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In these notes, while focussing on the meson-nucleon vertices, we give a derivation of the nucleon-
nucleon (NN) potentials from meson-exchange between the quarks. To establish such a relation
the quark-quark-meson (QQM) interactions are properly defined. Hitherto, the coefficients in the
Pauli-spinor expansion of the meson-nucleon-nucleon (NNM) vertices are equated with those of the
QQM-vertices. In these notes we employ the description of the nucleon with Dirac-spinors in the
SU(6) semi-relativistic ”constituent” quark-model (CQM) as formulated by LeYouanc, et al. It
appears that the ”constituent” quark model, i.e. mQ = MN/3, is able to produce the same ratio’s
for the central-, spin-spin-, tensor-, spin-orbit-, and quadratic-spin-orbit Pauli-invariants as in the
phenomenological NNM-vertices. In order to achieve this, the scalar-, magnetic-vector, and axial-
vector interactions require, besides the standard ones, an extra coupling to the quarks without the
introduction of new parameters. In the case of the axial-vector mesons an extra coupling to the
quarks is necessary, which is related to the quark orbital-angular momentum contribution to the
nucleon spin. Furthermore, a momentum correlation between the quark interacting with the meson
and the remaining quark pair, and a gaussian QQM form factor, are necessary, to avoid ”spurious”
terms.

From these results we have a formulation of the QQ-interactions which are directly related to the
nucleon-nucleon extended-soft-core (ESC) interactions. This could be utilized in e.g. a study of
quark matter.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

The main motivation to work out QQM-coupling in
the context of the constituent quark-model (CQM) is
that in the extended-softcore (ESC) baryon-baryon in-
teractions, see i.e. [1–3], the quark-pair creation (QPC)
model is very succesful to explain the meson-baryon-
baryon (MBB) coupling constants.
A major succes of the non-relativistic (additive) quark

model (CQM) has been the description of the magnetic
moments of the baryons with mQ =MN/3.

Also in these notes the description of the nucleon with
Dirac-spinors in the SU(6) semi-relativistic ”constituent”
quark-model (CQM) as formulated by LeYouanc, et al
[4] is employed. In Fig. 1 the QPC-mechanism for NNM-
coupling is illustrated. From the subfigure (a) it is clear
that the basis is the assumption that the mesons couple
in first instance to the quarks. Then, with folding this
leads to the NNM-coupling illustrated in subfigure (b).
In this paper we show that the quark-quark-meson QQM)
interaction can be choosen such that in the folding with
the 3-quark nucleon wave function the correct 1/

√
M ′M

expansion of the NN-potentials can be obtained.
In QCD two non-perturbative effects occur: con-

finement and chiral symmetry breaking. The
SU(3)LxSU(3)R chiral symmetry is spontaneously bro-
ken to an SU(3)v symmetry at some scale ΛχSB ≈ 1
GeV [5–7]. Below this scale there is an octet of pseu-

doscalar Nambu-Goldstone-bosons: (π,K, η). The con-
finement scale ΛQCD ≈ 100 − 330 MeV. The complex
QCD-vacuum structure can be described as an BPST
instanton/anti-instanton liquid giving the valence quarks
a dynamical or constituent effective mass ≈MN/3 [8, 9].
This corresponds to the CQM [7], and explains the suc-
cess of the program proposed in this paper.
In these notes we consider the nucleon-nucleon (NN)

potential from meson-exchange between the (single)
quarks in impulse-approximation, and folding these with
the nucleon quark wave functions. (In the CQM the 3-
quark model wave functions for the SU(3) octet baryons
are, with respect to flavor and color, properly antisym-
metrized gaussian quark wave functions reflecting the
ground state of an effective harmonic oscillator binding
force.)
We employ the description of the nucleon with Dirac-

spinors in the SU(6)-version of the CQM, see [4]. In
this study we evaluate the NN-meson vertices and an-
alyze whether the expansion of these vertices in Pauli-
invariants is in accordance with the similar expansion
used in NN-models using meson exchange at the nucleon
level.
For elastic scattering with the (external) nucleons on the
mass shell, Lorentz invariance and parity conservation
imply that there are 6 independent amplitudes [10], i.e.
the NN-amplitude can be expressed in terms of the free
nucleon Dirac-spinors as follows

M =

6∑

i=1

Mi(s, t)
[
ūN ′

1
(p′1)ūN ′

2
(p′2) Oi uN1

(p1) uN2
(p2)

]
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where a complete set independent (t-channel) Lorentz-invariants can be choosen as

O1 = 1⊗ 1 O2 = γ5 ⊗ γ 5

O3 = γµ ⊗ γµ O4 = γ5γµ ⊗ γ 5γ
µ

O5 = σµν ⊗ σµν O6 = i {γµKµ ⊗ 1− 1⊗ γµP
µ} ,

where P = p1 + p′1,K = p2 + p′2. We note that
Oi = Γ1,i ⊗ Γ2,i and that in the meson-exchange
contribution to the NN-amplitude the NNM-vertex is of
the form ū(p′, s′)Γu(p, s). The Lorentz structure of the
NN-amplitude and NNM-vertices given above is general
and independent of the internal structure of the nucleon.
Therefore, the QQM-exchange vertices folded with the
nucleon quark wave functions has to reproduce at the
nucleon level the same structure. This observation is the

key to the procedure followed in these notes to define
the QQM-vertices.

Conjecture : The phenomenological expansion of the
vertices in powers of 1/

√
M ′M should not depend on

the internal structure of the nucleons. So, the ratio’s of
the central-, spin-spin-, tensor-, and spin-orbit operators
should be independent internal structure of the nucleon.

At the nucleon level, in Pauli-spinor space, the vertices have the general structure:

ū(p′, s′)Γ u(p, s) = χ′†
s′

{
Γbb + Γbs

σ · p
E +M

− σ · p′

E′ +M ′
Γsb −

σ · p′

E′ +M ′
Γss

σ · p
E +M

}
χs

≈ χ′†
s′

{
Γbb + Γbs

(σ · p)
2
√
M ′M

− (σ · p′)

2
√
M ′M

Γsb −
(σ · p′) Γss (σ · p)

4M ′M

}
χs

≡
∑

l

c
(l)
NN Ol(p

′,p,σ) (
√
M ′M)αl (l = bb, bs, sb, ss),

where Ol(p
′,p,σ) denotes the set of operators 1, σ, p, p′, σ · p, σ · p′, σ · p′ × p, etc.

The question is how this structure is reproduced using the coupling of the mesons to the quarks directly, i.e.

whether for the constants c
(l)
CQM = c

(l)
NN . In fact, we want to demonstrate that for the CQM, i.e. mQ =

√
M ′M/3,

the ratio’s c
(l)
CQM/c

(l)
NN are constant for each type of meson. Then, by scaling the expansion coffients can be made equal.

(a) QPC-model (b) NNM-vertex

FIG. 1: Meson-nucleon-nucleon coupling.

Therefore, we expect these ratio’s are essentially the
same as for the expansion of the NNM-vertices with
Pauli-spinor invariants.
We found this to be possible for most of the
terms, up to order 1/M ′M , in the CQM where
mQ = MN/3, for all couplings: pseudo-scalar
(P), scalar (S), vector (V) and axial-vector (A)
coupling.

In the scalar, vector, and axial-vector vertex there
appear ”spurious” terms ∝ 1/R2

N . This is only the case
for the central and spin term of the scalar/vector and
axial-vector respectively. In view of the ”conjecture”,
these terms should not be present, and must be elim-

inated. We demonstrate that such ”spurious” terms
can be eliminated by introducing a momentum exchange
between the ”active” quark, i.e. the quark line with the
meson vertex, and the two ”spectator” quarks. (In the
simplest model without such a momentum exchange, this
amounts to the introduction of a gaussian momentum
distribtion at the QQM-vertex.) .

In this study we evaluate the QQM vertices and an-
alyze whether the expansion of these vertices in Pauli-
invariants matches with the similar expansion used in
NN-models using meson exchange at the nucleon level.
To accomplish this we add the following vertices at the
quark level: (i) for the vector-mesons a zero in the scalar
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derivative part, and (ii) in the case of the axial-vector
coupling an additional pseudoscalar derivative interac-
tion. To work out these ideas concretely, we use the de-
scription of the nucleon with Dirac-spinors in the SU(6)-
version of the CQM, see [4]. In the CQM the rational
for this is that since MN = 3mQ the quark kinetic and
potential energies cancel each other, which means that
for the quark energies Ei ≈ mi.
As a final note: The QQM- and NNM-vertices are for

potentials V in the Lippmann-Schwinger equation. For
the relation with the (kinematically relativistic) Thomp-
son, Kadyshevsky etc. equations, see Ref. [11].
The content of these notes is as follows. In section II

the QCD basis of the CQM based on the instanton-
model of the QCD-vacuum is briefly reviewed. In sec-
tion III we review the quark wave functions and the
overlap integrals. In section IV-VII we treat scalar-
exchange, pseudo-scalar-, vector-, and axial-vector-
meson exchange. In section IVC a method is given to
remove ”spurious” terms from the NN-vertices ΓCQM .
To complete this it is necessary to use a (gaussian) QQM
cut-off. In section VIII we formulate our conclusions. In
Appendix A the overlap integral for meson exchange is
worked out. Similarly in Appendix B, where a momen-
tum correlation is included between the quark with the
meson-vertex and the remaining quark-pair, henceforth
referred to as the ”active” quark and ”spectator” quarks
respectively. It is shown that with such arrangement the
”spurious” terms are eliminated, and can explain the pro-
cedure introduced in section IVC. In Appendix C we
discuss the quark summation. In Appendix E we list
the Pauli-spinor invariants for the nucleon-nucleon po-
tentials. In Appendix F the extended-soft-core (ESC)
quark-quark (QQ) OBE-interactions in momentum and
configuration space are given for reference of the ver-
tex structures with Pauli-invariants. In Appendix G the
lower vertex for the scalar-meson QQ-coupling is worked
out for comparison with the upper vertex. In Appendix H
tensor-meson exchange is analyzed and compared with
scalar- and vector-meson exchange.

II. CONSTITUENT QUARKS AND
INSTANTONS

The spectra of the nucleons, ∆ resonances and the hy-
perons Λ,Σ,Ξ are descibed in detail by the Glozman-
Riska model [12]. This is a modern version of the
constituent quark model (CQM) [13] based on the
Nambu-Goldstone spontaneous chiral-symmetry break-
ing (SCSB) with quarks interacting by the exchange of
the SU(3)F octet of pseudoscalar mesons [12]. The pseu-
doscalar octet are the Goldstone bosons associated with
the hidden (approximate) chiral symmetry of QCD. The
confining potential is choosen to be harmonic, as is rather
common in constituent quark models. This is in line with
the harmonic wave functions we used in the derivation of
the connection between the meson-baryon and meson-

quark couplings [14]. The η′, which is dominantly an
SU(3) singlet, decouples from the original pseudoscalar
nonet because of the UA(1) anomaly [15, 16]. According
to the two-scale picture of Manohar and Georgi [7] the
effective degrees for the 3-flavor QCD at distances be-
yond that of SCSB (Λ−1

χSB ≈ 0.2 − 0.3 fm), but within

that of the confinement scale Λ−1
QCD ≈ 1 fm, should

be the constituent quarks and chiral meson fields. The
two non-perturbative effects in QCD are confinement
and chiral symmetry breaking. The SU(3)L⊗SU(3)R
chiral symmetry is sponteneously broken to an SU(3)v
symmetry at a scale ΛχSB ≈ 1 GeV. The confinement
scale is ΛQCD ≈ 100 − 300 MeV, which roughly corre-
sponds to the baryon radius ≈ 1 fm. Due to the com-
plex structure of the QCD vacuum, which can be under-
stood as a liquid of BPST instantons and anti-instantons
[8, 9, 17, 18], the valence quarks acquire a dynamical
or constituent mass [7, 9, 15, 18, 19]. The interaction
between the instanton and the anti-instanton is a dipole-
interaction [20], similar to ordinary molecules: weak at-
traction at large distances and strong repulsion at small
ones. With the empirical value of the gluon condensate
[21] as input the instanton density and radius become
[20] nc = 8 · 10−4 GeV−4, and ρc = (600 MeV)−1 ≈
0.3 fm respectively. Also, with these parameters the
non-perturbative vacuum expectation value for the quark
fields is 〈vac|ψ̄ψ|vac〉 ≈ −10−2 GeV3 and the quark ef-
fective mass ≈ 200 MeV, which is much larger than the
almost massless (u,d) ”current quarks”. In the calcu-
lation of light quarks in the instanton vacuum [9] the
effective quark mass mQ(p = 0) = 345 MeV was calcu-
lated, which is remarkably close to the constituent mass
MN/3.
Very notable is the role of the instantons for the

light meson spectrum. They give a non-perturbative
gluonic interaction between quarks in QCD. For exam-
ple the instanton-induced interaction, as proposed by ’t
Hooft [16], generates at low momenta the constituent
quark mass [9], i.e. breaks chiral symmetry. This in-
teraction supplies a strong attractive attraction in the
pseudoscalar-isovector quark-antiquark system - pions -,
which makes them anomalously light, with zero mass in
the chiral limit. This is the mechanism by which the
pions, being quark-antiquark bound states, appear as
Nambu-Goldstone bosons of the SCSB symmetry. This
strongly attractive interaction is absent in vector mesons
[22, 23], making the masses of the vector mesons ≈ 2mQ

in accordance with mρ ≈ mω ≈ 2mQ. Since αs ≈ 0.3
the one-gluon-exchage (OGE) is weak, and therefore the
π− ρ mass splitting is not due to the perturbative color-
magnetic spin-spin interaction between the quark and an-
tiquark [23]. Besides explaining the π−ρ mass difference,
the ’t Hooft interaction also in a natural way solves the
UA(1) problem, and gives the reason why the η′ is heavy.

The ’t Hooft four-fermion instanton mediated interac-
tion for the light flavor doublet ψ = (u, d), in the form of
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a generalized Nambu-Jona-Lasinio Lagrangian [6], is

LI = gI
[
(ψ̄ψ)2 − (ψ̄γ5τψ)

2 − (ψ̄τψ)2 + (ψ̄γ5ψ)
2
]
.

(2.1)
Here, the strength of the interaction gI and the ultra-
violet cut-off scale 1/r0 are related in the instanton liq-
uid model [24]. In [25] Glozman and Varga show that
the t-channel iteration of the instanton interaction (2.1)
leads to isoscalar and isovector pseudoscalar and scalar
exchange quark-quark potentials. Since the latter poten-
tials are already included in our model, the four-fermion
instanton interaction does not lead to extra pseudoscalar-
and scalar-meson exchange potentials. So, only the
instanton-exchange potential is new in our model.

In this paper we extend the meson-exchange between
quarks by proposing to include, besides the pseudoscalar,
all meson nonets: vector, axial-vector, scalar etc. Since
all these meson nonets can be considered as quark-
antiquark bound states, there is no reason to exclude any
of these mesons from the quark-quark interactions. Fur-
thermore, our preferred value for the constituent quark
mass has a solid basis in the instanton-liquid model of
the QCD vacuum.

III. QUARK WAVE FUNCTIONS OF THE NUCLEONS

A. Kinematics and Dirac spinors

We consider a nuclon having a momentum P and label the 3 quarks by a, b, c. The quark momenta are denoted by
pa, pb, pc.
The spatial part of the composite nucleon wave funtion is taken to be [4]

ψ(pa, pb, pc) = ψ(p1, p2, p3) =

(√
3R2

N

π

)3/2

exp


−R

2

6

∑

i<j

(pi − pj)
2


 (3.1)

The normalization constant in (3.1) we denote by N ≡
(√

3R2
N/π

)3/2
.

In the constituent quark model (CQM) the nucleon (baryon) mass is given by the sum of quark masses, i.e. MN =
3mQ, the quark energies saisfy EQ = mQ+TQ+UQ, the kinetic(TQ) and potential (UQ) energies cancel approximately
TQ + UQ ≈ 0. Therefore, the constituent quark spinors are [4]

u
(0)
i (pi) =

√
Ei +mi

2mi

[
1

σi·pi

Ei+mi

]
⊗ χi ≈

[
1

σi·pi

2mi

]
⊗ χi, (3.2)

where pii denotes the three-momentum of the quarks in e.g. the CM-system.

B. Overlap Integrals, Vertex functions

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3.

In Fig. 2 we have given the momenta for the initial and final nucleons, and the assigned momenta of the quarks.
From momentum conservation we have

p1 = k1 + k2 + k3 , p2 = q1 + q2 + q3 ,

p′1 = k′1 + k′2 + k′3 , p′2 = q′1 + q′2 + q′3 , (3.3)
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k3

k2

k1

k′3

k′2

k′1

q1

q2

q3

q′1

q′2

q′3

FIG. 2: External and internal momenta for meson-exchange

For meson-exchange with p1 − p′1 = p′2 − p2 ≡ k, we have for the matrix-element of the potential

〈p′1p′2|V |p1p2〉 =

∫ ∏

i=1,3

d3ki δ

(
p1 −

∑

i

ki

)
·
∫ ∏

j=1,3

d3k′j δ


p′

1 −
∑

j

k′
j


 ·

×
∫ ∏

i=1,3

d3qi δ

(
p2 −

∑

i

qi

)
·
∫ ∏

j=1,3

d3q′j δ


p′

2 −
∑

j

q′
j


 ·

× ψ̃∗
p′

1
(k′

1,k
′
2,k

′
3) ψ̃

∗
p′

2
(q′

1,q
′
2,q

′
3) · ψ̃p1

(k1,k2,k3) ψ̃p2
(q1,q2,q3) ·

× δ3 (k′
2 − k2) δ

3 (k′
3 − k3) δ

3 (q′
2 − q2) δ

3 (q′
3 − q3) ·

× γ (k; k′1, k1) γ (k; q
′
1, q1)

k2 +m2
M

· δ3 (k− k′
1 + k1) δ

3 (k+ q′
1 − q1) . (3.4)

In (3.4) the γ’s denote the vertex functions. Using the gaussian wave function of equation (3.1), the overlap integral
in Eq. (3.4) can be evaluated in a straightforward manner. For details see Appendix A.
For doing later integrals with explicit terms for the QQ-potential, it is useful to write the expression (A12) with
separated vertex factors:

〈p′1p′2|V |p1p2〉 =

(
1

8

)3(
2π

R2
N

)3

N 4 exp

[
−R

2
N

3

(
q2 + k2

)]
·

×
∫
d3Q exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
·

×
∫
d3S exp

[
−R

2
N

6

{
9

4

(
S2 +

4

3
q · S

)}]
·

×VQQ(Q,S;k,q) × δ (k′
1 + q′

1 − k1 − q1) , (3.5)

where the QQ-potential is

VQQ(Q,S;k,q) =
γ (k; k′1, k1) γ (k; q

′
1, q1)

k2 +m2
M

(3.6)
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with the momenta, see Appendix A, defined as

k′
1 =

1

2
(Q+ k) , k1 =

1

2
(Q− k) , (3.7a)

q′
1 =

1

2
(S− k) , q1 =

1

2
(S+ k) . (3.7b)

More explicitly for spin-J mesons ( m,n =1, ...., 2J+1) the numerator in (3.6 stands for

γ (k; k′1, k1) γ (k; q
′
1, q1) → γ{µm} (k; k′1, k1) P{µm},{νn}(k)γ

{νn} (k; q′1, q1) . (3.8)

The basic d3Q and d3S integrals are

I0(q) =

∫
d3Q exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
=

(
8π

3R2
N

)3/2

exp

[
1

6
q2 R2

N

]
, (3.9a)

J0(q) =

∫
d3S exp

[
−R

2
N

6

{
9

4

(
S2 +

4

3
q ·Q

)}]
=

(
8π

3R2
N

)3/2

exp

[
1

6
q2 R2

N

]
. (3.9b)

Then,

Ii(q) =

∫
d3Q Qi exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
=

2

R2
N

∇i I0(q) = +
2

3
qi I0(q), (3.10a)

Ji(q) =

∫
d3S Si exp

[
−R

2
N

6

{
9

4

(
S2 +

4

3
q · S

)}]
= − 2

R2
N

∇i I0(q) = −2

3
qi I0(q), (3.10b)

and

Ii,j(q) =

∫
d3Q QiQj exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
=

(
2

R2
N

)2

∇i∇j I0(q)

=

[
4

3R2
N

δi,j +
4

9
qiqj

]
I0(q), (3.11a)

Ji,j(q) =

∫
d3S SiSj exp

[
−R

2
N

6

{
9

4

(
S2 +

4

3
q · S

)}]
=

(
2

R2
N

)2

∇i∇j I0(q)

=

[
4

3R2
N

δi,j +
4

9
qiqj

]
I0(q). (3.11b)

The meson-nucleon vertex Γ is, analogously with V, given by

〈p′1|Γ|p1〉 = N 2

(
1

8

)3/2(
2π

R2
N

)3/2

exp

[
−R

2
N

6

(
q2 + k2

)]
·

×
∫
d3Q exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
· γ(Q;k,q) δ(3) (p′

1 − p1 − k)

∼ N 2

(
2

3

)3/2(
π

R2
N

)3

· exp
[
−1

6
R2

Nk2

]
Γ̄(q,k) δ(3) (p′

1 − p1 − k) . (3.12)

Here the last expression shows that the vertex has a Gaussian local form factor.

IV. SCALAR-EXCHANGE

The coupling of the scalar meson to the quarks we assume to be of the form

HS =
[
g1ψ̄ψ − g2�(ψ̄ψ)/(2µ2)

]
σ. (4.1)
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P, k1 k′1, P
′

−P ′, q1 q′1,−P
′

FIG. 3: VQQ Scalar-exchange in the CM-frame

The corresponding vertex is

ΓQQ = ūQ(p
′)
[
g1 + g2

(
M2 − p′ · p

)
/µ2
]
uQ(p) (4.2)

Now,

M2 − p′ · p =M2 − E′E + p′ · p ≈ −k2/2. (4.3)

Taking a common form factor for the two couplings, (4.3) implies a zero in the potential

0 =

(
g1 −

k2

2µ2
g2

)2

≈ g21 −
k2

µ2
g1g2, k2(0) = µ2 g1

g2
, (4.4)

which marks an approximate simple zero. In ESC-models g1 = g2 and k2(0) = m2
σ, so µ = mσ ≈ 2mQ.

On the quark level, the inclusion of the zero implies a change in the coefficients of the k2-term which are of order
1/M2.

A. Folding Amplitude Scalar-exchange

The Dirac-spinor part of the scalar-meson QQ-vertex is

[ūi(k
′
i)ui(ki)] =

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[
1− σi · k′

i

E′
i +mi

σi · ki

Ei +mi

]

≈ χ′†
i

[
1− k′

i · ki

4m2
i

− i

4m2
i

σi · k′
i × ki

]
χi

= χ′†
i

[
1− Q2

i − k2

16m2
i

+
i

8m2
i

σi ·Qi × k

]
χi. (4.5)

Here is used that for the CQM Ei ≈ mi. The performance of the Q-integral in (4.5) gives

[ūi(k
′
i)ui(ki)] ⇒ χ′†

i

[
1−

(
1

4m2
iR

2
N

+
q2

36m2
i

)
+

k2

16m2
i

+
i

12m2
i

σi · q× k

]
χi (4.6)

Summing over the quarks leads to the vertex

ΓCQM =
∑

i=1−3

[ūi(k
′
i)ui(ki)] ⇒ 3

[
1−

(
1

4m2
QR

2
N

+
q2

36m2
Q

)
+

k2

16m2
Q

+
i

36m2
Q

∑

i

σi · q× k

]
(4.7)

The CQM replacement mQ ≈
√
M ′M/3 leads to

ΓCQM = 3

[(
1− 1

4m2
QR

2
N

)
− q2

4M ′M
+

9k2

16M ′M
+

i

4M ′M

∑

i

σN · q× k

]
, (4.8)
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where we used
∑

i σi = σN . This assumes that the spin of the nucleon is given by the total spin of the quarks [27]

This result should be compared with the
[
. . .
]
-part of the vertex computed at the nucleon-level, ∆2 = (P′−P)2 = k2,

ΓNN ≡ ū(P′) u(P) =

√
E′ +M ′

2M ′

√
E +M

2M
˙

×χ′ †

[
1− p′ · p

(E′ +M ′)(E +M)
− ip′ × p · σ

(E′ +M ′)(E +M)

]
χ

≈
√
E′ +M ′

2M ′

√
E +M

2M
χ′ †

[
1− q2

4M ′M
+

∆2

16M ′M
+

i

4M ′M
q×∆ · σ

]
χ (4.9a)

⇒
[
1− q2

4M ′M
+

∆2

16M ′M
+

i

4M ′M
q×∆ · σ

]
. (4.9b)

The last expression for ΓNN is the correspondence of ΓCQM in (4.8). This because in the transition from the potential
V to the Lippmann-Schwinger potential V there occurs a factor (E′ + E)/(M ′ +M) [11]. Now,

E′ + E

M ′ +M
≈ 1 +

q2 +∆2/4

2M ′M
,
(E′ +M ′)(E +M)

4M ′M
≈ 1− q2 +∆2/4

2M ′M
, (4.10)

showing that the product is 1 +O((M ′M)−2 ≈ 1.

To bring ΓCQM and ΓNN in agreement the following:

a. The factor 3 is accounted for by scaling the quark-meson coupling, i.e. g
(S)
Q = g(S)/3.

b. The ”spurious” term 1/(4m2
Q/R

2
N ) = 9/(4M ′MR2

N ) can be removed by introducing a gausslike distribution for
K, see subsection IVC.

c. Compared to ΓNN the quark vertex ΓCQM has an extra 8k2/(16M ′M)-term. This term can be cancelled by
tuning the g2-coupling. For that purpose we set

−g2
9

16M ′M
= g1

8

16M ′M
, g2/g1 = −8/9 ≈ −g1. (4.11)

With these remarks it is shown that, although not identical, the QQ- and NN-vertex are (approximately) equivalent
as far as the NN-potential is concerned. It also shows that the combination of scalar and vector exchange are
necessary to bring this about.

This is consistent with the remarks after Eq. (4.4), i.e. g2 = g1 and µ = 2mi.

B. Scalar Form-factor Zero in QQ- and NN-vertex

Furthermore we remark that in the ESC-models we use a simple (first-order) zero for the scalar-meson exchange
potential. Taking a zero at the vertex, as suggested by the analysis here, would imply a double zero. To match the
practice in the ESC-models one can use the zero at the vertex partly for the proper generation of the k2-term and
partly for the simple zero in the potential, i.e. we expand

(
1− k2

2U2

)2

=

(
1− k2

U2

)
+O(k4/U4).

Including the ESC-zero, the scalar-vertex becomes

ΓS = ū(p′)

[
g1

(
1− k2

2U2
S

)
− g2

k2

8m2
Q

]
u(p)

≈ g1ū(p
′)

[
1−

(
1

2U2
S

+
1

8m2
Q

)
k2

]
u(p), (4.12)
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which implies a zero in the scalar-quark coupling at

k2 =
4m2

QU
2
S

U2
S + 4m2

Q

≡ 2U2
Q.

With US = 3MN/3 and mQ =MN/3 we get UQ ≈
√

7
32US ≈ US/2.

Considering scalar-exchange between a quark-line and a nucleon-line we have, up to terms of order k4,

ΓQ · ΓN ≈ 1−
(

1

2U2
Q

+
1

2U2
S

)
k2 = 1−

(
U2
Q + U2

S

2U2
QU

2
S

)
k2

≡ 1− k2

U2
Q+S

, U2
Q+S = 2U2

S

[
1 +

U2
S

U2
Q

]−1

. (4.13)

We have

U2
S

U2
Q

= 1 + U2
S/(4m

2
Q) ≈ 32/7,

where we used that US = 750 MeV ≈ (3/4)MN , and mQ =MN/3. This means that UQ+S ≈ US/
√
3.

Although this method can be chosen for the scalar- and and axial-meson coupling, it is not available for the vector-
mesons. Therefore, the use of an extra coupling to match the k2 terms is preferable.

C. Removal spurious central term

Instead of the δ3(K − k)-function we introduce a distribution of the momentum K exchange. Such a distribution
might be caused by momentum exchange between the quark-line with the meson-vertex and the other two quarks
in the nucleon, see Appendix B for an explicit demonstration. To produce a ΓCQM without a ”spurious” term, we
consider the integrals

K1(k
2) = N1

∫
d3K exp

[
−αK2 + βK · k

]
e−γk2

= N1

(π
α

)3/2
exp

[
−
(
γ − β2

4α

)
k2

]
, (4.14)

K2(k
2) = N1

∫
d3K K2 exp

[
−αK2 + βK · k

]
e−γk2

=

[
3

2
α−1 +

β2

4α2
k2

]
K1(k

2), (4.15)

K3,i(k
2) = N1

∫
d3K Ki exp

[
−αK2 + βK · k

]
e−γk2

= (β/2α) ki K1(k
2), (4.16)

and require

(i) K1(k
2) = exp

(
−1

6
R2

Nk2

)
, (ii) K2(k

2) =

(
4

R2
N

+
β2

2α2
k2

)
K1k

2) , K3,i(k
2) = ki K1(k

2). (4.17)

These conditions give N1 = (π/α)
−3/2

and the equations

a) γ − β2

4α
=

1

6
R2

N , b)
3

2
α−1 =

1

4
R2

N , c)
β

2α
= 1. (4.18)

It follows that α = (3/8)R2
N , β = (3/4)R2

N , and γ = (13/24)R2
N , and

K1(k
2) = N1

∫
d3K exp

[
−R

2
N

6

{
9

4
K2 − 9

2
K · k+

13

4
k2

}]
. (4.19)
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Using this expression the meson-nucleon vertex (3.12) becomes 1

〈p′1|Γ|p1〉 = N 2

(
1

8

)3/2(
2π

R2
N

)3/2 (
3R2

N

8π

)3/2

exp

[
−R

2
N

6

(
q2 + k2

)]
·

×
∫
d3Q exp

[
−R

2
N

6

{
9

4

(
Q2 − 4

3
q ·Q

)}]
·

×
∫
d3K exp

[
−R

2
N

6

{
9

4

(
K2 − 2k ·K+ k2

)}]
·

×γ(Q,K;k,q) δ(3) (p′
1 − p1 − k) . (4.20)

With this result we obtain

ΓCQM = 3

[
1− q2

36m2
Q

+
k2

16m2
Q

+
i

36m2
Q

∑

i

σi · q× k

]
. (4.21)

With this method we reproduce the central and spin-orbit term in Eqn. (4.7) without the 1/(4m2
iR

2
N ) term!

V. PSEUDOSCALAR-EXCHANGE

We determine the QQ ps-exchange amplitude. Below, again i=1 is understood.
For the upper vertex in Fig. 3, line ’1’, we evaluate following spinor matrix-element

[ūi(k
′
i)γ5ui(ki)] =

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[

σi · ki

Ei +mi
− σi · k′

i

E′
i +mi

]
χi

≈ −χ′†
i

[
σi · k
2mi

]
χi, (5.1)

again because in the CQM Ei ≈ mi. Summing over the quarks gives

Γ̃CQM,5 =
∑

i=1−3

[ūi(k
′
i)γ5ui(ki)] = −3χ′†

N

[
σ · k
2mi

]
χN (5.2)

It is clear that this vertex is proportional to that for the OBE-coupling of the pseudoscalar meson. So, also for
mi =

√
M ′M/3, i.e. the so-called ”constituent” quarks, ΓQQ in equivalent with ΓNN .

From gp = (2mq/mπ)fpv, gP = (2MN/mπ)fPV , and gp = gP /3 we find

fpv =
1

3

MN

mq
fPV ,

which for mq =MN/3 the relation fpv = fPV .

1 Comparing with (3.12) shows the K-distribution change δ(3)(K− k) → (πǫ)−3/2 exp
[

− (K− k)2 /ǫ
]

, ǫ = 8/(3R2
N ).
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VI. FOLDING VECTOR-EXCHANGE VERTEX

The coupling of the vector mesons (JPC = 1−−) to the quarks is given by the interaction Hamiltonian

HV QQ = gv
(
ψ̄γµψ

)
Vµ +

fv
4M

(
ψ̄ σµν ψ

)
(∂µVν − ∂νVµ)

=

[
(ψ̄γµψ)F1,v +

i

2

(
ψ̄

↔

∂µ ψ

)
F2,v

]
· Vµ, (6.1)

where a
↔

∂µ b = a·∂µb−∂µa·b. The relation between the different coupling constants is F1,v = gv+
mQ

M fv , F2,v = − fv
M ,

and reversely gv = F1,v +mQF2,v, fv = −M F2,e.

A. Direct-coupling

1. Γ0
1,CQM -vertex: The QQ-meson vertices are

[
ūi(k

′
i)γ

0ui(ki)
]

=

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[
1 +

σi · k′
i

E′
i +mi

σi · ki

Ei +mi

]

≈ χ′†
i

[
1 +

k′
i · ki

4m2
i

+
i

4m2
i

σi · k′
i × ki

]
χi

= χ′†
i

[
1 +

Q2
i − k2

16m2
i

− i

8m2
i

σi ·Qi × k

]
χi. (6.2)

Notice that the 1/m2
i terms are the same as for scalar-exchange apart from the sign. Therefore, from the expression

(4.8) we now have

Γ0
1,CQM = 3

[(
1 +

1

4m2
QR

2
N

)
+

q2

4M ′M
− 9k2

16M ′M
− i

4M ′M

∑

i

σN · q× k

]
, (6.3)

The direct coupling to the nucleons gives

Γ0
1,NN =

[
ūN (p′γ0uN (p)

]
=

√
E′ +M ′

2M ′

E +M

2M
· χ′†

N ·
[
1 +

σ · p′

E′ +M ′

σ · p
E +M

]

≈
√
E′ +M ′

2M ′

E +M

2M
· χ′†

N

[
1 +

p′ · p
4M ′M

+
i

4M ′M
σ · p′ × p

]
χN

=

√
E′ +M ′

2M ′

E +M

2M
· χ′†

N

[
1 +

q2 − k2/4

4M ′M
− i

4M ′M
σ · q× k

]
χN .

⇒
[
1 +

q2 −∆2/4

4M ′M
− i

4M ′M
σ · q× k

]
. (6.4)

To bring Γ0
1,CQM and Γ0

1,NN in agreement the following:

a. The factor 3 is accounted for by scaling the quark-meson coupling, i.e. g
(V )
Q = g(V )/3.

b. The term 1/(4m2
Q/R

2
N ) = 9/(4M ′MR2

N ) ≈ 0.1 for RN ≈ 1 fm, giving a 10% amplified of the central term..

c. Compared to Γ0
NN the quark vertex Γ0

QQ has an extra −8k2/(16M ′M)-term. This term can be cancelled by

introducing an extra QQV-interaction, similar to (4.1),

∆H1)
V = f ′1,v

[
�(ψ̄γµψ)(2µ2)

]
Vµ, (6.5)

and determine for µ = 0 the coupling from the condition

f ′1,v
9

8M ′M
= F1,v

8

16M ′M
, f ′1,v/F1,v = 4/9. (6.6)
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Terms for µ = m are of order ∼ 1/M3 which we neglect. With these remarks it is shown that, as in the scalar case,
the QQ- and NN-vertex are (approximately) equivalent as far as the NN-potential is concerned. It also shows that the
combination of scalar and vector exchange are necessary to bring this about. With the inclusion of the g′2-contribution,
the QQV-vertex becomes

Γ0
1,CQM = 3

[
1 +

(
1

4m2
QR

2
N

+
q2 − k2/4

4M ′M

)
− i

4M ′M

∑

i

σN · q× k

]
, (6.7)

So, the q2-, the k2-, and spin-orbit term are the same as for the coupling of the vector meson on the nucleon level.

The central term in Γ
(0)
QQ has an extra 9/[4M ′MR2

N ]-term, which is a slight violation of the Idea/conjecture as
formulated in the Introduction, similar to the scalar-meson case. As demonstrated in subsection IVC such ”spurious”
terms can be eliminated by introducing a K-distribution. Henceforth, we omit such terms.

2. Γ1,QQ-vertex: The QQ-meson vertices are

[ūi(k
′
i)γiui(ki)] =

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[
σiσi · ki

Ei +mi
+

σi · k′
i σi

E′
i +mi

]
χi

≈ χ′†
i ·
[
Qi

2mi
+

i

2mi
(σi × k)

]
χi

⇒ χ′†
i ·
[

q

3mi
+

i

2mi
(σi × k)

]
χi (6.8)

Summing over the quarks leads to

Γ1,CQM =
∑

i=1−3

[
ūi(k

′
i)γiui(k̄i)

]
= χ′†

i ·
[
q

mi
+

i

2mi
(σN × k)

]
χi (6.9a)

⇒ 3

[
q

M
+

i

2M
(σN × k)

]
. (6.9b)

The direct coupling to the nucleons gives

Γ1,NN = [ūN (p′)γuN (p)] =

√
E′ +M ′

2M ′

E +M

2M
· χ′†

N ·
[
σσ · p
E +M

+
σ · p′ σ

E′ +M ′

]
χN

≈
√
E′ +M ′

2M ′

E +M

2M
· χ′†

N ·
[
q

M
+

i

2M
(σ × k)

]
χN

⇒ χ′†
N ·
[
q

M
+

i

2M
(σ × k)

]
χN (6.10)

Again, we see that for mi =
√
M ′M/3, i.e. the so-called ”constituent” quarks, ΓQQ matches with ΓNN .

B. Derivative-coupling via Gordon-decomposition

It remains to established the relation of the vertices

Γµ
2,NN = (p′ + p)µ [ū(p′u(p] and Γ̃µ

2,QQ =
∑

i=1−3

(k′µ + kµ) [ū(k′
i)u(ki)] . (6.11)

1. Γ0
2-vertex: From the analysis of the scalar coupling, see Eqns. (4.5)-(4.8), the QQ-meson vertices are

∑

i=1−3

(k′i,0 + ki,0) [ūi(k
′
i) ui(ki)] ⇒ 6mQ

[
1−

(
1

4m2
QR

2
N

+
q2

36m2
Q

)
+

k2

16m2
Q

+
i

36m2
Q

∑

i

σi · q× k

]
(6.12)
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The CQM replacement mQ ≈
√
M ′M/3, (M ′ +M)/6 leads to

Γ0
2,CQM ≈ (M ′ +M)

[
1−

(
1

4m2
QR

2
N

+
q2

4M ′M

)
+

9k2

16M ′M
+

i

4M ′M

∑

i

σN · q× k

]
, (6.13)

This vertex has to be compared with that at the NN-level:

Γ0
2,NN ≈ (M ′ +M)

[
1− q2

4M ′M
+

k2

16M ′M
+

i

4M ′M
q× k · σ

]
. (6.14)

So, the situation is again similar to the scalar case. The remedy to obtain agreement for the k2-term is the as in that
case by introducing a zero in the coupling, or by adding an extra QQV-interaction, similar to (4.1) and (6.5),

∆H2)
V = f ′2,v

[
�(iψ̄

↔

∂µ ψ)(2µ
2)

]
V µ, (6.15)

and determine for µ = 0 the coupling from the condition CHECK

f ′2,v
9

8M ′M
= F2,v

8

16M ′M
, f ′2,v/F2,v = 4/9. (6.16)

Terms for µ = m are of order ∼ 1/M3 which again we neglect.

2. Γ2-vertex: For this term we neglect the 1/m2
Q ∼ 1/M ′M -terms as in the NN-potential derivation, and therefore

we get

Γ2,CQM =
∑

i=1−3

(k′
i + ki) [ūi(k

′
i) ui(ki)]

⇒ 2
∑

i

Qi [ūi(k
′
i) ui(ki)] ⇒ 2q, (6.17)

showing that without scaling, as in the case of Γ0
2,QQ, the NN-vertex is produced.

So, with the results of the scalar and vector couplings, i.e. Γ = 1, γµ, utilizing the Gordon-decomposition, the relation
between QQM- and NNM-derivative couplings is most easily demonstrated.

C. Full quark-vector coupling

NOGTEDOEN:
At the quark-level the additional interaction is

H(2)
V = −hv

[
�

4m2
Q

(
iq̄(x)

↔

∂ µ q(x)
)]

· φµV . (6.18)

Since adaption is necessary in the direct and derivative term, we get for the full correction hv = g′v + f ′v = (4/3)(gV +
fV )/M, with M = mQ/3. Here, the (p′ + p) term in (6.18) is
Since the adaption is in the direct and derivative term, we get for the full vector vertex

ū(p′)Γµ
v u(p) = ū(p′)

[
Gm,vγ

µ +
1

MGe,v (p′ + p)µ
]
u(p), (6.19)

with

Gm,v = gv + fv , Ge,v = −fv....? = tedoen = −fv
[
1 +

κ′

κ

k2

8m2
Q

]
, (6.20)

where fv = κv gv. Now k2 ≈ −k2 so that Ge,v exhibits a zero at k2 = 8m2
Q(κv/κ

′
v).
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VII. FOLDING AXIAL-VECTOR-EXCHANGE VERTEX

The coupling of the axial-vector mesons (JPC = 1++, 1st kind) to the quarks is given by the interaction Hamiltonian

HA = gA[ψ̄γµγ5ψ]φ
µ
A +

ifA
M [ψ̄γ5ψ] ∂µφ

µ
A. (7.1)

1. Γ0
5-vertex: The QQ-meson vertices are

[
ūi(k

′
i)γ

0
i γ5ui(ki)

]
=

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[

σi · ki

Ei +mi
+

σi · k′
i

E′
i +mi

]
χi

≈ χ′†
i

[
σi ·Qi

2mi

]
χi ⇒ χ′†

i

[
σi · q
3mi

]
χi (7.2)

Summing over the quarks gives

Γ0
5,CQM =

∑

i=1−3

[
ūi(k

′
i)γ

0
i γ5ui(ki)

]
= χ′†

N

[
σN · q
3mi

]
χN ⇒

[
σN · q√
M ′M

]
. (7.3)

It is clear that this vertex is proportional to that for the OBE-coupling of the axial-vector meson.

2. Γ5-vertex: The QQ-meson vertices are

[ūi(k
′
i)γiγ5ui(ki)] =

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[
σi +

σi · k′
i σi σi · ki

(E′
i +mi)(Ei +mi)

]
χi

≈ χ′†
i

[
σi +

1

4m2
i

{
k′
i(σi · ki) + ki(σi · k′

i)− (k′
i · ki)σi − i(k′

i × ki)

}]
χi

= χ′†
i

[
σi +

1

16m2
i

{
2Qi(σi ·Qi)− 2k(σi · k)− (Q2

i − k2)σi + 2i(Qi × k)

}]
χi

⇒ χ′†
i

[
σi +

1

2m2
i

1

3R2
N

σi −
1

4m2
i

1

R2
N

σi

+
1

16m2
i

{
8

9
q(σi · q)− 2k(σi · k)− (

4

9
q2 − k2)σi +

4i

3
(q× k)

}]
χi

(7.4)

Summing over the quarks gives

Γ5,CQM =
∑

i=1,3

[ūi(k
′
i)γiγ5ui(ki)] = χ′†

N

[(
1− 1

12(miRN )2

)
σ

+
1

16m2
i

{
8

9
q(σ · q)− 2k(σ · k)− (

4

9
q2 − k2) σ + 4i(q× k)

}]
χN . (7.5)

The direct coupling to the nucleons gives

Γ5,NN = [ūN (p′)γγ5uN (p)] =

√
E′ +M ′

2M ′

E +M

2M
· χ′†

N

[
σ +

(σ · p′) σ (σ · p)
(E′ +M ′)(E +M)

]
χN

≈
√
E′ +M ′

2M ′

E +M

2M
· χ′†

N

[
σ +

1

4M ′M

{
p′(σ · p) + p(σ · p′)− (p′ · p)σ − i(p′ × p)

}]
χN

⇒
[
σ +

1

4M ′M

{
2q(σ · q)− 1

2
k(σ · k)−

(
q2 − k2/4

)
σ + i(q× k)

}]
. (7.6)

Similarly to the scalar- and vector-meson, the last expression is to be compared to Γ5,CQM in (7.5).
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For ”constituent” quarks with mi =M/3 the result (7.5) reads

Γ5,CQM ⇒ χ′†
N

[(
1− 3

4(MRN )2

)
σ

+
1

4M ′M

{
2q(σ · q)− 9

2
k(σ · k)− (q2 − 9

4
k2) σ + 9i(q× k)

}]
χN

= χ′†
N

[(
1− 3

4(MRN )2
+

k2

2M ′M

)
σ − k(σ · k)

M ′M

+
1

4M ′M

{
2q(σ · q)− 1

2
k(σ · k)− (q2 − k2/4) σ + 9i(q× k)

}]
χN (7.7)

3. Γ5-vertex(continued A): Next, we impose for the quarks the conservation of the axial current. The current is

Ja
µ = gaψ̄γµγ5ψ +

ifa
M ∂µ(ψ̄γ5ψ), (7.8)

and ∂ · JA = 0 imposes the relation

fa =

(
m2

A1

2mQM

)−1

ga. (7.9)

Taking mA1
=

√
2mρ ≈ 2

√
2mQ the axial current becomes

Ja
µ = ga

[
ψ̄γµγ5ψ +

i

4mQ
∂µ(ψ̄γ5ψ)

]
. (7.10)

The fa-contributions to the axial-vertex are

µ = 0 : ∼ (E′ − E) ∼ (M ′MmQ)
−1 ≈ 0, (7.11a)

µ = i : − 1

4mQ
k [ū(k′

i)γ5u(ki)] ⇒ +

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i

[
1

8m2
i

k (σi · k)
]
χi. (7.11b)

Taking this fa-contributions into account we obtain for ”constituent” quarks:

Γ5,NN ⇒ χ′†
N

[
σ +

1

4M ′M

{
2q(σ · q)−

(
q2 − k2/4

)
σ + i(q× k)

}]
χN , (7.12a)

Γ5,CQM ⇒ χ′†
N

[(
1− 3

4(MRN )2
+

k2

2M ′M

)
σ

+
1

4M ′M

{
2q(σ · q)− (q2 − k2/4) σ + 9i(q× k)

}]
χN (7.12b)

Here, we omitted the factor
√
(E′ +M ′)(E +M)/4M ′M for the same reasom as for the scalar- and vector-meson.

Remark Γ5,CQM : (i) for RN ≈ 1fm the term 3/4(MRN )2 ≈ 3/100 ≪ 1 and may be neglected, (ii) the k2/(2M ′M)
term can be removed by taking into account the zero in the vertices (see above), and (iii) the k(σ ·k)/M ′M -term has
been removed by adding an fa-coupling at the quark-level in a way compatible with axial-current conservation.
The change in the zero is as follows: we write the zero in the form

(
1− k2/U2

) (
1 + k2/2M2

N

)
≈ 1− k2/Ū2, Ū = U/

√
1− U2/2M2

N .

So, there (only) remains the problem with the spin-orbit terms! For the solution see the next paragraphs.

4. Γ5-vertex(continued B): We note that Γ =
∑3

i=1 ūiγiγ5ui 〈ūNΣNuN 〉 for non-relativistic quarks, i.e. it measures
the contribution of the quarks to the nucleon spin. In the parton model it appeared that a large portion of the nucleon
spin has to come from gluonic and quark orbital angular momentum contributions [26]. In the ESC-model we ascribe
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the meson-couplings to the quark-antiquark pair creation process. To account for a modification for the axial-vector
mesons we consider the following additional phenomenological interaction at the quark level [28]

∆H =
ig′a
M2

ǫµναβ (∂αψ̄)γν(∂βψ) Aµ

⇒ ∆Γµ
5 =

ig′a
M2

[ū(p′)γνu(p)] ǫ
µναβp′αpβ . (7.13)

Now, we assume that M ∼ MN . Then, if ν = n = 1, 2, 3 the vertex is ∝ 1/M3 ≈ 0. So, the only important
contribution is given for ν = 0. In this case, summing over the (valence) quarks,

∆Γµ
5,CQM =

3∑

i=1

∆Γµ
5,i = − ig′a

M2

3∑

i=1

[ū(k′i)γi,0u(ki)] (Qi × k) +O(1/M3)

⇒ − 2ig′a
M ′M

√
E′ +M ′

2M ′

E +M

2M
·
[
χ′†
NχN

]
(q× k). (7.14)

By choosing g′a = ga, where ga is the axial coupling constant at the quark level, the axial-vertex becomes
Γ5,CQM ∼ Γ5,NN .

5. Orbital Angular Momentum interpretation: In the parton model it appeared that a large portion of the
nucleon spin comes from orbital quark motion and gluonic contributions [26]. The orbital angular momentum of the
quarks is present for the non-forward matrix element, i.e. p 6= p′. Therefore we consider the following form of the
additional interaction at the quark level [31]

∆H′ = g′′a ǫ
µναβ

[
ψ̄(x)Lναβψ(x)

]
Aµ, (7.15)

where [44]

Lναβ = iγν

(
xα

∂

∂xβ
− xβ

∂

∂xα

)
(7.16)

is the orbital part of Mναβ , the angular momentum density operator. The vertex for the NNA1-coupling is given by

〈p′, s′|∆H ′|p, s; k, ρ〉 =

∫
d4x〈p′, s′|∆H′|p, s; k, ρ〉 ∼ εµ(k, ρ) ǫ

µναβ ·

×
∫
d4x e−ik·x 〈p′, s′|iψ̄(x)γν (xα∇β − xβ∇α)ψ(x)|p, s〉 (7.17)

As pointed out in the previous paragraph the dominant contribution comes from ν = 0. For this we have to evaluate
the integral

Jab = i

∫
d4x e−ik·x 〈p′, s′|iψ†(x) (xa∇b − xb∇a)ψ(x)|p, s〉 (7.18)

Since we have only quarks, focussing on quark i=1, the quark field operator is

ψi(x) ⇒
∑

s

∫
d3ki

(2π)3/2

√
mQ

E(ki)
b(ki, si) u(ki, si) e

−iki·x e−α(k2
i−ki·p/2) (7.19)
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where α = 2R2
N/3. Using this in (7.18) we get

Jab =
[
u†(k′i, s

′) u(ki, s)
] ∫

d4x ei(k
′

i−ki−k)·x (xaki,b − xbki,a) e
−α(k′2

i +k2
i )eα(k

′

i·p
′+ki·p)/2

=
[
u†(k′i, s

′) u(ki, s)
] ∫

d4x ei(k
′

i−ki−k)·x (xaki,b − xbki,a) e
−α(Q2−2q·Q)/2

= (2π)δ(E′ − E − k0)
[
u†(k′i, s

′) u(ki, s)
] ∫

d3x e−i(p′−p−k)·x (xaki,b − xbki,a) e
−α(Q2−2q·Q)/2

= −(2πi)δ(E′ − E − k0)
[
u†(k′i, s

′) u(ki, s)
] ∫

d3x
[
(∇p,aki,b −∇p,bki,a) e

−i(p′−p−k)·x
]
e−α(Q2−2q·Q)/2

= +(2π)4iδ(E′ − E − k0)δ(3)(p′ − p− k) · (α/2)
[
u†(k′i, s

′) u(ki, s)
]
·

× (Qaki,b −Qbki,a) e
−α(Q2−2q·Q)/2

⇒ +(2π)4iδ(E′ − E − k0)δ(3)(p′ − p− k) · (α/3)
[
u†(k′i, s

′) u(ki, s)
]
·

× (qaki,b − qbki,a) e
−α(q2−2q·Q)/2 (7.20)

Substition in (7.17) gives

〈p′, s′|∆H ′|p, s; k, ρ〉 ≈ +(2π)4iδ(E′ − E − k0)δ(3)(p′ − p− k) g′′a(α/3) εm(k, ρ) ·
×
[
u†(k′i, s

′) u(ki, s)
]
ǫmab (qaki,b − qbki,a) e

−α(q2−2q·Q)/2

⇒ +(2π)4iδ(4)(p′ − p− k) g′′a(2α/3) εm(k, ρ) ·
×
[
u†(k′i, s

′) u(ki, s)
]
ε(k, ρ) · q× k e−α(q2−2q·Q)/2 (7.21)

This leads to

∆Γ′m
5,CQM ∝ ig′′a(4R

2
N/3)

√
E′ +M ′

2M ′

E +M

2M
·
[
χ′†
NχN

]
(q× k). (7.22)

which is equivalent to the result (7.14) for

g′′a = − 3g′a
2(MRN )2

= − 3ga
8(MRN )2

. (7.23)

Therefore, we can give the extra quark-coupling for the axial-vector vertex the interpretation as
representing the orbital angular momentum of the three quarks in a nucleon (baryon) in the non-
forward matrix element. In this sense it is related to the ”spin-crisis” [26].

The ”spin-cisis” in the quark-parton model revealed the importance of the orbital angular momentum and
the gluonic content of the nucleon. At low energy the similar ”crisis” shows up quite naturally in the
axial-vector coupling. Taking the orbital angular momentum of the quarks into account nicely connects the
”constituent” quark model with the axial-vector vertex at the nucleon level. Interesting would be to analyze
this phenomenon in the IMF.

VIII. CONCLUSIONS AND DISCUSSION

We have shown that for all meson-nucleon-nucleon couplings the Pauli-expansion structure of the vertices can be
reproduced by the ”constituent” quark model. For the scalar, the vector, and axial-vector mesons it required extra
couplings at the quark level in order to achieve this compatibility: (a) In the central part for scalar and vector mesons
an extra interaction is necessary on the quark level to produce the correct k2/M ′M terms at the nucleon level; (b)
Using δ3(K − k) at the meson vertex leads to ”spurious” 1/R2

N -terms in the central parts for (i) the scalar- and
vector-meson vertex, and (ii) the axial-vector vertex. As demonstrated in subsection IVC such terms can eliminated
by the introduction of a gaussian like distribution in K. Therefore, these terms are omitted. This leads, at least for
terms up to 1/M ′M , to the conclusion:
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The Idea/conjecture made in the Introduction, asserting that based on the Lorentz structure the ratio’s of
spin-spin, tensor-, and spin-orbit-vertices and the central potentials as given by the nucleon-level potentials
are independent of the internal structure, can be realized completely in the CQM.

For the axial-vector coupling we have to introduce next to the usual γµγ5-coupling a new coupling related to the
orbital angular-momentum contents related to the transverse motion of the quarks in the nucleon. This is in line with
the quark-parton model, where the so-called ”spin-crisis” can be solved by invoking such and/or a gluonic contribution
to the spin of the nucleon.
[In passing we note that an important non-zero gluonic contribution would be in line with the soft-core NN-models

(OBE and ESC) contain the pomeron-exchange potential which also has a gluonic interpretation [32, 33]. The same
is true for the multi-pomeron repulsion in nuclear matter [33, 34].]
The ”constituent” quark model (CQM) is understood in a fundamental way by spontaneous dynamical chiral-

symmetry breaking. The instanton solutions in QCD lead to a complex vacuum structure, which can be described by
the instanton-liquid model. The pseudoscalar Nambu-Goldstone bosons are ordinary QQ̄-states with a small mass due
to the strong instanton induced attraction. For other QQ̄-states there is not such a strong attraction giving vector-
and scalar-meson masses of about 2mQ ≈ 750 MeV. Strong-coupling QCD comes close to an understanding of the
phenomenology of the CQM [35]. Another approach to derive the CQM is that of the Light-Front QCD of Wilson
and collaborators [36].
In connection with the latter approach we note that putting p and p′ in the xy-plane and going to the infinite-

momentum-frame (I.M.F.) along the z-axis, translates directly our results for the meson-vertices to the quark-parton
model. There, our impulse approximation makes perfect sense and our results may be considered as realistic. Thus,
one would expect that the CQM-vertices correspond neatly to those at the nucleon-level. However, also here one ex-
pects to find an orbital contribution to the spin due to the transverse motion of the quarks, in view of the ”spin-crisis”.

Finally, the results in these notes can readily be extended to baryons.

APPENDIX A: OVERLAP INTEGRAL I

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3.

k3

k2

k1

k′3

k′2

k′1

q1

q2

q3

q′1

q′2

q′3

FIG. 4: External and internal momenta for meson-exchange
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In Fig. 4 we have given the momenta for the initial and final nucleons, and the assigned momenta of the quarks.
From momentum conservation we have

p1 = k1 + k2 + k3 , p2 = q1 + q2 + q3 ,

p′1 = k′1 + k′2 + k′3 , p′2 = q′1 + q′2 + q′3 , (A1)

For meson-exchange with p1 − p′1 = p′2 − p2 ≡ k, we have for the matrix-element of the potential

〈p′1p′2|V |p1p2〉 =

∫ ∏

i=1,3

d3ki δ

(
p1 −

∑

i

ki

)
·
∫ ∏

j=1,3

d3k′j δ


p′

1 −
∑

j

k′
j


 ·

×
∫ ∏

i=1,3

d3qi δ

(
p2 −

∑

i

qi

)
·
∫ ∏

j=1,3

d3q′j δ


p′

2 −
∑

j

q′
j


 ·

× ψ̃∗
p′

1
(k′

1,k
′
2,k

′
3) ψ̃

∗
p′

2
(q′

1,q
′
2,q

′
3) · ψ̃p1

(k1,k2,k3) ψ̃p2
(q1,q2,q3) ·

× δ3 (k′
2 − k2) δ

3 (k′
3 − k3) δ

3 (q′
2 − q2) δ

3 (q′
3 − q3) ·

× γ (k; k′1, k1) γ (k; q
′
1, q1)

k2 +m2
M

· δ3 (k− k′
1 + k1) δ

3 (k+ q′
1 − q1) . (A2)

In (A2) the γ’s denote the vertex functions. Using the gaussian wave function of equation (3.1), we find for the
exponent, denoted by fNN , taking into account that the momenta of the ’spectator quarks 2 and 3 do not change,
the expression

fNN = exp

[
−R

2
N

6

{
(k1 − k2)

2
+ (k1 − k3)

2
+ (k2 − k3)

2

+(q1 − q2)
2
+ (q1 − q3)

2
+ (q2 − q3)

2

+(k′1 − k2)
2
+ (k′1 − k3)

2
+ (k2 − k3)

2

+(q′1 − q2)
2
+ (q′1 − q3)

2
+ (q2 − q3)

2
}]

= exp

[
−R

2
N

6

{
2
(
k21 + k′21

)
− 2 (k2 + k3) · (k1 + k′1)

+2
(
k22 + k23

)
+ 2 (k2 − k3)

2

+2
(
q21 + q′21

)
− 2 (q2 + q3) · (q1 + q′1)

+2
(
q22 + q23

)
+ 2 (q2 − q3)

2
}]

. (A3)

In (A3) k1 ≡ k1 etc. Introducing the 3-momenta

P23 = k2 + k3 , R23 = q2 + q3 ,

K23 = k2 − k3 , Q23 = q2 − q3 , (A4)

for the ’spectator quarks’ and the 3-momenta

k = k′
1 − k1 , k1 =

1

2
(Q− k)

Q = k1 + k′
1 , k′

1 =
1

2
(Q+ k)

k = q1 − q′
1 , q1 =

1

2
(S+ k)

S = q1 + q′
1 , q′

1 =
1

2
(S− k) . (A5)
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For the ’active quarks’, we can rewrite fN with the result

fNN = exp

[
−R

2
N

6

{(
Q2 + k2

)
− 2P23 ·Q

+
(
P2

23 +K2
23

)
+ 2K2

23

+
(
S2 + k2

)
− 2R23 · S

+
(
R2

23 +Q2
23

)
+ 2Q2

23

} ]
. (A6)

In terms of the new variables defined in (A4) and (A5) the integration over the quark-momenta becomes

(
1

8

)4 ∫
d3Q d3S d3P23 d

3K23 d
3R23 d

3Q23 ·

×δ(3)
(
p1 +

1

2
(k −Q)− P23

)
δ(3)

(
p2 −

1

2
(k + S)−R23

)
·

×δ(3)
(
p′1 −

1

2
(k +Q)− P23

)
δ

(
p′2 +

1

2
(k − S)−R23

)
(A7)

From these δ-function constraints one immediately gets

δ(3) (p′1 − p1 − k) δ(3) (p′2 − p2 + k) =

δ(3) (p′1 − p1 − k) δ(3) (p′1 + p′2 − p1 − p2) (A8)

i.e. overall 3-momentum conservation and the fixing of k in terms of the external momenta.
Next we go over to the CM-variables. We have

p1 = −p2 = p , k = p′ − p , p = q− 1

2
k ,

p′
1 = −p′

2 = p′ , q =
1

2
(p+ p′) , p′ = q+

1

2
k . (A9)

Then using (A4), we find for the expression between the curly brackets in (A5) the following expression

{
. . .

}
=

{
2
(
q2 + k2

)
+

9

4

(
Q2 + S2

)
− 3q · (Q− S)

+3
(
K2

23 +Q2
23

)}
(A10)

Now since the potential matrix elements will not depend onK23 and Q23, apart from the appearance of these momenta
in the exponential, we can integrate these variables out, with the result:

∫
d3K23 d

3Q23 exp

[
−R

2
N

2

(
K2

23 +Q2
23

)]
⇒
(

2π

R2
N

)3

. (A11)

Collecting all results of the section, we find

〈p′1p′2|V |p1p2〉 =

(
1

8

)4(
2π

R2
N

)3

N 4

∫
d3Q d3S ·

× exp

[
−R

2
N

6

{
9

4

(
Q2 + S2

)
+ 2

(
q2 + k2

)
− 3q · (Q− S)

}]
·

×VQQ(Q,S;q,k) δ
(3) (k′

1 + q′
1 − k1 − q1) , (A12)

where VQQ(Q,S;q,k) denotes the QQ-potential which contains the QQM-vertices and the meson propagator.
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APPENDIX B: OVERLAP INTEGRAL II

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3. As shown in Fig. 5 we assume some momentum
transfer beteen quark 1 and the pair quark 2 and quark 3.

k3

k2

k1

k′3

k′2

k′1

k

l

FIG. 5: External and internal momenta for meson-exchange

In Fig. 5, as in Fig. 4, we have given the momenta for the initial and final nucleons, and the assigned momenta of
the quarks. From momentum conservation we have

p = k1 + k2 + k3 , p′ = k′1 + k′2 + k′3. (B1)

For meson-exchange with p′ − p ≡ k, we have for the QQM-vertex

〈p′|Γ|p〉 =

∫ ∏

i=1,3

d3ki δ

(
p−

∑

i

ki

)
·
∫ ∏

j=1,3

d3k′j δ


p′ −

∑

j

k′
j


 ·

× ψ̃∗
p′ (k′

1,k
′
2,k

′
3) · ψ̃p (k1,k2,k3) · γ(k, l;k′

1,k1) ·
× δ3 (k′

3 + k′
2 − k3 − k2 − l) δ3 (k− l− k′

1 + k1) (B2)

Similar to Appendix A we introduce the combinations

Q = k′
1 + k1 , K = k′

1 − k1, (B3a)

P23 = k2 + k3 , P′
23 = k′

2 + k′
3, (B3b)

K′
23 = k′

2 − k′
3 , K23 = k2 − k3. (B3c)

Furthermore, we use the customary definitions q = (p′ + p)/2,k = p′ − p, and note that K = k′
1 − k1 = k− l, and

P′
23 = P23 + l. The Gaussian exponentials of the wave functions contain, see (3.1),

hN = (k1 − k2)
2 + (k1 − k3)

2 + (k2 − k3)
2,

h′N = (k′1 − k′2)
2 + (k′1 − k′3)

2 + (k′2 − k′3)
2,

Using the definitions above and

P′
23 = P23 + l = P23 + (k−K) = p+ k− 1

2
(Q+K),

P23 = p− k1 = p− 1

2
(Q−K),



22

one finds

hN =
1

4

[
(Q−K−P23 −K23)

2
+ (Q−K−P23 +K23)

2
+ 4K2

23

]

=
1

2

[
(Q−K)2 +P2

23 + 3K2
23 − 2(Q−K) ·P23

]

=
1

2

[
9

4
(Q−K)2 − 3(Q−K) · (q− k/2) + (q2 + k2/4) + 3K2

23

]
,

and

h′N =
1

4

[
(Q+K−P′

23 −K′
23)

2
+ (Q+K−P′

23 +K′
23)

2
+ 4K′2

23

]

=
1

2

[
(Q+K)2 +P′2

23 + 3K′
23 − 2(Q+K) ·P′

23

]

=
1

2

[
9

4
(Q+K)2 − 3(Q+K) · (q+ k/2) + (q2 + k2/4) + 3K′2

23

]
.

Summing gives

h′N + hN =
9

4
(Q2 +K2)− 3Q · q− 3

2
K · k+

(
q2 +

1

4
k2

)
+

3

2
(K′2

23 +K2
23),

and, with performing the d3K ′
23 and d3K23 integrations,

fN = exp

[
−R

2
N

6
{h′N + hN}

]
⇒

(
4π

R2
N

)3

exp

[
−R

2
N

6

{
9

4
(Q2 +K2)− 3Q · q− 3

2
K · k+

(
q2 +

1

4
k2

)}]
. (B4)

Note that for K = k, after the K ′
23,K23 integrations:

h′N + hN ⇒ 9

4
Q2 − 3q ·Q+ (q2 + k2),

which corresponds to the expression in Eqn. (3.12). Furthermore, the k,K dependence differs from (4.19) in the
integrand by a factor

γ(k, l) = exp

[
−R

2
N

6

{
−3K · k+ 3k2

}]
= exp

[
−R

2
N

2
(k · l)

]
= exp

[
−R

2
N

8

{
(k+ l)2 − (k− l)2

}]
,

which has consequences in particular for the spin-orbit coupling, giving 1/3 instead of 1. Including this factor in the
vertex 〈p′|Γ|p〉 in (B2) makes it identical to (4.20), and leads to the expression for ΓCQM given Eqn. (4.21) !
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Remark: Consider the general Gauss integral:

J =

∫ ∫
d3Q d3K exp

[
−
{
αQ2 + βK2 + γQ ·K+ aQ ·V + bK ·W

}]

=
(π
α

)3/2 ∫
d3K exp

[
−
(
β − γ2

4α

)
K2 −

(
bW − aγ

2α
V
)
·K
]
· exp

[
+
a2

4α
V2

]

=
(π
α

)3/2 ( 4πα

4αβ − γ2

)3/2

exp

[
α
(
bW − aγ

2α
V
)2/

(4αβ − γ2)

]
· exp

[
+
a2

4α
V2

]

The factor in front (4αβ − γ2)−3/2 determines the possible ”spurious” terms. One has

Q2 : − d

dα
→ 6β

(
4αβ − γ2

)−5/2
,

K2 : − d

dβ
→ 6α

(
4αβ − γ2

)−5/2
.

This implies that for a potential term ∝
(
Q2 −K2

)
the ”spurious” terms cancel when α = β!

The example worked out in this Appendix satifies this condition.

APPENDIX C: QUARK SUMMATION

The nucleons are part of the irrep 56 of SU(6). These states have the following structure [37]

|N〉 ∼ 1√
2
(φM,S χM,S + φM,A χM,A) ≡ (8,2). (C1)

Here φM,S and φM,A denote the three-quark isospin states with mixed symmetric and ant-symmetric character [37].
likewise for the spin states χM,S and χM,A.
Since the total wave function is symmetric for the spin matrix elements one has

3∑

i=1

〈...|σi|...〉 → 3〈...|σ3|...〉. (C2)

To find the proper factor we evaluate the proton matrix element:

〈P,+|
3∑

i=1

σi,z|P,+〉 = 3〈P,+|σ3,z|P,+〉 = 3

2

{
〈χP

M,S |σ3,z|χP
M,S〉+ 〈χP

M,A|σ3,z|χP
M,A〉

}
, (C3)

where we used the orthonormality of the mixed states

〈χM,S |χM,S〉 = 1, 〈χM,A|χM,A〉 = 1, 〈χM,S |χM,A〉 = 0. (C4)

Explicit evaluation:

〈χP
M,S(+)|σ3,z|χP

M,S(+)〉 =
1

6
〈(+−+)⊕ (−++)⊖ 2(+ +−)|σ3,z|(+−+)⊕ (−++)⊖ 2(+ +−)〉

=
1

6
[1 + 1− 4] = −1

3
, (C5a)

〈χP
M,A(+)|σ3,z|χP

M,A(+)〉 =
1

2
〈(+−+)⊕ (−++)|σ3,z|(+−+)⊕ (−++)〉

=
1

2
[1 + 1] = +1. (C5b)
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These results imply the relation

〈P,+|
3∑

i=1

σi|P,+〉 = 〈P,+|σN |P,+〉. (C6)

It is now trivial to see that

〈P,+|
3∑

i=1

1op,i|P,+〉 = 3〈P,+|1op,N |P,+〉. (C7)

APPENDIX D: MOMENTUM-SPACE MESON-QUARK-QUARK VERTICES

1. Pauli-reduction Dirac-spinor Γ-matrix elements

The transition from Dirac spinors to Pauli spinors is given here, without approximations. We use the notations
E = E +M and E ′ = E′ +M ′, where E = E(p,M) and E′ = E(p′,M ′). Also, we omit, on the right-hand side in the
expressions below, the final and initial Pauli spinors χ′† and χ respectively, which are self-evident.

ū(p′)u(p) = +

√
E ′E

4M ′M

[(
1− p′ · p

E ′E

)
− i

p′ × p · σ
E ′E

]
, (D1a)

ū(p′)γ5u(p) = −
√

E ′E
4M ′M

[
σ ·p′

E ′
− σ ·p

E

]
, (D1b)

ū(p′)γ0u(p) = +

√
E ′E

4M ′M

[(
1 +

p′ · p
E ′E

)
+ i

p′ × p · σ
E ′E

]
, (D1c)

ū(p′)γ u(p) = +

√
E ′E

4M ′M

[(
p′

E ′
+

p

E

)
+ i

(
σ × p′

E ′
− σ × p

E

)]
, (D1d)

ū(p′)γ5γ
0u(p) = −

√
E ′E

4M ′M

[
σ ·(p′

E ′
+

σ ·(p
E

]
, (D1e)

ū(p′)γ5γ u(p) = −
√

E ′E
4M ′M

[
σ +

(σ · p′) σ (σ · p)
E ′E

]

= −
√

E ′E
4M ′M

[(
1− p′ · p

E ′E

)
σ − i

p′ × p

E ′E

+
1

E ′E (σ · p p′ + σ · p′ p)

]
≈ −σ, , (D1f)

where we defined k = p′ − p, q = (p′ + p)/2, and κV = fV /gV .

Using the the Gordon decomposition

i ū(p′) σµν(p′ − p)νu(p) = ū(p′)

{
(M ′ +M)γµ − (p′ + p)µ

}
u(p) (D2)
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one obtains for the complete vector-vertex

ū(p′)Γµ
V u(p) ≡ ū(p′)

[
γµ +

i

2MκV σ
µν(p′ − p)ν

]
u(p)

= ū(p′)

[(
1 +

M ′ +M

2M κV

)
γµ − κV

2M (p′ + p)µ

]
u(p) =⇒

µ = 0 : +

√
E ′E

4M ′M

[(
1 +

M ′ +M

2M κV

)(
1 +

σ · p′ σ · p
E ′E

)

− κV
2M (E′ + E)

(
1− σ · p′ σ · p

E ′E

)]
, (D3a)

µ = i : +

√
E ′E

4M ′M

[(
1 +

M ′ +M

2M κV

){(
p′

E ′
+

p

E

)
+ i

(
σ × p′

E ′
− σ × p

E

)}

− κV
2M (p′ + p)

(
1− σ · p′ σ · p

E ′E

)]
. (D3b)

2. 1/M-expansion Γ-matrix elements

The exact transition from Dirac spinors to Pauli spinors is given in Appendix D 1. From the expressions in D 1,
keeping only terms up to order 1/M , and setting the scaling mass M = M , we find that the vertex operators in
Pauli-spinor space for the NNm vertices are given by

ū(p′)u(p) =

[(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

]
, (D4a)

ū(p′)γ5u(p) = − 1

2M
[σ ·(p′ − p)] = − 1

2M
[σ ·k] , (D4b)

ū(p′)γ0u(p) =

[(
1 +

p′ · p
4M2

)
+

i

4M2
p′ × p · σ

]
, (D4c)

ū(p′)γ u(p) =
1

2M
[(p′ + p) + iσ × (p′ − p)] , (D4d)

ū(p′)γ5γ
0u(p) = − 1

2M
[σ ·(p′ + p)] = − 1

M
[σ ·q] , (D4e)

ū(p′)γ5γ u(p) = −
[
σ +

1

4M2
(σ · p′) σ (σ · p)

]
= −

[(
1− p′ · p

4M2

)
σ

− i

4M2
p′ × p+

1

4M2
(σ · p p′ + σ · p′ p)

]
≈ −σ, , (D4f)

where we defined k = p′ − p, q = (p′ + p)/2, and κV = fV /gV . In passing we note that the inclusion of the
1/M2-terms is necessary in order to get spin-orbit potentials, like in the case of the OBE-potentials.

For the magnetic-coupling we use the Gordon decomposition

i ū(p′) σµν(p′ − p)νu(p) = ū(p′)

{
2Mγµ − (p′ + p)µ

}
u(p) (D5)

We get

i ū(p′) σµν(p′ − p)νu(p) =⇒

µ = 0 : −M
[(

1− p′ · p
4M2

)
+

(p′2 + p2)

2M2
− i

4M2
p′ × p · σ

]
, (D6a)

µ = i : −
[
1

2
(p′ + p)− i

2
σ × (p′ − p)

]
. (D6b)
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For the vector-vertex with direct and derivative coupling one has

ū(p′)Γµ
V u(p) ≡ ū(p′)

[
γµ +

i

2M
κV σ

µν(p′ − p)ν

]
u(p)

= ū(p′)
[
(1 + κV )γ

µ − κV
2M

(p′ + p)µ

]
u(p) =⇒

µ = 0 :

[
(1 + κV )

(
1 +

p′ · p
4M2

+
i

4M2
p′ × p · σ

)

−κV
Ep′ + Ep

2M

(
1− p′ · p

4M2
− i

4M2
p′ × p · σ

)]
≈

[
1 + (1 + 2κV )

{
p′ · p
4M2

+
i

4M2
p′ × p · σ

}
− κV

p′2 + p2

4M2

]
, (D7a)

µ = i :
1

M

[
1

2
(p′ + p) +

i

2
(1 + κV )σ × (p′ − p)

]
. (D7b)

In terms of the magnetic and electric couplings, gV = GM +GE and fV = −Ge, we have gV κV = −GE , gV (1+κV ) =
GM , gV (1 + 2κV ) = GM −GE . This gives

gV ū(p
′)Γµ

V u(p) ≡ gV ū(p
′)

[
γµ +

i

2M
κV σ

µν(p′ − p)ν

]
u(p)

µ = 0 :

[
(GM +GE) + (GM −GE)

{
p′ · p
4M2

+
i

4M2
p′ × p · σ

}
+GE

p′2 + p2

4M2

]
, (D8a)

µ = i :
1

M

[
1

2
(p′ + p)(GM +GE) +

i

2
GMσ × (p′ − p)

]
. (D8b)

3. Meson-vertices in Pauli-spinor space

The transition from Dirac spinors to Pauli spinors is reviewed in Appendix C of [38]. Following this reference and
keeping only terms up to order (1/M)2, we find that the vertex operators in Pauli-spinor space for the QQm vertices
are given by

ū(p′)Γ
(1)
P u(p) = −i fP

mπ

[
σ1 ·k± ω

2M
σ1 ·(p′ + p)

]
, (D9a)

ū(p′)Γ
(1)
V u(p) = gV

[{(
1 +

p′ · p
4M2

)
− i

4M2
p′ × p · σ

}
φ0V

− 1

2M

{
(p′ + p) + i(1 + κV )σ1×k

}
·φV

]
, (D9b)

ū(p′)Γ
(1)
A u(p) = gA

[
− 1

2M
{σ · (p′ + p)} φ0A

+

{
σ +

1

4M2
(σ · p′) σ (σ · p)

}
·φA

]
, (D9c)

ū(p′)Γ
(1)
S u(p) = gS

[(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

]
, (D9d)

where we defined k = p′ − p and κV = fV /gV . In the pseudovector vertex, the upper (lower) sign stands for creation
(absorption) of the pion at the vertex. In passing we note that the inclusion of the 1/M2-terms is necessary in order
to get spin-orbit potentials, like in the case of the OBE-potentials.
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For the complete vector-meson coupling to the quarks we have, writing ΓV = Γ
(m)
V + Γ

(e)
V ,

ū(p′)Γ
(m)
V u(p) = Gm,v

[{(
1 +

p′ · p
4M2

)
+

i

4M2
p′ × p · σ

}
φ0V

+
1

2M

{
(p′ + p) + iσ1×k

}
·φV

]
, (D10a)

ū(p′)Γ
(e)
V u(p) = Gm,e

[E ′ + E
M

{(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

}
φ0V

+
(p′ + p)

M

{(
1− p′ · p

4M2

)
− i

4M2
p′ × p · σ

}}
·φV

]

≈ Gm,e

[
2
M

M

{(
1 +

p′2 − p′ · p+ p2

4M2

)
− i

4M2
p′ × p · σ

}
φ0V +

(p′ + p)

M

}
·φV

]
(D10b)

The extra QQ axial-coupling has the vertex

ū(p′)Γ
(o)
A u(p) =

g′a
M2

[
1

M

{
(p′ · p− p2)σ · p′ + (p′ · p− p′2)σ · p

}
φ0A − 2ip′ × p ·φA

]
. (D11)

APPENDIX E: PAULI-SPINOR INVARIANTS FOR NUCLEON-NUCLEON POTENTIALS

Because of rotational invariance and parity conservation, the V-matrix, which is a 4 × 4-matrix in Pauli-spinor
space, can be expanded into the following set of in general 8 spinor invariants, see for example Ref. [10]. Introducing
[39]

q =
1

2
(p′ + p) , k = p′ − p , n = p× p′, (E1)

with, of course, n = q× k, we choose for the operators Pj in spin-space

P1 = 1, P2 = σ1 · σ2,

P3 = (σ1 · k)(σ2 · k)−
1

3
(σ1 · σ2)k

2,

P4 =
i

2
(σ1 + σ2) · n, P5 = (σ1 · n)(σ2 · n),

P6 =
i

2
(σ1 − σ2) · n,

P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q),
P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q). (E2)

Here we follow Ref. [40], where in contrast to Ref. [32], we have chosen P3 to be a purely ‘tensor-force’ operator. The
expansion in Pauli spinor-invariants reads

V(p′,p) =
8∑

j=1

Ṽj(p
′2,p2,p′ · p) Pj(p

′,p) . (E3)

APPENDIX F: EXTENDED-SOFT-CORE QQ-POTENTIALS IN MOMENTUM SPACE

The potential of the ESC-model contains the contributions from (i) One-boson-exchanges, (ii) Uncorrelated Two-
Pseudo-scalar exchange, and (iii) Meson-Pair-exchange. In this section we review the potentials and indicate the
changes with respect to earlier papers on the OBE- and ESC-models. The spin-1 meson-exchange is an important
ingredient for the baryon-baryon force. In the ESC08-model we treat the vector-mesons and the axial-vector mesons
according to the Proca- [41] and the B-field [42, 43] formalism respectively. For details, we refer to Appendix F.
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1. One-Boson-Exchange Interactions in Momentum Space

The OBE-potentials are the same as given in [32, 40], with the exception of (i) the zero in the scalar form factor,
and (ii) the axial-vector-meson potentials. Here, we review the OBE-potentials briefly, and give those potentials
which are not included in the above references. The local interaction Hamilton densities for the different couplings
are [44]

a) Pseudoscalar-meson exchange (JPC = 0−+)

HPV =
fPV

mπ+

ψ̄γµγ5ψ∂
µφP . (F1)

This is the pseudovector coupling, and the relation with the pseudoscalar coupling is gP = 2MB/mπ+ , where MB is
the nucleon or hyperon mass.

b) Vector-meson exchange (JPC = 1−−)

HV = gV ψ̄γµψφ
µ
V +

fV
4M ψ̄σµνψ(∂

µφνV − ∂νφµV ), (F2)

where σµν = i[γµ, γν ]/2, and the scaling mass M, will be taken to be the proton mass.

c) Axial-vector-meson exchange ( JPC = 1++, 1st kind):

HA = gA[ψ̄γµγ5ψ]φ
µ
A +

ifA
M [ψ̄γ5ψ] ∂µφ

µ
A. (F3)

In ESC04 the gA-coupling was included, but not the derivative fA-coupling [45]. Also, in ESC04 we used a local-tensor
approximation (LTA) for the (σ1 ·q)(σ2 ·q) operator. Here, we improve on that considerably by avoiding such rather
crude approximation. The details of our new treatment are given in Appendix E.

d) Axial-vector-meson exchange ( JPC = 1+−, 2nd kind):

HB =
ifB
mB

[ψ̄σµνγ5ψ] ∂νφ
µ
B . (F4)

In ESC04 this coupling was not included. Like for the axial-vector mesons of the 1st-kind we include an SU(3)-nonet
with members b1(1235), h1(1170), h1(1380). In the quark-model they are QQ̄(1P1)-states.

e) Scalar-meson exchange (JPC = 0++):

HS = gS [ψ̄ψ]φS +
fS
M [ψ̄γµψ] ∂

µφS , (F5)

which is the most general interaction. In ESC04 the possibility of the derivative fS-coupling was not considered.
By partial integration it is clear that the derivative vertex is proportional to the baryon mass difference and
therefore there can only be expected sizable effects for κ-exchange. However, it is easily seen that for exam-
ple for the ΛN ↔ ΣN it leads to a coupled-channel problem with a (non-real) hermitean potential. This can be
handled in principle, but complicates the solution and moreover this coupling is not needed. Therefore, we take fS = 0.

f) Pomeron-exchange (JPC = 0++): The vertices for this ‘diffractive’-exchange have the same Lorentz structure as
those for scalar-meson-exchange.

g) Odderon-exchange (JPC = 1−−):

HO = gO[ψ̄γµψ]φ
µ
O +

fO
4M [ψ̄σµνψ](∂

µφνO − ∂νφµO). (F6)

Since the gluons are flavorless, Odderon-exchange is treated as an SU(3)-singlet. Furthermore, since the Odderon
represents a Regge-trajectory with an intercept equal to that of the Pomeron, and is supposed not to contribute for
small k2, we include a factor k2/M2 in the coupling.
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Including form factors f(x′ − x) , the interaction hamiltonian densities are modified to

HX(x) =

∫
d3x′ f(x′ − x)HX(x′), (F7)

for X = P, V, A, and S (P = pseudo-scalar, V = vector, A = axial-vector, and S = scalar). The potentials in
momentum space are the same as for point interactions, except that the coupling constants are multiplied by the
Fourier transform of the form factors.
In the derivation of the Vi we employ the same approximations as in [32, 40], i.e.

1. We expand in 1/M : E(p) =
[
k2/4 + q2 +M2

] 1
2

≈ M + k2/8M + q2/2M and keep only terms up to first order in k2/M and q2/M . This except for the form
factors where the full k2-dependence is kept throughout the calculations. Notice that the gaussian form factors
suppress the high k2-contributions strongly.

2. In the meson propagators (−(p1 − p3)
2 +m2) ≈ (k2 +m2) .

3. When two different baryons are involved at a BBM -vertex their average mass is used in the potentials and
the non-zero component of the momentum transfer is accounted for by using an effective mass in the meson
propagator (for details see [40]).

Due to the approximations we get only a linear dependence on q2 for V1. In the following, separating the local and
the non-local parts, we write

Vi(k
2,q2) = Via(k

2) + Vib(k
2)(q2 +

1

4
k2), (F8)

where in principle i = 1, 8.
The OBE-potentials are now obtained in the standard way (see e.g. [32, 40]) by evaluating the BB-interaction in

Born-approximation. We write the potentials Vi of Eqs. (F8) in the form

Vi(k
2,q 2) =

∑

X

Ω
(X)
i (k 2) ·∆(X)(k2,m2,Λ2). (F9)

Furthermore for X = P, V

∆(X)(k2,m2,Λ2) = e−k2/Λ2

/
(
k2 +m2

)
, (F10)

and for X = S,A a zero in the form factor

∆(S)(k2,m2,Λ2) =
(
1− k2/U2

)
e−k2/Λ2

/
(
k2 +m2

)
, (F11)

and for X = D,O

∆(D)(k2,m2,Λ2) =
1

M2
e−k2/(4m2

P,O). (F12)

In the latter expression M is a universal scaling mass, which is again taken to be the proton mass. The mass
parameter mP controls the k2-dependence of the Pomeron-, f -, f ′-, A2-, and K

⋆⋆-potentials. Similarly, mO controls
the k2-dependence of the Odderon.

In the following we give the OBE-potentials in momentum-space for the hyperon-nucleon systems. From these those
for NN and YY can be deduced easily. We assign the particles 1 and 3 to be hyperons, and particles 2 and 4 to be
nucleons. Mass differences among the hyperons and among the nucleons will be neglected.

2. Non-strange Meson-exchange

For the non-strange mesons the mass differences at the vertices are neglected, we take at the Y YM - and the
NNM -vertex the average hyperon and the average nucleon mass respectively. This implies that we do not include
contributions to the Pauli-invariants P7 and P8. For vector-, and diffractive OBE-exchange we refer the reader to

Ref. [40], where the contributions to the different Ω
(X)
i ’s for baryon-baryon scattering are given in detail.
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(a) Pseudoscalar-meson exchange:

Ω
(P )
2a = −gp13gp24

(
k2

12MyMn

)
, Ω

(P )
3a = −gp13gp24

(
1

4MyMn

)
, (F13a)

Ω
(P )
2b = +gp13g

p
24

(
k2

24M2
yM

2
n

)
, Ω

(P )
3b = +gp13g

p
24

(
1

8M2
yM

2
n

)
, . (F13b)

PV-formulas:

Ω
(P )
2a = −fpv13 fpv24

(
k2

3m2
π+

)
, Ω

(P )
3a = −fpv13 fpv24

(
1

m2
π+

)
, (F13c)

Ω
(P )
2b = +fpv13 f

pv
24

(
k2

6m2
π+MyMn

)
, Ω

(P )
3b = +fpv13 f

pv
24

(
1

2m2
π+M2

yM
2
n

)
, . (F13d)

(b) Vector-meson exchange:

Ω
(V )
1a =

{
gv13g

v
24

(
1− k2

2MyMn

)
− gv13f

v
24

k2

4MMn
− fv13g

v
24

k2

4MMy

+ fv13f
v
24

k4

16M2MyMn

}
, Ω

(V )
1b = gv13g

v
24

(
3

2MyMn

)
,

Ω
(V )
2a = −2

3
k2 Ω

(V )
3a , Ω

(V )
2b = −2

3
k2 Ω

(V )
3b ,

Ω
(V )
3a =

{
(gv13 + fv13

My

M )(gv24 + fv24
Mn

M )− fv13f
v
24

k2

8M2

}
/(4MyMn),

Ω
(V )
3b = −(gv13 + fv13

My

M )(gv24 + fv24
Mn

M )/(8M2
yM

2
n),

Ω
(V )
4 = −

{
12gv13g

v
24 + 8(gv13f

v
24 + fv13g

v
24)

√
MyMn

M − fv13f
v
24

3k2

M2

}
/(8MyMn)

Ω
(V )
5 = −

{
gv13g

v
24 + 4(gv13f

v
24 + fv13g

v
24)

√
MyMn

M + 8fv13f
v
24

MyMn

M2

}
/(16M2

yM
2
n)

Ω
(V )
6 = −

{
(gv13g

v
24 + fv13f

v
24

k2

4M2
)
(M2

n −M2
y )

4M2
yM

2
n

− (gv13f
v
24 − fv13g

v
24)

1√
M2MyMn

}
.

(F14)

(c) Scalar-meson exchange:

Ω
(S)
1 = −gs13gs24

(
1 +

k2

4MyMn
− q2

2MyMn

)

Ω
(S)
1b = +gs13g

s
24

1

2MyMn
, Ω

(S)
4 = −gs13gs24

1

2MyMn

Ω
(S)
5 = gs13g

s
24

1

16M2
yM

2
n

, Ω
(S)
6 = −gs13gs24

(M2
n −M2

y )

4MyMn
. (F15)
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(d) Axial-vector-exchange JPC = 1++:

Ω
(A)
2a = −ga13ga24

[
1− 2k2

3MyMn

]
+

[(
gA13f

A
24

Mn

M + fA13g
A
24

My

M

)
− fA13f

A
24

k2

2M2

]
k2

6MyMn

Ω
(A)
2b = −ga13ga24

(
3

2MyMn

)

Ω
(A)
3 = −ga13ga24

[
1

4MyMn

]
+

[(
gA13f

A
24

Mn

M + fA13g
A
24

My

M

)
− fA13f

A
24

k2

2M2

]
1

2MyMn

Ω
(A)
4 = −ga13ga24

[
1

2MyMn

]
, Ω

(A)
6 = −ga13ga24

[
(M2

n −M2
y )

4M2
yM

2
n

]

Ω
(A)′

5 = −ga13ga24
[

2

MyMn

]
(F16)

Here, we used the B-field description with αr = 1, see Appendix F. The detailed treatment of the potential

proportional to P ′
5, i.e. with Ω

(A)′

5 , is given in [46], Appendix B.

(e) Axial-vector mesons with JPC = 1+−:

Ω
(B)
2a = +fB13f

B
24

(Mn +My)
2

m2
B

(
1− k2

4MyMn

)(
k2

12MyMn

)
, Ω

(B)
2b = +fB13f

B
24

(Mn +My)
2

m2
B

(
k2

8M2
yM

2
n

)

Ω
(B)
3a = +fB13f

B
24

(Mn +My)
2

m2
B

(
1− k2

4MyMn

)(
1

4MyMn

)
, Ω

(B)
3b = +fB13f

B
24

(Mn +My)
2

m2
B

(
3

8M2
yM

2
n

)
.

(F17)

(f) Diffractive-exchange (pomeron, f, f ′, A2):
The ΩD

i are the same as for scalar-meson-exchange Eq.(F15), but with ±gS13gS24 replaced by ∓gD13gD24, and except
for the zero in the form factor.

(g) Odderon-exchange: The ΩO
i are the same as for vector-meson-exchange Eq.(refeq2), but with gV13 → gO13, f

V
13 →

fO13 and similarly for the couplings with the 24-subscript.

As in Ref. [40] in the derivation of the expressions for Ω
(X)
i , given above, My and Mn denote the mean hyperon

and nucleon mass, respectively My = (M1 + M3)/2 and Mn = (M2 + M4)/2, and m denotes the mass of the
exchanged meson. Moreover, the approximation 1/M2

N + 1/M2
Y ≈ 2/MnMy, is used, which is rather good since the

mass differences between the baryons are not large.

3. One-Boson-Exchange Interactions in Configuration Space I

In configuration space the BB-interactions are described by potentials of the general form

V =

{
VC(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VSO(r)L · S+ VQ(r)Q12

+VASO(r)
1

2
(σ1 − σ2) · L− 1

2MyMn

(
∇

2V n.l.(r) + V n.l.(r)∇2

)}
· P, (F18a)

V n.l. =

{
ϕC(r) + ϕσ(r)σ1 · σ2 + ϕT (r)S12

}
· P, (F18b)

where for non-strange mesons P = 1, and

S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2), (F19a)

Q12 =
1

2

[
(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)

]
, (F19b)

φ(r) = φC(r) + φσ(r)σ1 · σ2, (F19c)
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For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [32, 40]. For the
details of the Fourier transform for the potentials with P ′

5, which occur in the case of the axial-vector mesons with
JPC = 1++, we refer to Appendix E.
(a) Pseudoscalar-meson-exchange:

VPS(r) =
m

4π

[
gp13g

p
24

m2

4MyMn

(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P, (F20a)

V n.l.
PS (r) =

m

4π

[
gp13g

p
24

m2

4MyMn

(
1

3
(σ1 · σ2) φ

1
C + S12φ

0
T

)]
P. (F20b)

(b) Vector-meson-exchange:

VV (r) =
m

4π

[{
gv13g

v
24

[
φ0C +

m2

2MyMn
φ1C

]

+

[
gv13f

v
24

m2

4MMn
+ fv13g

v
24

m2

4MMy

]
φ1C + fv13f

v
24

m4

16M2MyMn
φ2C

}

+
m2

6MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ1C + fv13f

v
24

m2

8M2
φ2C

}
(σ1 · σ2)

− m2

4MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ0T + fv13f

v
24

m2

8M2
φ1T

}
S12

− m2

MyMn

{[
3

2
gv13g

v
24 + (gv13f

v
24 + fv13g

v
24)

√
MyMn

M

]
φ0SO +

3

8
fv13f

v
24

m2

M2
φ1SO

}
L · S

+
m4

16M2
yM

2
n

{[
gv13g

v
24 + 4 (gv13f

v
24 + fv13g

v
24)

√
MyMn

M + 8fv13f
v
24

MyMn

M2

]}
·

× 3

(mr)2
φ0TQ12 −

m2

MyMn

{[(
gv13g

v
24 − fv13f

v
24

m2

M2

)
(M2

n −M2
y )

4MyMn

− (gv13f
v
24 − fv13g

v
24)

√
MyMn

M

]
φ0SO

}
· 1
2
(σ1 − σ2) · L

]
P, (F21a)

V n.l.
V (r) =

m

4π

[
3

2
gv13g

v
24 φ

0
C

+
m2

6MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ1C

}
(σ1 · σ2)

− m2

4MyMn

{[(
gv13 + fv13

My

M

)
·
(
gv24 + fv24

Mn

M

)]
φ0T

}
S12

]
P. (F21b)

Note: the non-local tensor and ”associated” spin-spin terms are not included in ESC08c-model.

(c) Scalar-meson-exchange:

VS(r) = −m

4π

[
gs13g

s
24

{[
φ0C − m2

4MyMn
φ1C

]
+

m2

2MyMn
φ0SO L · S+

m4

16M2
yM

2
n

·

× 3

(mr)2
φ0TQ12 +

m2

MyMn

[
(M2

n −M2
y )

4MyMn

]
φ0SO · 1

2
(σ1 − σ2) · L

+
1

4MyMn

(
∇

2φ0C + φ0C∇
2
)}]

P. (F22)
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(d) Axial-vector-meson exchange JPC = 1++:

VA(r) = −m

4π

[{
ga13g

a
24

(
φ0C +

2m2

3MyMn
φ1C

)
+

m2

6MyMn

(
ga13f

a
24

Mn

M + fa13g
a
24

My

M

)
φ1C

+fa13f
a
24

m4

12MyMnM2
φ2C

}
(σ1 · σ2)−

3

4MyMn
ga13g

a
24

(
∇

2φ0C + φ0C∇
2
)
(σ1 · σ2)

− m2

4MyMn

{[
ga13g

a
24 − 2

(
ga13f

a
24

Mn

M + fa13g
a
24

My

M

)]
φ0T − fa13f

a
24

m2

M2
φ1T

}
S12

+
m2

2MyMn
ga13g

a
24

{
φ0SO L · S+

m2

MyMn

[
(M2

n −M2
y )

4MyMn

]
φ0SO · 1

2
(σ1 − σ2) · L

}]
P. (F23)

(e) Axial-vector-meson exchange JPC = 1+−:

VB(r) = −m

4π

(Mn +My)
2

m2

[
fB13f

B
24

{
m2

12MyMn

(
φ1C +

m2

4MyMn
φ2C

)
(σ1 · σ2)

− m2

8MyMn

(
∇

2φ1C + φ1C∇
2
)
(σ1 · σ2) +

[
m2

4MyMn

]
φ0T S12

}]
P, (F24a)

V n.l.
B (r) = −m

4π

(Mn +My)
2

m2

[
fB13f

B
24

{
3m2

4MyMn

(
1

3
σ1 · σ2 φ

1
C + S12 φ

0
T

)}]
P. (F24b)

(f) Diffractive exchange:

VD(r) =
mP

4π

[
gD13g

D
24

4√
π

m2
P

M2
·
[{

1 +
m2

P

2MyMn
(3− 2m2

P r
2) +

m2
P

MyMn
L · S

+

(
m2

P

2MyMn

)2

Q12 +
m2

P

MyMn

[
(M2

n −M2
y )

4MyMn

]
· 1
2
(σ1 − σ2) · L

}
e−m2

P r2

+
1

4MyMn

(
∇

2e−m2
P r2 + e−m2

P r2
∇

2
)]]

P. (F25)
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(g) Odderon-exchange:

VO,C(r) = +
gO13g

O
24

4π

8√
π

m5
O

M4

[(
3− 2m2

Or
2
)

− m2
O

MyMn

(
15− 20m2

Or
2 + 4m4

Or
4
)]

exp(−m2
Or

2) , (F26a)

VO,n.l.(r) = −g
O
13g

O
24

4π

8√
π

m5
O

M4

3

4MyMn

{
∇

2
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
+

+
[
(3− 2m2

Or
2) exp(−m2

Or
2)
]
∇

2
}
, (F26b)

VO,σ(r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MyMn

[
15− 20m2

Or
2 + 4m4

Or
4
]
exp(−m2

Or
2) ·

×
(
1 + κO13

My

M

)(
1 + κO24

Mn

M

)
, (F26c)

VO,T (r) = −g
O
13g

O
24

4π

8

3
√
π

m5
O

M4

m2
O

MyMn
·m2

Or
2
[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
(
1 + κO13

My

M

)(
1 + κO24

Mn

M

)
, (F26d)

VO,SO(r) = −g
O
13g

O
24

4π

8√
π

m5
O

M4

m2
O

MyMn

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
3 +

(
κO13 + κO24

)
√
MyMn

M

}
, (F26e)

VO,Q(r) = +
gO13g

O
24

4π

2√
π

m5
O

M4

m4
O

M2
yM

2
n

[
7− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
1 + 4

(
κO13 + κO24

)
√
MyMn

M + 8κ13κ24
MyMn

M2

}
, (F26f)

VO,ASO(r) = −g
O
13g

O
24

4π

4√
π

m5
O

M4

m2
O

MyMn

[
5− 2m2

Or
2
]
exp(−m2

Or
2) ·

×
{
M2

n −M2
y

MyMn
− 4

(
κO24 − κO13

)
√
MyMn

M

}
. (F26g)

4. Strange Meson-exchange

The rules for hypercharge nonzero exchange have been given in e.g. Ref. [47]. The potentials for non-zero hy-
percharge exchange (K,K∗, κ,KA,KB) are obtained from the expressions given in the previous subsections for non-
strange mesons by taking care of the following points: (a) For strange meson exchange P = −PxPσ. (b) In the latter
case one has to replace both Mn and My by

√
MyMn, and reverse the sign of the antisymmetric spin orbit.

APPENDIX G: FOLDING AMPLITUDE SCALAR-EXCHANGE II

In this Appendix the lower vertex in Fig. 2 is worked out for the scalar-meson coupling. This in order to check the
signs in the vertex function in comparison with the upper vertex.
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The Dirac-spinor part of the scalar-meson QQ-vertex is

[ūi(q
′
i)ui(qi)] =

√
E′

i +m′
i

2m′
i

Ei +mi

2mi
· χ′†

i ·
[
1− σi · q′

i

E′
i +mi

σi · qi

Ei +mi

]

≈ χ′†
i

[
1− q′

i · qi

4m2
i

− i

4m2
i

σi · q′
i × qi

]
χi

= χ′†
i

[
1− S2

i − k2

16m2
i

− i

8m2
i

σi · Si × k

]
χi. (G1)

Here is used that for the CQM Ei ≈ mi. The performance of the Q-integral in (G1) gives

[ūi(q
′
i)ui(qi)] ⇒ χ′†

i

[
1−

(
1

4m2
iR

2
N

+
q2

36m2
i

)
+

k2

16m2
i

+
i

12m2
i

σi · q× k

]
χi (G2)

Summing over the quarks leads to the vertex

ΓCQM =
∑

i=1−3

[ūi(q
′
i)ui(qi)] ⇒ 3

[
1−

(
1

4m2
QR

2
N

+
q2

36m2
Q

)
+

k2

16m2
Q

+
i

36m2
Q

∑

i

σi · q× k

]
(G3)

The CQM replacement mQ ≈
√
M ′M/3 leads to

ΓCQM = 3

[(
1− 1

4m2
QR

2
N

)
− q2

4M ′M
+

9k2

16M ′M
+

i

4M ′M

∑

i

σN · q× k

]
, (G4)

where we used
∑

i σi = σN . This assumes that the spin of the nucleon is given by the total spin of the quarks [27].
Notice that the 1/R2

N -term in (G4) has the same sign to that of (4.8). Hence, these terms would not cancel in the
NN-potential in this simple treatment.

APPENDIX H: FOLDING TENSOR-EXCHANGE VERTEX

For the coupling of the tensor mesons (JPC = 2++) to the quarks, similar to that for the nucleons, we take

HfNN = −
[
i

2
ψ̄ (γµ∂ν + γν∂µ)ψ F1 − ψ̄∂µ∂νψ F2

]
· fµν , (H1)

where fµν = fνµ, i.e. symmetric, and

F1 =
GT,1

M , and F2 =
GT,2

M2
. (H2)

The Sach form factors are in terms of the GT,i defined as

GM = GT,1 , GE = GT,1 −
(t− 4M2)

4M2
GT,2 ≈ GT,1 +

(
1 +

k2

4M2

)
GT,2 . (H3)

The latter are defined for general J in e.g. Rijken, Phd. Thesis (Nijmegen, 1975). This is of importance when we
apply the constraints imposed by EXD, which relates the tensor-meson couplings to the vector-meson couplings. As
a matter of fact, EXD predicts that MF1 = FV,1 and MF2 = FV,2 for the pairs (A2, ρ) and (f(1270), ω).

Using the Gordon decomposition, the Pauli- couplings GT
i are related to the Dirac-couplings gT , fT by

gT = GT,1 +GT,2 , fT = −GT,2 , (H4)

and notice that

F1 +MF2 = gT /M , MF2 = −fT /M , (H5)
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which is strictly valid only for M =M .
For the QQf -vertices this gives the factors

ūi(ki
′)Γµν

T ui(ki) ∼ 1

4
ūi(k

′
i)

[(
(ki + k′i)

νγµ + (ki + k′i)
µγν

)
F1 + (ki + k′i)

µ(k + k′)ν F2

]
ui(ki)

∼ 1

2
(ki + k′i)

ν ūi(k
′
i)

[
γµF1 +

1

2
(k + k′)µ F2

]
ui(ki)

ūj(q
′
j)Γ

µν
T uj(qj) ∼ 1

4
ūj(q

′
j)

[(
(q + q′)ργσ + (qj + q′j)

σγρ
)
F ′
1 + (qj + q′j)

ρ(q + q′)σ F ′
2

]
uj(qj)

∼ 1

2
(qj + q′j)

σ ūj(q
′
j)

[
γρF ′

1 +
1

2
(qj + q′j)

ρ F ′
2

]
uj(qj) (H6)

Here the symbol ∼ indicates that factors coming from the normalization
√
(E +mQ)/2mQ of the Dirac-spinors have

been suppressed. (In the present case, as also for vector- and scalar-exchange, they cancel out when we pass to the
level of the Lippmann-Schwinger equation.) The second form of the vertices is equivalent to the first form due to the
symmetry of the tnesor field fµν . Notice that, apart from the factor (k′1 + k1)

ν , the ΓT matrix element in (H6) is
identical to that for the vector meson.
The propagator for the spin-2 mesons contains the projection operator

Pµν;ρσ(k) =
1

2
(PµρPνσ + PµσPνρ)−

1

3
PµνPρσ , (H7)

where Pµν(k) = −ηµν + kµkν/m
2, with k = k′i − ki = p′ − p = q − q′. On-mass-shell and equal quark masses the

kµkν-terms in the Pµν(k) do not contribute, so

Pµν;ρσ(k) ⇒
1

2
(ηµρηνσ + ηµσηνρ)−

1

3
ηµνηρσ . (H8)

Therefore, we find three contributions to the QQ-potential

VT,ij = V
(1)
T,ij + V

(2)
T,ij + V

(3)
T,ij , (H9)

where, denoting p := ki, p
′ := k′i and q := qj , q

′ := q′j ,

V
(1)
T,ij = −1

8
(p+ p′) · (q + q′) ūi(p

′)

[
γµ F1 +

1

2
(p+ p′)µ F2

]
ui(p) ·

× ūj(q
′)

[
γµ F

′
1 +

1

2
(q + q′)µ F

′
2

]
uj(q) ×

[
k2 +m2

]−1
,

V
(2)
T,ij = −1

8
ūi(p

′)

[
γ · (q + q′) F1 +

1

2
(p+ p′) · (q + q′) F2

]
ui(p) ·

× ūj(q
′)

[
γ · (p+ p′) F ′

1 +
1

2
(q + q′) · (p+ p′) F ′

2

]
uj(q) ×

[
k2 +m2

]−1
,

V
(3)
T,ij = +

1

48

[
4MF1 +

(
4M2 − t

)
F2

] [
4M ′F ′

1 +
(
4M ′2 − t

)
F ′
2

]
·

× [ūi(p
′)ui(p)] [ūj(q

′)uj(q)]×
[
k2 +m2

]−1
, (H10)

where for the third contribution we used the Dirac equation γ · p u(p) = mQu(p). This last contribution is very akin
to the scalar potential and the result can be written down almost immediately using the results of Phys.Rev. D 17
(1978).
Working out the contribution for µ = 0, similar to that for the scalar- and vector-meson one finds, with F ′

1,2 = F1,2
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and mi = mj = mQ,

V
(1)
T,ij ≈ −1

2
m2

i

[{
1 +

Q2
i − k2

4m2
i

+
i

8m2
i

σi ·Qi × k

}
F1

+

{{
1− Q2

1 − k2

16m2
i

+
i

8m2
i

σi ·Qi × k

}
miF2

]
·

×
[{

1 +
S2
j − k2

4m2
j

+
i

8m2
j

σj · Sj × k

}
F1

+

{{
1−

S2
j − k2

16m2
j

+
i

8m2
j

σj · Sj × k

}
mjF2

]

⇒ −1

2
m2

Q

[
(F1 +mQF2) + (F1 − 4mQF2)

Q2
i − k2

16m2
Q

]
·

×
[
(F1 +mQF2) + (F1 − 4mQF2)

S2
i − k2

16m2
Q

]

= −1

2
g2T

(
m2

Q

M2

)[
1 + (1 + 5fT /gT )

{
Q2

i − k2

16m2
Q

+
S2
i − k2

16m2
Q

}
+ . . .

]
, (H11)

where we neglect the quadratic terms of the product. Similarly, the second and third terms give

V
(2)
T,ij ≈ −1

2
g2T

(
m2

Q

M2

)[
1− Q2

i − k2

16m2
i

+
i

8m2
i

σi ·Qi × k

][
1−

S2
j − k2

16m2
j

− i

8m2
j

σj · Sj × k

]

⇒ −1

2
g2T

(
m2

Q

M2

)[
1− Q2

i − k2

16m2
Q

− S2
i − k2

16m2
Q

+ . . .

]
, (H12)

and

V
(3)
T,ij ≈ +

1

3
g2T

(
m2

Q

M2

)[
1− Q2

i − k2

16m2
Q

− S2
i − k2

16m2
Q

+ . . .

]
. (H13)

1. Cancellation (mQRN )−2 terms in NN-potential

In the case one sticks to the δ3(K − k the ”spurious” contributions to the central potentals can be (almost)
completely eliminated by the inclusion of the tensor mesons, which is illustrated below. From the vertices ΓCQM for
scalar, vector, and tensor exchange we get, with κT = fT /gT ,

VNN,sc ∼ −g2S
[(

1− 1

4m2
QR

2
N

)2

− q2 + k2/4

2M2
+ . . .

]
(k2 +m2

S)
−1, (H14a)

VNN,vc ∼ +g2V

[(
1 +

1

4m2
QR

2
N

)2

+
q2 + k2/4

2M2
+ . . .

]
(k2 +m2

V )
−1, (H14b)

VNN,tn ∼ −2

3
g2T

[(
1 +

(1 + 3κT /2)

4m2
QR

2
N

)
+ (1 + 3κT /2)

q2 + k2/4

4M2
+ . . .

]
(k2 +m2

T )
−1, (H14c)

where the couplings gS , gV , and gT are now NN coupling constants. Neglecting the R−4
N terms, the volume integral

of the ”spurious” 1/R2
N terms is proportional to

IV ∼
[
g2S
m2

S

+
g2V
m2

V

− 1

3
(1 + 3κT /2)

g2T
m2

T

]
(H15)

For mS = mV = mT /
√
3, and κT ≈ κV ≈ 3.7, the vanishing of this part of IV implies g2T ≈ (2/3)(g2S + g2V ). From

QPC-mechanism gS ≈ gV := ḡ leading to gt ≈ (
√

2/3)ḡ ≈ q̄. In the approximation of ”contact-approximation this
shows that the potentials from the ”spurious” terms can be made to vanish.
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