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Background: This is the third of a series of papers on baryon-baryon (BB) interactions, where the baryons are the lowest
lying baryon states with spin and parity JP = (1/2)+. The paper presents the Extended-Soft-Core (ESC) model ESC16
for BB channels with strangeness S = −2.

Purpose: The aim is to describe the ingredients of the S=-2 ESC16 potentials, to apply these two-body interactions to
BB scattering and via G-matrix calculations to hypernuclear systems, and to compare with the presently available
experimental information.

Methods: The potentials for S = −2 are based on the SU(3) extension of the ESC potentials for the strangeness S = 0 and
S = −1 sectors, which are fitted to experimental nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon
(YY) data. Flavor SU(3)-symmetry is broken only ’kinematically’ by the masses of the baryons and the mesons. For
the S=-2 channels almost no experimental scattering data exist, and the information from hypernuclei is also rather
limited. Nevertheless, in the fit to the S = 0 and S = −1 sectors information from the Nagara-event and the scarce
experimental results on the ΞN cross sections have been used as (mild) constraints to determine the free parameters in
the simultaneous fit of the deuteron and the NN⊕YN scattering data. Therefore, the potentials for the S = −2 sectors
are almost completely determined by the fits to the NN-, YN-data, and SU(3)-symmetry.

Results: Various properties of the S=-2 potentials are illustrated by giving results for scattering lengths, bound states, phase-
parameters, and total cross sections. The well-depth UΞ is calculated and ΞN G-matrix interactions are derived and
applied to Ξ−-capture reactions. Here, a phenomenological ΞN interaction is added to describe the experiments. Fur-
thermore, the ESC16 model supplemented with phenomenological SU(3) symmetric gaussian interactions is analyzed,
and attractive ΞN interactions are obtained. Combined with three-body forces derived from the ESC meson-pair vertices
and the Fujita-Miyazawa interaction, yields good baryon well-depths.

Conclusions: The ESC16 S=-2 potentials, with kinematically broken SU(3)-symmetry, provide a basis for realistic calculations
in nuclear and hypernuclear physics. For a succesful description of the well-depth’s UN , UΛ, UΣ, and UΞ and hypernuclear
S=-2 reactions phenomenological additions are needed.

PACS numbers: 13.75.Ev, 12.39.Pn, 21.30.-x

I. INTRODUCTION

This paper, the third in a series of papers following
Refs. [1, 2], henceforth referred to as I and II respectively,
presents the results and predictions of the Extended-soft-
core ESC16 model for low energy baryon-baryon interac-
tions. It constitutes the next phase in the development of
the ESC-models and is the follow up of the ESC04-models
[3–5] and the ESC08a,b-models [6] for S = 0,−1,−2.
In Ref. [7] the Nijmegen soft-core one-boson-exchange
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(OBE) interactions NSC97a-f for baryon-baryon (BB)
systems with S = −2,−3,−4 were presented.

For the S=-2 hyperon-hyperon (YY) and hyperon-
nucleon (YN) channels hardly any experimental scatter-
ing information is available, and also the information
from hypernuclei is very limited. Recently the experi-
mental data on double ΛΛ-hypernuclei have very much
improved by the observation of the Nagara [8], Hida [9],
and Kiso [10] events. These events indicate that the ΛΛ-
interaction is rather weak, in contrast to the estimates
based on the older experimental observations [11, 12].

Apart from the experimental activity there is also much
interest in the ΞN interaction from the theoretical side:
e.g. (i) chiral field theory [13, 14], and (ii) lattice QCD
[15].
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In the virtual absence of experimental S=-2 scattering
information, we assume that the potentials obey (bro-
ken) flavor SU(3) symmetry, which appears to work very
well in the extension from the nucleon-nucleon (NN) to
the S=-1 hyperon-nucleon (YN) channels. As in I and
II, the potentials are parametrized in terms of meson-
baryon-baryon, and meson-pair-baryon-baryon couplings
and gaussian form factors as well as diffractive couplings
and Pauli-blocking. This enables us to include in the in-
teraction one-boson-exchange (OBE), two-pseudoscalar-
exchange (TME), and meson-pair-exchange (MPE), and
diffractive contributions without any new parameters. All
parameters have been fixed by a simultaneous fit to the
NN and YN data, with the constraints imposed (i) for
ΛΛ(1S0) from the Nagara-event, (ii) the repulsive well-
depth UΣ, and (iii) the attractive well-depth UΞ. For
the procedure see the descriptions in I and II. This way,
each NN⊕YN-model leads to a YY,YN-model in a well
defined way, and the predictions for the ΛΛ,ΞN,ΣΛ, and
ΣΣ-channels contain no additional free parameters. We
have chosen for ESC16 the options: SU(3)-symmetry for
the coupling constants, and pseudovector coupling for the
pseudoscalar mesons. (In ESC04 also alternative options
were investigated, but it appeared that there is no reason
to choose any of these.) Then, SU(3)-symmetry allows
us to define all coupling constants needed to describe
the multi-strange interactions in the baryon-baryon chan-
nels occurring in {8} ⊗ {8}. Quantum-chromodynamics
(QCD) is, as is generally accepted now, the physical ba-
sis of the strong interactions. Since in QCD the gluons
are flavor blind, SU(3)-symmetry is a basic symmetry,
which is broken by the chiral-symmetry-breaking at low
energies. This picture supports our assumptions, stated
already, on SU(3)-symmetry. As is shown in [3, 4] the
coupling constants and the F/(F + D)-ratio’s used in
the ESC04-models follow the predictions of the 3P0-pair
creation model (QPC) [16] rather closely. The same is
the case for the ESC08-models, see paper I and Ref. [17]
for details. Now, it has been shown that in the strong-
coupling Hamiltonian lattice formulation of QCD, the
flux-tube model, that this is indeed the dominant pic-
ture in flux-tube breaking [18]. Therefore, since the ESC-
models are very much in line with the Quark-model and
QCD, and SU(3) is a good symmetry, the predictions for
the S = −2-channels can be expected to be realistic.
It is important to study ΛΛ- and Ξ-hypernuclei, for un-
derstanding of the BB-interactions, giving feed-back to
the construction of these interactions. This all the more
so in view of the at present meager scattering data. An
experimental analysis of the Ξ-nucleus interaction indi-
cates an attractive nuclear well-depth UΞ ≈ −14 MeV
[19], which is not really small. Therefore, it is very in-
teresting to study the ESC BB-interactions in relation to
the hypernuclei, using the G-matrix YNG-approach, see
e.g. [20].

Since the G-matrix studies with ESC-potentials extend
over quite a period of time, it is appropriate to give
here a brief overview for the ESC08 and ESC16 mod-

els. In ESC08 models (ESC08a/b/a” [6] and ESC08c
[22], ’effective’ ΞN interactions Veff , working mainly in
I = 1 3S1 states, have been added in the G-matrix cal-
culations such as to give an attractive well-depth UΞ

as indicated in [19]. Then, the (3S1, I = 1) contribu-
tions for ESC08a/b are extremely attractive, and those
for ESC08a”/c are moderate. Even in the latter case,
however, they had the notable feature of a (artificial)
”deuteron-like” bound state in the ΞN(3S1, I = 1) chan-
nel, accessible in K− − K+-transition Ξ-production ex-
periments at JPARC. (This, provided the ”effective” in-
teractions are interpreted as genuine two-body interac-
tions.) Also in ESC16, ’effective’ ΞN interactions Veff
are added: the several ESC16⊕Veff models are refered
to as ESC16A1, ESC16A2, ESC16B1, and ESC16B2. In
ESC16A1/A2, Veff works mainly in the I=1 3S1 state as
is also the case in ESC08a”/c. In ESCB16B1/B2, Veff
works in (3S1, I = 1) and (1S0, I = 0) states, in which
there is no occurrence of a ”deuteron-like bound” state.

The ESC two-body potentials, although very success-
ful for NN and YN(S=-1), appear to be inadequate
for the strangeness S=-2 hypernuclei. The nature of
Veff , mentioned before, from the viewpoint of SU(3)-
symmetry is unsatisfactory. In particular the separation
of genuine two-body and three-body contributions is
unclear. Therefore, extensions of ESC16, called ESC16⋆,
are studied where phenomenological SU3-symmetric
two-body gaussian contact potentials are introduced.
These yield good results for NN, YN, YY, and BB
well-depths.

The material in this paper is organized by the following
considerations:
Most of the details of the SU(3) description are well
known. In particular for baryon-baryon scattering the de-
tails can be found in papers I, II, and in Ref’s [7, 23, 24].
Here we restrict ourselves to a minimal exposition of
these matters that is necessary for the readability of
this paper. Therefore, in Sec. II we first review for
S = −2 the baryon-baryon multi-channel description,
and present the SU(3)-symmetric interaction Hamilto-
nian describing the interaction vertices between mesons
and members of the JP = (1/2)

+
baryon octet, and

define their coupling constants. We then identify the
various channels which occur in the S = −2 baryon-
baryon systems. In Appendix C the potentials on the
isospin basis are given in terms of the SU(3)-irreps. In
most cases, the interaction is a multi-channel interac-
tion, characterized by transition potentials and thresh-
olds. Details are given in Ref. [7, 23]. For the details
on the pair-interactions, we refer to paper I and II [1, 2].
In Sec. III we give a general treatment of the problem
of flavor-exchange forces, which is very helpful to un-
derstand the proper treatment of exchange forces and
the treatment of baryon-baryon channels with identical
particles. Sec. IV reviews the short-range phenomenol-
ogy of ESC16 and its implementation in the S=-2 chan-
nels. In Sec. V we describe briefly the treatment of the
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multi-channel thresholds in the potentials. In Sec. VI
we present the results of the ESC16 potentials for all
the sectors with total strangeness S = −2. We give
the couplings and F/(F +D)-ratio’s for OBE-exchanges
of ESC16. Similarly, tables with the pair-couplings are
shown in Appendix D. We give the S-wave scattering
lengths, discuss the possibility of bound states in these
partial waves. Also, we give the S-matrix information
for the elastic channels in terms of the Bryan-Klarsfeld-
Sprung (BKS) phase parameters [25–27], or in the Kabir-
Kermode (KK) [28] format. Tables with the BKS-phase
parameters are displayed in Appendix E. Such informa-
tion is very useful for example for the construction of the
Λ-, Σ-, and Ξ-nucleus potentials. We also give results for
the total cross sections for all leading channels. The scat-
tering cross sections [29–31] indicate that the two-body
ΞN interactions are rather weak, which is also found with
the ESC16 model presented in this paper. Therefore, it
is expected that there are no ΞN bound-states, in agree-
ment with experimental evidence [32].

In Sec. VII, we present the results of the ΞN G-matrix
interactions derived from ESC16 as density-dependent
local potentials. Here, structure calculations for Ξ hy-
pernuclei are performed with use of Ξ-nucleus folding
potentials obtained from the G-matrix interactions. In
Sec. VIII an SU(3)-symmetric phenomenological addition
to ESC16, henceforth refered to as the ESC16⋆ model, is
described and results for the NN⊕YN fit and the BB
well-depths are given.

We conclude the paper with a summary and final re-
marks in Sec. IX.

II. CHANNELS, POTENTIALS, AND SU(3)
SYMMETRY

A. Multi-channel Formalism

In this paper we consider the baryon-baryon reactions
with S = −2

A1(pa, sa) +B1(pb, sb) → A2(p
′
a, s

′
a) +B2(p

′
b, s

′
b) (2.1)

Like in paper I, II, and Ref.’s [23, 24] we will for the YN-
channels also refer to A1 and A2 as particles 1 and 3, and
to B1 and B2 as particles 2 and 4. For the kinematics and
the definition of the amplitudes, we refer to paper I [3]
of this series. Similar material can be found in Ref. [7,
24]. Also, in paper I the derivation of the Lippmann-
Schwinger equation in the context of the relativistic two-
body equation is described.

The S=-2 the BB-channels on the particle basis has five

systems with different charge. They are, see Refs. [6, 7],

q = +2 : Σ+Σ+ → Σ+Σ+,

q = +1 : (Ξ0p,Σ+Λ,Σ0Σ+) → (Ξ0p,Σ+Λ,Σ0Σ+),

q = 0 : (ΛΛ,Ξ0n,Ξ−p,Σ0Λ,Σ0Σ0,Σ−Σ+) →
(ΛΛ,Ξ0n,Ξ−p,Σ0Λ,Σ0Σ0,Σ−Σ+),

q = −1 : (Ξ−n,Σ−Λ,Σ−Σ0) → (Ξ−n,Σ−Λ,Σ−Σ0),

q = −2 : Σ−Σ− → Σ−Σ−. (2.2)

Like in Ref. [23, 24], the potentials are calculated on the
isospin basis. For S = −2 hyperon-nucleon systems there
are three isospin channels:

I = 0 : (ΛΛ,ΞN,ΣΣ → ΛΛ,ΞN,ΣΣ),

I = 1 : (ΞN,ΣΛ,ΣΣ → ΞN,ΣΛ,ΣΣ),

I = 2 : ΣΣ → ΣΣ. (2.3)

The potential on the particle basis for the q = 2 and
q = −2 channels are given by the I = 2 ΣΣ potential on
the isospin basis. For q = 0 and q = ±1, the potentials
are related to the potentials on the isospin basis by an
isospin rotation. The connection of the potentials on the
particle- and the isospin-basis are explicitly given in [6]
and given in Appendix A for completeness.
For the kinematics of the reactions and the various

thresholds, see Ref. [23], and section V. In this work
we do not solve the Lippmann-Schwinger equation, but
the multi-channel Schrödinger equation in configuration
space, completely analogous to [24]. The multi-channel
Schrödinger equation for the configuration-space poten-
tial is derived from the Lippmann-Schwinger equation
through the standard Fourier transform, and the equa-
tion for the radial wave function is found to be of the
form in paper II and Ref. [24]

u′′l,j + (p2i δi,j −Ai,j)ul,j −Bi,ju
′
l,j = 0, (2.4)

where Ai,j contains the potential, non-local contribu-
tions, and the centrifugal barrier, while Bi,j is only
present when non-local contributions are included. The
solution in the presence of open and closed channels is
given, for example, in Ref. [33]. The inclusion of the
Coulomb interaction in the configuration-space equation
is well known and included in the evaluation of the scat-
tering matrix.
The momentum space and configuration space poten-

tials for the ESC-model have been described in Ref. [3]
for baryon-baryon in general. Therefore, they apply also
to the S=-2 hyperon-hyperon/nucleon channels and we
can refer for that part of the potential to papers I and II.
Also in the ESC-model, the potentials are of such a form
that they are exactly equivalent in both momentum space
and configuration space. The treatment of the mass dif-
ferences among the baryons are handled exactly similar
as is done in [23, 24]. Also, exchange potentials related to
strange meson exchanges K,K∗ etc. , are given in paper
II [2].
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The baryon mass differences in the intermediate states
for TME- and MPE- potentials have been neglected, just
like in S=-1 YN-scattering. This, although possible in
principle, becomes rather laborious and is not expected
to change the characteristics of the baryon-baryon poten-
tials.

B. Potentials and SU(3) Symmetry

Like in all Nijmegen BB-interaction models we consider
all BB-channels, where the baryons are the members of

the JP = 1
2

+
baryon octet

B =




Σ0

√
2
+

Λ√
6

Σ+ p

Σ− −Σ0

√
2
+

Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



. (2.5)

The baryon masses, used in this paper, are given in Ta-
ble V.
Similar to (2.5) the nonets M(9) for the pseu-
doscalar, vector, scalar, and axial-vector mesons can
be represented by (i) the traceless matrices M(8) =∑8

i=1Miλi/
√
2, and (ii) the unitary singlet mesons M(0)

are included via the definition

Mα
β (9) =Mα

β (8) + δαβM(0)/
√
3. (2.6)

For the assignment of the meson fields Mi and the Gell-
Mann matrices λi see Refs. [34, 35]. Taking the pseu-
doscalar mesons with JP = 0− as a specific example, the
nonet is written as P (9) = P (8)+P (0) where the singlet

matrix P (0) has η0/
√
3 on the diagonal, and the octet

matrix P (8) is given explicitly by

P (8) =




π0

√
2
+

η8√
6

π+ K+

π− − π0

√
2
+

η8√
6

K0

K− K0 −2η8√
6



. (2.7)

Here, η8 and η0 are the ’bare’ SU(3) octet and singlet
state respectively, and the physical η(448), η′(958) are
mixtures of the bare ones.

Using the isodoublets,

N =

(
p
n

)
, Ξ =

(
Ξ0

Ξ−

)
, (2.8a)

K =

(
K+

K0

)
, Kc =

(
K0

−K−

)
, (2.8b)

the SU(3) invariant interaction Hamiltonian for pseu-
doscalar mesons, omitting the Lorentz structure, reads
given by the interaction Hamiltonian [34, 35]

Hoct
pv =

{
fNNπ(NτN)·π − ifΣΣπ(Σ×Σ)·π + fΛΣπ(ΛΣ+ΣΛ)·π + fΞΞπ(ΞτΞ)·π +

fΛNK

[
(NK)Λ + Λ(KN)

]
+ fΞΛK

[
(ΞKc)Λ + Λ(KcΞ)

]
+

fΣNK

[
Σ·(KτN) + (NτK)·Σ

]
+ fΞΣK

[
Σ·(KcτΞ) + (ΞτKc)·Σ

]
+

fNNη8
(NN)η8 + fΛΛη8

(ΛΛ)η8 + fΣΣη8
(Σ·Σ)η8 + fΞΞη8

(ΞΞ)η8 +

fNNη0
(NN)η0 + fΛΛη0

(ΛΛ)η0 + fΣΣη0
(Σ·Σ)η0 + fΞΞη0

(ΞΞ)η0
}
/mπ. (2.9)

For the other mesons the octet matrix is obtained by
the following substitutions: (i) vector mesons π → ρ,
η8 → φ8, K → K∗, (ii) scalar π → a0, η8 → f0,8, K → κ,
(iii) axial-vector π → A1, η8 → e8, K → K1A, (iv) axial-
vector π → B1, η8 → h8, K → K1B .

All coupling constants for the physical mesons can be
expressed in terms of three SU(3) parameters: (i) sin-
glet and octet couplings (f1, f8) respectively, and (ii) the
F/(F+D)-ratio αP . For details see e.g. Ref. [23, 34].
The same applies to the nonets of the vector-, scalar-,
and axial-vector-mesons. The pomeron is treated as an
SU(3)-singlet.

In Appendix C, Table XXVI and Table XXVII we give
the relation between the potentials on the isospin-basis,

see Eqn’s (A1)-(A2), and the SU(3)-irreps.

Given the interaction Hamiltonian (2.9) and a theo-
retical scheme for deriving the potential representing a
particular Feynman diagram, it is now straightforward
to derive the one-meson-exchange baryon-baryon poten-
tials. We follow the Thompson approach [36–40] and
expressions for the potential in momentum space can be
found in paper I, as well as configuration space poten-
tials. Since the nucleons have strangeness S = 0, the
hyperons S = −1, and the cascades S = −2, the possible
baryon-baryon interaction channels can be classified ac-
cording to their total strangeness, ranging from S = 0 for
NN to S = −4 for ΞΞ. Apart from the wealth of accu-
rate NN scattering data for the total strangeness S = 0



5

sector, there are only a few, and not very accurate, YN
scattering data for the S = −1 sector, while there are no
data at all for the S < −1 sectors. We therefore believe
that at this stage it is not yet worthwhile to explicitly
account for the small mass differences between the spe-
cific charge states of the baryons and mesons; i.e., we use
average masses, isospin is a good quantum number, and
the potentials are calculated on the isospin basis. The
possible channels on the isospin basis are given in (2.3).
However, the Lippmann-Schwinger or Schrödinger

equation is solved for the physical particle channels, and
so scattering observables are calculated using the proper
physical baryon masses. The possible channels on the
physical particle basis can be classified according to the
total charge Q; these are given in (2.2). The correspond-
ing potentials are obtained from the potential on the
isospin basis by making the appropriate isospin rotations.
The matrix elements of the isospin rotation matrices are
nothing else but the Clebsch-Gordan coefficients for the
two baryon isospins making up the total isospin. (Note
that this is the reason why the potential on the particle
basis, obtained from applying an isospin rotation to the
potential on the isospin basis, will have the correct sign
for any coupling constant on a vertex which involves a
Σ+.)
In order to construct the potentials on the isospin ba-

sis, we need first the matrix elements of the various OBE
exchanges between particular isospin states. Using the
iso-multiplets (2.7) and the Hamiltonian (2.9) the isospin
factors can be calculated. The results are given in Ta-
ble I, where we use the pseudoscalar mesons as a spe-
cific example. The entries contain the flavor-exchange
operator Pf , which is +1 for a flavor symmetric and
−1 for a flavor anti-symmetric two-baryon state. Since
two-baryons states are totally anti-symmetric, one has
Pf = −PxPσ. Therefore, the exchange operator Pf has
the value Pf = +1 for even-L singlet and odd-L triplet
partial waves, and Pf = −1 for odd-L singlet and even-L
triplet partial waves. In order to understand Table I fully,
we have given in the following section Sec. III a general
treatment of exchange forces. This treatment shows also
how to deal with the case where the initial/final state in-
volves identical particles and the final/initial state does
not.
Secondly, we need to evaluate the TME and the MPE

exchanges. The method we used for these is the same
as for hyperon-nucleon, and is described in Ref. [4], Sec.
IID.

III. EXCHANGE FORCES

The proper treatment of the flavor-exchange forces for
the S = −2-channels is a little more subtle than for the
S = 0,−1,−3,−4-channels. The extra complication is
the occurrence of couplings between channels with iden-
tical and channels with non-identical particles. In or-

der to understand the several
√
2-factors, mentioned in

Ref. [7] and treated in a concise form in Ref. [6], we give
a systematic treatment of the flavor-exchange potentials.
The method followed is using a multi-channel framework,
which starts starts by ordering the two-particle states by
assigning Ai and Bi for the channel labeled with the in-
dex i, like in Eqn. (2.1). The particles Ai and Bi have the
center-of-mass (c.m.) momenta pi and −pi, spin compo-
nents sA,i and sB,i. The two-baryon states |AiBi〉 and
|BiAi〉 are considered to be distinct, leading to distinct
two-baryon channels. The ’direct’ and the ’exchange’ T-
amplitudes are given by the T-matrix elements

〈AjBj |Td|AiBi〉, 〈BjAj |Te|AiBi〉 , (3.1)

and similarly for the direct and flavor-exchange poten-
tials Vd and Ve. It is obvious from rotation invariance
that

〈AjBj |Td|AiBi〉 = 〈BjAj |Td|BiAi〉 ,
〈BjAj |Te|AiBi〉 = 〈AjBj |Te|BiAi〉 . (3.2)

A similar definition (3.1) and relation (3.2) apply for the
direct and flavor-exchange potentials Vd and Ve. We no-

Ai, pi, sAi
Aj , pj, sAj

Bi,−pi, sBi
Bj,−pj , sBj

Vd

(a)

Ai, pi, sAi
Bj , pj, sBj

Bi,−pi, sBi
Aj,−pj , sAj

Ve

(b)

FIG. 1: Vd (a) and Ve (b) in the c.m. system.

tice that in interchanging A and B there is no exchange
of momenta or spin-components, see Fig. 1. This is nec-
essary for the application of Lippmann-Schwinger type
of integral equations, which can produce only one type
of the Mandelstam double spectral functions [41], e.g.

ρ(s, t) or ρ(s, u). (The third double spectral function
ρ(t, u) can only be included approximately in potential
scattering.) So, the momentum transfer for Vd and for
Ve is the same. Viewed from the coupled-channel scheme
this is the standard situation.
The integral equations with two-baryon unitarity, e.g.

the Thompson-, Lippmann-Schwinger-equation etc., read
for the Td- and Te-operator
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〈AjBj |Td|AiBi〉 = 〈AjBj |Vd|AiBi〉+
∑

k

[〈AjBj |Vd|AkBk〉 Gk 〈AkBk|Td|AiBi〉

+〈AjBj |Ve|BkAk〉 Gk 〈BkAk|Te|AiBi〉 ] , (3.3a)

〈BjAj |Te|AiBi〉 = 〈BjAj |Ve|AiBi〉+
∑

k

[〈BjAj |Vd|BkAk〉 Gk 〈BkAk|Te|AiBi〉

+〈BjAj |Ve|AkBk〉 Gk 〈AkBk|Td|AiBi〉 ] . (3.3b)

These coupled equations can be diagonalized by intro-
ducing the T±- and V±-operators

T± = Td ± Te , V ± = Vd ± Ve . (3.4)

which, as follows from (3.3), satisfy separate integral
equations

〈AjBj |T±|AiBi〉 = 〈AjBj |V ±|AiBi〉+∑

k

〈AjBj |V ±|AkBk〉 Gk 〈AkBk|T±|AiBi〉. (3.5)

Notice that on the basis of states with definite flavor
symmetry

|AiBi〉± =
1√
2
[|AiBi〉 ± |BiAi〉] , (3.6)

the T± and V ± matrix elements are also given by

T±
ij =±〈AiBi|T |AjBj〉± , V ±

ij =±〈AiBi|V |AjBj〉± .

(3.7)

A. Identical Particles

So far, we considered the general case where Ai 6= Bi

for all channels. In the case that Ai = Bi for some i,
one has 〈BiAi|Ve|AiBi〉 = 0, because there is no dis-
tinct physical state corresponding to the ’flavor exchange-
state’. For example for a flavor single channel like pp one
deduces from (3.3) that then also Te = 0, and one has in
this case the integral equation

〈AjBj |Td|AiBi〉 = 〈AjBj |Vd|AiBi〉+∑

k

〈AjBj |Vd|AkBk〉 Gk 〈AkBk|Td|AiBi〉 , (3.8)

where the labels i and j now denote e.g. the spin-
components.

B. Coupled ΛΛ and ΞN system

This multi-channel system represents the case where
there is mixture of channels with identical and with non-
identical particles. The three states we distinguish are
|ΛΛ〉, |ΞN〉, and |NΞ〉. Choosing the same ordering, the
potential written as a 3× 3-matrix reads

V =




〈ΛΛ|V |ΛΛ〉 〈ΛΛ|V |ΞN〉 〈ΛΛ|V |NΞ〉
〈ΞN |V |ΛΛ〉 〈ΞN |V |ΞN〉 〈ΞN |V |NΞ〉
〈NΞ|V |ΛΛ〉 〈NΞ|V |ΞN〉 〈NΞ|V |NΞ〉


 .

(3.9)
With a similar notation for the T-matrix, the Lippmann-
Schwinger equation can be written compactly as a 3× 3-
matrix equation:

T = V + V G T , with Gij = Gi δij . (3.10)

Next, we make a transformation to states, which are
either symmetric or anti-symmetric for particle inter-
change. Then, according to (3.7), we can separate them
in the Lippmann-Schwinger equation. This is achieved
by the transformation




ΛΛ
ΞN
NΞ


 ⇒




ΛΛ

(ΞN +NΞ)/
√
2

(ΞN −NΞ)/
√
2


 (3.11)

where a standard multi-channel notation is used for the
states. This yields in the transformed basis the potential

UV U−1 =




VΛΛ;ΛΛ (VΛΛ;ΞN + VΛΛ;NΞ)/
√
2 (VΛΛ;ΞN − VΛΛ;NΞ)/

√
2

(VΞN ;ΛΛ + VNΞ;ΛΛ)/
√
2 (VΞN ;ΞN + VΞN ;NΞ) 0

(VΞN ;ΛΛ − VNΞ;ΛΛ)/
√
2 0 (VΞN ;ΞN − VΞN ;NΞ)


 , (3.12)

and of course, a similar form is obtained for the T-
matrix on the transformed basis. Now, obviously we
have that VΛΛ;ΞN = VΛΛ;NΞ and VΞN ;ΛΛ = VNΞ;ΛΛ.
Therefore, one sees that the even and odd states un-
der particle exchange are decoupled in (3.12). Also

(VΞN ;ΛΛ + VNΞ;ΛΛ)/
√
2 =

√
2VΞN ;ΛΛ, etc. showing the

appearance of the
√
2-factors, mentioned before. Indeed,

they appear in a systematic way using the multi-channel
framework. In Ref. [6] the details are worked out for K-
, η-, and π-exchange potentials for the ΛΛ,ΞN,ΣΛ etc.
channels. The results are summarized in Table I.
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TABLE I: Meson-exchange isospin factors for the YN and
YY elastic and inelastic channels with strangeness S=-2 and
isospin I. Pf is the flavor-exchange operator. The I = 2 occurs
only in the S = −2 ΣΣ channels, where the isospin factors
are given by (ΣΣ|η, η′, π|ΣΣ) = 1

2
(1 + Pf ).

S = −2 I = 0 I = 1
(ΛΛ|η, η′|ΛΛ) 1

2
(1 + Pf ) —

(ΞN |η, η′|ΞN) 1 1

(ΣΣ|η, η′|ΣΣ) 1
2
(1 + Pf )

1
2
(1− Pf )

(ΣΛ|η, η′|ΣΛ) — 1
(ΞN |π|ΞN) −3 1
(ΣΣ|π|ΣΣ) −(1 + Pf ) − 1

2
(1− Pf )

(ΛΛ|π|ΣΣ) − 1
2

√
3(1 + Pf ) —

(ΣΛ|π|ΛΣ) — Pf

(ΣΣ|π|ΣΛ) — (1− Pf )
(ΛΛ|K|ΞN) 1 + Pf —

(ΣΣ|K|ΞN)
√
3(1 + Pf )

√
2(1− Pf )

(ΞN |K|ΣΛ) —
√
2;−Pf

√
2

IV. SHORT-RANGE PHENOMENOLOGY

For a detailed discussion and description of the short-
range region we refer to paper II, section V [2]. Here,
the meson- and diffractive-exchange and the quark-core
in the ESC16-modeling has been described. In this sec-
tion we give the quark-core phenomenology for the S=-2
baryon-baryon channels.

A. Relation S=-2 YN,YY-states and SUfs(6)-irreps

The relation between the SUf (3)-irreps and SUfs(6)-
irreps, where f and s denote flavor and spin respectively,
has been derived in paper II [2] In Appendix C the S=-
2 BB-potentials are given in terms of the SU(3)f -irreps.
Combining these two things gives the representation of
the S=-2 potentials in terms of the SUfs(6)-irreps as dis-
played in Tables II and III.

TABLE II: SU(6)fs-contents spin-space odd 1S0,
3 P,1 D2, ...

potentials on the spin-isospin basis.

(S, I) V = aV[51] + bV[33]

ΛΛ → ΛΛ (0, 0) VΛΛ,ΛΛ = 1
2
V[51] +

1
2
V[33]

ΞN → ΞN (0, 0) VΞN,ΞN = 1
3
V[51] +

2
3
V[33]

ΣΣ → ΣΣ (0, 0) VΣΣ,ΣΣ = 11
18
V[51] +

7
18
V[33]

ΞN → ΞN (0, 1) VΞN,ΞN = 7
9
V[51] +

2
9
V[33]

ΣΛ → ΣΛ (0, 1) VΣΛ,ΣΛ = 2
3
V[51] +

1
3
V[33]

ΣΣ → ΣΣ (0, 2) VΣΣ,ΣΣ = 4
9
V[51] +

5
9
V[33]

TABLE III: SU(6)fs-contents of the spin-space even
3S1,

1 P1,
3 D, ... potentials on the spin-isospin basis.

(S, I) V = aV[51] + bV[33]

ΞN → ΞN (1, 0) VΞN,ΞN = 5
9
V[51] +

4
9
V[33]

ΞN → ΞN (1, 1) VΞN,ΞN = 17
27
V[51] +

10
27
V[33]

ΣΛ → ΣΛ (1, 1) VΣΛ,ΣΛ = 2
3
V[51] +

1
3
V[33]

ΣΣ → ΣΣ (1, 1) VΣΣ,ΣΣ = 16
27
V[51] +

11
27
V[33]

B. Parametrization Quark-core effects

As introduced in paper II, the repulsive short-range
Pomeron-like YN,YY potential is split linearly in a
diffractive (Pomeron) and a quark-core component by
writing

VPBB = VBB(POM) + VBB(PB) (4.1)

where VBB(POM) represents the genuine Pomeron and
VBB(PB) the structural effects of the quark-core for-
bidden [51]-configuration, i.e. a Pauli-blocking (PB) ef-
fect. Since the Pomeron is a unitary-singlet its contri-
bution is the same for all BB-channels (apart from some
small baryon mass breaking effects), i.e. VBB(POM) =
VNN (POM). Furthermore the PB-effect for the BB-
channels is assumed to be proportional to the relative
weight of the forbidden [51]-configuration compared to
its weight in NN

VBB(PB) = aPB (wBB [51]/wNN [51]) ·VNN (PB) (4.2)

where aPB denotes the quark-core fraction w.r.t. the
pomeron potential for the NN-channel, i.e. VNN (PB) =
aPB VPNN . Then we have

VPBB = (1− aPB)VPNN + aPB

(
wBB [51]

wNN [51]

)
· VPNN

(4.3)

A subtle treatment of all BB channels according to this
linear scheme is characteristic for the ESC16-model. The
value of the PB factor aPB is searched in the fit to the
NN- and YN-data. The parameter aPB turns out to be
about 39%. This means that the Quark-core repulsion
is roughly 64% of the genuine Pomeron repulsion. Then,
the PB effects in the S=-2 channels are entirely deter-
mined. From Eqn. (4.3) the ratio VPBB/VPNN is given
by the weights of the [51]-irrep and aPB . In Table IV
we give this ratio for the various S=-2 BB channels in
the ESC16 model, With only one exception, the effective
pomeron repulsion is stronger than in the NN-channels.
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TABLE IV: Effective Pomeron+PB contribution on the
spin,isospin basis.

(S, I) VPBB/VPNN ESC16

NN → NN (0, 1) 1 1.000

NN → NN (1, 0) 1 1.000

ΛΛ → ΛΛ (0, 0) 1 + 1
8
aPB 1.049

ΞN → ΞN (0, 0) 1− 1
4
aPB 0.903

ΣΣ → ΣΣ (0, 0) 1 + 3
8
aPB 1.146

ΞN → ΞN (0, 1) 1 + 3
4
aPB 1.293

ΣΛ → ΣΛ (0, 1) 1 + 1
2
aPB 1.195

ΣΣ → ΣΣ (0, 2) 1 1.000

ΞN → ΞN (1, 0) 1 + 1
4
aPB 1.098

ΞN → ΞN (1, 1) 1 + 5
12
aPB 1.163

ΣΛ → ΣΛ (1, 1) 1 + 1
2
aPB 1.195

ΣΣ → ΣΣ (1, 1) 1 + 1
3
aPB 1.130

V. MULTI-CHANNEL THRESHOLDS AND
POTENTIALS

A. Thresholds

Clearly, the S = −2 two-baryon channels represent a
number of separate coupled-channel systems, separated
by the charge, see Eqn. (2.2). A further subdivision is ac-
cording to the total isospin. The different thresholds have
been discussed in detail in Ref. [7], and we show these
thresholds here in Fig. 2 for the purpose of general ori-
entation. Their presence turns the Lippmann-Schwinger
and Schrödinger equation into a coupled-channel matrix
equation, where the different channels open up at differ-
ent energies. In general one has a combination of ’open’
and ’closed’ channels. For a discussion of the solution of
such a mixed system, we refer to Ref. [42].

B. Threshold- and Meson-mass corrections in
Potentials

As discussed in Ref. [42, 43], the one-meson-
exchange Feynman-graph consists actually of two three-
dimensional time-ordered graphs. This has consequences
for the range of the energy-independent meson exchange
potentials.
This effect results in ”effective” meson-masses and ob-

viously depends on the baryon masses. For more details

2200 2250 2300 2300 2400

−→
√

s (MeV)

S = −2 Baryon-Baryon Thresholds

ΛΛ

ΞN I = 0

ΣΣ

ΞN

ΣΛ I = 1

ΣΣ

ΣΣ I = 2

ΛΛ
↓

ΞN

↓
ΣΛ
↓

ΣΣ
↓

344.4

0

0 588.7

0

904.4

972.3

0

972.3

645.0

0

0

FIG. 2: Thresholds in YN- and YY-channels for S=-2.
√
s is

the total energy in the c.m.

TABLE V: Baryon masses in MeV/c2.

Baryon Mass
Nucleon p 938.2796

n 939.5731
Hyperon Λ 1115.60

Σ+ 1189.37
Σ0 1192.46
Σ− 1197.436

Cascade Ξ0 1314.90
Ξ− 1321.32

on these effective meson masses for the S=-2 channels, we
refer to Ref. [7]. The baryon masses used in this paper
are about the same as in [7], and are given in Table V.
In our potentials we have included the decrease in the
physical pion mass of 138.041 MeV/c2 to 132.58 MeV/c2

in ΛB → ΣB, where B can be N , Σ, or Ξ, and the much
more significant decrease to 114.62 MeV/c2 in ΣΛ → ΛΣ;
in all other cases, we retain the physical value of 138.041
MeV/c2. The K and K∗ masses need to be reduced in
all cases, where the drop in mass squared ranges from
(125.56 MeV/c2)2 in ΞΣ → ΣΞ to (253.63 MeV/c2)2 in
ΣN → NΣ.

The used non-strange meson masses are the same as
in paper II [2], as well as the cut-off masses. The ef-
fective masses of the strangeness carrying mesons are:
mK = 457.0,mK∗ = 872.464(I = 0),mK∗ = 872.890(I =
1),mκ = 816.0, and for the axial mesons mK1A

=
mK1B

= 1321.0.
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VI. RESULTS

The main purpose of this paper is to present the prop-
erties of the ESC16 potentials for the S = −2 sector.
As described already, the free parameters in this model
are fitted entirely to the NN and YN scattering data
for the S = 0 and S = −1 sectors, respectively, with
additional information from hypernuclei and hyperonic
matter. Given the expressions for the coupling constants
in terms of the octet-, singlet-couplings and F/(F+D)-
ratio’s and their values of paper I and II. It is straightfor-
ward to evaluate all possible baryon-baryon-meson cou-
pling constants needed for the S ≤ −2 potentials. A
complete set of coupling constants for model ESC16 is
given in Table VI.
In Fig’s 3-7 we display the elastic channel S-wave po-

tentials for the individual pseudoscalar(PS), vector(V),
scalar(S), and axial(A) mesons in the case of model
ESC16. Here, the mesons with strangeness K,K∗,κ, and
K1 do not contribute. In the captions of these figures
and elsewhere T denotes the total isospin I.

In Fig’s 8-12 we display the global features of the S-
wave elastic channel OBE-, TPS-, PAIR-, and Total-
potentials. In each case the total potentials show a large
inner repulsion and a little or no attraction. In the ΛΛ-
case the medium range attraction is due to the TPS con-
tribution. The TPS-potentials give also attraction in the
other channels. The OBE potentials give repulsion in
all these channels, and the PAIR potentials give a short
range attraction in the ΛΛ(1S0)- and ΞN(1S0, I = 0)-
channel.

TABLE VI: Coupling constants for model ESC16, divided by
√
4π. M refers to the meson. The coupling constants are listed

in the order pseudoscalar, vector (g and f), axial vector A (g and f), scalar, axial vector B, and diffractive.

M NNM ΣΣM ΣΛM ΞΞM M ΛNM ΛΞM ΣNM ΣΞM
f π 0.2684 0.1959 0.1968 –0.0725 K –0.2681 0.0713 0.0725 –0.2684
g ρ 0.5793 1.1586 0.0000 0.5793 K∗ –1.0034 1.0034 –0.5793 –0.5793
f 3.7791 3.5185 2.3323 –0.2606 –4.2132 1.8810 0.2606 –3.7791
g a1 –0.8172 –0.6260 –0.5822 0.1912 K1A 0.8333 –0.2511 –0.1912 0.8172
f –1.6521 –1.2656 –1.1770 0.3865 1.6846 –0.5076 –0.3865 1.6521
g a0 0.5393 1.0786 0.0000 0.5393 κ –0.9341 0.9341 –0.5393 –0.5393
f b1 –2.2598 –1.8078 –1.5656 0.4520 K1B 2.3484 –0.7828 –0.4520 2.2598

M NNM ΛΛM ΣΣM ΞΞM M NNM ΛΛM ΣΣM ΞΞM
f η 0.1368 –0.1259 0.2599 –0.1958 η′ 0.3181 0.3711 0.2933 0.3852
g ω 3.1148 2.4820 2.4820 1.8492 φ –1.2384 –2.0171 –2.0171 –2.7958
f –0.5710 –3.2282 –0.2863 –4.4144 2.8878 –0.3819 3.2380 –1.8416
g f ′

1 –0.7596 –0.1213 –1.0133 0.0710 f1 0.5147 1.0503 0.3019 1.2117
f –4.4179 –3.1274 –4.9303 –2.7386 4.4754 5.5582 4.0450 5.8844
g ε 2.9773 2.3284 2.3284 1.6795 f0 –1.5766 –2.2485 –2.2485 –2.9205
f h′

1 –1.2386 0.1171 –1.6905 0.5690 h1 –0.0830 1.8346 –0.7222 2.4738
g P 2.7191 2.7191 2.7191 2.7191
g O 4.1637 4.1637 4.1637 4.1637
f –3.8859 –3.8859 –3.8859 –3.8859

In the following we will present the model predictions
for scattering lengths, bound states, and cross sections.

A. Effective-range parameters

For ESC16 the I = 0 low-energy parameters are

aΛΛ(
1S0) = −0.439 [fm] , rΛΛ(

1S0) = 9.533 [fm] .

aΞN (3S1) = −0.269 [fm] , rΞN (3S1) = −10.250 [fm] .

For I = 1 we have for ESC16:

aΞN (1S0) = 0.556 [fm] , rΞN (1S0) = −3.043 [fm] ,

aΞN (3S1) = 0.144 [fm] , rΞN (3S1) = 41.005 [fm] ,

and for ΣΣ(1S0, I = 2) we have for ESC16:

aΣ0Σ0 = +0.495 [fm] , rΣ0Σ0 = +11.943 [fm],

aΣ±Σ± = −0.432 [fm] , rΣ±Σ± = −594.51 [fm],

aΣ±Σ∓ = +9.983 [fm] , rΣ±Σ∓ = −44.578 [fm].

We note that the ΣΣ(I = 2) channels are purely {27}-
irrep, like the pp and Σ+p(1S0, I = 3/2). This im-
plies that the nuclear interaction is rather attractive and
rather close to a bound-state. In contrast to pp and Σ+p
in the channels Σ±Σ∓ the Coulomb is attractive. In-
deed, there is a Coulomb-assisted bound-state for Σ±Σ∓,
which by the effective-range formula has a binding energy
EB = 0.076 MeV.
The results at the ΞN threshold and at the ΛΣ thresh-

old are given in Table VII-VIII. The ΛΛ(1S0) scattering
lengths are found to be larger in absolute value than in
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FIG. 3: ESC16: OBE contributions to the ΛΛ(1S0, I = 0)
potentials for the PS, V, S, and A meson nonets.

TABLE VII: ESC16: Inverse-scattering-length and effective-
range matrices at (i) the ΞN threshold for I=0, and (ii)
the ΛΣ threshold for I=1. The order of the states (1-2)
reads ΛΛ(1S0),ΞN(1S0), and ΞN(1S0),ΛΣ(

1S0) for respec-
tively I=0 and I=1. The dimension of the matrix elements
are in [fm]−1(A−1) and [fm](R).

ΞN -threshold ΛΣ-threshold
A−1 R A−1 R

11 0.234 13.557 –0.085 8.987
12 1.607 –0.377 –1.423 6.458
22 0.569 2.610 –0.485 6.012

the NSC97 models [7], indicating a more attractive ΛΛ
interaction.
The old experimental information 6

ΛΛHe seemed to in-
dicate a separation energy of ∆BΛΛ = 4 − 5 MeV, cor-
responding to a rather strong attractive ΛΛ interaction.
As a matter of fact, an estimate for the ΛΛ 1S0 scat-
tering length, based on such a value for ∆BΛΛ, gives
aΛΛ(

1S0) ≈ −2.0 fm [44, 45]. However, in recent years
the experimental information and interpretation of the
ground state levels of 6

ΛΛHe,
10
ΛΛBe, and 13

ΛΛB [46], has
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FIG. 4: ESC16: OBE contributions to the ΞN(1S0, I = 0)
potentials for the PS, V, S, and A meson nonets.

TABLE VIII: I = 1: Inverse-scattering-length and effective-
range matrices at the ΛΣ threshold. The order of the
states (1-2) reads ΞN(3S1),ΞN(3D1),ΛΣ(

3S1). The dimen-

sion of the matrix elements are in [fm]−1−l−l′(A−1) and

[fm]1−l−l′(R).

ESC16
A−1 R

11 4.637 37.197
12 –21.474 –94.878
13 2.050 18.181
22 115.960 506.653
23 5.839 –88.231
33 0.954 8.645

been changed drastically. This because of the Nagara-
event, identified uniquely as 6

ΛΛHe [8], which established
that the ΛΛ-interaction is weaker (∆BΛΛ ≈ 0.7 MeV).
Furthermore, in ΛΛ-correlation studies of Heavy-Ion col-
lisions [47] a small inegative aΛΛ(

1S0) is favored.
In NSC97 [23] it was only possible to increase the

attraction in the ΛΛ channel by modifying the scalar-
exchange potential. If the scalar mesons are viewed as
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FIG. 5: ΞN(1S0, I = 1) potentials

being mainly qq̄ states, one finds that the (attractive)
scalar-exchange part of the interaction in the various
channels satisfies

|VΛΛ| < |VΛN | < |VNN |, (6.1)

suggesting indeed a rather weak ΛΛ-potential. The
NSC97 fits to the YN scattering data [23] give values
for the scalar-meson mixing angle which seem to point
to almost ideal mixing for the scalars as qq̄ states. We
found that an increased attraction in the ΛΛ channel
would give rise to (experimentally unobserved) deeply
bound states in the ΛN channel. On the other hand, in
the ESC-models there are in principle more possibilities
because of the presence of meson-pair potentials. As one
sees from the values of the aΛΛ(

1S0) in the ESC16 model
of this paper, we can produce the apparently required at-
traction in the ΛΛ interaction without giving rise to ΛN
bound states. Notice that also in ESC08 we have almost
ideal scalar mixings, akin to NSC97.

B. No Deuteron state in ΞN(3S1 −3 D1, I = 1)

A discussion of the possible bound-states, using the
SU(3) content of the different S = 0,−1,−2 channels is
given in [7]. As in [7], for a general orientation, we list
in Table IX all the irreps to which the various baryon-
baryon channels belong.
In ESC16 there is no bound-state with isospin I=1 or
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FIG. 6: ΞN(3S1, I = 0) potentials

TABLE IX: SU(3) content of the different interaction chan-
nels. S is the total strangeness and I is the isospin. The
upper half refers to the space-spin symmetric states 3S1,

1P1,
3D, . . . , while the lower half refers to the space-spin antisym-
metric states 1S0,

3P , 1D2, . . .

Space-spin symmetric
S I Channels SU(3)-irreps
0 0 NN {10∗}
–1 1/2 ΛN , ΣN {10∗}, {8}a

3/2 ΣN {10}
–2 0 ΞN {8}a

1 ΞN , ΣΣ {10}, {10∗}, {8}a
ΣΛ {10}, {10∗}

Space-spin antisymmetric
S I Channels SU(3)-irreps
0 1 NN {27}
–1 1/2 ΛN , ΣN {27}, {8}s

3/2 ΣN {27}
–2 0 ΛΛ, ΞN , ΣΣ {27}, {8}s, {1}

1 ΞN , ΣΛ {27}, {8}s
2 ΣΣ {27}

I=0 and strangeness S=-2. Apparently, the tensor con-
tribution in the spin triplet-coupled states is not large
enough to give a bound state. (The ΞN → Y Y tensor
potentials for isospin I=T=1 are exhibited in Fig. 13.)
In ESC08c a ”phenomenological” deuteron-like D⋆ was
produced belonging to the {10∗} SU(3)-irrep, which is
a ΞN bound state in the 3S1-

3D1 coupled partial wave.
In model ESC04d [5], there occurs a ΞN bound state in
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FIG. 7: ΞN(3S1, I = 1) potentials

the ΞN(3S1-
3D1, (I = 0) partial wave. From Table IX

one sees that this is a {8a}-state, which was a little bit
surprising, because the OBE-potential one expects to be
rather repulsive in the irrep {8a}, see Ref. [24]. In the
ESC04 models this occurrence was ascribed to the inclu-
sion of the potentials of the axial-vector-mesons, and the
meson pairs. Since the ESC04a-c versions did not show
such a bound state it is considered to be accidental.

C. Partial Wave Phase Parameters

For the BB-channels below the inelastic threshold we
use for the parametrization of the amplitudes the stan-
dard nuclear-bar phase shifts [48]. The information on
the elastic amplitudes above thresholds is most conve-
niently given using the BKS-phases [25–27]. For uncou-
pled partial waves, the elastic BB S-matrix element is
parametrized as

S = ηe2iδ , η = cos(2ρ) . (6.2)

For coupled partial waves the elastic BB-amplitudes are
2 × 2-matrices. The BKS S-matrix parametrization,
which is of the type-S variety, is given by

S = eiδeiǫN eiǫeiδ , (6.3)

where

δ =

(
δα 0
0 δβ

)
, ǫ =

(
0 ǫ
ǫ 0

)
, (6.4)
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FIG. 8: ΛΛ(1S0, I = 0) potentials

and N is a real, symmetric matrix parametrize as

N =

(
η11 η12
η12 η22

)
. (6.5)

From the various parametrizations of the N -matrix, we
choose the Kabir-Kermode parametrization [28] to rep-
resent the N -matrix in the figures. Then, the N -matrix
is given by the inelasticity parameters (α, β, ϕ), called
ρ-parameters, as follows

N =

(
cos(2α) sin(ϕ+ ξ)

sin(ϕ+ ξ) cos(2β)

)
, (6.6)

where

α = ±1

2
cos−1(η11) , β = ±1

2
cos−1(η22) ,

ϕ = sin−1(η12)− sgn(η12) sin
−1Q

ξ = sgn(η12) sin
−1Q . (6.7)

Here

Q2 = 1− |η11 + η22|+ η11η22 . (6.8)

In the Tables XXIX-XXXV, we give for ESC16 the
phases and inelasticity parameters ρ and η11, η12, η22,
which enable the reader to construct the N -matrix most
directly.
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FIG. 9: ΞN(1S0, I = 0) potentials

D. Total cross sections

We next present the predictions for the total cross sec-
tion for several channels. We suppose always that the
beam as well as the target are unpolarized. Therefore,
we included the statistical factors, which are 1/4 for the
spin-singlet and 3/4 for the spin-triplet case.

For those cases where both baryons are charged, we do
not include the purely Coulomb contribution to the total
cross section, nor do we include the Coulomb interference
to the nuclear amplitude. The cross section is calculated
by summing the contributions from partial waves with
orbital angular momentum up to and including L = 2.
We find this to be sufficient for all the S 6= 0 sectors;
inclusion of any higher partial waves has no significant
effect. Inclusion of higher partial waves will shift the to-
tal cross section to slightly higher values without chang-
ing the overall shape. Of course, their inclusion would
be necessary if a detailed comparison with real accurate
experimental data were to be made.

In Table X the I=0 total cross sections for ΛΛ →
ΛΛ,ΞN are shown as a function of the beam laboratory
momentum pLab = pΛ. Being dominantly S-wave, there
is in principle a (sharp) cusp at the ΞN -threshold, i.e.
pΛ = 344.4 MeV/c, which indeed is visible in the ta-
ble. In Table X we also show the ΞN → ΞN,ΛΛ total
cross sections as a function of the laboratory momen-
tum pΞ. In Table XI the I=1 total cross sections for the
ΞN → ΞN,ΣΛ and the I = 1, L = 0 ΣΛ → ΣΛ,ΞN,ΣΣ
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FIG. 10: ΞN(1S0, I = 1) potentials

reactions are given as a function of the laboratory mo-
mentum pLab = pΞ. Similarly for Ξ−p in Table XII. In
the KEK-224 experiment for pΞ = 500 MeV/c the upper
limit for the total elastic cross section σel(Ξ

−p) = 24 mb
at 90% confidence level [29]. Because the Ξ−p is a com-

bination of the isospin states with factors 1/
√
2 the total

cross sections in Tables X and XI are divided by 4.
In Table XIII the Ξ−p cross-sections are shown for the

ESC16-model parameter set. In the measurements at
pΞ = 500 MeV/c [30] for the Ξ−p → ΛΛ it was found
to be 4.3+6.3

−2.7 mb, which compares reasonably well with
the value 2.01 mb in the table. For the elastic Ξ−p cross
section we have 9.34 which is clearly consistent with the
upper limit of 24 mb. Also, the cross section 8.37 mb
for the inelastic reaction Ξ−p → Ξ0n is compatible with
the estimate of 10 mb in [30]. We note that the total
cross sections are rather constant in the range 400 ≤
pΞ− ≤ 1000 MeV/c. Table XIII gives for model ESC16
the contributions from the partial waves for L=0,1,2 and
the total cross sections.

E. Flavor SU(3)-irrep potentials

In Fig. 14 and 15 the potentials in the SU(3)-irrep
base states are displayed. In the upper and lower panels
the diagonal and the non-diagonal potentials are shown
respectively. Notice that the non-diagonal potentials
are considerably smaller than the diagonal ones, which
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FIG. 11: ΞN(3S1, I = 0) potentials

TABLE X: ESC16 (I = 0, L ≤ 2) total cross sections in [mb]
as a function of the beam particle laboratory momentum pΛ
in [MeV/c].

ΛΛ → ΛΛ,ΞN ΞN → ΞN,ΛΛ
pLab ΛΛ ΞN ΞN ΛΛ
10 3.38 — 450.94 8.21
50 3.14 — 83.62 8.16

100 2.51 — 37.06 8.93
150 1.77 — 21.83 10.69
200 1.12 — 14.63 12.66
250 0.66 — 10.63 14.33
300 0.41 — 8.19 15.67
350 0.64 1.65 6.60 16.80
400 0.38 2.84 5.52 17.82
500 0.73 2.59 4.21 19.74
600 1.43 2.35 3.50 21.44
700 2.25 2.24 3.11 22.90
800 3.09 2.30 2.96 24.17
900 3.92 2.61 3.02 25.32

1000 4.84 2.92 3.36 26.40

shows the approximate SU(3)-symmetry. The red/solid
lines show averages of the SU(3)-irrep potentials using
the potentials on the particle basis. The green/dashed
lines are the irrep potentials in an SU(3) limit, where
MN = MΛ = MΣ = MΞ = 1115.6 MeV, mπ = mK =
mη = mη′ = 400 MeV, mρ = mK∗ = mω = mφ = 800
MeV, and ma0 = mκ = mσ = mf ′

0
= 880 MeV. These

values for the masses are close to the GMO [49] octet and
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FIG. 12: ΞN(3S1, I = 1) potentials

TABLE XI: ESC16 (I = 1, L ≤ 2) total cross sections ΞN →
ΞN,ΣΛ in [mb] as a function of the beam particle laboratory
beam particle momentum pLab in [MeV/c].

ΞN → ΞN,ΣΛ ΣΛ → ΣΛ,ΞN,ΣΣ
pLab ΞN ΣΛ ΣΛ ΞN ΣΣ
10 14.12 — 697.14 458.50 —
50 13.05 — 215.80 11.93 —

100 12.95 — 94.94 8.23 —
200 13.22 — 38.34 6.39 —
300 13.78 — 22.85 7.50 —
400 14.07 — 16.53 9.45 —
500 13.74 — 13.25 11.36 —
600 10.13 3.62 11.35 12.91 —
650 12.05 4.64 10.94 14.25 2.74
700 13.28 6.18 9.52 14.80 6.26
800 15.01 6.58 7.85 16.08 7.99
900 16.37 6.65 6.64 17.04 7.81
950 17.06 6.74 6.15 17.43 7.47

1000 17.67 6.49 5.71 17.77 7.06

singlet masses 410 and 885 MeV for the pseudoscalar and
vector mesons respectively. The cut-off masses for pseu-
doscalar, vector, and axial-vector have been set equal to
the octet ones, i.e. ΛP

1 = ΛP
8 etc. But, for the scalar

nonet ΛS
8 = ΛS

1 .
Comparison with the results from LQCD [50, 51] shows
qualitatively very similar results. The exception is the
SU(3)-singlet {1}-irrep. Here LQCD potential is attrac-
tive for 0 < r <∞, whereas in ESC16 there is an attrac-
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FIG. 13: ΞN(3S1, T = 1) tensor potentials

TABLE XII: ESC16 total cross sections Ξ−p →
ΛΛ,Ξ0n,Ξ−p,Σ0Λ,Σ0Σ0,Σ−Σ+ in [mb] as a function
of the beam particle laboratory beam particle momentum
pLab in [MeV/c].

pΞ− ΛΛ Ξ0n Ξ−p Σ0Λ Σ0Σ0 Σ−Σ+

10 928.53 1049.99 744.15 — — —
50 52.54 45.94 12.29 — — —

100 19.27 19.97 7.93 — — —
200 7.25 12.12 7.39 — — —
300 4.04 10.27 8.19 — — —
400 2.71 9.29 9.23 — — —
500 2.04 8.57 10.10 — — —
550 1.83 8.28 10.10 — — —
600 1.66 7.89 9.95 2.17 — —
700 1.45 7.39 12.17 2.91 — —
800 1.35 6.87 13.91 3.06 — —
900 1.35 6.33 15.48 3.07 — —
950 1.39 6.07 16.26 3.07 — —

1000 1.46 5.74 17.05 2.97 0.04 0.30

tive pocket for r ≤ 0.5 fm and is repulsive for r > 0.5 fm.
This shape is due to the behavior of the spin-spin poten-
tials from pseudoscalar and vector exchange, which have
zero volume integrals. In the {1}-irrep for the SU(3)-
broken potential (solid line) there is no bound state, i.e.
no H-particle [52]. This is in agreement with the recent
experimental result studying Υ(1S, 2S)-decay [53].

TABLE XIII: ESC16 L=0,1,2 partial-wave total cross sections
Ξ−p → ΛΛ,Ξ0n,Ξ−p,Σ0Λ in [mb] as a function of the beam
particle laboratory beam particle momentum pLab = 500
MeV/c. σs and σt are the spin-singlet and spin-triplet cross
sections.

Ξ−p → ΛΛ Ξ−p → Ξ0n Ξ−p → Ξ−p
L σs σt σT σs σt σT σs σt σT

0 1.58 —- 1.58 0.11 5.64 5.75 5.63 3.47 9.10
1 —- 0.41 0.41 0.04 2.31 2.35 0.20 0.72 0.92
2 0.05 —- 0.05 0.06 0.41 0.47 0.01 0.07 0.08

Tot 1.63 0.41 2.04 0.21 8.36 8.57 5.84 4.26 10.10

Exp 4.3+6.3
−2.7 ≤ 10 ≤ 24
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FIG. 14: Potentials in the symmetric SU(3)-irrep base. The
red and green lines denote potentials with and without SU(3)-
symmetry breaking respectively. The units of the vertical axes
are [GeV].

VII. ΞN G-MATRIX INTERACTION AND
Ξ-NUCLEUS STATES 1

A. G-matrix interaction

We calculate Ξ potential energies UΞ and derive ΞN G-
matrix interactions GΞN (r) in nuclear matter with use of
ESC16. For comparison, G-matrix calculations are per-

1 IN THIS SECTION WE DENOTE ISOSPIN BY T, THE NU-

CLEAR PHYSICS NOTATION.
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FIG. 15: Potentials in the anti-symmetric SU(3)-irrep base.
The red and green lines denote potentials with and without
SU(3)-symmetry breaking respectively. The units of the ver-
tical axes are [GeV].

formed for the HAL-QCD ΞN potential based on the
Lattice QCD[15]. Since the HAL-QCD potential was not
determined uniquely and the three versions (t11, t12,
t13) were proposed, we use here the t13 version giving
the reasonable attraction in comparison with experimen-
tal data.
G-matrix calculations are performed with the continu-

ous (CON) choice, where off-shell potentials are taken
into account continuously from on-shell ones in inter-
mediate propagations of correlated pairs. A two-body
(2T+1)(2S+1)LJ state is specified by spin S, isospin T , or-
bital and total angular momenta L and J , respectively.
Imaginary parts of G-matrices appear due to energy-
conserving transitions from ΞN to ΛΛ channels in 11S0

and 13PJ states. A conversion width Γc
Ξ is obtained from

an imaginary part of UΞ by multiplying −2.
The BNL-E885 experiment [19] suggests that a Ξ− s.p.

potential in 12
Ξ−Be is given by the attractive Wood-Saxon

(WS) potential with the depth ∼ −14 MeV. Recently, in
the E05 12C(K−,K+) experiment at JPARC [54], some
enhancement of cross sections has been observed in the
Ξ− bound-state region, suggesting possible existing of a
1S bound state. Furthermore, as discussed later, the
emulsion events of Ξ hypernuclei give clear evidences for
attractive Ξ-nucleus potentials. Here, it should be noted
that the depth of the above WS potential is related to
the potential energy UΞ(ρ0) in normal-density matter,

when a Ξ-nucleus potential is modeled simply as a local-
density potential UΞ(ρ(r)). Though such a potential is
not adopted here and their relation is only indirect, it
is clear that the repulsive value of UΞ(ρ0) for ESC16 in
Table XIV is in contradiction with the above-mentioned
experimental indications of attractive Ξ-nucleus interac-
tions.
In order to realize an attractive Ξ-nucleus interaction,

an effective ΞN interaction Veff composed of two terms,
a (πω)-pair exchange interaction Vπω and a SU(3)-
singlet interaction Vsinglet, is added phenomenologically
to ESC16 interaction. The Vπω spin-spin and tensor po-
tential functions are given in Ref. [40], equation (C17).
The effective interaction is given as

Veff (r; ρ) = (X2 +X3f(ρ̃))Vπω(r) +Xs Vsinglet(r),

f(ρ̃) = ρ̃ exp(−ηρ̃) (7.1)

with ρ̃ = ρ/ρ0. Here, the first term is assumed to have
density-dependent strength, where f(ρ̃) is modeled so
that it dominates at low density and is negligible at
higher densities. X2 and X3 are strengths of density-
independent two-body part and density-dependent one.
This term brings about a large attraction especially
in (TSP ) = (11+) state, P denoting parity. Xs is
the strength of the SU(3)-singlet interaction, which
works in (TSP ) = (00+) and (01−) states. The
form of the singlet potential is chosen as Vsinglet =
−ms exp(−m2

sr
2/4), ms = 760 MeV and for the differ-

ent BB-channels the weights are the coefficients of V1 in
Table XXVI.
Parameters X2, X3, η and Xs are determined so

that the derived G-matrix interaction derived from
ESC16+Veff reproduces the experimental value of Ξ−

binding energies BΞ− in Ξ−+14N system [10, 55]. We
give here the four parameter sets A1, A2, B1 and B2
specified by (X2, X3, Xs)= (2.85, 0.0, 0.0), (2.55, 1.60,
0.0), (1.65, 0.0, 10.0) and (1.07, 3.00, 10.0), respectively,
η being taken as 1.6. In the case of B1 and B2, the
Pauli-blocking effect for [51]-configuration is not taken
into account in the ESC16 construction. As shown later,
these four sets for Veff give reasonable values of BΞ−(1S)
and BΞ−(2P ) in the Ξ−+14N system.

Table XIV shows the potential energies UΞ and their
partial-wave contributions in (2T+1)(2S+1)LJ states at
normal density ρ0 for ESC16, A1, A2, B1 and B2. The
UΞ value for ESC16 turns out to be repulsive. Compar-
ing the partial-wave contributions for ESC16 with those
for A1 or A2, one find that the main difference is in
33S1-state contributions, being repulsive in the former
and strongly attractive in the latter. The negative value
of UΞ in the case of A1 or A2 is owing to the large 33S1

attractive contribution of the ΞN -ΛΣ-ΣΣ tensor-coupling
term in the (πω)-pair exchange interaction in Eqn.(7.1).
In the case of B1 or B2, the 33S1 contributions are not
so attractive, but instead the SU(3)-singlet interaction
in 11S0 state contributes attractively to give the negative
value of UΞ. The calculated values of Γc

Ξ(ρ0) are given
in the Table XIV, the dominant contributions of which
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TABLE XIV: UΞ(ρ0) and partial wave contributions in
(2T+1)(2S+1)LJ states for ESC16 and ESC16+Veff (A1, A2,
B1, B2) calculated with the CON choice. Γc

Ξ denotes ΞN -ΛΛ
conversion width. Also the calculated values are given for the
HAL-QCD potential [15]. All entries are in MeV.

ESC16 A1 A2 B1 B2 HAL-QCD
X2 0.0 2.85 2.55 1.65 1.07
X3 0.0 0.0 1.6 0.0 3.0
Xs 0.0 0.0 0.0 10. 10.
11S0 2.1 1.4 1.4 −4.0 −4.0 −4.9
13S1 −0.4 −2.2 −2.2 −2.8 −2.8 −2.2
11P1 −0.2 −0.3 −0.3 −0.3 −0.3
13P0 −5.3 −3.5 −3.5 −2.0 −2.0
13P1 1.5 1.3 1.3 1.7 1.7
13P2 −1.2 −1.2 −1.2 −2.3 −2.3
31S0 9.2 9.9 9.9 6.8 6.8 1.8
33S1 7.6 −13.5 −13.9 −4.7 −4.9 −5.4
31P1 1.0 1.3 1.3 1.0 1.0
33P0 0.8 1.0 1.0 0.8 0.7
33P1 −2.0 −2.8 −2.8 −3.0 −3.0
33P2 0.5 0.1 0.1 −1.0 −1.0
UΞ +13.7 −8.5 −9.0 −10.1 −10.4 −10.6
Γc
Ξ 5.1 5.7 5.7 0.5 0.5 0.2

come from the ΛΛ-ΞN -ΣΣ coupling interaction in the 11S0

state. Here, it should be noted that the Γc
Ξ values for B1

and B2 are far smaller than those for A1 and A2.
The calculated values for the HAL-QCD potential

(t13) are also given in the Table XIV. Here P -state val-
ues are lacking because only the S-state potentials are
given in Ref.[15]. There appear the two distinct features
in the HAL-QCD result: One is the strongly attractive
value of partial-wave contribution in 11S0 state. It should
be noted that the value in this state is given genuinely
by the interaction because of the statistical weight factor
(2T +1)(2J +1) = 1. The other is the small value of Γc

Ξ.
Concerning these features, B1/B2 are more similar to
HAL-QCD than A1/A2 owing to the SU(3)-singlet inter-
actions. For reference, let us show the calulated values of
UΞ(ρ0) for the t12 and t11 versions of the HAL-QCD po-
tential, being −14.1 MeV and −16.2 MeV, respectively.
Thus, these versions lead to overbinding values of BΞ in
comparison with the experimental data.
It is interesting to compare the present results with

those by the chiral NLO interactions. Their G-matrix
results are given in Ref.[56], where their calculated values
of UΞ(ρ0) and their partial-wave contributions can be
found in Fig.3 and Fig.2 (the values at k = 0 fm−1 in the
figues), respectively. Then, their UΞ(ρ0) value is rather
close to those for A1/A2 and B1/B2. The 11S0 and 13S1

(31S0 and 33S1) contributions are similar to those for
B1/B2 (A1/A2).
Let us compare the features of A1, A2, B1 and B2 by

showing the partial-wave contributions to UΞ as a func-
tion of kF . In Fig. 16, S- and P -wave contributions,
UΞ(S) and UΞ(P ), are drawn by thick (thin) solid and
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FIG. 16: UΞ(S) and UΞ(P ), being S- and P -wave contribu-
tions to UΞ, respectively, are drawn as a function of kF . Thick
(thin) solid and short-dashed curves are for A1 and A2 (B1
and B2), respectively
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FIG. 17: Contributions of (2T+1)(2S+1)LJ components to UΞ

are drawn as a function of kF .
11S0,

13S1,
31S0 and 33S1

contributions are given by thick (thin) solid, dashed, short-
dashed and dot-dashed curves for A1 (B1).

short-dashed curves are for A1 and A2 (B1 and B2), re-
spectively. For UΞ(S), the curves for A1 and B1 (A2 and
B2) are found to be similar with each other. For UΞ(P ),
the curves for A1 and A2 (B1 and B2) are almost super-
posed.
In Fig. 17, partial-wave contributions of

(2T+1)(2S+1)LJ states are drawn as a function of
kF . Here, 11S0,

13S1,
31S0 and 33S1 contributions

for A1 (B1) are given by thick (thin) solid, dashed,
short-dashed and dot-dashed curves, respectively. The
similar figure can be obtained for A2 and B2. In the
figure the 33S1 curve for A1 is found to be far below
that for B1, the reason why is because the value of X2

in A1 is larger than that in B1. On the other hand,
the 11S0 and 31S0 curves for B1 are below those for A1,
the reason of which is as follows: In the 11S0 curve, the
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SU(3)-singlet interaction is included in B1. In the 31S0

curve, the Pauli-blocking effect for [51]-configuration is
not taken into account in B1.
For applications to finite Ξ systems, ΞN -ΞN central

parts of complex G-matrix interactions are represented
in two-range Gaussian forms, whose coefficients are given
as a function of kF :

G(r; kF ) = (a1 + b1kF + c1k
2
F ) exp[−(r/0.9)2]

+a2 exp[−(r/2.0)2] (7.2)

in (2T+1)(2S+1)E and (2T+1)(2S+1)O states. The deter-
mined parameters for A1, A2, B1 and B2 are given in Ta-
ble XV. Imaginary parts are represented as Gim(r; kF ) =
(a1+ b1kF + c1k

2
F ) exp[−(r/0.9)2] in 11E and 13O states,

whose parameters are in Table XVI.

TABLE XV: G(r; kF ) = (a1 + b1kF + c1k
2
F ) exp[−(r/β1)

2] +

a2 exp[−(r/β2)
2] in (2T+1)(2S+1)E and (2T+1)(2S+1)O states

with β1 = 0.9 fm and β2 = 2.0 fm.

a1 b1 c1 a2

A1 11E 82.68 −33.36 19.73 −5.448
13E −55.49 −1.213 19.13 0.364
11O 79.81 2.711 5.132 −5.442
13O −1272. 1289. −379.7 0.356
31E 49.99 1.493 19.08 0.514
33E −99.34 62.12 −8.145 −1.603
31O 57.51 −2.260 8.346 0.509
33O −10.92 6.496 4.247 −1.598

A2 11E 80.46 −29.38 17.95 −5.448
13E −55.49 −1.213 19.13 0.364
11O 79.81 2.711 5.132 −5.442
13O −1411. 1538. −488.2 0.356
31E 53.83 −5.501 22.11 0.514
33E 1.000 −120.7 71.50 −1.603
31O 56.82 −.9798 7.783 0.509
33O 9.756 −31.25 20.66 −1.598

B1 11E −466.5 490.8 −148.5 −5.394
13E −65.87 4.220 17.41 0.373
11O 65.56 4.362 4.760 −5.395
13O −529.4 298.5 −23.77 0.373
31E 30.54 −4.355 18.45 0.517
33E −30.45 8.704 8.253 −1.583
31O 34.15 −1.376 7.630 0.517
33O −48.81 7.115 5.125 −1.583

B2 11E −409.8 389.1 −104.4 −5.394
13E −65.87 4.220 17.41 0.373
11O 65.56 4.362 4.760 −5.395
13O −604.4 432.9 −82.03 0.373
31E 36.17 −14.55 22.89 0.517
33E 46.33 −130.5 68.80 −1.583
31O 31.33 3.750 5.405 0.517
33O −21.27 −42.81 26.84 −1.583

Also the G-matrix interactions derived from the HAL-
QCD potential are represented similarly in two-range
Gaussian forms for applications to finite Ξ systems.

TABLE XVI: Imaginary parts: Gim(r; kF ) = (a1 + b1kF +
c1k

2
F ) exp[−(r/0.9)2] in 11E and 13O states.

a1 b1 c1
A1 11E −87.66 17.11 −.3357

13O −579.4 746.0 −251.7
A2 11E −69.75 −15.57 13.88

13O −696.1 953.9 −341.9
B1 11E 1.284 −3.106 −.3416

13O −48.48 26.17 .6170
B2 11E 5.001 −9.872 2.601

13O −66.19 57.90 −13.16

B. Experimental information

Experimentally, the most important information for
ΞN interactions has been obtained from emulsion events
of simultaneous emission of two Λ hypernuclei (twin Λ
hypernuclei) from a Ξ− absorption point: The Ξ− hy-
peron produced by the (K−,K+) reaction is absorbed
into a nucleus (12C, 14N or 16O in emulsion) from some
atomic orbit, and two Λ hypernuclei are produced by the
secondary Ξ−p → ΛΛ process. Then, the energy differ-
ence between the initial Ξ− state and the final twin Λ
state gives rise to the binding energy BΞ− between Ξ−

and the nucleus. It is well known that capture proba-
bilities of Ξ− from 2P states are far smaller than those
from 3D states. In spite of this fact, twin Λ hypernu-
clei are produced dominantly after 2P -Ξ− captures. As
discussed in Ref.[57], the reason is because sticking prob-
abilities of two Λ’s produced after 2P -Ξ− captures are
substantially larger than those after 3D-Ξ− captures.

Two events of twin Λ hypernuclei (I) [58] and (II) [59]
were observed in the KEK E-176 experiment, and the
event (III) [10] was in the KEK E373 experiment. In the
cases of (I) and (II), each event has no unique interpre-
tation for its reaction process. However, it is possible
to find a consistent understanding for these two events
as follows: The events (I) and (II) were interpreted to
be reactions of Ξ− captured by 12C. Assuming that the
Ξ− is absorbed from the 2P orbit in each case, we have
consistently the following reactions

(I) Ξ− +12C →9
ΛBe +

4
ΛH (BΞ− = 0.82± 0.17 MeV),

(II) Ξ− +12C →9
ΛBe

∗ +4
ΛH (BΞ− = 0.82± 0.14 MeV).

(7.3)

The event (III) is uniquely identified as

Ξ− +14N →10
ΛBe +

5
ΛHe , (7.4)

being the clear evidence of a Ξ− +14N bound state. The
BΛ value of 10

ΛBe in the ground state was determined
as 8.60 ± 0.07 MeV by the (e, e′K+) experiment JLab
E05-115 [60]. Then, we have BΞ− = 3.87 ± 0.13 MeV
using this value of BΛ(

10
ΛBe). It is possible very much,

however, that the 10
ΛBe produced in the event (III) is in
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some excited state. The experimental spectra of 10ΛBe [60]
shows that only the first excited state leads to a positive
value. In this case, we have BΞ− = 1.11± 0.25 MeV.
Recently, the J-PARC E07 experiment has been per-

formed and the analysis is now in progress, where many
events of twin-Λ hypernuclei in emulsion have been ob-
served. In the cases of Ξ− +14N events, they have found
not only the 2P -Ξ− states (BΞ = 1.0 ∼ 1.5 MeV) but
also the 1S-Ξ− states (BΞ = 6.27± 0.32 MeV) [55].

C. Results for finite Ξ systems

As demonstrated in Refs. [21, 61], the observed spec-
tra of Λ/Ξ hypernuclei are described successfully with
the Λ/Ξ-nucleus folding potentials derived from the ΛN
and ΞN G-matrix interactions. Here, the same method
is applied to Ξ−-nucleus systems. A Ξ-nucleus folding
potential in a finite system is obtained from GTS

(±)(r; kF )

as follows:

UΞ(r, r
′) = Udr + Uex ,

Udr = δ(r− r′)

∫
dr′′ρ(r′′)Vdr(|r− r′′|; kF )

Uex = ρ(r, r′)Vex(|r− r′|; kF ) , (7.5)

(
Vdr
Vex

)
=

1

2(2tY + 1)(2sY + 1)

∑

TS

(2T + 1)(2S + 1) ·

×[GTS
(±) ± GTS

(∓)] , (7.6)

where (±) denote parity quantum numbers. Here, it is
assumed that a core nucleus is spherical and its spin
and isospin are zero. Densities ρ(r) and mixed densi-
ties ρ(r, r′) are obtained from Skyrme-HF wave func-
tions. Using a local approximation for Uex, we have
the local Ξ-nucleus potential UΞ(r; kF ) for a spherical
core. The isospin-dependence of GTS

(±)(r; kF ) leads to the

Lane term. In this work, only the diagonal parts of the
tΞ ·Tc term are taken into account. The TS dependence
of GTS

(±)(r; kF ) are considerably different between A1 and

B1 (A2 and B2). These differences do not appear in the
following cases of core nuclei.
For kF included in G(r; kF ), we use the averaged-

density approximation (ADA), where kF values are
obtained from averaged values of ρ(r): ρ̄ =
〈φY (r)|ρ(r)|φY (r)〉 with a hyperon wave function φY (r).
In the case of Λ hypernuclei, the ADA gives rise to good
fitting to the experimental spectra.
Table XVII shows the results for 1S and 2P (1S, 2P

and 3D) bound states in Ξ−+12C, Ξ−+14N and Ξ−+16O
(Ξ−+27Al) systems in the cases of using A1, A2, B1
and B2, where Coulomb interactions between Ξ− and
nuclear cores are taken into account. BΞ− and

√
〈r2〉

are binding energy and r.m.s. radius of Ξ−, respectively.
Conversion widths Γc

Ξ− come from the imaginary poten-
tials in 11S1 and 13P states. 2P -Ξ− states in 12C, 14N

TABLE XVII: Calculated quantities in Ξ−+12C,Ξ−+14N,
Ξ−+16O, Ξ−+27Al systems for A1, A2, B1 and B2. Binding
energies BΞ− and conversion width Γc

Ξ− are in MeV. R.m.s.

radii
√

〈r2〉 are in fm. Averaged Fermi momentum k̄F is in
fm−1. Coulomb-assisted bound states are marked by (∗). The
experimental values BΞ−(exp) are in MeV.

Ξ−+12C A1 A2 B1 B2 HAL-QCD BΞ−(exp)
1S BΞ− 4.8 5.2 4.9 5.2 4.4

Γc
Ξ− 2.8 2.9 0.20 0.21 0.13

√

〈r2〉 2.9 2.8 2.9 2.8 3.0
k̄F 1.06 1.07 1.06 1.08 1.04

2P (∗) BΞ− 1.1 0.8 1.0 0.7 0.4 0.82± 0.14 [58][59]
Γc
Ξ− 1.6 1.3 0.12 0.09 0.01

√

〈r2〉 5.5 6.7 5.8 7.3 15.
k̄F 0.76 0.68 0.74 0.65 0.35

Ξ−+14N A1 A2 B1 B2 HAL-QCD BΞ−(exp)
1S BΞ− 5.1 5.7 5.2 5.6 5.5 5 ∼ 7 [55]

Γc
Ξ− 3.3 3.4 0.24 0.26 0.16

√

〈r2〉 2.9 2.8 2.9 2.8 2.9
k̄F 1.08 1.09 1.08 1.09 1.08

2P (∗) BΞ− 1.4 1.2 1.4 1.2 0.7 1.11± 0.25 [10]
Γc
Ξ− 2.0 1.7 0.16 0.14 0.05

√

〈r2〉 5.1 5.8 5.1 5.8 8.5
k̄F 0.80 0.74 0.79 0.74 0.60

Ξ−+16O A1 A2 B1 B2 HAL-QCD
1S BΞ− 6.1 6.8 6.3 6.8 6.0

Γc
Ξ− 3.1 3.3 0.24 0.25 0.14

√

〈r2〉 2.8 2.7 2.8 2.7 2.9
k̄F 1.11 1.12 1.11 1.12 1.10

2P (∗) BΞ− 2.2 2.2 2.2 2.1 1.1
Γc
Ξ− 2.1 2.1 0.17 0.17 0.06

√

〈r2〉 4.4 4.4 4.4 4.5 6.7
k̄F 0.88 0.87 0.87 0.86 0.69

Ξ−+27Al A1 A2 B1 B2 HAL-QCD
1S BΞ− 9.0 9.8 9.2 9.9 9.6

Γc
Ξ− 2.9 2.9 0.22 0.23 0.12

√

〈r2〉 2.7 2.7 2.7 2.6 2.8
k̄F 1.20 1.21 1.21 1.21 1.19

2P BΞ− 5.0 5.4 5.0 5.3 3.9
Γc
Ξ− 2.0 2.0 0.17 0.18 0.08

√

〈r2〉 3.8 3.6 3.8 3.7 4.1
k̄F 1.05 1.06 1.05 1.06 0.99

3D (∗) BΞ− 1.4 1.3 1.3 1.1 0.7
Γc
Ξ− 1.3 1.2 0.12 0.10 0.01

√

〈r2〉 6.0 6.6 6.3 7.3 16.
k̄F 0.82 0.78 0.80 0.74 0.33

and 16O, and 3D-Ξ− states in 27Al, marked by (∗) in
the Table, are so called Coulomb-assisted bound states
(CABS), which means that they cannot be bound with-

out attractive Coulomb interactions. The values of
√
〈r2〉

for CABS are far smaller than those for pure Coulomb
bound states.

The calculated values of BΞ−(2P ) in Ξ− +12C system
are 0.7∼1.1 MeV for A1,A2,B1 and B2, being consis-
tent with the experimental value 0.82 ± 0.14 MeV. In
Ξ− +14N system, the calculated values of BΞ−(1S) and
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BΞ−(2P ) are 5.1∼5.7 MeV and 1.2∼1.4 MeV, respec-
tively, for A1,A2,B1 and B2. These values are consistent
with the recent observations that BΞ−(2P ) = 1 ∼ 1.5
MeV and BΞ−(1S) = 5 ∼ 7 MeV [55]. Let us remark
here the difference BΞ−(1S)−BΞ−(2P ) in the Ξ− +14N
case: The calculated values are 3.7 (3.8) MeV for A1 (B1)
and 4.5 (4.4) MeV for A2 (B2), respectively. The reason
why the latter values are larger than the former values
is because the density-dependent term X3f(ρ̃)Vπω(r) in
Eqn.(7.1) strengthen the kF -dependence of the G-matrix
interaction Eqn.(7.2).

In Table XVII, it is noted that the results for A1 and
B1 (A2 and B2) are similar with each other. This is
because the different (TS)-dependence of A1 and B1 (A2
and B2) are not revealed in the present systems that spin
and isospin of nuclear cores are zero. The differences
between A1 (B1) and A2 (B2) come from the density-
dependent term X3f(ρ̃)Vπω(r) in Eqn.(7.1). The most
striking difference between A1 and B1 (A2 and B2) can
be seen in the conversion widths: The calculated values
of Γc

Ξ− for B1 (B2) are far smaller than those for A1
(A2), because the 11S0 ΞN -ΛΛ coupling interaction in
the former is far weaker than that in the latter.

The results for the HAL-QCD potential also are in-
cluded in Table XVII. The calculated values of BΞ(1S)
are more or less similar to those for the ESC models
A1/A2 and B1/B2. On the other hand, the values of
BΞ(2P, 3D) are systematically smaller than those for the
ESC models, for which there are two possible reasons:
The one is that the density (kF ) dependence of the G-
matrix interaction is weak, because in the HAL-QCD po-
tential ΞN -ΛΣ-ΣΣ coupling interactions are renormal-
ized into the ΞN -ΞN single-channel potentials. The
other is that p-state interaction (possibly attractive) is
missing in the HAL-QCD potential for the present.

Ξ− bound states in 12C, 14N and 16O are expected
to be observed soon as emulsion events in J-PARC E07
experiment. Ξ−+27Al bound states are expected to be
observed in 28Si(K−,K+) reactions.

Recapitulating the results for the various Veff we re-
mark: (1) the A1 version (X3 = 0, Xs = 0) is similar to
ESC08c; (2) the B1 version (X3 = 0, Xs 6= 0) is simi-
lar to the HAL-QCD potential [15]. Its ΞN(3S1, T = 1)
attraction gives no ’deuteron-like’ bound state; (3) A2
and B2 include three-body terms (X3 6= 0), giving larger
separations of the 1S and 2P states. If Veff has only a
three-body term (X2 = Xs = 0) the 1S-2P splittings are
too large. Thus, we can consider ESC16⊕Veff as an im-
proved versions of ESC08c, where the former models can
reproduce the data more nicely than the latter. (In sec-
tion I for future reference, the models A1 etc. are called
ESC16A1, ESC16A2, ESC16B1, and ESC16B2.)

As mentioned already, the G-matrix calculations show
that the Ξ−nucleus interactions the ESC08 and ESC16
models have shortcomings in the S=-2 sector, and need
to be supplemented by phenomenological interactions.
In Sec. VIII an SU(3)-symmetric generalization is given
with good results for NN⊕YN scattering and well-depths

UN , UΛ, UΣ, and UΞ.

VIII. ESC16⋆: ESC16 ⊕ NEW TWO-BODY
FORCES

As noted in the previous section the observation of the
twin Λ hypernuclei [58, 59] and the recent KISO event
[55] are strong indications that the Ξ-nucleus interac-
tion is not repulsive, but (moderately) attractive. Two
events with ”twin” Λ hypernuclei (I) [58] and (II) [59]
were observed in the KEK E-176 experiment, and re-
cently a new event (III) [55] has been observed in the
KEK E373 experiment. This is in line with the result
of the BNL-E885 experiment [19] yielding UΞ ≈ −14
MeV. From the results shown in this paper it is clear this
can not be accommodated by the two-body forces of the
present ESC16-model. Moreover, ESC16 fails to describe
the Ξ−p-correlations found in the ALICE-experiment at
CERN [62]. This situation is also not altered by the in-
clusion of the three-body forces produced by the meson-
pair interactions. Therefore, there are indications that
the two-body forces of the ESC-models, although very
successful for the NN and YN(S=-1) interactions, are
inadequate for the ΞN interaction showing its ”incom-
pleteness”. It is not difficult to suggest possible sources
of ”incompleteness”. For example, in the two-meson ex-
change potentials only the PS-PS are included, but not
PS-VC, PS-SC, VC-VC, VC-SC etc. Also, the SU(3)-
structure of the 33-resonances, like the Fujita-Miyazawa
interaction, can not be covered completely by the meson-
pair exchanges.
In this section we extend ESC16 to ESC16⋆ by in-

troducing new SU3-symmetric (s-wave) two-body ex-
change forces: gaussian central-, spin-spin-, and tensor-
potentials. This in the t- and u-channel [41] SU(3)-irreps
{µ′}: {27}, {8s}, {8a}, {10∗}, {10}. Henceforth, these
new potentials, indicated by the subscript X, in the t-

and u-channel are denoted as W̃c, W̃σ, and W̃t for re-
spectively the central-, spin-spin-, and tensor-potential,
and taken of the form

W̃µ′,c(r) = C{µ′} fW (r), W̃µ′,σ(r) = S{µ′} fW (r),

W̃µ′,t(r) = −(4/3)T{µ′} (mW r)2fW (r), (8.1)

where C, S, T are the t- and u-channel coefficients for the
central (C), spin-spin (S) and tensor (T) potentials, and
fW (r) = exp(−m2

W r2), mW = 300 MeV. For simplicity
a universal profile is assumed, which is similar to that of
the pomeron. No specific space-time structure is imposed
leaving the central, spin-spin and tensor unrelated.
In general, the potentials in the s-channel irreps are re-
lated to those in the t- and u-channel by the crossing
matrices Xst, Xsu. For the so-called signatured poten-
tials V (±) = [V (t) ± V (u)]/2 these can be combined. In
Table XVIII the SU(3) crossing matrices X(±), derived
from Ref. [63], for the signatured potentials are given.
The SU(3)-singlet exchange gives no distinction for the
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s-channel irreps and therefore is not included in the new
SU(3)-symmetric potentials.
The s-channel potentials in the {µ}-irrep correspond-

ing to (8.1) are

W (±)
µ,c (r) =

∑

µ′

X(±)(µ, µ′) C{µ′} fW (r), (8.2)

and similarly for the spin-spin and tensor potentials. Fi-
nally, the two-particle s-channel potentials are obtained
using the transformations given in Appendix C.

TABLE XVIII: The st- and su-crossing matrix X(±) = [Xst±
Xsu]/2. Here (±) refers to the symmetric (27, 8s, 1) and the
asymmetric (8s, 10, 10

∗) irreps respectively.

µ′
β′γ′(t, u)

27 8s 1 8a 10∗ 10

27 7/40 1/5 1/8 — — —
µβγ(s) 8s 27/40 –3/10 1/8 — — —

1 27/8 1 1/8 — — —

8a — — — 1/2 0 0
µβγ(s) 10 — — — 0 1/4 1/4

10∗ — — — 0 1/4 1/4

Below we present results of NN⊕YN fits having the
same quality as for ESC16, with these new SU(3)-
symmetric phenomenological potentials for two choices
of the extra parameters. In both cases, the meson
coupling constants are about equal to those obtained
with ESC16, which is also the case for the MPE
couplings. It appears that the QPC-pattern of the
baryon-baryon-meson gBBM -couplings is preserved.
The well-depths UNN , UΛ, UΣ, UΞ are calculated with
the inclusion of the three-body forces. The lat-
ter in the form of effective 2-body forces from: (a)
meson-pair interactions (MPE3), (b) multi-pomeron
(MPP3) with the triple- and quartic-pomeron couplings
g3P = 2.0, g4P = 20.0, and (c) Fuji-Miyazawa 3-body
force (FM3). The gaussian cut-off’s employed for the
meson-pair vertices are Λpr and ΛFM for MPP3 and
FM3 respectively. We found that Λpr = 450 MeV
gives good results, and used ΛFM to tune the nuclear
well-depth to its experimental value. In Appendix B a
list of the used TBF-potentials is given. For ESC16⋆ the
NN⊕YN fit has χ2

NN (p.d.p.) = 1.09, χ2
Y N (p.d.p) = 0.95,

which is of the same quality as that of ESC16. The
meson coupling constants of ESC16⋆ are about equal to
those obtained with ESC16, which is also the case for
the MPE couplings.
At present, experimentally it is not clear from which
states the major attractive contribution to UΞ comes.
Therefore, we present two possible solutions: ESC16⋆(A)
and ESC16⋆(B). In these applications we exploit only
central and spin-spin extra gaussian potentials.

ESC16⋆(A): In this case we put S{10} = 0. The central
and spin-spin parameters of the new potentials in ESC16⋆

from the fit are listed in Table XIX. No new tensor po-
tentials were included. Comparison of Table XX and Ta-

TABLE XIX: ESC16⋆(A): Coupling constants SU(3)-
symmetric gaussian potentials.

{µ} {27} {8s} {8a} {10∗} {10}
C{µ} –0.41 –0.19 –6.64 +0.12 –2.66
S{µ} –0.13 +0.90 +7.19 +0.49 0.0
T{µ} —- —- —- —- —-

ble XIII shows that the cross sections are for pLab = 500
MeV/c not much different. As can be seen in Table XXI
the well-depths for ESC16⋆ are much improved compared
to ESC16. In this table the ”exp” values are the experi-
mental nuclear saturation point EN , the UΛ and UΣ well-
depth’s from paper II [2], and for UΞ the [19] datum. The
partial wave contributions to the UΞ-well-depth are dis-
played in Table XXII. Here, ESC16⋆+ = ESC16⋆ & TBF.
The attraction for UΞ comes from the T=0 states, in
particular the ΞN(1S0, T = 0)- and the ΞN(3S1, T = 0)-
state. The T=1 states give repulsion which comes mainly
from the ΞN(1S0, T = 1)-state. (With also a tensor

W
(±)
µ,t 6= 0 more attraction in T=1 can be generated.)

In the ESC16⋆ model there is enough flexibility to tune
UΞ to a smaller value by refitting, eventually with an ex-
tended combined fit including next to the NN⊕YN data
also the well depth’s treated as pseudo-data.

TABLE XX: ESC16⋆(A): L=0,1,2 partial-wave total cross
sections Ξ−p → ΛΛ,Ξ0n,Ξ−p,Σ0Λ in [mb] as a function
of the beam particle laboratory beam particle momentum
pLab = 500 MeV/c. σs and σt are the spin-singlet and spin-
triplet cross sections.

Ξ−p → ΛΛ Ξ−p → Ξ0n Ξ−p → Ξ−p
L σs σt σT σs σt σT σs σt σT

0 1.99 —- 1.99 3.32 2.56 5.88 8.13 1.14 9.27
1 —- 0.55 0.55 0.27 1.72 1.99 1.22 0.78 2.00
2 0.04 —- 0.04 0.08 0.38 0.46 0.05 0.10 0.15

Tot 1.93 0.55 2.58 3.67 4.66 8.33 9.40 2.02 11.22

Exp 4.3+6.3
−2.7 ≤ 10 ≤ 24

TABLE XXI: ESC16⋆(A): The nuclear saturation energy
EN = B/A, the well-depths UΛ, UΣ, and UΞ with SU(3)-
symmetric interactions and three-body forces (TBF) at kF =
1.35 fm, and ΛFM = 2500 MeV. EN = TN + UN , with
TN = 22.626 MeV.

EN UΛ UΣ UΞ

”exp” -16.3 -37.9 +9.9 -14.0
ESC16⋆ -19.9 -48.9 -26.1 -36.5
& TBF -16.4 -36.7 +8.0 -17.8
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TABLE XXII: ESC16⋆(A): Partial wave contributions to
UΞ(ρ0) at normal density.

model 1S0
3S1

1P1
3P0

3P1
3P2 UΞ Γc

Ξ

ESC16 T = 0 2.1 –0.4 –0.2 -5.3 1.5 –1.2
T = 1 9.2 7.6 1.0 0.8 –2.0 –0.5 +13.7 5.1

ESC16⋆ T = 0 –23.5 –5.7 0.9 -2.6 1.3 –1.6
T = 1 7.0 –9.0 1.3 0.3 –3.2 –1.6 -36.5 9.0

ESC16⋆+ T = 0 –16.0 –4.7 0.8 -3.2 2.1 –1.5
T = 1 10.3 –6.4 2.0 1.4 –3.2 0.7 -17.8 4.7

ESC16⋆(B): In this case we have imposed R-conjugation
symmetry [64], which implies that C10 = C10∗ , S10 =
S10∗ , and T10 = T10∗ . (R-conjugation is not an SU(3)-
symmetry, but an approximate symmetry of the ESC-
model. It forbids e.g. the 3P1 ↔1 P1 transition, which
is allowed under SU(3).) The results for this model are
presented in Tables XXIII, XXIV, and XXV. Com-

TABLE XXIII: ESC16⋆(B): Coupling constants SU(3)-
symmetric gaussian potentials.

{µ} {27} {8s} {8a} {10∗} {10}
C{µ} –0.11 –0.49 –6.01 –3.27 –3.27
S{µ} –0.49 +1.74 +6.54 –0.60 –0.60
T{µ} —- —- —- —- —-

TABLE XXIV: ESC16⋆(B): The nuclear saturation energy
EN = B/A, the well-depths UΛ, UΣ, and UΞ with SU(3)-
symmetric interactions and three-body forces (TBF) at kF =
1.35 fm, and ΛFM = 1750 MeV. EN = TN + UN , with
TN = 22.626 MeV.

EN UΛ UΣ UΞ

”exp” -16.3 -37.9 +9.9 -14.0
ESC16⋆ -20.2 -51.5 -27.3 -25.2
& TBF -14.4 -32.8 +17.6 -9.1

parison of Table XXII and Table XXV shows that the
major attractive contribution comes from the (1S0, T =
0)- and (3S1, T = 0)- partial wave for ESC16⋆(A) and
ESC16⋆(B) respectively. These results show that the ex-
tra freedom generated by the introduction of the SU(3)-

symmetric new gaussian potentials W
(±)
µ,v (r), (v = c, s, t)

leads to a BB-interaction which is useful in providing a
good basis for calculations in nuclear and hypernuclear
physics.

TABLE XXV: ESC16⋆(B): Partial wave contributions to
UΞ(ρ0) at normal density.

model 1S0
3S1

1P1
3P0

3P1
3P2 UΞ Γc

Ξ

ESC16 T = 0 2.1 –0.4 –0.2 -5.3 1.5 –1.2
T = 1 9.2 7.6 1.0 0.8 –2.0 –0.5 +13.7 5.1

ESC16⋆ T = 0 –1.0 –8.6 0.7 -3.0 1.1 –1.8
T = 1 4.0 –11.7 0.9 0.2 –3.6 –2.3 -25.2 2.5

ESC16⋆+ T = 0 0.4 –9.6 0.4 -4.9 2.9 –2.2
T = 1 7.9 –4.3 1.9 1.8 –3.9 0.6 -9.1 3.1

IX. SUMMARY AND CONCLUSION

The strangeness S=-2 ESC16 potentials and results
presented in this paper are an important step in com-
pleting the baryon-baryon interactions for scattering and
hypernuclei in the context of broken SU(3)-symmetry us-
ing. Apart from the gaussian repulsion from the Pomeron
and inclusion of a systematic quark-core effects for all
baryon-baryon channels, the major part of the BB in-
teractions are generalized Yukawa potentials from single
and double meson exchange. These potentials contain
(i) One-boson-exchanges, where the coupling constants
at the baryon-baryon-meson vertices are restricted by
the broken SU(3) symmetry, (ii) Two-pseudoscalar ex-
changes, (iii) Meson-Pair exchanges. Each type of meson
exchange (pseudoscalar, vector, axial-vector, scalar) con-
tains five free parameters: a singlet coupling constant,
an octet coupling constant, the F/(F + D) ratio α, a
meson-mixing angle. The potentials are regularized with
gaussian cut-off parameters, which provide a few addi-
tional free parameters. As shown in paper I and II the
F/(F +D) parameters could be restricted, both for OBE
and MPE, by the Quark-model predictions in the form
of the 3P0 quark-antiquark creation mechanism.
Although we performed truly simultaneous fits to the

NN and YN scattering data, effectively most of these pa-
rameters are determined in fitting the rich and accurate
NN scattering data, while the remaining ones are fixed
by fitting also the (few) YN scattering data. This still
leaves enough flexibility to accommodate the imposition
of a few extra constraints. the assumption of SU(3) sym-
metry for the couplings then allows us to extend these
models to the higher strangeness channels (i.e., YY with
S=-3,-4, without the need to introduce additional free pa-
rameters. Like the NSC97 models, the ESC04, ESC08,
and ESC16 models are very powerful models of this kind,
and the very first realistic ones.
Although the different ESC-models ESC04, ESC08, and
ESC16 produce the NN and YN data well, there are con-
siderable differences. In the NN-sector the quality of the
fit to the NN-data of the ESC08/ESC16-models is supe-
rior to that for the ESC04-models. Also, they lead to
notable differences in the hypernuclear structures, espe-
cially in S = −2 systems. It is important that at least
some of the ESC04d, ESC08a,b,c, and ESC16 solutions
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predict the well-depths, consistently with the indication
given by the BNL-E885 experiment, and the existence of
recently observed Ξ-hypernuclei. The Ξ-nucleus attrac-
tion in ESC08 leads, owing to the extra (phenomeno-
logical) contributions from the (ππ)- and (πω)-pair ΞN
interaction, to a substantially attraction in the 3S1 (

33S1)
state, with a tensor-potential giving a strong Lane term.
This gives a satisfactory value for UΞ. However, also a not
observed deuteron-like D∗ bound-state when the extra
(ππ), (πω) pair potentials are interpreted as genuine two-
body interactions. (The experimental search for baryon-
baryon bound states by the Rome-Saclay-Vanderbilt col-
laboration [32] in the mass range 2.1-2.5 GeV/c2 was
negative.)
Recently, most important is the 1S-bound states (5-7

MeV) and 2P-bound states (1.0-1.5 MeV) of the Ξ∓−14N
system found in emulsions. These data severely select the
ΞN interaction models. The ESC-models ESC04a-d [5],
ESC08ab [6], except ESC08c, seem not good. ESC16 has
UΞ > 0 and is clearly unsuitable. Then, the only solu-
tion in the case ESC16 for the ΞN interaction is to add
a phenomenological (attractive) interaction Veff . Two
versions of this additional interaction are worked out: (1)
Veff = (π, ω)-pair ⊕ SU(3)-singlet potentials, for S=-2
only, (2) Veff = SU(3)-symmetric two-body interactions
for all channels, described in Sec. VIII.
Experimentally, the ΞN interaction seems rather weak

as is illustrated by the indication of the Ξ−p-scattering
data [29–31]. The Ξ-nucleus attraction gives, is as
indicated by experiments, UΞ ≈ −14 MeV, see Ref. [19]
and the recent emulsion-experiments results [10]. These
experimental properties are not explained by the ESC16
ΞN interaction. A possibility is that the three-body
force contributes to the well-depth, but this is not
expected to be large.

To improve the ESC16 model for the ΞN interaction,
while keeping its good features for the NN and YN, and
having a sizeable ΞN attraction without a bound state,

an extension of the ESC approach is introduced, which
is motivated by mentioning possible sources that can
lead to a more complete BB interaction. The extension
of ESC16 with SU(3)-symmetric phenomenological
two-body contact potentials is investigated, and found
to be promising for the description of both the NN,
YN scattering as well as the nuclear/hypernuclear
well-depths. This line can be explored further, both in
comparison with other models and applications.

Finally, the conclusion is that the ESC16 potentials are
in principle an excellent starting point for calculations
and predictions of multi-strange systems, but at present
need some additional phenomenological potentials in the
application to e.g. Ξ-nucleus systems. The nature of
these potentials might be two-body as well as three-body.
The extension of this work to the S = −3, 4-systems, i.e.
comprising all {8} ⊗ {8} baryon-baryon states, will be
the topic of the last paper (IV) in this series.
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APPENDIX A: CONNECTION PARTICLE AND
ISOSPIN BASIS

The five S=-2 channel systems with different charge
q = −2,−1, 0,+1,+2 are listed in (2.2). The three
isospin channels are listed (2.3). Using the indices
a, b, c, d for ΛΛ,ΞN,ΣΛ, and ΣΣ respectively, we have
[65]

V (q = 0) =




Vaa

√
1
2Vba −

√
1
2Vba 0 −

√
1
3Vad

√
1
3Vad

· 1
2 [Vbb(1) + Vbb(0)]

1
2 [Vbb(1)− Vbb(0)]

√
1
2Vbc −

√
1
6Vbd(0)

√
1
6Vbd(0)− 1

2Vbd(1)

· · 1
2 [Vbb(1) + Vbb(0)]

√
1
2Vbc

√
1
6Vbd(0) −

√
1
6Vbd(0)− 1

2Vbd(1)

· · · Vcc 0 −
√

1
2Vcd

· · · · 1
3 [2Vdd(2) + Vdd(0)]

1
3 [Vdd(2)− Vdd(0)]

· · · · · 1
6 [Vdd(2) + 3Vdd(1) + 2Vdd(0)]




,

(A1)
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and for q = +1 we have

V (q = +1) =




Vbb(1) Vbc −
√

1
2Vbd

Vbc Vcc −
√

1
2Vcd

−
√

1
2Vbd(1) −

√
1
2Vcd

1
2 [Vdd(1) + Vdd(2)]




, (A2)

Here, when necessary an isospin label is added in paren-
theses.

APPENDIX B: THREE-BODY FORCES AND
EFFECTIVE TWO-BODY POTENTIALS

The included three-body forces in this paper come from
(i) meson-pair vertices, (ii) multi-pomeron vertices, and
(iii) decuplet-resonances. This is illustrated in Fig. 18.
The three-body forces are used in the form of so-called
”effective two-body potentials”. which are obtained from

the full three-body potentials by the application of the
LNR-approximation [66], which leads to a substantial re-
duction of the number of contributions from the two-
meson-pair vertices. For example, the (ππ)1- and (πρ)1-
potentials vanish completely. In this section we give the
reduced form of these MPE-potentials after applying the
Tr-operation: Trτ 3 = Trσ3 = 0. In the LNR-procedure
the third particle in Fig. 18 is integrated over.
Below the configuration-space effective NN-potentials are
listed, including only the dominating terms, i.e. we ne-
glect the terms proportional to 1/M2.

p′1 p′3 p′2

p1 p3 p2

(a)

p′1 p′2 p′3

p1 p2 p3

(b)

p′2 p′1 p′3

p2 p1 p3

(c)

FIG. 18: Three-body graphs from meson-pair vertices.

1. Meson-pair Effective two-body Potentials:



25

JPC = 0++ : V(ππ)0(r) = − (4πρNM )

m3
π

g(ππ)0
4π

f2

4π
(τ 1 · τ 2) ·

(
mπ

mπ+

)2

·mπ ·

×
[
1

3
ψ1
C

(
mπ,

Λπ√
2
, r

)
(σ1 · σ2) + ψ0

T

(
mπ,

Λπ√
2
, r

)
S12

]
, (B1a)

JPC = 1++ : V
(1)
(πσ)1

(r) = −2
(4πρNM )

m3
π

g(πσ)1
4π

fP gS
4π

(τ 1 · τ 2)

(
m3

π

m2
σ

)
·

×
[
1

3
φ1C(mπ,Λπ, r)(σ1 · σ2) + φ0T (mπ,Λπ, r) S12

]
, (B1b)

V
(2)
(πσ)1

(r) = −1

2

(4πρNM )

m3
π

g(πσ)1
4π

fP gS
4π

m2
π

M2
(τ 1 · τ 2)

(
m3

π

m2
σ

)
·

×
[
1

3
φ2C(mπ,Λπ, r)(σ1 · σ2) + φ1T (mπ,Λπ, r) S12

]
, (B1c)

JPC = 1+− : V
(2)
(πω)1

(r) = +
(4πρNM )

m3
π

g(πω)1

4π

fP gV sin(θV )

4π
(τ 1 · τ 2)

(
m3

π

m2
ω

)−1

·

×
[
1

3
φ1C(mπ,Λπ, r)(σ1 · σ2) + φ0T (mπ,Λπ, r) S12

}
, (B1d)

JPC = 0++ : V
(eff)
(σσ) = −2

(4πρNM )

m3
π

g(σσ)

4π

g2S
4π

(
m2

π

mσ

)[
φ0C(mσ,Λσ, r)−

m2
σ

Λ2
σ

ψ0
C(mσ,Λσ/

√
2, r)

]
. (B1e)

Here, the function ψ0
C(r,m,Λ) = (4π/2m2)(d/dm)I2(m,Λ, r), ψ

1
C = [3/2 +m(d/dm)]φ1C(m,Λ, r), and similarly for

ψ0
T . where φ0C(r,m,Λ) etc. are defined in Ref. [67]. We notice that the pairs of the type (ππ)1 and (πρ)1 do not

contribute to the effective two-body potentials in NN. The SU(3) generalization is similar to the two-body meson-pair
potentials described in paper II.

2. Multi-pomeron Effective two-body potentials:
The ”universal”, i.e. the same for all elastic BB-channels and vanishing for inelastic BB-channels, multi-pomeron
(MPP) two-body effective potentials from the triple- and quartic-pomeron vertices are:

a. G3P − vertex : Veff (r) = 8g3P g
3
P

ρNM

M5
· 1

4π

4√
π

(
mP√
2

)3

exp

(
−1

2
m2

P r
2
12

)
, (B2a)

b. G4P − vertex : Veff (r) = 8g4P g
4
P

ρ2NM

M8
· 4√

π

(
mP√
2

)3

exp

(
−1

2
m2

P r
2
12

)
. (B2b)

Here, gP = GP /
√
4π , g3P = G3P /(4π)

3/2, g4P = G4P /(4π)
2, i.e. the rationalized 2-, 3- and 4-point couplings.

3. Miyazawa-Fujita Effective two-body potentials:
The Hamiltonian for the Fujita-Miyazawa pion-nucleon pair-interaction reads [68]

HFM = −ψ̄
[{(

(A+B)∇1 · ∇2 +D

)
δij − (A−B)σ ·∇1 ×∇2ǫijkτk

}
· π1,i(x)π2,j(x)

]
ψ. (B3)

Here the spatial derivatives operate on the pion-fields, and the constants are

A =
5

18π

∫
σ33
ω2
p

dp, B =
3

5
A, D =

2π

3
(a1 + 2a3), (B4)

with the numerical values
∫
σ33/ω

2
p.dp = 3.7m−3

π , and a1 + 2a3 = −0.06m−1
π . The effective two-body FM-pair

(ππ)33-Exchange Potential is

V
(eff)
FM = +2ρNM

(
f2P
4π

)
mπ · (τ 1 · τ 2)

[
(A+B)

{
1

3
φ1C(mπ,Λ/

√
2, r12) (σ1 · σ2)+

+φ0T (mπ,Λ/
√
2, r12) S12

}
+

2
(
(A+B)m2

π −D
)

Λ2
·

×
{
1

3
ψ1
C(mπ,Λ/

√
2, r12) (σ1 · σ2) + ψ0

T (mπ,Λ/
√
2, r12) S12

}]
, (B5)
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Since the D-term comes from the subtraction constant in
the dispersion relation this term is omitted, D=0.
The SU(3) generalization of the FM-interaction shows
that the effects of the decuplet-resonances are exchanges
in the t-channel irreps {27}, {8s}, and {1}.
The details of the three-body meson-pair, multi-
pomeron, and FM potentials can be found in [69–71],
respectively.

APPENDIX C: BARYON-BARYON CHANNELS
AND SU(3)-IRREPS

In Table XXVI and Table XXVII we give the relation
between the potentials on the isospin basis and the po-

tentials in the SU(3)-irreps.

APPENDIX D: MESON-PAIR COUPLING
CONSTANTS

In Table XXVIII we give the MPE-couplings for model
ESC16.

APPENDIX E: BKS-PHASE PARAMETERS

In Tables XXIX-XXXI we display the BKS-phase pa-
rameters for model ESC08c.
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TABLE XXVIII: Pair coupling constants for model ESC16, divided by
√
4π. I(M) refers to the isospin of the pair M with

quantum-numbers JPC .

Pair JPC Type I(M) NNM ΣΣM ΣΛM ΞΞM I(M) ΛNM ΛΞM ΣNM ΣΞM
πη 0++ g 1 –0.6881 –1.3763 0.0000 –0.6881 1/2 1.1919 –1.1919 0.6881 0.6881

0 –1.1919 0.0000 0.0000 1.1919
ππ 1−− g 1 0.2514 0.5028 0.0000 0.2514 1/2 –0.4354 0.4354 –0.2514 –0.2514

0 0.4354 0.0000 0.0000 –0.4354
ππ 1−− f 1 –1.7729 –1.4183 –1.2283 0.3546 1/2 1.8424 –0.6141 –0.3546 1.7729

0 –0.6141 1.2283 –1.2283 1.8424
πρ 1++ g 1 5.6912 4.5529 3.9430 –1.1382 1/2 –5.9145 1.9715 1.1382 –5.6912

0 1.9715 –3.9430 3.9430 –5.9145
πσ 1++ g 1 –0.3892 –0.3114 –0.2697 0.0778 1/2 0.4045 –0.1348 –0.0778 0.3892

0 –0.1348 0.2697 –0.2697 0.4045
πω 1+− g 1 –0.3280 –0.2624 –0.2273 0.0656 1/2 0.3409 –0.1136 –0.0656 0.3280

0 –0.1136 0.2273 –0.2273 0.3409

TABLE XXIX: ESC08c ΛΛ → ΛΛ BKS-phase parameters in [degrees] as a function of the laboratory momentum pΛ in [MeV/c]

pΛ δ(1S0) ρ(1S0) δ(3P0) ρ(3P0) δ(3P1) ρ(3P1) δ(3P2) ǫ2 δ(3F2)
10 0.64 — 0.00 — 0.00 — 0.00 0.00 0.00
50 3.08 — 0.13 — 0.01 — 0.01 0.00 0.00

100 5.58 — 1.18 — 0.05 — 0.10 0.00 0.00
200 7.80 — 31.72 — 0.26 — 0.59 0.01 0.00
300 7.61 — 128.51 — 0.36 — 1.32 0.04 0.02
350 10.49 12.72 106.23 3.41 0.25 0.22 1.64 0.08 0.05
400 4.63 19.29 104.04 13.25 –0.01 1.36 1.87 0.14 0.11
500 –4.90 21.46 –15.08 19.26 –1.05 3.37 1.95 0.35 0.30
600 –13.71 21.89 –17.77 21.89 –2.72 5.16 1.51 0.71 0.64
700 –22.02 21.75 –21.01 23.28 –4.84 6.60 0.66 1.23 1.18
800 –29.82 21.36 –24.53 23.93 –7.13 7.73 –0.48 1.98 2.03
900 –37.00 20.82 –28.30 24.02 –8.85 8.82 –1.76 3.18 3.57

1000 –43.83 20.68 –32.01 23.07 –11.42 15.84 –3.47 4.84 4.22

TABLE XXX: ESC08c 1S0,
1 P1(ΞN → ΞN, I = 0 BKS-phase parameters in [degrees] as a function of the laboratory momentum

pΛ in [MeV/c]

pΞ δ(1S0) ρ(1S0) δ(1P1) ρ(1P1)
10 0.03 4.96 0.00 1.00
50 –0.02 10.83 0.05 1.00

100 –0.84 14.60 0.33 1.00
200 –5.18 18.48 1.18 1.00
300 –11.52 20.36 1.40 1.00
350 –15.00 20.93 1.10 1.00
400 –18.55 21.34 0.54 1.00
500 –25.68 21.78 –1.28 1.00
600 –32.61 21.89 –3.81 1.00
700 –39.21 21.77 –6.81 1.00
800 –44.56 21.49 –10.09 1.00
900 –38.69 21.11 –13.52 1.00

1000 –33.22 20.67 –17.04 1.00
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TABLE XXXI: ESC16 1S0(ΞN → ΞN, I = 1) etc. BKS-phase parameters in [degrees] as a function of the laboratory momentum
pΞ in [MeV/c]

pΛ δ(1S0) ρ(1S0) δ(3P0) ρ(3P0) δ(3P1) ρ(3P1) δ(3P2) ǫ2 δ(3F2)
10 –0.67 — –0.00 — 0.00 — 0.00 0.00 –0.00
50 –3.32 — –0.05 — 0.04 — 0.00 0.00 –0.00

100 –6.47 — –0.32 — 0.26 — 0.00 0.01 –0.00
200 –12.14 — –1.54 — 1.26 — –0.03 0.12 –0.01
300 –17.15 — –3.02 — 2.34 — –0.28 0.35 –0.05
350 –19.41 — –3.74 — 2.71 — –0.55 0.48 –0.08
400 –21.43 — –4.40 — 2.89 — –0.92 0.61 –0.11
500 –24.18 — –5.59 — 2.71 — –2.03 0.86 –0.17
600 –19.07 19.18 –6.47 1.02 1.96 1.06 –3.56 1.07 –0.21
700 –32.61 26.30 –7.20 6.55 0.67 5.56 –5.44 1.21 –0.21
800 –41.84 27.11 –8.64 10.29 –1.45 9.43 –7.57 1.28 –0.16
900 –40.63 26.93 –10.79 12.79 –4.16 10.28 –9.87 1.29 –0.04

1000 –34.24 26.28 –13.51 14.39 –7.27 11.53 –12.30 1.27 0.16

TABLE XXXII: ESC16 1S0,
3 S1 −3 D1(ΞN → ΞN, I = 0) BKS-phase parameters in [degrees] as a function of the laboratory

momentum pΞ in [MeV/c]

pΞ δ(1S0) ρ(1S0) δ(3S1) ǫ1 δ(3D1)
10 0.03 4.96 0.33 0.00 0.00
50 –0.02 10.83 1.69 0.09 0.00

100 –0.84 14.60 3.45 0.63 0.03
200 –5.18 18.48 6.46 2.97 0.30
300 –11.52 20.36 7.48 5.79 0.85
400 –18.55 21.34 6.42 8.44 1.61
500 –25.68 21.78 3.92 10.87 2.66
600 –32.61 21.89 0.52 13.11 4.12
700 –39.21 21.77 –3.45 15.15 6.08
800 –44.56 21.49 –7.78 16.96 8.50
900 –38.69 21.11 –12.30 18.44 11.24

1000 –33.22 20.67 –16.81 19.49 14.02

TABLE XXXIII: ESC16 1P1,
3 S1 −3 D1(ΞN → ΞN, I = 1) BKS-phase parameters in [degrees] as a function of the laboratory

momentum pΞ in [MeV/c]

pΞ δ(1P1) ρ(1P1) δ(3S1) ǫ1 δ(3D1) η11 η12 η22
10 –0.00 0.00 –0.15 0.00 –0.00 1.00 0.00 1.00
50 –0.02 0.00 –0.80 0.02 –0.00 1.00 0.00 1.00

100 –0.12 0.00 –1.75 0.16 –0.01 1.00 0.00 1.00
200 –0.54 0.00 –4.32 0.69 –0.08 1.00 0.00 1.00
300 –1.11 0.00 –7.66 1.24 –0.23 1.00 0.00 1.00
400 –1.91 0.00 –11.44 1.65 –0.36 1.00 –0.01 1.00
500 –2.97 0.00 –15.26 1.94 –0.36 1.00 –0.02 1.00
600 –3.97 1.47 –17.58 2.66 –0.02 0.95 –0.03 0.99
700 –5.08 8.01 –24.26 2.10 0.06 0.90 –0.03 0.99
800 –7.20 12.12 –29.73 1.68 0.47 0.91 –0.03 0.98
900 –10.12 14.83 –34.61 1.45 1.41 0.92 –0.03 0.97

1000 –13.58 16.48 –38.96 1.45 2.28 0.93 –0.03 0.87
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TABLE XXXIV: ESC16 1S0,
3 S1 −3 D1(ΣΛ → ΣΛ, I = 1) BKS-phase parameters in [degrees] as a function of the laboratory

momentum pΞ in [MeV/c]

pΣ δ(1S0) ρ(1S0) δ(3S1) ǫ1 δ(3D1) η11 η12 η22
10 0.18 6.76 0.14 0.00 –0.00 0.99 –0.00 1.00
50 0.70 14.60 0.61 0.08 –0.00 0.97 –0.00 1.00

100 0.53 19.43 0.68 0.51 –0.02 0.94 –0.00 1.00
200 –2.58 24.08 –1.25 1.98 –0.30 0.91 –0.00 1.00
300 –10.90 26.10 –5.28 3.39 –0.84 0.89 –0.01 1.00
400 –14.09 26.95 –10.35 4.50 –1.33 0.88 –0.03 1.00
500 –20.64 27.11 –15.73 5.42 –1.46 0.88 –0.06 0.99
600 –27.17 26.78 –20.93 6.57 –0.27 0.88 –0.09 0.98
700 –33.49 26.07 –27.60 6.62 –2.98 0.87 –0.12 0.77
800 –39.49 25.09 –33.63 4.60 –8.39 0.88 –0.12 0.79
900 –44.90 23.90 –38.87 3.64 –11.41 0.90 –0.06 0.83

1000 –39.67 22.58 –43.72 3.10 –13.65 0.91 –0.07 0.85

TABLE XXXV: ESC16 I = 2, L = 0, L = 1 Σ±Σ± → Σ±Σ± BKS-phase parameters in [degrees] as a function of the laboratory
momentum pΞ in [MeV/c]. In parentheses the phases without Coulomb are listed.

pΣ δ(1S0) δ(3P0) δ(3P1) δ(3P2) ǫ2 δ(3F2)
10 –14.73 (–0.29) –0.20 ( 0.00) –0.22 ( –0.00) –0.21 ( 0.00) 0.00 –0.00 ( 0.00)
50 –19.07 (–1.60) –3.07 ( 0.20) –3.43 ( –0.13) –3.27 ( 0.01) 0.00 –0.01 ( 0.00)

100 –16.36 (–4.04 –6.29 ( 1.29) –8.34 ( –0.82) –7.45 ( 0.10) 0.04 –0.59 ( 0.00)
200 –19.28 (–11.40) 0.14 ( 5.33) –8.97 ( –3.55) –4.70 ( 0.75) 0.44 –3.25 ( 0.05)
300 –26.49 (–20.53) 3.90 ( 8.22) –11.35 ( –7.06) –2.43 ( 1.87) 1.13 –2.68 ( 0.22)
400 –35.22 (–30.36) 4.67 ( 8.27) –14.57 (–10.99) –0.57 ( 3.01) 1.85 –2.06 ( 0.47)
500 –44.50 (–40.36) 3.03 ( 6.14) –18.32 (–15.23) 0.90 ( 3.99) 2.43 –1.54 ( 0.70)
600 –36.13 (–39.76) 0.11 ( 2.86) –22.37 (–19.63) 2.03 ( 4.77) 2.81 –1.23 ( 0.79)
700 –26.90 (–30.14) –3.34 (–0.86 ) –26.53 (–24.06) 2.82 ( 5.28) 3.02 –1.24 ( 0.60)
800 –17.93 (–20.86) –6.92 (–4.66 ) –30.72 (–28.46) 3.15 ( 5.40) 3.09 –1.65 ( 0.06)
900 –9.30 (–11.99) –10.41(–8.35 ) –34.87 (–32.77) 2.93 ( 5.01) 3.11 –2.45 (–0.87)

1000 –1.07 (–3.57 ) –13.86(–11.89) –38.96 (–36.99) 2.14 ( 4.09) 3.10 –3.63 (–2.13)


