS(r) = −m

4π

[
gs13g

s
24

{[
φ0C − m2

4MyMn
φ1C

]
+

m2

2MyMn
φ0SO L · S+

m4

16M2
yM

2
n

·

× 3

(mr)2
φ0TQ12 +

m2

MyMn

[
(M2

n −M2
y )

4MyMn

]
φ0SO · 1

2
(σ1 − σ2) · L

+
1

4MyMn

(
∇

2φ0C + φ0C∇
2
)}]

P. (D10)

(d) Axial-vector-meson exchange JPC = 1++:

VA(r) = −m

4π

[{
ga13g

a
24

(
φ0C +

2m2

3MyMn
φ1C

)
+

m2

6MyMn

(
ga13f

a
24

Mn

M + fa13g
a
24

My

M

)
φ1C

+fa13f
a
24

m4

12MyMnM2
φ2C

}
(σ1 · σ2)−

3

4MyMn
ga13g

a
24

(
∇

2φ0C + φ0C∇
2
)
(σ1 · σ2)

− m2

4MyMn

{[
ga13g

a
24 − 2

(
ga13f

a
24

Mn

M + fa13g
a
24

My

M

)]
φ0T − fa13f

a
24

m2

M2
φ1T

}
S12

+
m2

2MyMn
ga13g

a
24

{
φ0SO L · S+

m2

MyMn

[
(M2

n −M2
y )

4MyMn

]
φ0SO · 1

2
(σ1 − σ2) · L

}]
P. (D11)
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(e) Axial-vector-meson exchange JPC = 1+−:

VB(r) = −m

4π

(Mn +My)
2

m2

[
fB13f

B
24

{
m2

12MyMn

(
φ1C +

m2

4MyMn
φ2C

)
(σ1 · σ2)

− m2

8MyMn

(
∇

2φ1C + φ1C∇
2
)
(σ1 · σ2) +

[
m2

4MyMn

]
φ0T S12

}]
P, (D12a)

V n.l.
B (r) = −m

4π

(Mn +My)
2

m2

[
fB13f

B
24

{
3m2

4MyMn

(
1

3
σ1 · σ2 φ

1
C + S12 φ

0
T

)}]
P. (D12b)

(f) Diffractive exchange:

VD(r) =
mP

4π

[
gD13g

D
24

4√
π

m2
P

M2
·
[{

1 +
m2

P

2MyMn
(3− 2m2

P r
2) +

m2
P

MyMn
L · S

+

(
m2

P

2MyMn

)2

Q12 +
m2

P

MyMn

[
(M2

n −M2
y )

4MyMn

]
· 1
2
(σ1 − σ2) · L

}
e−m2

P r2

+
1

4MyMn

(
∇

2e−m2
P r2 + e−m2

P r2
∇

2
)]]

P. (D13)

(g) Odderon-exchange:

VO,C(r) = +
gO13g

O
24

4π

8√
π

m5
O

M4

[(
3− 2m2

Or
2
)

− m2
O

MyMn

(
15− 20m2

Or
2 + 4m4

Or
4
)]

exp(−m2
Or

2) , (D14a)

VO,n.l.(r) = −g
O
13g

O
24

4π

8√
π

m5
O

M4

3

4MyMn

{
∇

2
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
+

+
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
∇

2
}
, (D14b)

VO,σ(r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MyMn

[
15− 20m2

Or
2 + 4m4

Or
4
]
exp(−m2

Or
2) ·

×
(
1 + κO13

My

M

)(
1 + κO24

Mn

M

)
, (D14c)

VO,T (r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MyMn
·m2

Or
2
[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
(
1 + κO13

My

M

)(
1 + κO24

Mn

M

)
, (D14d)

VO,SO(r) = −g
O
13g

O
24

4π

8√
π

m5
O

M4

m2
O

MyMn

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
3 +

(
κO13 + κO24

)
√
MyMn

M

}
, (D14e)

VO,Q(r) = +
gO13g

O
24

4π

2√
π

m5
O

M4

m4
O

M2
yM

2
n

[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
1 + 4

(
κO13 + κO24

)
√
MyMn

M + 8κ13κ24
MyMn

M2

}
, (D14f)

VO,ASO(r) = −g
O
13g

O
24

4π

4√
π

m5
O

M4

m2
O

MyMn

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
M2

n −M2
y

MyMn
− 4

(
κO24 − κO13

)
√
MyMn

M

}
. (D14g)
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3. Strange Meson-exchange

The rules for hypercharge nonzero exchange have been given in Ref. [38], see also [10]. The potentials for non-zero
hypercharge exchange (K,K∗, κ,KA,KB) are obtained from the expressions given in the previous subsections for
non-strange mesons by taking care of the following points: (a) For strange meson exchange P = −PxPσ. (b) In the
latter case one has to replace both Mn and My by

√
MyMn, and reverse the sign of the antisymmetric spin orbit.

APPENDIX E: ADDITIONAL ONE-BOSON-EXCHANGE QQ-POTENTIALS

The extra vertices at the quark-level generate additional OBE-potentials. In the case of the vector mesons the extra
vertex gives a change in the couplings

gv → g′v = gv − fv
k2

4MmQ
, fv → f ′v = fv − fv

k2

4m2
Q

, gs → gs + gs
k2

4m2
Q

.

The extra vertices at the quark-level generate additional OBE-potentials. Neglecting the k4 etc terms we obtain the
following contributions:

(a) Pseudoscalar-meson exchange: no additional potentials.

(b) Vector-meson exchange:

∆Ω
(V )
1a = −

{
gv13f

v
24 + fv13g

v
24

] k2

4MmQ
, ∆Ω

(V )
1b = 0,

∆Ω
(V )
2a = −2

3
k2 ∆Ω

(V )
3a = 0, ∆Ω

(V )
2b = −2

3
k2 ∆Ω

(V )
3b = 0,

∆Ω
(V )
3a = −

{
(gv13 + fv13

My

M ) fv24

(
1 +

My

mQ

)
+ (gv24 + fv24

Mn

M ) fv13

(
1 +

Mn

mQ

)}
k2

4MmQ
/(4MyMn),

∆Ω
(V )
4 = +

{(
3 + 2

√
MyMn

mQ

)
(gv13f

v
24 + fv13g

v
24) + 4fv13f

v
24

√
MyMn

M

}(
k2

4MmQ

)
/(2MyMn),

∆Ω
(V )
5 = +

{(
1 + 4

√
MyMn

mQ

)
(gv13f

v
24 + fv13g

v
24) + 8fv13f

v
24

√
MyMn

M

}(
k2

4MmQ

)
/(16M2

yM
2
n),

∆Ω
(V )
6 = 0. (E1)

(c) Scalar-meson exchange:

∆Ω
(S)
1a = −gs13gs24

k2

2m2
Q

, ∆Ω
(S)
1b = 0,

∆Ω
(S)
4 = −gs13gs24

k2

4m2
Q

[
1

M2
yM

2
n

]
, ∆Ω

(S)
5 = gs13g

s
24

k2

4m2
Q

[
1

8M2
yM

2
n

]
,

∆Ω
(S)
6 = −gs13gs24

(M2
n −M2

y )

4M2
yM

2
n

k2

2m2
Q

. (E2)

(d) Axial-vector-meson exchange:

∆Ω
(A)
4 = +ga13g

a
24

[
4

MyMn

]
. (E3)

The transcription to configuration space potentials of these additional Pauli-invariants is similar to that in section D
and is readily done.
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(a) Z-graph (b) Meson-pair Vertex

FIG. 11: Negative-energy quark contribution ⇒ MMQQ-coupling

APPENDIX F: QUARKS AND MESON-PAIRS

In the Nijmegen models it was in general assumed that negative-energy nucleons and hyperons are suppressed at
low energies and nuclear densities. In ESC-models it is assumed that in principle the effects of the negative-energy
baryons (Z-graph’s) are eventually included effectively in the meson-pair couplings to the baryons. The same is
assumed for the internal quark negative-energy states. This is illustrated in Fig. 11: the Z-graph (a) is included into
the meson-meson-quark-quark (MMQQ) coupling. Then, assuming that the negative-energy contributions from the
baryons are negligible we can suppose that the complete MPE in the baryonic nuclear force can be generated by
relating the meson-pair coupling to the quarks from that to the baryons, similarly as is done in this paper for the
meson-couplings to the quarks.
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