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In these notes, while focussing on the meson-nucleon vertices, we give a derivation of the nucleon-
nucleon (NN) potentials from meson-exchange between the quarks. To establish such a relation
the quark-quark-meson (QQM) interactions are properly defined. Hitherto, the coefficients in the
Pauli-spinor expansion of the meson-nucleon-nucleon (NNM) vertices are equated with those of the
QQM-vertices. In these notes we employ the description of the nucleon with Dirac-spinors in the
SU(6) semi-relativistic ”constituent” quark-model (CQM) as formulated by LeYouanc, et al. It
appears that the ”constituent” quark model, i.e. mg = My /3, is able to produce the same ratio’s
for the central-, spin-spin-, tensor-, spin-orbit-, and quadratic-spin-orbit Pauli-invariants as in the
phenomenological NNM-vertices. In order to achieve this, the scalar-, magnetic-vector, and axial-
vector interactions require, besides the standard ones, an extra coupling to the quarks without the
introduction of new parameters. In the case of the axial-vector mesons an extra coupling to the
quarks is necessary, which is related to the quark orbital-angular momentum contribution to the
nucleon spin. Furthermore, a momentum correlation between the quark interacting with the meson
and the remaining quark pair, and a gaussian QQM form factor, are necessary, to avoid ”spurious”
terms.

From these results we have a formulation of the QQ-interactions which are directly related to the
nucleon-nucleon extended-soft-core (ESC) interactions. This could be utilized in e.g. a study of

quark matter.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.4+y

I. INTRODUCTION

The main motivation to work out QQM-coupling in
the context of the constituent quark-model (CQM) is
that in the extended-softcore (ESC) baryon-baryon in-
teractions, see i.e. [1-3], the quark-pair creation (QPC)
model is very succesful to explain the meson-baryon-
baryon (MBB) coupling constants.

A major succes of the non-relativistic (additive) quark
model (CQM) has been the description of the magnetic
moments of the baryons with mg = My/3.

Also in these notes the description of the nucleon with
Dirac-spinors in the SU(6) semi-relativistic ” constituent”
quark-model (CQM) as formulated by LeYouanc, et al
[4] is employed. In Fig. 1 the QPC-mechanism for NNM-
coupling is illustrated. From the subfigure (a) it is clear
that the basis is the assumption that the mesons couple
in first instance to the quarks. Then, with folding this
leads to the NNM-coupling illustrated in subfigure (b).
In this paper we show that the quark-quark-meson QQM)
interaction can be choosen such that in the folding with
the 3-quark nucleon wave function the correct 1/vM’'M
expansion of the NN-potentials can be obtained.

In QCD two non-perturbative effects occur: con-
finement and chiral symmetry breaking. The
SU(3)LxSU(3)g chiral symmetry is spontaneously bro-
ken to an SU(3), symmetry at some scale A,gp ~ 1
GeV [5-7]. Below this scale there is an octet of pseu-
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doscalar Nambu-Goldstone-bosons: (7, K,7). The con-
finement scale Agep =~ 100 — 330 MeV. The complex
QCD-vacuum structure can be described as an BPST
instanton/anti-instanton liquid giving the valence quarks
a dynamical or constituent effective mass ~ My /3 [8, 9].
This corresponds to the CQM [7], and explains the suc-
cess of the program proposed in this paper.

In these notes we consider the nucleon-nucleon (NN)
potential from meson-exchange between the (single)
quarks in impulse-approximation, and folding these with
the nucleon quark wave functions. (In the CQM the 3-
quark model wave functions for the SU(3) octet baryons
are, with respect to flavor and color, properly antisym-
metrized gaussian quark wave functions reflecting the
ground state of an effective harmonic oscillator binding
force.)

We employ the description of the nucleon with Dirac-

spinors in the SU(6)-version of the CQM, see [4]. In
this study we evaluate the NN-meson vertices and an-
alyze whether the expansion of these vertices in Pauli-
invariants is in accordance with the similar expansion
used in NN-models using meson exchange at the nucleon
level.
For elastic scattering with the (external) nucleons on the
mass shell, Lorentz invariance and parity conservation
imply that there are 6 independent amplitudes [10], i.e.
the NN-amplitude can be expressed in terms of the free
nucleon Dirac-spinors as follows

M =" Mi(s,t) [an; (ph)ing (ph) Oi un, (p1) un, (p2)]
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where a complete set independent (t-channel) Lorentz-invariants can be choosen as
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where P = p; + p}, K = ps + p). We note that
0O; = I'y; ® I';; and that in the meson-exchange
contribution to the NN-amplitude the NNM-vertex is of
the form @(p’, s')T'u(p, s). The Lorentz structure of the

key to the procedure followed in these notes to define
the QQM-vertices.

Conjecture : The phenomenological expansion of the

NN-amplitude and NNM-vertices given above is general
and independent of the internal structure of the nucleon.
Therefore, the QQM-exchange vertices folded with the
nucleon quark wave functions has to reproduce at the

vertices in powers of 1/v/M’M should not depend on
the internal structure of the nucleons. So, the ratio’s of
the central-, spin-spin-, tensor-, and spin-orbit operators
should be independent internal structure of the nucleon.

nucleon level the same structure. This observation is the
At the nucleon level, in Pauli-spinor space, the vertices have the general structure:
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where O;(p’, p, o) denotes the set of operators 1, o, p, p’, o-p, o-p’, o-p’ X p, etc.
The question is how this structure is reproduced using the coupling of the mesons to the quarks directly, i.e.

whether for the constants c(cl,)QM = cg\l,)N. In fact, we want to demonstrate that for the CQM, i.e. mg = vVM'M /3,

the ratio’s cg)Q ! cg\l,)N are constant for each type of meson. Then, by scaling the expansion coffients can be made equal.
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FIG. 1: Meson-nucleon-nucleon coupling.

Therefore, we expect these ratio’s are essentially the
same as for the expansion of the NNM-vertices with
Pauli-spinor invariants.

We found this to be possible for most of the
terms, up to order 1/M’'M, in the CQM where
mg = Mny/3, for all couplings: pseudo-scalar
(P), scalar (S), vector (V) and axial-vector (A)
coupling.

In the scalar, vector, and axial-vector vertex there
appear "spurious” terms oc 1/R%;. This is only the case
for the central and spin term of the scalar/vector and
azial-vector respectively. In view of the ”conjecture”,
these terms should not be present, and must be elim-

inated. We demonstrate that such 7spurious” terms
can be eliminated by introducing a momentum exchange
between the “active” quark, i.e. the quark line with the
meson vertex, and the two ”spectator” quarks. (In the
simplest model without such a momentum exchange, this
amounts to the introduction of a gaussian momentum
distribtion at the QQM-vertez.) .

In this study we evaluate the QQM vertices and an-
alyze whether the expansion of these vertices in Pauli-
invariants matches with the similar expansion used in
NN-models using meson exchange at the nucleon level.
To accomplish this we add the following vertices at the
quark level: (i) for the vector-mesons a zero in the scalar



derivative part, and (ii) in the case of the axial-vector
coupling an additional pseudoscalar derivative interac-
tion. To work out these ideas concretely, we use the de-
scription of the nucleon with Dirac-spinors in the SU(6)-
version of the CQM, see [4]. In the CQM the rational
for this is that since My = 3mg the quark kinetic and
potential energies cancel each other, which means that
for the quark energies F; ~ m,.

As a final note: The QQM- and NNM-vertices are for
potentials V in the Lippmann-Schwinger equation. For
the relation with the (kinematically relativistic) Thomp-
son, Kadyshevsky etc. equations, see Ref. [11].

The content of these notes is as follows. In section IT
the QCD basis of the CQM based on the instanton-
model of the QCD-vacuum is briefly reviewed. In sec-
tion III we review the quark wave functions and the
overlap integrals. In section IV-VII we treat scalar-
exchange, pseudo-scalar-, vector-, and axial-vector-
meson exchange. In section IV C a method is given to
remove “spurious” terms from the NN-vertices I'cgar.
To complete this it is necessary to use a (gaussian) QQM
cut-off. In section VIII we formulate our conclusions. In
Appendix A the overlap integral for meson exchange is
worked out. Similarly in Appendix B, where a momen-
tum correlation is included between the quark with the
meson-vertex and the remaining quark-pair, henceforth
referred to as the ”active” quark and ”spectator” quarks
respectively. It is shown that with such arrangement the
”spurious” terms are eliminated, and can explain the pro-
cedure introduced in section IV C. In Appendix C we
discuss the quark summation. In Appendix E we list
the Pauli-spinor invariants for the nucleon-nucleon po-
tentials. In Appendix F the extended-soft-core (ESC)
quark-quark (QQ) OBE-interactions in momentum and
configuration space are given for reference of the ver-
tex structures with Pauli-invariants. In Appendix G the
lower vertex for the scalar-meson QQ-coupling is worked
out for comparison with the upper vertex. In Appendix H
tensor-meson exchange is analyzed and compared with
scalar- and vector-meson exchange.

II. CONSTITUENT QUARKS AND
INSTANTONS

The spectra of the nucleons, A resonances and the hy-
perons A, ¥, = are descibed in detail by the Glozman-
Riska model [12]. This is a modern version of the
constituent quark model (CQM) [13] based on the
Nambu-Goldstone spontaneous chiral-symmetry break-
ing (SCSB) with quarks interacting by the exchange of
the SU(3) r octet of pseudoscalar mesons [12]. The pseu-
doscalar octet are the Goldstone bosons associated with
the hidden (approximate) chiral symmetry of QCD. The
confining potential is choosen to be harmonic, as is rather
common in constituent quark models. This is in line with
the harmonic wave functions we used in the derivation of
the connection between the meson-baryon and meson-

quark couplings [14]. The 7', which is dominantly an
SU(3) singlet, decouples from the original pseudoscalar
nonet because of the Uy(1) anomaly [15, 16]. According
to the two-scale picture of Manohar and Georgi [7] the
effective degrees for the 3-flavor QCD at distances be-
yond that of SCSB (A;éB ~ 0.2 — 0.3 fm), but within

that of the confinement scale Ao, =~ 1 fm, should
be the constituent quarks and chiral meson fields. The
two non-perturbative effects in QCD are confinement
and chiral symmetry breaking. The SU(3),®@SU(3)g
chiral symmetry is sponteneously broken to an SU(3),
symmetry at a scale Aygsp =~ 1 GeV. The confinement
scale is Agcp ~ 100 — 300 MeV, which roughly corre-
sponds to the baryon radius ~ 1 fm. Due to the com-
plex structure of the QCD vacuum, which can be under-
stood as a liquid of BPST instantons and anti-instantons
[8, 9, 17, 18], the valence quarks acquire a dynamical
or constituent mass [7, 9, 15, 18, 19]. The interaction
between the instanton and the anti-instanton is a dipole-
interaction [20], similar to ordinary molecules: weak at-
traction at large distances and strong repulsion at small
ones. With the empirical value of the gluon condensate
[21] as input the instanton density and radius become
20] 7. = 8-107* GeV™*, and p. = (600 MeV)~! ~
0.3 fm respectively. Also, with these parameters the
non-perturbative vacuum expectation value for the quark
fields is (vac|lyp|vac) =~ —10=2 GeV? and the quark ef-
fective mass ~ 200 MeV, which is much larger than the
almost massless (u,d) ”"current quarks”. In the calcu-
lation of light quarks in the instanton vacuum [9] the
effective quark mass mg(p = 0) = 345 MeV was calcu-
lated, which is remarkably close to the constituent mass
My /3.

Very notable is the role of the instantons for the
light meson spectrum. They give a non-perturbative
gluonic interaction between quarks in QCD. For exam-
ple the instanton-induced interaction, as proposed by 't
Hooft [16], generates at low momenta the constituent
quark mass [9], i.e. breaks chiral symmetry. This in-
teraction supplies a strong attractive attraction in the
pseudoscalar-isovector quark-antiquark system - pions -,
which makes them anomalously light, with zero mass in
the chiral limit. This is the mechanism by which the
pions, being quark-antiquark bound states, appear as
Nambu-Goldstone bosons of the SCSB symmetry. This
strongly attractive interaction is absent in vector mesons
[22, 23], making the masses of the vector mesons ~ 2mg
in accordance with m, ~ my, =~ 2mg. Since a, ~ 0.3
the one-gluon-exchage (OGE) is weak, and therefore the
m — p mass splitting is not due to the perturbative color-
magnetic spin-spin interaction between the quark and an-
tiquark [23]. Besides explaining the m— p mass difference,
the 't Hooft interaction also in a natural way solves the
Ua(1) problem, and gives the reason why the 7’ is heavy.

The 't Hooft four-fermion instanton mediated interac-
tion for the light flavor doublet ¢ = (u,d), in the form of



a generalized Nambu-Jona-Lasinio Lagrangian [6], is
Lr=gr (YY) = (Wy1Y) — (1) + @751/))2](2- )

Here, the strength of the interaction g; and the ultra-
violet cut-off scale 1/r( are related in the instanton lig-
uid model [24]. In [25] Glozman and Varga show that
the t-channel iteration of the instanton interaction (2.1)
leads to isoscalar and isovector pseudoscalar and scalar
exchange quark-quark potentials. Since the latter poten-
tials are already included in our model, the four-fermion
instanton interaction does not lead to extra pseudoscalar-
and scalar-meson exchange potentials. So, only the
instanton-exchange potential is new in our model.

In this paper we extend the meson-exchange between
quarks by proposing to include, besides the pseudoscalar,
all meson nonets: vector, axial-vector, scalar etc. Since
all these meson nonets can be considered as quark-
antiquark bound states, there is no reason to exclude any
of these mesons from the quark-quark interactions. Fur-
thermore, our preferred value for the constituent quark

mass has a solid basis in the instanton-liquid model of
the QCD vacuum.

III. QUARK WAVE FUNCTIONS OF THE NUCLEONS

A. Kinematics and Dirac spinors

We consider a nuclon having a momentum P and label the 3 quarks by a,b, c. The quark momenta are denoted by

PasPbs Pe-

The spatial part of the composite nucleon wave funtion is taken to be [4]
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The normalization constant in (3.1) we denote by N' = (V3R%, /)

i<j

3/2

In the constituent quark model (CQM) the nucleon (baryon) mass is given by the sum of quark masses, i.e. My =
3mg, the quark energies saisfy Eqg = mq+Tg+Ug, the kinetic(Tp) and potential (Ug) energies cancel approximately
Tg + Ug = 0. Therefore, the constituent quark spinors are [4]

Ei +m; 1 1
UEO) (pz) =\ "o oi'Pi X Xi~ | oipi | @ Xiy
2mi E;+m; 2m;

where pj,; denotes the three-momentum of the quarks in e.g. the CM-system.

(3.2)

B. Overlap Integrals, Vertex functions

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3.

In Fig. 2 we have given the momenta for the initial and final nucleons, and the assigned momenta of the quarks.
From momentum conservation we have

pr=ki+ko+ks , pp=q+q+q3,

pl=ki+ky+ K, ph=dqi+d+as, (3.3)
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FIG. 2: External and internal momenta for meson-exchange

For meson-exchange with p; — pj = p}, — p2 = k, we have for the matrix-element of the potential

(p105|V |p1p2)

X

X

X
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i J

i=1,3

j=1,3
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In (3.4) the 4’s denote the vertex functions. Using the gaussian wave function of equation (3.1), the overlap integral
in Eq. (3.4) can be evaluated in a straightforward manner. For details see Appendix A.
For doing later integrals with explicit terms for the QQ-potential, it is useful to write the expression (A12) with

separated vertex factors:

3
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where the QQ-potential is

Voo(Q,Sik,q) = 2
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with the momenta, see Appendix A, defined as

1 1
1 1
q)==(S-k) , q1==(S+k).
2 2
More explicitly for spin-J mesons ( m,n =1, ...., 2J+1) the numerator in (3.6 stands for

v (ks kL k) v (gl a) — v (ks kS k) Py oy )Y (ks at, a1) -

The basic d>Q and d>S integrals are
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Ha) = [@Q oo |- {] (@ - Ja-) }] = 5 Vi @) = +5 @ (@)
2
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R2 (9 4 2 \?
I j(q) = /de QiQ; exp [—?N {Z (Q2 - §Q'Q> H = (%) ViV, Iy(q)
= [W(Si,j +g Qin:| Io(q),
Jijla) =
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The meson-nucleon vertex I' is, analogously with V, given by
3/2 3/2
1 27 R
2
PTlp1) = N (g) (R?v> exp [—
3 _ﬁ 9 2_ = -k G (p —p —k
x [ d°Q exp Q" —2a-Q) | v(Qk,aq) ¢ (p) —p1 — k)
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Here the last expression shows that the vertex has a Gaussian local form factor.
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IV. SCALAR-EXCHANGE

The coupling of the scalar meson to the quarks we assume to be of the form

Hs = (19 — g20(0p) /(20%)] 0.

(3.7a)

(3.7b)

(3.9a)

(3.9b)

(3.10a)

(3.10b)

(3.11a)

(3.11b)

(3.12)
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FIG. 3: Vpq Scalar-exchange in the CM-frame

The corresponding vertex is
Toq = q(p') [91+ g2 (M? —p' - p) /u?] uq(p) (4.2)
Now,
M?*—p - p=M?-FEE+p  p~—-k?/2. (4.3)
Taking a common form factor for the two couplings, (4.3) implies a zero in the potential

§ ? s K 2 2 g1
0= = g — — , k*(0) = =, 4.4
(91 2M292) 91 Mgglgz (0) =p 9o (4.4)

which marks an approximate simple zero. In ESC-models g; = go and k?(0) = m2, so = my ~ 2mg.

On the quark level, the inclusion of the zero implies a change in the coefficients of the k%-term which are of order
1/M?2.

A. Folding Amplitude Scalar-exchange

The Dirac-spinor part of the scalar-meson QQ-vertex is

[ (ki) (k)]

EZ—I—m; Ei-l-mi It 1 o'i'k/i O'Zkl
2m/, 2m; Xi E!+m; E; +m;

Q

it {1_1{;.19- i alwkgxki] y

i 4m? _4mf
2 2 -
1t Qi_k ?
Xz{ 16m2 +8m220 QX]X (4.5)

Here is used that for the CQM FE; = m;. The performance of the Q-integral in (4.5) gives

0] = 1= (o + g ) + i+ o
i(k's)ui(k; Xi 4m2R%, " 36m2) ' 16m? ' 12m2

;- QX k} Xi (4.6)

Summing over the quarks leads to the vertex

1 q® k2 i
com ;3 [ (ks i (ke [ <4m2QR§V + 36m2Q> T 16m3 " 36m3 ;U ax ] (47)

The CQM replacement mg ~ v M’M /3 leads to

1 q? 9k> 1
Teon = 3|[1- - qxk 4.8
cam K 4ng§V> i T iearar T Zi:”N 4 ] ’ (48)



where we used ), 0; = o. This assumes that the spin of the nucleon is given by the total spin of the quarks [27]
This result should be compared with the [ . .]—part of the vertex computed at the nucleon-level, A% = (P’ —P)? = k2,

- E' + M’ \/E+M.
p— , f—
FNN = ’LL(P)U(P) \/ oM M
VA pp ~ _ip’xp-o
X (E'+ MY(E+M) (B +MYE+M) X
E' + M’ \/E+M 't q> A? i
1- A 4.
\/ oM oM X a0 T 1earar T oA o x (4.92)
2 2 .
q A i
= {1_4M’M+16M’M+4M’MqXA.U}' (4.9b)

The last expression for I' v is the correspondence of I'cgas in (4.8). This because in the transition from the potential
V to the Lippmann-Schwinger potential V there occurs a factor (E' + E)/(M' + M) [11]. Now,

E+E _  q?+A%4 (E'+M)(E+M) N17q2+A2/4
M +M "~ oM'M AM' M - oM'M

(4.10)
showing that the product is 1 + O((M'M)~2 ~ 1.
To bring I'cga and I' vy in agreement the following:

a. The factor 3 is accounted for by scaling the quark-meson coupling, i.e. gégs) = g% /3.

b. The "spurious” term 1/(4mg,/R%;) = 9/(4M'M R%;) can be removed by introducing a gausslike distribution for
K, see subsection IV C.

c. Compared to I'yny the quark vertex I'cgar has an extra 8k2/(16M'M)—term. This term can be cancelled by
tuning the gs-coupling. For that purpose we set

9 B 8 Jo1 =

Premm ~ M iemra T

—8/9~ —gi. (4.11)

With these remarks it is shown that, although not identical, the QQ- and NN-vertex are (approximately) equivalent
as far as the NN-potential is concerned. It also shows that the combination of scalar and vector exchange are
necessary to bring this about.

This is consistent with the remarks after Eq. (4.4), i.e. go = ¢1 and p = 2m,;.

B. Scalar Form-factor Zero in QQ- and NN-vertex

Furthermore we remark that in the ESC-models we use a simple (first-order) zero for the scalar-meson exchange
potential. Taking a zero at the vertex, as suggested by the analysis here, would imply a double zero. To match the
practice in the ESC-models one can use the zero at the vertex partly for the proper generation of the k®-term and
partly for the simple zero in the potential, i.e. we expand

<1 - Qk—;)g - <1 - 5—22) +O(k*/UY).

Including the ESC-zero, the scalar-vertex becomes
k2 k2
I's = a(p 1—— | —go——
s u(p’) lgl ( 2U§) 92 3m ] u(p)

gy [1 - (ﬁ + %) kﬂ u(p), (412

Q
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Q



which implies a zero in the scalar-quark coupling at

With Ug = 3My /3 and mg = My /3 we get Ug =~ 3—72U5 ~ Ug/2.

Considering scalar-exchange between a quark-line and a nucleon-line we have, up to terms of order k*,

1 1 Ug + U3
o Ty ~ 1-— K=1- -2k
QN <2U2 - 2U2> <2U5U§

-1

_ k? 2 2 U§
= 17U5+s’ U, g = 2U2 1+U2
We have
Ug' 2 2

where we used that Us = 750 MeV =~ (3/4) My, and mq = My /3. This means that Ug,s ~ Us//3.

(4.13)

Although this method can be chosen for the scalar- and and azial-meson coupling, it is not available for the vector-

mesons. Therefore, the use of an extra coupling to match the k? terms is preferable.

C. Removal spurious central term

Instead of the 63(K — k)-function we introduce a distribution of the momentum K exchange. Such a distribution
might be caused by momentum exchange between the quark-line with the meson-vertex and the other two quarks
in the nucleon, see Appendix B for an explicit demonstration. To produce a I'cgas without a "spurious” term, we

consider the integrals

Ki(K?) = Nl/d3K exp [~aK? + K k] e =N <a>3/geXp {_ (7_%>k ]

2
K> (k) = N1/d3K K2 exp [—aK? + K - k| ¢ 7% = {30[1 n 4672
107

5 kﬂ K1 (k?),

K3i(k?) = Nl/d3K K; exp [-aK® + BK - K] e = (8/20a) k; K;(k2),

and require

4

(i) K1(k?) = exp (—%R?\,E) . (i1) Ky(k?) = <R2 + —k2) Kik?) , K;,:(k?) =k; K(k?).

These conditions give Ny = (mw/ a)"%/% and the equations

B 1 3 .

1
_ _ 1p2 i _ 1p2
a) Y= o= gl b) 5 1 Bv o)

It follows that a = (3/8)R%,, 8 = (3/4)R3, and v = (13/24) R%;, and

— =1.
2«

2 1
K (k*) = N, | &*°K exp{—%{%KQ—gK k+ 431{2}]

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Using this expression the meson-nucleon vertex (3.12) becomes !

IN32 /9 \3/2 /gp2 \3/2 R
PLT(p1) = N? (g) (E) ( 87rN) exp [—TN (q2+k2)]

from[ 2 - o))

x [ d®K ex —ﬁ 9K2—21<.K k? .
Pl 4( +k?)

x7(Q,K;k,q) 6@ (p} —p1 — k). (4.20)
With this result we obtain
2 2 -
q k )
r — 3[1 - > o;-qxk|. 4.21
coM [ 36m2 + 16m, + 36m3 &= 7" 4 ” } (4.21)

With this method we reproduce the central and spin-orbit term in Eqn. (4.7) without the 1/(4m?R%) term!

V. PSEUDOSCALAR-EXCHANGE

We determine the Q@ ps-exchange amplitude. Below, again i=1 is understood.
For the upper vertex in Fig. 3, line ’1’, we evaluate following spinor matrix-element

E;+m; Ei+m; |:0'i'ki O'i'k/i:|
: : Xi

[ai (k/z)%ul(kz)] = \/

It o;-k
Xi [Qm} X (5.1)

again because in the CQM FE; &~ m;. Summing over the quarks gives

~ o-k
Togus = Y [W(K)ysui(ki)] = =3x% [Qm_] XN (5.2)
i=1-3 v

It is clear that this vertex is proportional to that for the OBE-coupling of the pseudoscalar meson. So, also for
m; = VM’'M/3, i.e. the so-called ”constituent” quarks, I'g¢g in equivalent with 'y .
From g, = (qu/mﬂ)fp'lH gp = (2Mn/mz) fpv, and 9p = gp/3 we find

1 My

fpv = gm—q fPVv

which for m, = My /3 the relation f,, = fpy.

1 Comparing with (3.12) shows the K-distribution change §(3) (K — k) — (7e)~3/2 exp [— (K — k)? /e] , e=8/(3R%).
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VI. FOLDING VECTOR-EXCHANGE VERTEX

The coupling of the vector mesons (J©'¢ = 177) to the quarks is given by the interaction Hamiltonian

Hvaq = g0 (9770) Vit L2 (6 0™ 4) (@V: — Vi)
= | (") Fr + % <77/1 o 1/1> FQ,U:| Vs (6.1)
where a é—L b= a-0"b—0"a-b. The relation between the different coupling constants is F} , = g, + %fv , Foy = —JJ:A—“,
and reversely g, = F , + mgFay, fo = —M Fa..
A. Direct-coupling
1. I‘%CQ a-vertex: The QQ-meson vertices are
3] = \/ P Sl [ e ]
~ ] {1+%+éark;xki] Yi
= x {1 + 1?6m;2 - &;?m -Q; X k] Xi- (6.2)

Notice that the 1/m? terms are the same as for scalar-exchange apart from the sign. Therefore, from the expression
(4.8) we now have

TR N D W) S on-axk (6.3)
4B Ry ) AMM T 16MM  adra A= TN TR '

The direct coupling to the nucleons gives

F(l),CQM =3

_ E+M E+M o o-
F?,NN = [uN(p”yOuN(p)] :\/ NG [ i p p }

oM’ oM W B M E+ M
~ \/E/2L]'W EJWM X [1 * 411)\/4./11\)4 " 4]\ij" P X p} XN
- [EET R, [1 GERAL k] .
- [1 N q24X4/Az\2/4 - 4Mi’MU 4 k} : (6.4)

To bring I‘%CQ o and F?, N in agreement the following:
a. The factor 3 is accounted for by scaling the quark-meson coupling, i.e. g(QV) =g /3.
b. The term 1/(4mg /R%;) = 9/(4M'MR%;) =~ 0.1 for Ry ~ 1 fm, giving a 10% amplified of the central term..

c. Compared to T} the quark vertex T'{), has an extra —8k?/(16M'M)-term. This term can be cancelled by
introducing an extra QQV-interaction, similar to (4.1),

AMY = fi, [B@*e)2e’)] Vi, (65)
and determine for p = 0 the coupling from the condition
9 8

fogarar = Proggapar Sl Fo =479 (66)
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Terms for 4 = m are of order ~ 1/M?3 which we neglect. With these remarks it is shown that, as in the scalar case,
the QQ- and NN-vertex are (approximately) equivalent as far as the NN-potential is concerned. It also shows that the
combination of scalar and vector exchange are necessary to bring this about. With the inclusion of the g}-contribution,
the QQV-vertex becomes

0
Fl,CQM =3

1 Q@ — k?/4 i
1 - qxk 6.7
N <4ng§V T AM'M ;"N axx (6.7)

So, the g2-, the k?-, and spin-orbit term are the same as for the coupling of the vector meson on the nucleon level.

The central term in T'% has an extra 9/[4M’' M R%]-term, which is a slight violation of the Idea/conjecture as
formulated in the Introduction, similar to the scalar-meson case. As demonstrated in subsection IV C such ”spurious”
terms can be eliminated by introducing a K-distribution. Henceforth, we omit such terms.

2. I'y go-vertex: The QQ-meson vertices are

\/E§+m§ Ei+m; /T-[U“Ti-ki oi-ki o

a; (k') yiui(ki)] = ; i
~ | Qi % k ,
Xi |:2m7,' + o, (@i % )} Xi
|4 "o K| v 6.8
= X; [3m1 + 2, (0'1 X ):| Xi ( . )
Summing over the quarks leads to
_ _ SN q i
Ticomw = 2:2123 [ui(k/i)’)/iui(ki)] =x; - {E + o, (on % k)] Xi (6.9a)
=32y (pyxK) (6.9b)
M 2M N ' '
The direct coupling to the nucleons gives
T = |un(p')yu ()}—\/E/JFM/EJFM it [oo-p  o-po
1IL,NN = NP )Yun(P)| = M’ IM XN E+M E + M’ XN

Q

E+M E+M ]
\/ + M ’T.{q+l(axk)} N

oM’ oM N\ T am
i

Again, we see that for m; = v M'M /3, i.e. the so-called ”constituent” quarks, I'gg matches with I'yy.

B. Derivative-coupling via Gordon-decomposition

It remains to established the relation of the vertices

T oy = @ +p)* [a(Pu(p] and Th oo = > (K" + k") [a(k))u(k;)]. (6.11)
1=1-3

1. I'-vertex: From the analysis of the scalar coupling, see Eqns. (4.5)-(4.8), the QQ-meson vertices are

1 q? k? )
k! k; Ui k/i i(k; 6 1-— s k| (6.12
3 K b)) )] = mQ[ (%Rw%mé)wmy%mé;a axk| (6.12)
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The CQM replacement mg ~ VM'M/3,(M' + M)/6 leads to

Fg,CQM ~ (M'+ M)

1 N G ) 3 x k (6.13)
4mB Ry, AM'M ) T 16MM T ahrM 4= TN TR '
This vertex has to be compared with that at the NN-level:

o q? k? i
r ~ (M + M) |1—
2y (M4 M) { it T ieara T A

axk- 0'} . (6.14)

So, the situation is again similar to the scalar case. The remedy to obtain agreement for the k?-term is the as in that
case by introducing a zero in the coupling, or by adding an extra QQV-interaction, similar to (4.1) and (6.5),

AW = 1y, D66 5, vyt v, (6.15)

and determine for p = 0 the coupling from the condition CHECK

9

8
fé,v SM'M = F27”M7 fé,v/Flv = 4/9 (616)

Terms for p = m are of order ~ 1/M? which again we neglect.

2. Ty-vertex: For this term we neglect the 1/mg, ~ 1/M'M-terms as in the NN-potential derivation, and therefore
we get

Locom = Z (ki + ki) [ai(k';) wi(k)]

i=1-3

= QZ Qi [u;(k';) ui(k;)] = 2q, (6.17)

showing that without scaling, as in the case of F%QQ, the NN-vertex is produced.

So, with the results of the scalar and vector couplings, i.e. I' = 1, «v*, utilizing the Gordon-decomposition, the relation
between QQM- and NNM-derivative couplings is most easily demonstrated.

C. Full quark-vector coupling

NOGTEDOEN:
At the quark-level the additional interaction is

O
Hg) = —hy [ 2

A COR q(x))] ol (6.15)

Since adaption is necessary in the direct and derivative term, we get for the full correction h, = g, + f/ = (4/3)(gv +
fv)/M, with M = mg/3. Here, the (p’ + p) term in (6.18) is
Since the adaption is in the direct and derivative term, we get for the full vector vertex

1
a(p )Ty u(p) = a(p’) [Gmw“ + 7 Gen (' +p)“} u(p), (6.19)
with
K k2
Gmw = o+ fo, Geow = —fo....7 =tedoen = —f, |1+ ——51, (6.20)
K 8mQ

where f, = ki, go. Now k* ~ —k* so that G, exhibits a zero at k* = 8mg)(r,/r,).
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VII. FOLDING AXIAL-VECTOR-EXCHANGE VERTEX
The coupling of the axial-vector mesons (J'¢ = 1+, 15 kind) to the quarks is given by the interaction Hamiltonian

ifa. -

Ha = galby, s’y + ﬂ[‘/’%ﬂ/’] Oud'y. (7.1)

1. I'2-vertex: The QQ-meson vertices are

i

/ / . ) Lk LK
(s (K o)y vsui(ks)] = \/Ei—’—mi Bitmi . { oi ki 7 kz] i

2m; 2m; E;+m; + E; +m;
|- Qi 10 d
Summing over the quarks gives
0 _ — (1) \A0 L] | ON ] oN - q
FS,C’QM = Z [uz<k z)’Yi 75uz<kz)] = XN [ 3m, ] XN = |: M/M:| . (73)

i=1-3

It is clear that this vertex is proportional to that for the OBE-coupling of the axial-vector meson.

2. I's-vertex: The QQ-meson vertices are

Ei+m} E;+m; oK. o o -k
U; kli i 7,kz — i i 7 i /T S 7 i O O i .
[ (K':)vivsui(ki)] \/ Xi o+ B )

2m’i 2mi

1
m;

= [ai + 1 {2Qi(ai Qi) — 2k(o; - k) — (Q? — ko + 2i(Q; x k)}] Xi

16m12
X 7T o2 3R% T am? Ry
1 8 4 41
—q(o;-q) — 2k(o; - k) — (=q> — k*)o; + — k ;
g { g9 a) = 2K 10 = (g~ K+ x| x
(7.4)
Summing over the quarks gives
1
r = i (K )vivsui (k)] = x4 [ (1 - 55—
5,0QM i;g [ (k" )vivsui (k)] = X% 2min)? ) ¢
1 8 4 2 2 .
—l—ng §q(a'-q)—2k(a'-k)—(§q —k%)o+4i(lqxk)p| xn- (7.5)
The direct coupling to the nucleons gives
_ E+M E+M (0-p')o (o-p)
r = ! _\/ vl
5, NN = [un(P")Yysun(p)] G oM XN o+ (E'+ M)(E + M)
N E+M E+M It 1 / ’ / .
~\/ S s XV {0+4M,M {p(tf p)+p(e-p)—(p -p)o—i(p xp)| xn
1 2 2 .
= |:0'+ M {2q(a’-q) - ik(o"k) —(a® = k*/4) o +i(qx k)H . (7.6)

Similarly to the scalar- and vector-meson, the last expression is to be compared to I's cgas in (7.5).
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For ”constituent” quarks with m; = M /3 the result (7.5) reads

[ 3
trcan =+ 3 |(1- i)

TAMM {2q(0 "q) — gk(a k) — (q® - ng) o +9i(q x k)H XN

(i3 R\ KoK
- W\ T 4Ry T 2 M MM

+

{2q<a Q) — 2k(o k) — (o — K2/4) o + 9i(q x k)H - (7.7)

AM'M 2

3. I's-vertex(continued A): Next, we impose for the quarks the conservation of the axial current. The current is

_ if, _
T2 = gulst + 20, (frs), (7.9
and 0 - J* = 0 imposes the relation
2 —1
my
= 1 » 7.9
o= (o) o (7.9

Taking my, = \/§mp = 2\/§mQ the axial current becomes

Jii = 9a {dj%ﬁsiﬁ + miQaﬂ(&%w)] : (7.10)

The f,-contributions to the axial-vertex are

p=0: ~(E —E)~(MMmg) " ~0, (7.11a)
. 1 _ E +m, E;+m; 1

-0 —— k [u(k k; i D0 T T 2k (oK) | v 7.11b

=t dmg [l vsuks)] = + 2m), 2m; ¢ {Smf (o )} X ( )

Taking this f,-contributions into account we obtain for ”constituent” quarks:

1 .
o = | @+ 757 {200 - @ - 12/0) o itax 0} . (7.122)

3 k?
I's.com =>X/11L, [(1 — 1(MEy)? + 2M’M> o

+ﬁ {201(0 -q) — (q” — k?/4) o +9i(q x k)H XN (7.12b)

Here, we omitted the factor \/(E' + M')(E + M)/4M'M for the same reasom as for the scalar- and vector-meson.
Remark I's oo (i) for Ry =~ 1fm the term 3/4(MRy)? =~ 3/100 < 1 and may be neglected, (i) the k?/(2M'M)
term can be removed by taking into account the zero in the vertices (see above), and (iii) the k(o - k)/M’M-term has
been removed by adding an f,-coupling at the quark-level in a way compatible with axial-current conservation.

The change in the zero is as follows: we write the zero in the form

(1-K*/U?) (1 +K*/2M}) ~ 1 —K?/U?, U =U/\/1—U?/2M%.
So, there (only) remains the problem with the spin-orbit terms! For the solution see the next paragraphs.
4. T's-vertex(continued B): We note that T' = Z?:l wYivsu; (UnXyun) for non-relativistic quarks, i.e. it measures

the contribution of the quarks to the nucleon spin. In the parton model it appeared that a large portion of the nucleon
spin has to come from gluonic and quark orbital angular momentum contributions [26]. In the ESC-model we ascribe
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the meson-couplings to the quark-antiquark pair creation process. To account for a modification for the axial-vector
mesons we consider the following additional phenomenological interaction at the quark level [28]

t9q vo 7
M = e v (5, 0) (05 A,

igh y
= ATY = 29 (ap )y u(p)] ¢ p,ps. (7.13)

Now, we assume that M ~ My. Then, if v = n = 1,2,3 the vertex is oc 1/M? ~ 0. So, the only important
contribution is given for ¥ = 0. In this case, summing over the (valence) quarks,

3

3 .y

'9a

AT cqu = D ATE; =—F8 > latki)viou(ks)] (Qi x k) +O0(1/M?)
i=1 1=1

2ig, [E'+M E+M [ 4

“wm N o e o] (ax k. (7.14)

By choosing g/, = g., where g, is the axial coupling constant at the quark level, the axial-vertex becomes
I'scom ~Tsnn.

5. Orbital Angular Momentum interpretation: In the parton model it appeared that a large portion of the
nucleon spin comes from orbital quark motion and gluonic contributions [26]. The orbital angular momentum of the

quarks is present for the non-forward matrix element, i.e. p # p’. Therefore we consider the following form of the
additional interaction at the quark level [31]

AN = g P [Y(z)Loapy(z)] A, (7.15)
where [44]
. 0 0
Luap = i (maw s %) (7.16)
is the orbital part of M, g, the angular momentum density operator. The vertex for the NNA-coupling is given by
WA psibp) = [ dlp' s |AH s b p) ~ 2l p) 27
x [t e i, (0T - 29V Bolp.) (7.17)

As pointed out in the previous paragraph the dominant contribution comes from v = 0. For this we have to evaluate
the integral

Jop =i / d'z e * (f i () (Vs — 20V a) ()|, ) (7.18)

Since we have only quarks, focussing on quark i=1, the quark field operator is

A3k, mQ Cikr (kK
:>Z/ o 3/2\/ Z) bkis 5i) ulki, ;) e~ Fe® emelamkip/2) (7.19)
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where a = 2R%; /3. Using this in (7.18) we get
Jup = [ul (k. ') u(ki, s)] / dhz RN (k= iyl o) 0K o ) /2
= [ul(k],s) u(ks,s)] /d4a: e WR kYT (g Ky — wpky o) e QT 20Q)/2
= 2md(E — E —k°) [ul (k],s') u(ki, 5)] / dx e PPN (g k) e (@20 Q)2
= —(2mi)é(E' - F — ko) [uT(kg,s’) u(k‘“s)} /dgx [(vp,aki,b — Vpikia) efi(plfpfk)'x} e~ (Q*—2a:Q)/2

= +2m)"0(E - E— k)P (p' —p—k) - (a/2) [ul(k],s) u(ki,s)] -
X (Qukip — Qukig) e (@ —20Q)/2
= +(2n)% ( —~E-K® P —-p-k) - (o/3) [ul(K],s) ulks,s)] -
% (qakip — qokia) €@ 20/ (7.20)
Substition in (7.17) gives
¥, ' |AH |p,s;k,p) ~ +(2m)*i6(E' — E - k°)5® (p' — p — k) gl (/3) em(k,p) -
x [ul (K], s") u(ki, )] €mab (qakip — qohia) e @@ 24 Q)/2
+(2m)* W (p' — p — k) gl (2a/3) ek, p) -

x [ul(K],s') u(ki,s)] e(k,p)-qx ke @@ —2aQ)/2 (7.21)
This leads to
E'+M E+M
" . A
ATV%on o igl(4R% /3)\/ s - [ (@ x k). (7.22)

which is equivalent to the result (7.14) for

" 39:1 39a
— _ - _ . 7.23
Ja 2(]\4]%1\/)2 S(MRN)2 ( )

Therefore, we can give the extra quark-coupling for the axial-vector vertex the interpretation as
representing the orbital angular momentum of the three quarks in a nucleon (baryon) in the non-
forward matrix element. In this sense it is related to the ”spin-crisis” [26].

The ”spin-cisis” in the quark-parton model revealed the importance of the orbital angular momentum and
the gluonic content of the nucleon. At low energy the similar ”crisis” shows up quite naturally in the
axial-vector coupling. Taking the orbital angular momentum of the quarks into account nicely connects the
”constituent” quark model with the axial-vector vertex at the nucleon level. Interesting would be to analyze
this phenomenon in the IMF.

VIII. CONCLUSIONS AND DISCUSSION

We have shown that for all meson-nucleon-nucleon couplings the Pauli-expansion structure of the vertices can be
reproduced by the ”constituent” quark model. For the scalar, the vector, and axial-vector mesons it required extra
couplings at the quark level in order to achieve this compatibility: (a) In the central part for scalar and vector mesons
an extra interaction is necessary on the quark level to produce the correct k?/M’M terms at the nucleon level; (b)
Using 63(K — k) at the meson vertex leads to ”spurious” 1/R%-terms in the central parts for (i) the scalar- and
vector-meson vertex, and (ii) the axial-vector vertex. As demonstrated in subsection IV C such terms can eliminated
by the introduction of a gaussian like distribution in K. Therefore, these terms are omitted. This leads, at least for
terms up to 1/M’'M, to the conclusion:
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The Idea/conjecture made in the Introduction, asserting that based on the Lorentz structure the ratio’s of
spin-spin, tensor-, and spin-orbit-vertices and the central potentials as given by the nucleon-level potentials
are independent of the internal structure, can be realized completely in the CQM.

For the axial-vector coupling we have to introduce next to the usual «,7vs-coupling a new coupling related to the
orbital angular-momentum contents related to the transverse motion of the quarks in the nucleon. This is in line with
the quark-parton model, where the so-called ”spin-crisis” can be solved by invoking such and/or a gluonic contribution
to the spin of the nucleon.

[In passing we note that an important non-zero gluonic contribution would be in line with the soft-core NN-models
(OBE and ESC) contain the pomeron-exchange potential which also has a gluonic interpretation [32, 33]. The same
is true for the multi-pomeron repulsion in nuclear matter [33, 34].]

The ”constituent” quark model (CQM) is understood in a fundamental way by spontaneous dynamical chiral-
symmetry breaking. The instanton solutions in QCD lead to a complex vacuum structure, which can be described by
the instanton-liquid model. The pseudoscalar Nambu-Goldstone bosons are ordinary Q@Q-states with a small mass due
to the strong instanton induced attraction. For other QQ-states there is not such a strong attraction giving vector-
and scalar-meson masses of about 2mg ~ 750 MeV. Strong-coupling QCD comes close to an understanding of the
phenomenology of the CQM [35]. Another approach to derive the CQM is that of the Light-Front QCD of Wilson
and collaborators [36].

In connection with the latter approach we note that putting p and p’ in the xy-plane and going to the infinite-
momentum-frame (I.M.F.) along the z-axis, translates directly our results for the meson-vertices to the quark-parton
model. There, our impulse approximation makes perfect sense and our results may be considered as realistic. Thus,
one would expect that the CQM-vertices correspond neatly to those at the nucleon-level. However, also here one ex-
pects to find an orbital contribution to the spin due to the transverse motion of the quarks, in view of the ”spin-crisis”.

Finally, the results in these notes can readily be extended to baryons.

APPENDIX A: OVERLAP INTEGRAL I

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3.

ks = B kb

ko = B K,

k1 > o B> K,
A

@ > @ > 4

g2 > > a5

a3 = > a5

FIG. 4: External and internal momenta for meson-exchange
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In Fig. 4 we have given the momenta for the initial and final nucleons, and the assigned momenta of the quarks.
From momentum conservation we have

pr=ki+ka+ks , pp=q+q+ag,

pl=ki+ky+ K, ph=dqi+d+d, (A1)

For meson-exchange with p; — p} = p,, — p2 = k, we have for the matrix-element of the potential

[0 T O S B 1 R R o0

i=1,3 j=1,3 J

(p105|V Ip1p2)

X

/H d3qi5<p2—§i:q¢>-/ II &40 p’z—%:q’j

i=1,3 j=1,3

X QL;; (k/17k/27k/3) 1;;,2 (q/17ql25ql3) . ’l;pl (k17k2ak3) ,(/;pz (Q17Q27QB) :
x 0% (K'y — ko) 6% (K5 —ks) 6°(d'y —a2) 6° (d's —q3) -
kiKY k k; q
7( ; 1i(21) 7(2 a‘ha‘h) -53(k—k/1+k1) 53(k+q/1_q1) . (A2)
+ miy

In (A2) the «’s denote the vertex functions. Using the gaussian wave function of equation (3.1), we find for the
exponent, denoted by fyn, taking into account that the momenta of the ’spectator quarks 2 and 3 do not change,
the expression

f . _@ . 2 o 2 o 2

NN = €xp 6 {(kl kz) + (kil kd) + (kQ k3)
(1= @)’ + (@1 — @) + (g2 — 3)°
+ (K = ko) 4 (K, — k3)” + (kg — k3)?
(g —a2)” + (@ — a3)* + (g2 — Q3)2H

R2
exp [—% {2 (k‘% + k‘iz) —2(ky + k3) - (k1 + K))

2 (K3 4 k2) + 2 (ks — ks)?
+2 (1 +af) —2(q2 +a3) - (1 + q1)

+2 (g5 +43) +2(q2 — Q3)2} ] : (A3)

In (A3) k1 = k; ete. Introducing the 3-momenta

Pys=ko+ks , Ros=q2+gq3,
Koz =ky — ks , Q3 =q2—q3, (A4)

for the 'spectator quarks’ and the 3-momenta

VR T

Q=li+K , K=3(Q+k)

k=aq—q; , qlzé(SJrk)

S=aq+q; , q’1=l(S—k)- (A5)
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For the ’active quarks’, we can rewrite fy with the result

R2
INN = exp —TN (Q*+Kk*) — 2Py - Q

+ (P33 + K3;) + 2K3;,
+(S*+Kk*) — 2R3 - S

T (R2+ Q) +2Q33}] | (A6)

In terms of the new variables defined in (A4) and (A5) the integration over the quark-momenta becomes

4
1 . , .
<8> / d>Q d®S d*Py3 d*Ko3 d®Ras d>Qos -

x§® (p1 + % (k—Q)— P23> @) (p2 - % (k+5) - R23> '
x5 (p’l—%(k+Q)—P23) 5<p'2+%(k‘—5)—323) (A7)

From these §-function constraints one immediately gets

5 (Pll —p1—k) 5 (Plz —p2+k)=
5@ (py —p1 — k) 6 (p + ph — p1 — p2) (A8)

i.e. overall 3-momentum conservation and the fixing of k in terms of the external momenta.
Next we go over to the CM-variables. We have

1
pi = —p2=p , k=p'—p , p=q-gk
1 1

p, = —py=p, q=§(p+p’) 7 p’=q+§k~ (A9)

Then using (A4), we find for the expression between the curly brackets in (A5) the following expression
9
{} = {2(q2+k2) +7 (Q*+8%*) —3q-(Q-5)
+3 (K35 + Q3s) } (A10)

Now since the potential matrix elements will not depend on Ks3 and (023, apart from the appearance of these momenta
in the exponential, we can integrate these variables out, with the result:

2

3 3 Ry (102 2 2m \
/d K23 d Q23 exp |:—T (K23 + Q23):| = ( ) . (All)

R%

Collecting all results of the section, we find
N\ /2r\?
Pi|Vipip2) = (5] | 5 N4/d3Q &S -
8 R3;
RY [9 2 2 2 2
xexp | —— Z(Q +8%)+2(q*+k*) —3q-(Q—9S) ¢ |-

xVoo(Q.S;a.k) 6% (K +d} —ki —ai1), (A12)

where V0 (Q, S; g, k) denotes the QQ-potential which contains the QQM-vertices and the meson propagator.
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APPENDIX B: OVERLAP INTEGRAL II

We consider the nucleon-nucleon graph for meson-exchange between the consituent quarks of the two nucleons. In
the following we will use, instead of indices a,b,c, the indices i=1,2,3. As shown in Fig. 5 we assume some momentum
transfer beteen quark 1 and the pair quark 2 and quark 3.

ks > > k4

ko > - > k%
Al

k1 > e} > I
Ak
®

FIG. 5: External and internal momenta for meson-exchange

In Fig. 5, as in Fig. 4, we have given the momenta for the initial and final nucleons, and the assigned momenta of
the quarks. From momentum conservation we have

p=kit+ka+ks , p =k +Ek+E (B1)
For meson-exchange with p’ — p = k, we have for the QQM-vertex

(P'ITIp) = /H d3ki5<p_zki> / I @& 6(p-> K,

1=1,3 j=13 J
X QL;’ (kllvk/Qak/3) 'J}p (k17k23k3) 'V(kal;k/hkl) :
X (53(kl3+k/2—k3—k2—1) 53 (k—l—k/1—|—k1) (BQ)

Similar to Appendix A we introduce the combinations

Q=k;+k , K=k'i -k, (B3a)
Poz =ky + k3 , Pz =k's + k'3, (B3b)
K'p3 =¥y — k'3 , Koz =ky — k3. (B3c)

Furthermore, we use the customary definitions q = (p’ + p)/2,k = p’ — p, and note that K =k’;y —k; =k —1, and
P’93 = Po3 + 1. The Gaussian exponentials of the wave functions contain, see (3.1),

hy = (kl - k2)2 + (kil — k3)2 + (ko — k’3)2,
Wy = (K = k)% + (k] — k3)* + (k5 — k3)?,

Using the definitions above and

1
Py = P23+1=P23+(k—K)=P+k—§(Q+K),

1
Py = P—klzp—i(Q—K%
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one finds

hy = —[(Q— K — Pz — Ko3)* + (Q — K — Pz + Ka3)” + 4K§3}

(Q - K)* 1 P 1 3K2, — 2(Q ~ K)- P23]

N = N = =

QK - 3(Q K- (0 1/2) (0?41 + 3K |

and

(Q+K —P'os — K'p3)” + (Q+ K — Plys + K'a3)” + 4K'53}

(Q+K)* + P’§3 +3K'53 - 2(Q+K) - P’Qg}

N = N = =

QUK - 3(QK) - (/) + (@ ) 3K

Summing gives

= o

3 1 3
Nty = Q' +K?*) -3Q-q- JK-k+ (q2+zk2> +§(K’§3+K33),
and, with performing the d3K}; and d® K3 integrations,

2 3 2
e =exp| <5 oty h)| = (%) o[ -T 8@ k) -30-a- S (@24 ) ] o)

Note that for K = k, after the K/, Ko3 integrations:
9
N+hy = Q% —3d-Q+(a’ + k),

which corresponds to the expression in Eqn. (3.12). Furthermore, the k, K dependence differs from (4.19) in the
integrand by a factor

(k1) = exp[—RT?V{—3K-k+3k2H :exp[—RT?v(kJ)] :exp[—%{(k—i—l)z—(k—lf}],

which has consequences in particular for the spin-orbit coupling, giving 1/3 instead of 1. Including this factor in the
vertex (p/|T'|p) in (B2) makes it identical to (4.20), and leads to the expression for I'coas given Eqn. (4.21) !
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Remark: Consider the general Gauss integral:

J

//d3Q PK exp[—{aQQ+BK2+7Q-K+aQ-V+bK~WH

T 3/2 3 72 ) ay CL2 )
(a) /dKeXP{—(ﬁ—E K —(bW—%V>-K - exp —|—5V
2

3/2 4 3/2 2
= (g) <ﬁ> exp [a (bW - ;sz) /(4@5 - 72)} - exp [Jrz—a VQ}

The factor in front (4af — v2)~3/2 determines the possible "spurious” terms. One has

Q2 - f% — 68 (408 —~2) ",

2 . 7i 2\ 75/2
K- dﬁﬁﬁa(élozﬁ fy) .

This implies that for a potential term o (Q2 — K2) the 7spurious” terms cancel when o = 3/
The example worked out in this Appendix satifies this condition.

APPENDIX C: QUARK SUMMATION

The nucleons are part of the irrep 56 of SU(6). These states have the following structure [37]

|N) ~ % (bar,s X5 + Oara Xar,a) = (8,2). (C1)

Here ¢nr,s and ¢pr, 4 denote the three-quark isospin states with mixed symmetric and ant-symmetric character [37].
likewise for the spin states xas,s and xar.a.
Since the total wave function is symmetric for the spin matrix elements one has

3

> (loil.) = 3o (C2)

=1

To find the proper factor we evaluate the proton matrix element:

3
3
(P+|Y 00 Pt) = 3(P,+os.|P+) = 5 {05103, I, s) + O, alos.=Ixara) b (C3)
i=1
where we used the orthonormality of the mixed states
(xmslxms) =1, (xaalxara) =1, (xa,slxara) = 0. (C4)

Explicit evaluation:

(t-He(=+H)e2(++ Jlos:l+-Ha(-++H)e2(++-))
[1+1—4]:—%, (Cha)

(+=H) @ (= +H)os:|(+ = +) @ (= ++))

<X§[,S(+)|03,z|X§LS(+)> =

<X§4,A(+)|Ug,z|X§I,A(+)> =

[1+1] = +1. (C5b)

N =N ===
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These results imply the relation

3

=1
It is now trivial to see that
3
<P7+|Zlop’i|P’ +) :3<P7+|1OP,N‘P7+>' (C7)
=1

APPENDIX D: MOMENTUM-SPACE MESON-QUARK-QUARK VERTICES
1. Pauli-reduction Dirac-spinor ['-matrix elements
The transition from Dirac spinors to Pauli spinors is given here, without approximations. We use the notations

E=FE+Mand & = FE' + M', where E = E(p, M) and E' = E(p’, M'). Also, we omit, on the right-hand side in the
expressions below, the final and initial Pauli spinors y’T and y respectively, which are self-evident.

_ &e PP\ .pPxp-o
/ _ _ .
u(P)ulp) =\ 13 _(1 A (D1a)
B e |o- p’ op
@) = g |~ (D1D)
E'e p Xp-o
"0 _
u(P' )y ulp) =\ g ( g,g> Gie } (Dlc)
&e P oxp _oXp
/ P — — —
A0y ulp) = +y) por (g B)+i( TR - TR (D1a)
B &e o o-(p
! 0 _
u(p')ysy u(p) = I | g, - 5 } (D1e)
_ e [ (e-p)o(o-p)
! = —
u(p’)ysy ulp) = YSYaY; _0+ cig
_ ] (PP p'xXp
- V| ge )7 ee
1
— 1f
tzg@-pp +o-p p)] —0,, (D1f)
where we defined k = p’ — p, q = (p’ + p)/2, and Ky = fv/gy.
Using the the Gordon decomposition
§ale!) 0! = phots) = o) { O+ M02# = '+ | ulo) (D2)
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one obtains for the complete vector-vertex

W) = o) |2 + g™ @~ ). o)
= u(p') [(1 + Wﬂv) ™= ;T‘il(p’ +p)u} u(p) =

o &e | M+ M oc-po-p
u=0 : + —_(1+Wﬂv> (1+T

LAV _opop
(B +E) (1 e } (D3a)
L e T M + M pP p [(oxp oxp
mE N _(H 2M “V>{(§+E>+Z< &g ¢
o-po-p
X/l(p/ +p) <1 - Tﬂ . (D3b)

2. 1/M-expansion ['-matrix elements

The exact transition from Dirac spinors to Pauli spinors is given in Appendix D 1. From the expressions in D1,
keeping only terms up to order 1/M, and setting the scaling mass M = M, we find that the vertex operators in
Pauli-spinor space for the NNm vertices are given by

aw)utp) = |(1-252) - v xp ol (Dia)
(0)35u(p) = ~ gyl (0~ )] = gyl K], (D1b)
) ute) = |(14 58 )+ e <peo. (D)
u(p')y u(p) = ﬁ [(p" +p) +io x (p' —p)], (D4d)
a(p')y57 ulp) = —ﬁ[a-(p%p)} :—%[a'q], (D4e)

Wy up) = = [o+ oo ) o @p)] - [(1-22) o
—ﬁp’ 4]\142 (c-pp' +o-p p)] -0, (D4f)

where we defined k = p’ — p, q = (p’ + p)/2, and ky = fy/gy. In passing we note that the inclusion of the
1/M?-terms is necessary in order to get spin-orbit potentials, like in the case of the OBE-potentials.

For the magnetic-coupling we use the Gordon decomposition
) o = phouty) = a(s) {2209 = (5 9} i) (D)
We get

ia(p’) o (p' — p)oulp) =

/. /2 2 ;
,uO:MKlp p>+(p er)zu\zgp/xp.a}, (D6a)

4M? 2M?

h=i —B<p'+p>—§ox<p'—p>] (D6b)
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For the vector-vertex with direct and derivative coupling one has

BT ule) = 0) [2# + 5 eve™ 0f - o] ulo)

= a(p) [(1+ Ky = S + P ulp) =

, ‘
. p
u=0 : {(1+Hv)<1+4M2+4M2p Xp- a>

Ey + Ep p-p i ’
VoM < iz o P
P-p, i PP+
{1+(1+2/§V){4M2 + P <P 0'} VIR | (D7a)
. 111 i
p=i o 5 {§(p’+p) + 5L+ rv)e < (pf —p)] (D7b)
In terms of the magnetic and electric couplings, gy = Gy + G and fy = —G,, we have gvrky = —Gg,gv (1+ky) =
GM,gv(l + 25\/) = GM — GE This giVGS
_ _ i y
AT ulp) = gvale!) [3* + gypeve™6f = )] ulo
. p/ p i p/2 + p2

) 1|1 7

nw=1 : i [E(p’+p)(GM+GE)+§GMa><(p’—p)}. (D8b)

3. Meson-vertices in Pauli-spinor space

The transition from Dirac spinors to Pauli spinors is reviewed in Appendix C of [38]. Following this reference and
keeping only terms up to order (1/M)?, we find that the vertex operators in Pauli-spinor space for the QQm vertices
are given by

a0 ulp) = —i2 [orks 2o+ p)] (D9a)
aorue) = av [{ (14252 ) - v o)

—2]1\4{(p' +p) +i(l + Ky o Xk}'¢v] : (D9b)
P ulp) = g4 |- 5y o 0 +0) 4

ot qple )o@ e, (D)
ao)rue) = gs | (1- 578 - in xpeo. (Do)

where we defined k = p’ — p and Ky = fi//gy. In the pseudovector vertex, the upper (lower) sign stands for creation
(absorption) of the pion at the vertex. In passing we note that the inclusion of the 1/M?-terms is necessary in order
to get spin-orbit potentials, like in the case of the OBE-potentials.
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For the complete vector-meson coupling to the quarks we have, writing I'yy = an ) 4 I‘gf),

a(P )L u(p) = G {<1+2M§> +4A22p Xp- U} oY
{( +p) +ioy Xk}'¢v] ; (D10a)
. 5’ € ,
a1 utp) = G | {( PR) v xpa ) &
p'+p L,
0GR e e ool

M 12 . 2 ; /
Gm,e{Q—{<1+p P p+p>—4]\22p/xp-a} ¢%+M}-¢v} (D10b)

Q

M 4N M

The extra QQ axial-coupling has the vertex

/

a(p )Y u(p) = Agjz [1 {® p-p)o-p'+( -p-p?)o-p} ¢) —2ip xp- m] (D11)

APPENDIX E: PAULI-SPINOR INVARIANTS FOR NUCLEON-NUCLEON POTENTIALS

Because of rotational invariance and parity conservation, the V-matrix, which is a 4 x 4-matrix in Pauli-spinor
space, can be expanded into the following set of in general 8 spinor invariants, see for example Ref. [10]. Introducing
[39]

1
~(p'+p), k=p —p,n=pxp, (E1)

q:2

with, of course, n = q x k, we choose for the operators P; in spin-space

Plzl, P2:0'1-0'2,

P3 = (0'1 k)(O‘Q k) — %(0’1 '0'2)1(2,

P, = %(01+02)-n, Ps = (01 -n)(o3 - n),

Ps = %(0'1*0'2)'117

Pr=(01-9)(02-k) + (o1 - k)(o2-q),

Py =(01-q)(o2-k) — (01 -k)(o2-q). (E2)

Here we follow Ref. [40], where in contrast to Ref. [32], we have chosen Ps to be a purely ‘tensor-force’ operator. The
expansion in Pauli spinor-invariants reads

8
=> Vi(p”,p%p -p) P(p.p) . (E3)

j=1

APPENDIX F: EXTENDED-SOFT-CORE QQ-POTENTIALS IN MOMENTUM SPACE

The potential of the ESC-model contains the contributions from (i) One-boson-exchanges, (ii) Uncorrelated Two-
Pseudo-scalar exchange, and (iii) Meson-Pair-exchange. In this section we review the potentials and indicate the
changes with respect to earlier papers on the OBE- and ESC-models. The spin-1 meson-exchange is an important
ingredient for the baryon-baryon force. In the ESC08-model we treat the vector-mesons and the axial-vector mesons
according to the Proca- [41] and the B-field [42, 43] formalism respectively. For details, we refer to Appendix F.
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1. One-Boson-Exchange Interactions in Momentum Space

The OBE-potentials are the same as given in [32, 40], with the exception of (i) the zero in the scalar form factor,
and (ii) the axial-vector-meson potentials. Here, we review the OBE-potentials briefly, and give those potentials
which are not included in the above references. The local interaction Hamilton densities for the different couplings
are [44]

a) Pseudoscalar-meson exchange (JF¢ = 077)

Hpy = fP—V%/;%/VﬂJa’L(bP- (F1)
Mg+

This is the pseudovector coupling, and the relation with the pseudoscalar coupling is gp = 2Mp/m .+, where Mp is
the nucleon or hyperon mass.

b) Vector-meson exchange (J©¢ =177)

fv

Hy = gviybeh, + mz/?aww(c’?”% —0"¢Y), (F2)

where 0., = i[yu,7,]/2, and the scaling mass M, will be taken to be the proton mass.
¢) Axial-vector-meson exchange ( J©¢ = 17+ 1% kind):

+ A sy] 0,00 (F3)

In ESC04 the ga-coupling was included, but not the derivative f4-coupling [45]. Also, in ESC04 we used a local-tensor
approximation (LTA) for the (o1 -q)(o2-q) operator. Here, we improve on that considerably by avoiding such rather
crude approximation. The details of our new treatment are given in Appendix E.

d) Axial-vector-meson exchange ( J7¢ = 17—, 2" kind):

= i{_B[quuup)’E)w} au(b% . (F4)
B

Ha = galby 5]y

Hp

In ESCO04 this coupling was not included. Like for the axial-vector mesons of the 1%‘-kind we include an SU(3)-nonet
with members by (1235), h1(1170), h1(1380). In the quark-model they are QQ(! Py)-states.

e) Scalar-meson exchange (JF¢ = 0++):

Hs = gsldv)os + %[mw O bs, (F5)

which is the most general interaction. In ESC04 the possibility of the derivative fg-coupling was not considered.
By partial integration it is clear that the derivative vertex is proportional to the baryon mass difference and
therefore there can only be expected sizable effects for k-exchange. However, it is easily seen that for exam-
ple for the AN < XN it leads to a coupled-channel problem with a (non-real) hermitean potential. This can be
handled in principle, but complicates the solution and moreover this coupling is not needed. Therefore, we take fg = 0.

f) Pomeron-exchange (J©¢ = 0%%): The vertices for this ‘diffractive’-exchange have the same Lorentz structure as
those for scalar-meson-exchange.

g) Odderon-exchange (JF¢ =177):

fo
4M
Since the gluons are flavorless, Odderon-exchange is treated as an SU(3)-singlet. Furthermore, since the Odderon

represents a Regge-trajectory with an intercept equal to that of the Pomeron, and is supposed not to contribute for
small k?, we include a factor k?/M? in the coupling.

Ho = go [%WWEB + WUWM@“% - au¢g)' (F6)
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Including form factors f(x’ — x) , the interaction hamiltonian densities are modified to
Hx(x) = /d%’f(x’ —x)Hx (x'), (F7)

for X = P, V, A, and S (P = pseudo-scalar, V = vector, A = axial-vector, and S = scalar). The potentials in
momentum space are the same as for point interactions, except that the coupling constants are multiplied by the
Fourier transform of the form factors.

In the derivation of the V; we employ the same approximations as in [32, 40], i.e.

1
1. We expand in 1/M: E(p) = [k2/4 +q>+ M2] 2
~ M + k?/8M + q?/2M and keep only terms up to first order in k?/M and q2/M. This except for the form
factors where the full k?-dependence is kept throughout the calculations. Notice that the gaussian form factors
suppress the high k2-contributions strongly.

2. In the meson propagators (—(p; — p3)? + m?) ~ (k% + m?) .

3. When two different baryons are involved at a BBM-vertex their average mass is used in the potentials and
the non-zero component of the momentum transfer is accounted for by using an effective mass in the meson
propagator (for details see [40]).

Due to the approximations we get only a linear dependence on g? for V;. In the following, separating the local and
the non-local parts, we write

1
Vi(k?,0%) = Via (k) + Vip(k*) (@” + 7K%), (F8)
where in principle ¢ = 1, 8.

The OBE-potentials are now obtained in the standard way (see e.g. [32, 40]) by evaluating the BB-interaction in
Born-approximation. We write the potentials V; of Egs. (F8) in the form

Vilk?q?) = > 0 (k?) - AN (K2, m?, 4%). (F9)
X
Furthermore for X = P,V
A (K2 2, A?) = e—k2/A2/ (K2 + m?) , (F10)

and for X = S, A a zero in the form factor
A (K2 m?, A%) = (1 - K2/U?) N ) (12 +m?), (F11)
and for X = D, 0

1 2/iam2

We /(4mp o) (F12)
In the latter expression M is a universal scaling mass, which is again taken to be the proton mass. The mass
parameter mp controls the k?-dependence of the Pomeron-, f-, f’-, As-, and K**-potentials. Similarly, m¢o controls
the k2-dependence of the Odderon.

APk m? A?) =

In the following we give the OBE-potentials in momentum-space for the hyperon-nucleon systems. From these those
for NN and YY can be deduced easily. We assign the particles 1 and 3 to be hyperons, and particles 2 and /j to be
nucleons. Mass differences among the hyperons and among the nucleons will be neglected.

2. Non-strange Meson-exchange

For the non-strange mesons the mass differences at the vertices are neglected, we take at the YY M- and the
NN M-vertex the average hyperon and the average nucleon mass respectively. This implies that we do not include
contributions to the Pauli-invariants P; and Pg. For vector-, and diffractive OBE-exchange we refer the reader to

Ref. [40], where the contributions to the different QEX)7S for baryon-baryon scattering are given in detail.
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(a) Pseudoscalar-meson exchange:

2
P P 1
Qéa) = 79{3954 (12MyMn> ? Q:ga) = 7gf3gg4 <4MyMn) Y (F].?)a)
(P) p D k? (P) p D 1
Q" = +91394 SAM2MZ ) Q3,7 = +91394 _M2M2 )T (F13b)
Y n Y n
PV-formulas:
k2 1
P v ppU P v ppU
an) = - {)3 54 (3m2+> ) an) = _ffg 2p4 <m—2+>’ (F13c)
2
(P) _ v pU k (P) v ppv 1
Q" = +fi5f5 (_6m3r+MyMn) s Qg = +f15 1o (72mi+My2Mﬁ) . (F13d)

(b) Vector-meson exchange:

(V) v k2 v LU k2 v k2
D, = 913954 1_W —913f24m—f13924m

oo K V) oy 3
+f13f2416/\/121\@1\/fn}’ Q1,7 = 913954 <WL),

V) _  20000V) o) _ 2 04(W)
¢ —5k Q Q =3k oy,

2a T 3a 2b

v v M v v Mn v LU k2
Qgg) = {(913+f13ﬂy)(924+f24ﬂ)_f13f24w}/(4MyMn),

|4 v v M, v v M’ﬂ

Q:(sb) = —(913+ f13_/\/1;)(924 + f24—M )/(SMngQL),
/M, M 3k?

V v v v v v v v v

Qz(l )= - {12913924 + 8(9g13.f24 + f13924)—j€l = — f13f24—M2 } /(8MyMy,)
/M, M M, M,

|4 v v v v v n v v "

Qé b= - {913924 +4(g13 /34 + f13924)7/\il + 8f13f24—j\/42 : } /(16M M)

00" = L atyas + ot M) g g ——
6 913924 13J24 00 4My2M,% 913J24 13924 \/WyML .

(F14)
(¢) Scalar-meson exchange:
k2 q2

Q(S) — g0t (1 _

1 913924 {1+ 1M, M,  2M,M,

s s s 1 s s o 1
ng) = +913924W ) Qz(l )= —913924m

S 1 S s 8 (Mﬁ - MQ)
0 = ) Qé‘ ) = —913924 v (F15)

5 = 913924716M5M72l 74MyMn ‘
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(d) Axial-vector-exchange JI'¢ = 1++:

B o OKk2 M, M. k2 k2
08 = gt |1~ g | + | (s 5y + el Ry )~ st sara,
A a .a 3
ng) = —Y13924 (2M M )
yiVin
A [ 1 Mn M k2 _ 1
08 = gty | g ar) | (o885 et 5 ) ~ o] s,
A a .a [ 1 A a .a (Mg _M2)
Qz(l ) = 913924 | 507 0 } ) Qé )= 913924 [4]\42]\4;
L2y Mp v
Ay a .a [ 2
Qg = 79924 | 31 (o)
LMy Mn

Here, we used the B-field description with «, = 1, see Appendix F. The detailed treatment of the potential
proportional to P%, i.e. with QéA) , is given in [46], Appendix B.

(e) Axial-vector mesons with J©¢ = 1+:

B M, + M,)? k? k? B M, + M,)? k?
o) gt M) (1— o) = gt )

2 4M, M, ) \ 12M, M, 2 8M2M2
M, + M,)? K2 1 B (M, + M,)? 3
OB _ 4B Mot M) (1 0B _ g8 g M+ My .
sa Tisfa m% AM M, ) \4M M, )" "3 a2 m, 8M2 M2
(F17)

(f) Diffractive-exchange (pomeron, f, f/, As):
The QF are the same as for scalar-meson-exchange Eq.(F15), but with :l:gf3 g5, replaced by FggL), and except
for the zero in the form factor.

(g) Odderon-exchange: The Q¢ are the same as for vector-meson-exchange Eq.(refeq2), but with gi3 — ¢, f15 —
1S and similarly for the couplings with the 24-subscript.

As in Ref. [40] in the derivation of the expressions for Qz(-X), given above, M, and M, denote the mean hyperon
and nucleon mass, respectively M, = (M; + M3)/2 and M, = (M + Mys)/2, and m denotes the mass of the
exchanged meson. Moreover, the approximation 1/M% + 1/M% ~ 2/M, M, is used, which is rather good since the
mass differences between the baryons are not large.

3. Omne-Boson-Exchange Interactions in Configuration Space I
In configuration space the BB-interactions are described by potentials of the general form

V = {Vc(r) +Vo(r)o1 - o2+ Vp(r)Sia + Vso(r)L - S + Vo (r) Q12

+Vaso(r) %(al —o03) L — 2M5Mn (VZV"'l'(r) + V"~l-(r)v2> } P, (F18a)
vt = Loct) +enor aat or)sia} P, (F1sb)
where for non-strange mesons P = 1, and
Si2 = (o1 F)(oz ) — (1 02), (F19a)
Q= 3 |1 Dio2 1) + (02 Lo 1) (F19b)

o(r) = dc(r) + ¢s(r)oy - o2, (F19c¢)
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For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [32, 40]. For the
details of the Fourier transform for the potentials with Pf, which occur in the case of the axial-vector mesons with
JPC =11+, we refer to Appendix E.

(a) Pseudoscalar-meson-exchange:

m 2 1
Vest) = 1= |dhabi g (300 @2) o+ Such )| P, (F20n)
m m? 1
Vé’s"(r) = i [9?39§4W (5(01 -09) gblc + S12¢8~>} P. (F20b)
y n

(b) Vector-meson-exchange:

Wy (r) = In {{913924 |:¢C + 2M I, ¢c}

v pv m2 v U 2 1 v pv m4 2
+ [913f244MM +f1392474MM } ¢C+f13f24716M2M Vi ¢C}
n y yVn
2

M, 2
+76]\ZM7L {[(9?3 +ff3ﬂy> <924 + [ — - ﬂ e +ff3f§4;1W¢2c} (o1 - 2)

m2 M v v m2
_m{[(913+f13M> (924+f24M) ¢0T+f13f24w¢1T}512
2

m 3 v v v v \/M n 3 v v m2
M A {[ 913924 + (975124 + f13924) /\Z] ¢%O+8f13f24w¢}50}1"s

4

m VM, M, MM,L]}'

+16M792J\/[£ { l9f39§4 + 4 (913 /24 + fi3954) M +8f15/34 JYE

3 0 m2 v v (M2 Mz)
Xw¢:r@12 MM, {[(913924 I1s 24/\/12) W

v opv v v \/MMn 1
_(913f24—f13924) Tyl ¢go} 5 o1 —02)'L

5 ( P, (F21a)

3
V) = 1 | Satssta o
2 M, M,
+76]\;1M {[(ﬁ%"‘ffs/\/‘l/) <924+f24M ﬂ ¢C}( -03)
yiVin
2 M, M,,
*4]\24% { [(911)3 Jrfﬁsﬂy) <924 + foa— v ﬂ ¢’T} 512] (F21b)

Note: the non-local tensor and ”associated” spin-spin terms are not included in ESC08c-model.

(¢) Scalar-meson-exchange:

2 4

m s s 0 m 0

- L. _m
Vs(r) e {913924 { [QSC 4M M, 9250] oM, M, 7 %so L-S+ 160202
we [(M2-M2)] 1 .
( ) ¢>TQ12+MM M, M, P30 - 2(01—02)
1
I, (V200 + ¢>gv2)H P. (F22)



(d) Axial-vector-meson exchange J©¢ = 1++:

2

m a _a m a ra Mn a _a M
Va(r) = i [{913924 <¢OC + 3M M, ¢c> 6MyMn (913f24ﬂ + f13924ﬂy) b&

m* 3
gy a0 — g s (V20 + 60 V) (1)

—4]\242% { {9?39(214 (913f24]/\\4/1 + f13924]\/\4/l )} ¢T f13f24M22¢ }512
+2J\Z—2M19(1139(214 {¢%o L-S+ le;/[n [(JZ;/[ ]\]/—\[42)] P30 - ; (01— 02)" L} P.
(e) Axial-vector-meson exchange J7'¢ = 1+
Vp(r) = 4ﬂw {f13f24 {ﬁ (Qj)lc + 4M M, ¢C> (o1-02)
%J@(w%+%wﬂmﬁﬂ%ﬁgﬁhg%ﬂﬂ
Vel (r) = 4W% {f13f24 {MZLQML (%01 ~03 ¢¢ + S ¢OT> H P.

(f) Diffractive exchange:

ar |89 7 A2 2M,, M, M, M,
2\ 2 [(m2 -2
mp mp ( ) 1 —m2 2
R — L P
+Qmm)(h+Mwa M@ml 5 (71— 02) ¢
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(F23)

(F24a)

(F24b)

(F25)



(g) Odderon-exchange:

gihofs 8 mo
dr /7 M*

_mo
M, M,
9%9% 8 md 3

Voco(r) = +

[(3 - 2m207“2)

(15 — 20mgr? + 4mpr?) | exp(—myr?) |

Vout(r) = =545 72 i {92 [(8 — 2mr?) exp(~mpr?)] +

+[(3 = 2m3r?) exp(-myHr?)| V21,
_ges 8 mo md
ar 37 MY M, M,

M, M,
X (1 —‘r/i%ﬁ) (1 “1‘/‘?}204/\/7;) 5

o O 8 m5 m2
Vor(r) = _ 913924 o o 2

dr 3w M* M, M,

M M,

0,0 5 2
8 myp m
Vo,so(r) = _ 9139 © Mo Mo [5— 2m20r2] exp(—mdr?) -

M, M,
x {3+ (K +KG) XL %
{ ( 13 24) M
O O 2 m5 m4
Vo.o(r) 913924 @) @)

dr /7 M* MZM2

/M, M, M, M
x{1+4(’€%+f€204)y+81€13524 v n},

M M?

Vool(r) =

[7 — 2m2o7°2} exp(—mQOTQ) .

[o}e) 5 2
) 4 m m
Vo,aso(r) = ~J1s92 = Mo = [5 - 2m20r2] eXp(—m%)7"2) )

M?% — M? M, M,
n Y _ 4 (0 _ O vy
X {7]\/[@,]\/[” (“24 “13) M

4. Strange Meson-exchange

[15 — 20mgr? + 4mgr?] exp(

-mr® [T = 2mgr?] exp(—mpr?) -
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(F26a)

(F26b)

(F26¢)

(F26d)

(F26e)

(F26f)

(F26¢g)

The rules for hypercharge nonzero exchange have been given in e.g. Ref. [47]. The potentials for non-zero hy-
percharge exchange (K, K*, k, K4, Kp) are obtained from the expressions given in the previous subsections for non-
strange mesons by taking care of the following points: (a) For strange meson exchange P = —P,P,. (b) In the latter

case one has to replace both M, and M, by \/M,M,, and reverse the sign of the antisymmetric spin orbit.

APPENDIX G: FOLDING AMPLITUDE SCALAR-EXCHANGE II

In this Appendix the lower vertex in Fig. 2 is worked out for the scalar-meson coupling. This in order to check the

signs in the vertex function in comparison with the upper vertex.
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The Dirac-spinor part of the scalar-meson QQ-vertex is

El+m] E;+m; o,-d, o0;-q;
_ / i 3 i i It 2 ) U ?
i(a)ui(qi)] = X | 1=
[l s ()] \/ 2m/, om; N [ B} +m; E; +m;
94 Qi
~ X {1—WQZ—WU¢'QQX%] Xi
S? — k2 i
/ [
= [1‘ 16m? —W”z"sixk} X G

Here is used that for the CQM E; =~ m,;. The performance of the Q-integral in (G1) gives

[a;(q';)ui(q;)] = X;T [1 - <4m§R§V + 3gjlzg> + 1(1),{;%2 + 12;12 o q X k} Xi (G2)
Summing over the quarks leads to the vertex
Togu = Y [i(d)ui(a)] =3 [1 - (4 1, q22 ) n k22 P > oi-qx k] (G3)
B mg Ry 36mg, 16mg ~ 36mg, -
The CQM replacement mg &~ v M'M /3 leads to
2 2 ;
equ = 3 <1 N 4ng§V> o 16?\1/;’M + O EZ:UN a4 k] ’ (G1)

where we used ), 0; = oy. This assumes that the spin of the nucleon is given by the total spin of the quarks [27].
Notice that the 1/R3,-term in (G4) has the same sign to that of (4.8). Hence, these terms would not cancel in the
NN-potential in this simple treatment.

APPENDIX H: FOLDING TENSOR-EXCHANGE VERTEX

For the coupling of the tensor mesons (JF¢ = 2+%) to the quarks, similar to that for the nucleons, we take

7 - —
Hivw =~ |5¢ (10" + 470" )Y Fy — o' 0" Fao| - fuu (H1)
where f,, = f,,, i.e. symmetric, and
G G
F o= /\T/il ,and Fy = A;j . (H2)
The Sach form factors are in terms of the G'r; defined as
t —4M? Kk?
Gv=Gry, Gg=Gr1 — %GT,Q ~Gr1+ (1 + M) Grya . (H3)

The latter are defined for general J in e.g. Rijken, Phd. Thesis (Nijmegen, 1975). This is of importance when we
apply the constraints imposed by EXD, which relates the tensor-meson couplings to the vector-meson couplings. As
a matter of fact, EXD predicts that MF; = Fy; and MF, = Fy 5 for the pairs (A, p) and (f(1270),w).

Using the Gordon decomposition, the Pauli- couplings G7 are related to the Dirac-couplings gr, fr by

gr =Gr1+Gro, fr=—-Gra, (H4)

and notice that

Fi+MF, =gp/M , MF, = —fr/M, (H5)
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which is strictly valid only for M = M.
For the QQ f-vertices this gives the factors

i (ki )T wi(ki) ~

e

) | (4 K9 4+ KDY ) Byt (D 0 ] i)

i

DO | =

1

u;(dj) { ((q +4)77 + (g5 + q})"’r”) Fi+(qj +d)"(a+4d)7 Fé] u;(q;)

=~ =

aj(q;) T uj(q) ~

1
0+ ) () [P+ S+ ) B ) (Ho)

DO | =

Here the symbol ~ indicates that factors coming from the normalization /(E + mq)/2mq of the Dirac-spinors have
been suppressed. (In the present case, as also for vector- and scalar-exchange, they cancel out when we pass to the
level of the Lippmann-Schwinger equation.) The second form of the vertices is equivalent to the first form due to the
symmetry of the tnesor field f,,. Notice that, apart from the factor (ki + k1)¥, the I'r matrix element in (H6) is
identical to that for the vector meson.

The propagator for the spin-2 mesons contains the projection operator

1 1
P/u/;prr(k) = 5 (RLpPya + P;erpup) - gRuuPpa ; (H7)

where P, (k) = —nu + kuk,/m?, with k = k! —k; = p' —p = ¢ — ¢’. On-mass-shell and equal quark masses the
kuk,-terms in the P,, (k) do not contribute, so

1 1
Puvipo (k) = B} (NupNvo + NMuoMvp) — gnuuﬁpo . (H8)

Therefore, we find three contributions to the QQ-potential
1 2 3
Vg = Vi + VEL + v (H9)
where, denoting p := k;,p’ := ki and ¢ := ¢;,q¢" := ¢},

1 1
Vi = g 040 () ) |2 Bt 0 ) B o)

) 1 »
< () [ P S ) B ) < ]

1 1
V) =~ w) [ ) Bt o+ 4 o) B wie):

x u;(a’) {’Y' (p+p") Fl + %(q+q’) “(p+p) FQ’} uj(q) x [k 4—m2}_1 ,

Vi = +41—8 [AMPF, 4 (AM? — t) Fy] [AM'F| + (4M" — t) F}] -
x [ (p")ui ()] [ (d)uy(@)] % [K2 +m?] ", (H10)

where for the third contribution we used the Dirac equation 7 - p u(p) = mgu(p). This last contribution is very akin
to the scalar potential and the result can be written down almost immediately using the results of Phys.Rev. D 17
(1978).

Working out the contribution for y = 0, similar to that for the scalar- and vector-meson one finds, with Fy , = I »
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and m; = m; = mq,

Q-k* i
Vi o~ —om? [{1+—2+Wai~qixk F

2 4m; i
2 _ k2 )
{{1—(2116T+8 20'1 szk} miF2:|'

1
2
S? — k? i
HH s o, xk}F1
4 J
2
1
1

+

X
8m=

m?
1 Si-k i S, x k F
16m? +8m3”’ KR

Q? k2
16m

+

= —Em% [(F1+mQF2)+(F dmgFy)
2

16m

2 2 2 2 2
R e Qi_k 57—k
97 <M2> [1+(1+5fT/gT){ 16m2@ + 16m§2 T (H11)

where we neglect the quadratic terms of the product. Similarly, the second and third terms give

2 2 _ 1.2 ; S2 _ k2 .
@ . _1 o(Mg Qi -k i _ 7 i _
T N (M) - S e @1 16mz  sma”i S Xk

? J

S2
X (F1+mQF2)—|—(F1 —4mQF2) :|

1, (m Q?-k> 82—k
g =) 11— = = H12
i1 <M2> { 6m3  16my ] (H12)
and
2 2 2 2
@ o .1 mQ 17Qi*k 7Si*k H1
VTﬂ-j ~ + gT (M2> { 16m% 16m22 + ... (H13)

1. Cancellation (mgRn)~? terms in NN-potential

In the case one sticks to the 63(K — k the ”spurious” contributions to the central potentals can be (almost)
completely eliminated by the inclusion of the tensor mesons, which is illustrated below. From the vertices I'cgar for
scalar, vector, and tensor exchange we get, with kK = fr/gr,

2

1 q® +k?/4 _
VNNse ~ —g%||1— — ] (K2 2)t H14
NN, 95[( 4m%RJ2V> S (k* +mg)™ ", (H14a)

1 Q> +k*/4 _
v o 221 k2 2y-1 H14b
NN, ve +gv[< +4méR?V> + WE + (k* +mi)" ", ( )

2 (1+3kr/2) q® +k?/4 2 2\-1

VNNin ~ —=g2 |1+ —L2 14 3kp/2)————+...| (k , H14
NNt 39T[< + 4méR?v + (1 +3r7/2) e + (k* +m7) (H14c)

where the couplings gg, gv, and gr are now NN coupling constants. Neglecting the RR,4 terms, the volume integral
of the ”spurious” 1/R%; terms is proportional to

2 2 2

Js 9v 1 9r
Iy ~ | =+ ~—% ——=(1+3 2) H15
v [m% + mé, 3( wr/ )mQT} (H15)

For mg = my = mp/V/3, and kr ~ Ky ~ 3.7, the vanishing of this part of Iy, implies g2 ~ (2/3)(g% + ¢%). From

QPC-mechanism gg ~ gy := g leading to ¢+ =~ (1/2/3)§ ~ . In the approximation of ”contact-approximation this
shows that the potentials from the ”spurious” terms can be made to vanish.
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