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Abstract

The analyses for the NICER data imply 𝑅2.0𝑀⊙
= 12.41+1.00−1.10 km and 𝑅1.4𝑀⊙

= 12.56+1.00−1.07 km, indicat-
ing the lack of significant variation of the radii from 1.4𝑀⊙ to 2.0𝑀⊙. This feature cannot be reproduced
by the hadronic matter due to the softening of equation of state (EoS) by hyperon mixing, indicating
the possible existence of quark phases in neutron-star interiors. Twomodels are used for quark phases:
In the quark-hadron transition (QHT)model, quark deconfinement phase transitions from a hadronic-
matter EoS are taken into account so as to give reasonable mass-radius (𝑀𝑅) curves by adjusting the
quark-quark repulsions and the density dependence of effective quark mass. In the quarkyonic model,
the degrees of freedom inside the Fermi sea are treated as quarks and neutrons exist at the surface of the
Fermi sea, where𝑀𝑅 curves are controlled mainly by the thickness of neutron Fermi layer. The QHT
and quarkyonic EoSs can be adjusted so as to reproduce radii, tidal deformabilities, pressure and central
densities inferred from the NICER analysis better than the nucleonic matter EoS, demonstrating the
clear impacts of quark phases. Then, the maximummass for the quakyonic-matter EoS is considerably
larger than that for the QHT-matter EoS.
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I. INTRODUCTION

In studies of neutron stars (NS), the fundamental role is played by the equation of state
(EoS) for neutron star matter. The massive neutron stars with masses over 2𝑀⊙ have been
reliably established by the observations of NSs J1614−2230 [1], J0348+0432 [2], J0740+6620
[3] and J0952-0607 [4]. The radius information of NSs have been obtained for the massive NS
PSR J0740+6620 with 2𝑀⊙ and 1.4𝑀⊙ NSs, shown as 𝑅2𝑀⊙

and 𝑅1.4𝑀⊙
, from the analyses for

the X-ray data taken by theNeutron Star Interior Composition Explorer (NICER) and the X-ray
Multi-Mirror (XMM-Newton) observatory. The analysis of Miller et al. gives 𝑅2.08𝑀⊙

= 12.35±
0.75 km and 𝑅1.4𝑀⊙

= 12.45 ± 0.65 km [5]. The analysis of Riley gives 𝑅2.08𝑀⊙
= 12.39+1.30−0.98 km

and 𝑅1.4𝑀⊙
= 12.33+0.76−0.81 km [6]. Legred et al. investigate these measurement’s implications for

the EoSs, employing a nonparametric EoSmodel based on Gaussian processes and combining
information from other X-ray and gravitational wave observations [7].

The purpose of this paper is to demonstrate that the radius information of massive NSs
give the important constraints for the neutron-star EoSs. In our EoS analysis, the following
neutron-star radii are adopted as critical values to be reproduced:

𝑅2.0𝑀⊙
= 12.41+1.00−1.10 km

𝑅1.4𝑀⊙
= 12.56+1.00−1.07 km (1.1)

with maximum mass 𝑀𝑚𝑎𝑥∕𝑀⊙ = 2.21+0.31−0.21, being given by the analysis by Legred et al.[7].
The median values of 𝑅2𝑀⊙

and 𝑅1.4𝑀⊙
in the above three references [5][6][7] are only a few

hundred meters apart from each other. We set the fitting accuracy to a few hundred meters in
our analysis for 𝑅2𝑀⊙

and 𝑅1.4𝑀⊙
. Then, the EoS obtained from our analysis are not changed,

even if the set of 𝑅2𝑀⊙
and 𝑅1.4𝑀⊙

in [5] or [6] is used as the criterion instead of Eq.(1.1) or all
three sets in [5][6][7] are used. The key feature found commonly in the three sets is the small
variation of radii from 1.4𝑀⊙ to 2𝑀⊙, namely 𝑅2𝑀⊙

≈ 𝑅1.4𝑀⊙
. The reason why the result in [7]

is used in our present analysis is because they present the inferred values ofmaximummasses,
radii, tidal deformabilities, pressure and central densities obtained from their analysis. These
quantities can be compared with our corresponding results, by which the features of our EoSs
are revealed in detail.

The hyperonmixing in neutron-star matter brings about a remarkable softening of the EoS
and a maximum mass is reduced to a value far less than 2𝑀⊙. The EoS softening is caused
by changing of high-momentum neutrons at Fermi surfaces to low-momentum hyperons via
strangeness non-conserving weak interactions overcoming rest masses of hyperons. In order
to derive EoSs for massive NSs, it is necessary to solve this “hyperon puzzle in neutron stars".
There have been proposed possible mechanisms: (i) more repulsive hyperon-hyperon interac-
tions in relativistic mean field (RMF) models driven by vector mesons exchanges [8–11], (ii)
repulsive hyperonic three-body forces [12–19], (iii) appearance of other hadronic degrees of
freedom, such as ∆ isobars [20] or meson condensates [21–25], (iv) existence of quark phases
in high-density regions [26–36]. It should be noted that the criterion for NS radii Eq.(1.1) is
stricter than the condition of 𝑀𝑚𝑎𝑥 > 2𝑀⊙ only to solve the "puzzle" and the above mecha-
nisms are needed to be re-investigated under this stricter condition.

One of the approaches belonging to (ii) is to assume that three-nucleon repulsions (TNR)
[37] work universally among every kind of baryons as three-baryon repulsions (TBR) [12]. In
[14–16], the multi-pomeron exchange potential (MPP) was introduced as amodel of universal
repulsions among three and four baryons on the basis of the extended soft core (ESC) baryon-
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baryon interactionmodel developed by twoof the authors (T.R. andY.Y.) andM.M.Nagels [39–
41]. In the case of this specialmodeling for hyperonic three-body repulsions, the EoS softening
by hyperon mixing is not completely recovered by the above universal repulsions, and the
maximum masses become not so large even if universal many-body repulsions increase. As
a result, the maximum masses for hyperonic-matter EoS cannot be over 2𝑀⊙, as found in
[14–16]: It is difficult that criterion Eq.(1.1) is realized by this modeling of hadronic-matter
EoSs. A simple way to avoid the strong softening of EoS by hyperonmixing is to assumeΛ𝑁𝑁
repulsions stronger than 𝑁𝑁𝑁 repulsions with neglect of Σ− mixing [17].

In this paper, we focus on the mechanism (iv). It is possible to solve the “hyperon puzzle"
by taking account of quark deconfinement phase transitions from a hadronic-matter EoS to
a sufficiently stiff quark-matter EoS in the neutron-star interiors, namely by studying hybrid
stars having quark matter in their cores, where repulsive effects in quark phases are needed
to result in massive stars over 2𝑀⊙. In the Nambu-Jona-Lasinio (NJL) model, for instance,
repulsions to stiffen EoSs are given by vector interactions. Then, it is known well that quark-
hadron phase transitions should be crossover or at most weak first-order, because strong first-
order transitions soften EoSs remarkably in order to obtain stiff EoSs. In [35], they derived
the new EoS within the quark-hadron crossover (QHC) framework (3-windows model) so as
to reproduce 𝑅2.1𝑀⊙

≈ 𝑅1.4𝑀⊙
≈ 12.4km. Here, the small variation of radii indicates that

the pressure grows rapidly while changes in energy density are modest, producing a peak in
the speed of sound [35]. In their QHC framework, the EoSs in the quark-hadron mixed re-
gion of 1.5𝜌0 ∼ 3.5𝜌0, playing a decisive role for the resulting 𝑀𝑅 curves, are given by the
interpolating functions phenomenologically. Then, it is meaningful to study the other mod-
eling for phase transitions in which the mixed regions are modeled explicitly. We investi-
gate how this criterion Eq.(1.1) can be realized in the case of using the EoS derived from our
quark-hadron transition (QHT) model for neutron-star matter in the Bruecner-Hartree-Fock
(BHF) framework [36], being different from their 3-windows model. Here, the quark-matter
EoS is derived from the two-body quark-quark (𝑄𝑄) potentials, in which all parameters are
on the physical backgrounds with no room for arbitrarily changing: They are composed of
meson-exchange quark-quark potentials derived by unfolding of the baryon-baryon meson-
exchanges, and instanton-exchange, one-gluon-exchange and multi-pomeron exchange po-
tentials. Then, baryonic matter and quarkmatter are treated in the common BHF framework,
where quark-hadron transitions are treated on the basis of the Maxwell condition. In this pa-
per, it is shown that the criterion Eq.(1.1) can be realized by our QHT model for neutron-star
matter, as well as the QHCmodel [35], by adjusting the𝑄𝑄 repulsion to be strong enough and
the quark-hadron transition density to be about 2𝜌0.

In our QHT model the BHF framework is used for deriving the quark-matter EoS, which
is not popular. Our treatments for quark-hadron phase transitions is the same as that in [33]
where the NJL model is adopted for quark matter under the mean field approximation. In
spite of the difference between quark-matter models, their obtained𝑀𝑅 curves are similar to
ours in [36]. Therefore, it is considered that the same conclusions can be derived also by using
their QHT model instead of ours.

Another type of quark phase in neutron-star interiors is given by the quarkyonic matter
[43–50], where the degrees of freedom inside the Fermi sea are treated as quarks and nucle-
ons exist at the surface of the Fermi sea. The transition from hadronic-matter phase to the
quarkyonic-matter phase is considered to be in second-order. In the quarkyonic matter, the
existence of free quarks inside the Fermi sea gives nucleons extra kinetic energy by pushing
them to higher momenta, leading to increasing pressure. This mechanism to realize the crite-
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rion Eq.(1.1) is completely different from the QHTmatter in which the essential roles for EoS
stiffening are played by the 𝑄𝑄 repulsions. Then, it is valuable to study the characteristic dif-
ferences between neutron-star mass-radius (𝑀𝑅) curves obtained from the QHT-matter EoS
and quarkyonic-matter EoS.

This paper is organized as follows: In Sect.II, the hadronic-matter EoS (II-A), the quark-
matter EoS (II-B) and the quarkyonic-matter EoS (II-C) are formulated on the basis of our
previous works, where the BHF frameworks with our𝑄𝑄 potentials are adopted both for bary-
onic matter and quark (quarkyonic) matter. Transitions from hadron phases to quark matter
(quakyonic) phases are explained. In Sect.III-A, the calculated results are shown for pressures,
energy densities and sound velocities. In III-B, the𝑀𝑅 curves of hybrid stars are obtained by
solving the Tolmann-Oppenheimer-Volkoff (TOV) equation. In III-C, the obtained values of
maximum masses, radii, tidal deformabilities, pressure and central densities are compared
with those inferred from the NICER-data analysis. The conclusion of this paper is given in
Sect.IV.

II. MODELS OF NEUTRON-STARMATTER

A. hadronic matter

The hadronic matter is defined as 𝛽-stable hyperonic nuclear matter including leptons,
composed of 𝑛, 𝑝+, Λ, Σ−, 𝑒−, 𝜇−. We recapitulate here the hadronic-matter EoS. In the BHF
framework, the EoS is derived with use of the ESC baryon-baryon (𝐵𝐵) interactionmodel [14–
16].

As is well known, the nuclear-matter EoS is stiff enough to assure neutron-star masses
over 2𝑀⊙, if the strong three-nucleon repulsion (TNR) is taken into account. However, there
appears a remarkable softening of EoS by inclusion of exotic degrees of freedom such as hy-
peronmixing. One of the ideas to avoid this “hyperon puzzle" is to assume that themany-body
repulsions work universally for every kind of baryons [12]. In [14–16], the multi-pomeron ex-
change potential MPP was introduced as a model of universal repulsions among three and
four baryons. This was inspired by the multi-reggeon model to describe CERN-ISR pp-data
[38]. The ESC work is mentioned in [39–41].

In [16] they proposed three versions of MPP (MPa, MPa+, MPb), where MPa and MPa+
(MPb) include the three- and four-body (only three-body) repulsions. Their strengths are de-
termined by analyzing the nucleus-nucleus scattering using theG-matrix foldingmodel under
the conditions that the saturation parameters are reproduced reasonably. The EoSs for MPa
and MPa+ are stiffer than that for MPb, and maximum masses and radii of neutron stars ob-
tained fromMPa, MPa+ are larger than those fromMPb. The important criterion for repulsive
parts is the resulting neutron-star radii 𝑅 for masses of 1.4𝑀⊙: In the case of using MPb, we
obtain 𝑅1.4𝑀⊙

≈ 12.4 km similar to the value in the criterion Eq.(1.1). On the other hand,
we have 𝑅1.4𝑀⊙

≈ 13.3 (13.6) km in the case of MPa (MPa+). In this paper, we adopt MPb
as three-baryon repulsion: Our nuclear interactions are composed of two-body part 𝑉𝐵𝐵 and
three-body part𝑉𝐵𝐵𝐵, where𝑉𝐵𝐵 and𝑉𝐵𝐵𝐵 are given by ESC andMPb, respectively. It is worth-
while to say that the three-nucleon repulsion in MPb is stronger than the corresponding one
(UIX) in the standard model by APR [37] giving rise to 𝑅1.4𝑀⊙

≈ 11.6 km [42].
𝐵𝐵 G-matrix interactions 𝒢𝐵𝐵 are derived from 𝐵𝐵 bare interactions𝑉𝐵𝐵 or𝑉𝐵𝐵+𝑉𝐵𝐵𝐵 [14].

They are given for each (𝐵𝐵′, 𝑇, 𝑆, 𝑃) state, 𝑇, 𝑆 and 𝑃 being isospin, spin and parity in a two-
body state, respectively, and represented as 𝒢𝑇𝑆𝑃𝐵𝐵′ . The G-matrix interactions derived from 𝑉𝐵𝐵
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and 𝑉𝐵𝐵 +𝑉𝐵𝐵𝐵 are called B1 and B2, respectively. In the quarkyonic model, we need only the
neutron-neutron sectors, 𝒢𝑆𝑃𝑛𝑛.

A single baryon potential is given by

𝑈𝐵(𝑘) =
∑

𝐵′=𝑛,𝑝,Λ,Σ−
𝑈(𝐵′)
𝐵 (𝑘)

=
∑

𝐵′=𝑛,𝑝,Λ,Σ−

∑

𝑘′<𝑘(𝐵
′)

𝐹

⟨𝑘𝑘′|𝒢𝐵𝐵′|𝑘𝑘′⟩

(2.1)

with 𝐵 = 𝑛, 𝑝,Λ,Σ−. Here, ⟨𝑘𝑘′|𝒢𝐵𝐵′|𝑘𝑘′⟩ is a 𝐵𝐵′ G-matrix element in momentum space,
being derived from 𝑉𝐵𝐵 or (𝑉𝐵𝐵+𝑉𝐵𝐵𝐵), and 𝑘

(𝐵)
𝐹 is the Fermi momentum of baryon 𝐵. In this

expression, spin and isospin quantum numbers are implicit.
The baryon energy density is given by

𝜀𝐵 = 𝜏𝐵 + 𝜐𝐵

= 𝑔𝑠∫
𝑘(𝐵)𝐹

0

𝑑3𝑘
(2𝜋)3

{
√
ℏ2𝑘2 +𝑀2

𝐵 +
1
2𝑈𝐵(𝑘)} ,

(2.2)

where 𝜏𝐵 and 𝜐𝐵 are kinetic and potential parts of the energy density.
In 𝛽-stable hadronic matter composed of 𝑛, 𝑝, 𝑒−, 𝜇−,Λ and Σ−, equilibrium conditions are

given as

(1) chemical equilibrium conditions,

𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒 (2.3)
𝜇𝜇 = 𝜇𝑒 (2.4)
𝜇Λ = 𝜇𝑛 (2.5)
𝜇Σ− = 𝜇𝑛 + 𝜇𝑒 (2.6)

(2) charge neutrality,

𝜌𝑝 = 𝜌𝑒 + 𝜌𝜇 + 𝜌Σ− (2.7)

(3) baryon number conservation,

𝜌 = 𝜌𝑛 + 𝜌𝑝 + 𝜌Λ + 𝜌Σ− . (2.8)

Expressions for 𝛽-stable nucleonic matter composed of 𝑛, 𝑝, 𝑒− and 𝜇− are obtained by
omitting hyperon sectors from the above expressions for 𝛽-stable baryonic matter.

B. Quark-Hadron transition model

In our treatment of quark matter, the BHF framework is adopted on the basis of two-body
𝑄𝑄 potentials [36]. Here, correlations induced by bare 𝑄𝑄 potentials are renormalized into
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coordinate-space G-matrix interactions, being considered as effective 𝑄𝑄 interactions used in
quark-matter calculations.

Our bare 𝑄𝑄 interaction is given by

𝑉𝑄𝑄 = 𝑉𝐸𝑀𝐸 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸 + 𝑉𝑀𝑃𝑃 (2.9)

where𝑉𝐸𝑀𝐸, 𝑉𝐼𝑁𝑆, 𝑉𝑂𝐺𝐸 and𝑉𝑀𝑃𝑃 are the extendedmeson-exchange potential, the instanton-
exchange potential, the one-gluon exchange potential and the multi-pomeron exchange po-
tential, respectively. Parameters in our 𝑄𝑄 potential are chosen so as to be consistent with
physical observables. The 𝑉𝐸𝑀𝐸 𝑄𝑄 potential is derived from the ESC 𝐵𝐵 potential so that
the 𝑄𝑄𝑀 couplings are related to the 𝐵𝐵𝑀 couplings through folding procedures with Gaus-
sian baryonic quark wave functions. In the construction of the relation between 𝐵𝐵𝑀 and
𝑄𝑄𝑀 couplings, the requirement that the coefficients of the 1∕𝑀2 expansion should match is
based on Lorentz invariance, which fixes the QQM couplings and also determines the (few)
extra vertices at the quark level [39]. Then, the 𝑉𝐸𝑀𝐸 𝑄𝑄 potential is basically of the same
functional expression as the ESC 𝐵𝐵 potential. Strongly repulsive components in ESC 𝐵𝐵
potentials are described mainly by vector-meson and pomeron exchanges between baryons.
This feature persists in the 𝑉𝐸𝑀𝐸 𝑄𝑄 potential, which includes the strongly repulsive compo-
nents originated from vector-meson and pomeron exchanges between quarks. Similarly the
multi-pomeron exchange potentials among quarks,𝑉𝑀𝑃𝑃, are derived from the corresponding
ones among baryons, giving repulsive contributions. Contributions from 𝑉𝐼𝑁𝑆 and 𝑉𝑂𝐺𝐸 in
average are attractive and repulsive, respectively. The strength of 𝑉𝑂𝐺𝐸 is determined by the
quark-gluon coupling constant 𝛼𝑆. In [36] 𝛼𝑆 is chosen as 0.25, that is 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.25), and
the three sets are defined as follows: Q0 : 𝑉𝐸𝑀𝐸, Q1 : 𝑉𝐸𝑀𝐸 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.25) Q2 :
𝑉𝐸𝑀𝐸 + 𝑉𝑀𝑃𝑃 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.25).

In our QHT model for neutron-star matter, quark-hadron phase transitions occur at cross-
ing points of hadron pressure 𝑃𝐻(𝜇) and quark pressure 𝑃𝑄(𝜇) being a function of chemical
potential 𝜇. Positions of crossing points, giving quark-hadron transition densities, are con-
trolled by parameters 𝜌𝑐 and 𝛾 included in our density-dependent quark mass

𝑀∗
𝑄(𝜌𝑄) =

𝑀0

1 + exp[𝛾(𝜌𝑄 − 𝜌𝑐)]
+𝑚0 + 𝐶 (2.10)

with 𝐶 = 𝑀0 −𝑀0∕[1 + exp(−𝛾𝜌𝑐)] assuring𝑀∗
𝑄(0) = 𝑀0 +𝑚0, where 𝜌𝑄 is number density

of quark matter, and 𝑀0 and 𝑚0 are taken as 300 (360) MeV and 5 (140) MeV for 𝑢 and 𝑑
(𝑠) quarks. Here, the effective quark mass 𝑀∗

𝑄(𝜌𝑄) should be used together with 𝐵(𝜌𝑄) =
𝑀∗

𝑄(0)−𝑀
∗
𝑄(𝜌𝑄)+𝐵0, meaning the energy-density difference between the perturbative vacuum

and the true vacuum. A constant term 𝐵0 is added for fine tuning of an onset density. In [36],
the values of (𝜌𝑐, 𝛾) without 𝐵0 are given for each set of Q0, Q1 and Q2.

Let us focus on the typical result for Q2+H1 in [36]. The 𝑄𝑄 interaction Q2 is the most
repulsive among Q0, Q1 and Q2. The 𝐵𝐵 interaction H1 consists of ESC andMPb, and results
in the reasonable value of 𝑅1.4𝑀⊙

. In this case of Q2+H1, we obtain the maximum mass of
2.25𝑀⊙ and the reasonable value of 𝑅1.4𝑀⊙

= 12.5 km, in which the quark-hadron transition
occurs at density of 3.5𝜌0. Then, we have 𝑅2.0𝑀⊙

= 12.0 km, being rather smaller than 12.4
km in the criterion Eq.(1.1). In order to reproduce a larger value of 𝑅2.0𝑀⊙

≈ 12.4 km, we
make 𝑉𝑂𝐺𝐸 more repulsive by taking larger values of 𝛼𝑆 = 0.36 and 0.49. It is not suitable for
such a purpose to strengthen the 𝑉𝑀𝑃𝑃 repulsion, because 𝑉𝑀𝑃𝑃 is essentially of three-body
interaction and the contributions in low-density region are small. On the other hand, 𝑉𝑂𝐺𝐸
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is of two-body interaction, and its repulsive contributions are not small even in low density
region, being important for a large value of 𝑅2.0𝑀⊙

. Another condition to make 𝑅2.0𝑀⊙
larger is

to lower quark-hadron transition densities by adjusting the parameters (𝜌𝑐,𝛾,𝐵0) included in
the density-dependent quark mass Eq.(2.10).

We define newly the following three sets with the fixed value of 𝛾=1.2
Q2 : 𝑉𝐸𝑀𝐸 + 𝑉𝑀𝑃𝑃 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.25)

with 𝜌𝑐 = 6.9𝜌0 and 𝐵0 =8.5
Q3 : 𝑉𝐸𝑀𝐸 + 𝑉𝑀𝑃𝑃 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.36)

with 𝜌𝑐 = 6.9𝜌0 and 𝐵0 =7.5
Q4 : 𝑉𝐸𝑀𝐸 + 𝑉𝑀𝑃𝑃 + 𝑉𝐼𝑁𝑆 + 𝑉𝑂𝐺𝐸(𝛼𝑆 = 0.69)

with 𝜌𝑐 = 7.5𝜌0 and 𝐵0 =10.0
where the values of 𝜌𝑐 and 𝐵0 for each set are chosen so as to give quark-hadron transition
densities of ∼ 2𝜌0.

G-matrix interactions 𝒢𝑞𝑞′ with 𝑞, 𝑞′ = 𝑢, 𝑑, 𝑠 are derived from the above bare 𝑄𝑄 interac-
tions. They are given for each (𝑞𝑞′, 𝑇, 𝑆, 𝑃) state, 𝑇, 𝑆 and 𝑃 being isospin, spin and parity in
a two-body state, respectively, and represented as 𝒢𝑇𝑆𝑃𝑞𝑞′ . Hereafter, Q2, Q3 and Q4 mean the
naming of corresponding𝑄𝑄G-matrix interactions, not only of bare𝑄𝑄 interactions. The𝑄𝑄
G-matrix interactions are used also in the quarkyonic matter calculations.

A single quark potential is given by

𝑈𝑞(𝑘) =
∑

𝑞′=𝑢,𝑑,𝑠
𝑈(𝑞′)
𝑞 (𝑘) =

∑

𝑞′=𝑢,𝑑,𝑠

∑

𝑘′<𝑘𝑞
′
𝐹

⟨𝑘𝑘′|𝒢𝑞𝑞′|𝑘𝑘′⟩

(2.11)

with 𝑞 = 𝑢, 𝑑, 𝑠, where 𝑘𝑞𝐹 is the Fermi momentum of quark 𝑞. Spin and isospin quantum
numbers are implicit.

The quark energy density is given by

𝜀𝑞 = 𝑔𝑠𝑁𝑐
∑

𝑞=𝑢,𝑑,𝑠

∫
𝑘𝐹𝑞

0

𝑑3𝑘
(2𝜋)3

{
√
ℏ2𝑘2 +𝑀2

𝑞 +
1
2𝑈𝑞(𝑘)} .

(2.12)

Fermion spin and quark color degeneracies give rise to 𝑔𝑠 = 2 and 𝑁𝑐 = 3.
In order to demonstrate the features of our 𝑄𝑄 interactions (Q2,Q3,Q4), we show the po-

tential energy per particle 𝑈∕𝐴 as a function of the baryon number density 𝜌𝐵 =
1

3
𝜌𝑄 in the

case of taking 𝜌𝑢 = 𝜌𝑑 = 𝜌𝑠. In Fig.1, the short-dashed, long-dashed and solid curves are ob-
tained by using Q2, Q3 andQ4, respectively. The repulsions are found to be strong in the order
of Q4, Q3, Q2. This difference of repulsions among Q4, Q3 and Q2 comes from the different
values of 𝛼𝑆 included in 𝑉𝑂𝐺𝐸. In the figure, it should be noted that the difference is not small
even in the low-density region.

In the EoS of 𝛽-stable quark matter composed of 𝑢, 𝑑, 𝑠, 𝑒−, the equilibrium conditions are
given as
(1) chemical equilibrium conditions,

𝜇𝑑 = 𝜇𝑠 = 𝜇𝑢 + 𝜇𝑒 (2.13)
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FIG. 1: (Color online) Potential energies per particle 𝑈∕𝐴 as a function of the baryon number density
𝜌𝐵 in the case of 𝜌𝑢 = 𝜌𝑑 = 𝜌𝑠. The short-dashed, long-dashed and solid curves are obtained by using
Q2, Q3 and Q4, respectively.

(2) charge neutrality,

0 = 1
3(2𝜌𝑢 − 𝜌𝑑 − 𝜌𝑠) − 𝜌𝑒 (2.14)

(3) baryon number conservation,

𝜌𝐵 =
1
3(𝜌𝑢 + 𝜌𝑑 + 𝜌𝑠) =

1
3𝜌𝑄 . (2.15)

In order to construct the hybrid EoS including a transition from hadronic phase to quark
phase, we use the replacement interpolation method [33] [36], being a simple modification
of the Maxwell and the Glendenning (Gibbs) constructions [51]. The EoSs of hadronic and
quark phases and that of mixed phase are described with the relations between pressures and
chemical potentials 𝑃𝐻(𝜇), 𝑃𝑄(𝜇) and 𝑃𝑀(𝜇), respectively. The critical chemical potential 𝜇𝑐
for the transition from the hadronic phase to the quark phase is obtained from the Maxwell
condition

𝑃𝑄(𝜇𝑐) = 𝑃𝐻(𝜇𝑐) = 𝑃𝑐 . (2.16)

The pressure of the mixed phase is represented by a polynomial ansatz. The matching densi-
ties 𝜌𝐻 and 𝜌𝑄 are obtained with use of 𝜌(𝜇) = 𝑑𝑃(𝜇)∕𝑑𝜇.

C. quarkyonic matter

In the BHF framework, we derive the EoS of quarkyonic matter composed of neutrons
and quarks with flavor 𝑞 = 𝑢, 𝑑 in the simplest form by McLerran and Reddy [45]. In the
chargeless 2-flavor quarkyonic matter, strongly interacting quarks near the Fermi sea form
interacting neutrons, and the remaining d and u quarks fill the lowest momenta up to 𝑘𝐹𝑢 and
𝑘𝐹𝑑, respectively. The quark mass is taken to be𝑀𝑞 = 𝑀𝑛∕3 constantly,𝑀𝑛 being the neutron
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mass. In calculations of quarkyonic matter, we use B1 (𝑉𝑛𝑛) and B2 (𝑉𝑛𝑛+𝑉𝑛𝑛𝑛) for nuclear
interactions, and Q0 for 𝑄𝑄 interactions for simplicity.

The total baryon number density is given by

𝜌𝐵 = 𝜌𝑛 +
𝑁𝑐

3 (𝜌𝑢 + 𝜌𝑑)

=
𝑔𝑠
6𝜋2 [𝑘

3
𝐹𝑛 − 𝑘30𝑛 +

𝑁𝑐

3 (𝑘
3
𝐹𝑢 + 𝑘3𝐹𝑑)] , (2.17)

where 𝑘𝐹𝑛, 𝑘𝐹𝑢 and 𝑘𝐹𝑑 are the Fermi momenta of neutrons and u and d quarks, respectively.
Fermion spin and quark color degeneracies give rise to 𝑔𝑠 = 2 and 𝑁𝑐 = 3. Neutrons are
restricted near the Fermi surface by 𝑘0𝑛, being assumed as

𝑘0𝑛 = 𝑘𝐹𝑛 − ∆𝑞𝑦𝑐

∆𝑞𝑦𝑐 =
Λ3

ℏ𝑐3𝑘2𝐹𝑛
+ 𝜅 Λ

𝑁2
𝑐ℏ𝑐

, (2.18)

where∆𝑞𝑦𝑐 for the thickness of Fermi layer includes the two parametersΛ and 𝜅. In this work,
we take the fixed value of 𝜅 = 0.3.

Then, 𝑘𝐹𝑑 and 𝑘𝐹𝑢 are related to 𝑘0𝑛 by 𝑘𝐹𝑑 =
1

𝑁𝑐
𝑘0𝑛 and 𝑘𝐹𝑢 = 2−1∕3𝑘𝐹𝑑.

A single neutron potential is given by

𝑈𝑛(𝑘) =
∑

𝑘0𝑛<𝑘′<𝑘𝐹𝑛

⟨𝑘𝑘′|𝒢𝑛𝑛|𝑘𝑘′⟩ (2.19)

with 𝑛𝑛 G-matrix interactions 𝒢𝑛𝑛.
The neutron energy density is given by

𝜀𝑛 = 𝜏𝑛 + 𝜐𝑛

= 𝑔𝑠∫
𝑘𝐹𝑛

𝑘0𝑛

𝑑3𝑘
(2𝜋)3

{
√
ℏ2𝑘2 +𝑀2

𝑛 +
1
2𝑈𝑛(𝑘)} .

(2.20)

Additionally, another form of the neutron potential energy density is defined as

𝜐̄𝑛 = 𝑔𝑠∫
𝑘𝑛

0

𝑑3𝑘
(2𝜋)3

{12𝑈𝑛(𝑘)} , (2.21)

which is used in [45] instead of 𝜐𝑛.
Single quark potentials for 𝑞 = 𝑢, 𝑑 are given by

𝑈𝑞(𝑘) =
∑

𝑞′=𝑢,𝑑
𝑈(𝑞′)
𝑞 (𝑘)

=
∑

𝑞′=𝑢,𝑑

∑

𝑘′<𝑘𝐹𝑞

⟨𝑘𝑘′|𝒢𝑞𝑞′|𝑘𝑘′⟩ (2.22)

𝑈(𝑛)
𝑞 (𝑘) =

∑

𝑘0𝑛<𝑘′<𝑘𝐹𝑛

⟨𝑘𝑘′|𝒢𝑞𝑛|𝑘𝑘′⟩ (2.23)
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with G-matrix interactions 𝒢𝑞𝑞′ and 𝒢𝑞𝑛. Here, 𝒢𝑞𝑛 is the quark-neutron (𝑄𝑛) interactions: We
assume the simple model in which the potentials 𝒢𝑞𝑞′ are folded into the potentials 𝒢𝑞𝑛 with
Gaussian baryonic quark wave functions. In Eqs.(2.19)(2.22)(2.23) spin quantum numbers
are implicit.

The quark energy density is given by

𝜀𝑞 = 𝑔𝑠𝑁𝑐
∑

𝑞=𝑢,𝑑

∫
𝑘𝐹𝑞

0

𝑑3𝑘
(2𝜋)3

{
√
ℏ2𝑘2 +𝑀2

𝑞 +
1
2𝑈𝑞(𝑘) +𝑈𝑞𝑛(𝑘)} ,

(2.24)

where values of 𝑘𝐹𝑞 are determined by

𝑁𝑐𝑘𝐹𝑞 = 𝑘0𝑛 . (2.25)

Thus, our total energy density is given by

𝜀 = 𝜀𝑛 + 𝜀𝑑 + 𝜀𝑢 . (2.26)

The chemical potential 𝜇𝑖 (𝑖 = 𝑛, 𝑑, 𝑢) and pressure 𝑃 are expressed as

𝜇𝑖 =
𝜕𝜀𝑖
𝜕𝑛𝑖

, (2.27)

𝑃 =
∑

𝑖=𝑛,𝑑,𝑢
𝜇𝑖𝑛𝑖 − 𝜀 , (2.28)

where 𝜕𝜀𝑖
𝜕𝑛𝑖

= 𝜕𝜀𝑖
𝜕𝑛𝐵

𝜕𝑛𝐵
𝜕𝑛𝑖

.

In ourmodel, the phase transition from 𝛽-stable nucleonicmatter to the quarkyonicmatter
occurs in second-order, resulting in the hybrid EoS including hadronic and quarkyonic EoSs.
Then, the transition densities are controlled mainly by the parameter Λ: In this work, we
choose the three values of Λ=380, 350 and 320 MeV with the fixed value of 𝜅 = 0.3. The
transition densities for these values are 0.28 ∼ 0.38 fm−3 (0.28 ∼ 0.36 fm−3) in the case of
using B1 (B2) for nuclear interactions. Hereafter, when a value of Λ=380 MeV is used, for
instance, it is denoted as Λ380.

III. RESULTS AND DISCUSSION

A. EoS

In Fig.2, pressures 𝑃 are drawn as a function of baryonic number density 𝜌𝐵. The dot-
dashed curve is for the 𝛽-stable nucleonic-matter EoS, and the dotted one is for the 𝛽-stable
hadronic-matter EoS with hyperon mixing. The latter is substantially below the former,
demonstrating the EoS softening by hyperon mixing. Thin (thick) solid curves in the upper
side are pressures in the quarkyonic matter for Λ350 and Λ320 (Λ380) with use of B1 for nu-
clear interactions. At the crossing points with the dot-dashed curve in the low-density side,
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FIG. 2: (Color online) Pressures𝑃 as a function of baryonic number density 𝜌𝐵. The dot-dashed (dotted)
curve is for 𝛽-stable nucleonic (hadronic) matter. Upper thin (thick) solid curves are pressures in the
quarkyonic matter for Λ350 and Λ320 (Λ380) with B1. Lower thin (thick) short-dashed curves are for
the QHT matter with Q2 and Q3 (Q4).
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FIG. 3: (Color online) Pressures 𝑃 as a function of the energy density 𝜀. The dot-dashed (dotted) curves
are for 𝛽-stable nucleonic (hadronic) matter. Thin (thick) solid curves show pressures in quarkyonic
phases for Λ350 and Λ320 (Λ380) with B1. The short-dashed curve is for the QHT model with Q4.

there occur second-order transitions from 𝛽-stable nucleonic to quarkyonic phases: The tran-
sition densities 𝜌𝑡 are 0.38, 0.33, 0.28 fm−3 (2.2𝜌0, 1.9𝜌0, 1.6𝜌0) in the cases of Λ380, Λ350 and
Λ320, respectively. Thin (thick) short-dashed curves are for the QHT models with Q2 and Q3
(Q4). It should be noted that pressures in the quarkyonic matter increase more rapidly with
density than those in the QHT matter. As discussed later, the rapid growth of pressure with
density in the range of 2𝜌0 ∼ 4𝜌0 is an important feature of the quarkyonic model. This rapid
increase of pressure at onset of the quarkyonic phase influences significantly on neutron-star
𝑀𝑅 curves.

In Fig.3, pressures 𝑃 are drawn as a function of the energy density 𝜀, which are related
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FIG. 4: (Color online) The square of the sound speed 𝑐2𝑠 in units of 𝑐2 as a function of baryonic number
density 𝜌𝐵. The dot-dashed (dotted) curve is that in 𝛽-stable nucleonic (hadronic) matter. Solid curves
are pressures in quarkyonic matter forΛ380,Λ350 andΛ320with B1. The dashed curve is for the QHT
matter with Q4.

closely to neutron-star𝑀𝑅 curves. The dot-dashed (dotted) curve shows pressures in 𝛽-stable
nucleonic (hadronic) matter. Thin (thick) solid curves show pressures in quarkyonic matter
for Λ350 and Λ320 (Λ380) with B1. The short-dashed curve is for the QHT matter with Q4.
Though the curves for Q4 and Λ380 are rather similar to each other in comparison with the
corresponding curves in Fig.2, the former is still less steep than the latter in the region of low
energy density. As shown later, the EoSs for the QHT model Q4 and the quarkyonic model
Λ380 lead to the neutron-star𝑀𝑅 curves consistent with the criterion Eq.(1.1).

In Fig.4, sound velocities are drawn as a function of 𝜌𝐵. The dot-dashed curve is sound
velocities in 𝛽-stable nucleonic matter. Solid curves are those in quarkyonic matter for Λ380,
Λ350 and Λ320 with B1. There appear peak structures in the solid curves, being related to
rapid increasing of pressures in the range of 2𝜌0 ∼ 4𝜌0. The dashed curve is sound velocities in
the QHTmatter with Q4 and the dotted one is those in 𝛽-stable hadronic matter with hyperon
mixing, in which there appears no peak structure. The dashed curve becomes 𝑐𝑠 > 𝑐 in high-
density region. Also, the peak regions of solid curves become 𝑐𝑠 > 𝑐, if B2 is used instead of
B1 for nuclear parts. In such regions of 𝑐𝑠 > 𝑐, sound velocities are approximated to be 𝑐𝑠 = 𝑐.

It is interesting to notice that the peak structures in our quarkyonic-matter results are some-
what similar to those for the QHC-matter EoS (QHC21) found in [35]. Our QHT-matter EoS
gives no peak structure in sound velocities, being different from both of them.

In the left panel of Fig.5, solid curves show pressures in quarkyonic matter for Λ380 in the
cases of using B1 and B2 for nuclear interactions, and short-dashed (dashed) curves are par-
tial pressures of neutrons (quarks) in respective cases. The dot-dashed curve is pressures in
𝛽-stable nucleonic matter. Pressures in quarkyonic matter are found to be completely dom-
inated by neutron partial pressures. In order to reveal the reason why neutron pressures in
quarkyonic matter are far higher than those in 𝛽-stable nucleonic matter, we show the neu-
tron chemical potentials in the cases of using B1 and B2 for nuclear interactions: In the right
panel of Fig.5, neutron chemical potentials 𝜇𝑛 are drawn as a function of 𝜌𝐵. Lower and upper
solid curves give neutron chemical potentials in quarkyonic matter for Λ380 in the cases of
using B1 and B2, respectively. The dot-dashed curve gives neutron chemical potential in 𝛽-
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FIG. 5: (Color online) In the left panel, solid curves are pressures 𝑃 in quarkyonic phases for as a
function of baryonic number density 𝜌𝐵 for Λ380 in the cases of using B1 and B2, and short-dashed
(dashed) curves are partial pressures of neutrons (quarks) in respective cases. The dot-dashed curve
is for 𝛽-stable nucleonic matter. In the right panel, solid (dot-dashed) curves are neutron chemical
potentials 𝜇𝑛 in quarkyonic (𝛽-stable nucleonic) phases as a function of 𝜌𝐵 for Λ380 in the cases of
using B1 and B2. The dot-dashed curve gives neutron chemical potential in 𝛽-stable nucleonic matter.

stable nucleonic matter. The neutron chemical potentials in quarkyonic matter are far higher
than those in the 𝛽-stable nucleonic matter, which makes neutron pressures in the former far
higher than those in the latter. The reason of higher chemical potentials in the quarkyonic
matter is because the existence of free quarks inside the Fermi sea gives nucleons extra kinetic
energies by pushing them to higher momenta [45].

B. 𝑀𝑅 diagrams

We have the two types of hybrid EoSs, the QHT-matter EoS and the quarkyonic-matter
EoS. They are combined with the 𝛽-stable nucleonic-matter EoS connected smoothly to the
crust EoS [52, 53] in the low-density side. The𝑀𝑅 relations of hybrid stars can be obtained by
solving the TOV equations with these hybrid EoSs.

In Fig.6, starmasses are given as a function of radius𝑅. The dot-dashed curves are obtained
by the 𝛽-stable nucleonic matter EoS. In the left panel, thin (thick) solid curves are obtained
by the QHT-matter EoSs with Q2 andQ3 (Q4). The dotted curve is by the hadronic-matter EoS
including hyperons. In the cases ofQ2, Q3 andQ4, themaximummasses are𝑀𝑚𝑎𝑥∕𝑀⊙=2.23,
2.30, 2.40, respectively, and the radii at 2.0𝑀⊙ are 11.8 km, 12.2 km, 12.5 km, respectively. In
the right panel, thin (thick) solid curves are obtained by the quarkyonic-matter EoSs forΛ350
and Λ320 (Λ380) with use B1 for nuclear interactions. In the cases of Λ380, Λ350 and Λ320,
the maximum masses are 𝑀𝑚𝑎𝑥∕𝑀⊙= 2.64, 2.79, 2.76, respectively, and the radii at 2.0𝑀⊙
are 12.6 km, 13.1 km, 13.5 km, respectively. In both panels, the horizontal lines indicates
𝑅1.4𝑀⊙

= 12.56+1.00−1.07 km and 𝑅2.0𝑀⊙
= 12.41+1.00−1.10 km, and the rectangle indicates the region of
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FIG. 6: (Color online) Star masses as a function of radius 𝑅. The dot-dashed curves are by the 𝛽-stable
nucleonic matter EoS. In the left panel, thin (thick) solid curves are by the QHT-matter EoSs with Q2
and Q3 (Q4). The dotted curve is by the hadronic matter EoS including hyperons. In the right panel,
thin (thick) solid curves are by the quarkyonic-matter EoSs forΛ350 andΛ320 (Λ380) with B1. In both
panels, the horizontal lines indicates 𝑅1.4𝑀⊙

= 12.56+1.00−1.07 km and 𝑅2.0𝑀⊙
= 12.41+1.00−1.10 km, and the

rectangle indicates the region of mass𝑀𝑚𝑎𝑥∕𝑀⊙ = 2.21+0.31−0.21 [7].

mass𝑀𝑚𝑎𝑥∕𝑀⊙ = 2.21+0.31−0.21 [7]. The thick solid curve for Q4 in the left panel and that forΛ380
in the right panel are found to be consistent with the criterion Eq.(1.1), and the key features
of 𝑅2𝑀⊙

≈ 𝑅1.4𝑀⊙
are found in these cases.

Then, it should be noted that the maximum mass 2.64𝑀⊙ for Λ380 is substantially larger
than the value 2.40𝑀⊙ for Q4. The reason for such a difference between maximum masses
can be understood by comparing the 𝑃(𝜌𝐵) curves in Fig.2, where the solid curve for Λ380
increases more rapidly at onset of the quakyonic matter than the dashed curve for Q4 at onset
of quark matter. This means that the stiffness for former is larger than that for the latter. In
the case of QHT matter, it is not possible to obtain such a rapid increasing of 𝑃(𝜌𝐵) in the
low-density region, even if the 𝑄𝑄 repulsions are strengthened.

In the case of hadronic (nucleonic) matter, shown by the dotted (dot-dashed) curve in the
left panel, the maximum mass is 1.82𝑀⊙ (2.19𝑀⊙). The reduction of 0.37𝑀⊙ is due to the
EoS softening by hyperon ((Λ and Σ−) mixing. This softening is mainly caused by Σ− mixing:
If only Λmixing is taken into account, the maximummass is obtained as 2.06𝑀⊙ being close
to the value of 2.19𝑀⊙ without hyperon mixing (dot-dashed curve). Thus, massive stars with
𝑀 > 2𝑀⊙ cannot be obtained by the hadronic matter EoSs with hyperon (Λ and Σ−) mix-
ing [14–16]. On the other hand, the value of 𝑅1.4𝑀⊙

is 12.4 (12.5) km in the case of hadronic
(nucleonic) matter, which means that the hyperon mixing does not depend much on 𝑅1.4𝑀⊙

.
In Fig.7, star masses are given as a function of central baryon density 𝜌𝐵𝑐. The dot-dashed
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FIG. 7: (Color online) Star masses as a function of central baryon density 𝜌𝐵𝑐. The dot-dashed curves
are by the 𝛽-stable nucleonic EoS. The solid curve is by the quarkyonic-matter EoS forΛ380 in the case
of using B1. The short-dashed curve is by the QHT-matter EoS for Q4.

curves are by the 𝛽-stable nucleonicmatter EoS. The solid curve is obtained by the quarkyonic-
matter EoS for Λ380 with B1, and the dashed curve is by the QHT-matter EoS for Q4, where
the onset density in the former (latter) 0.39 (0.33) fm−3. Both of them are consistent with
Eq.(1.1), but the former mass curve for 𝜌𝐵𝑐 is considerably above the latter one, as well as the
corresponding𝑀𝑅 curves.

In Fig.8, star masses are given as a function of radius 𝑅. The solid curve is obtained by the
quarkyonic-matter EoS for Λ380 with use of B1 (𝑉𝑛𝑛) for nuclear interactions, given also in
Fig.6. Dashed and short-dashed curves are by the quarkyonic-matter EoSs forΛ380 andΛ400,
respectively, in the case of using B2 (𝑉𝑛𝑛+𝑉𝑛𝑛𝑛) instead of B1. The difference between solid
and dashed curves demonstrates the effect of the three-neutron repulsion 𝑉𝑛𝑛𝑛, giving the
larger maximum mass and larger value of 𝑅2.0𝑀⊙

. The short-dashed curve for Λ400 indicates
that this effect of 𝑉𝑛𝑛𝑛 to increase mass and radius is cancelled out by taking larger values of
Λ.

In Fig.9, star masses are given as a function of radius 𝑅. The solid curve is obtained by
the quarkyonic-matter EoS for Λ380 with 𝜅 = 0.3 in the case of using B1, given also in Fig.6.
The dashed curve is obtained by the approximation used in [45], where the 𝑄𝑄 interactions
are neglected and the quark energy density Eq.(2.24) is replaced by the kinetic energy density.
Then, the difference between short-dashed and dashed curves is due to this approximation.
The short-dashed curve is obtained by taking 𝜅 = 0.4 under this approximation. The similarity
between solid and short-dashed curves means that the deviation due to this approximation is
canceled out by adjusting the value of 𝜅. In the same case of Λ380 and 𝜅 = 0.3 with B1, the
dotted curve is obtained by replacing the potential energy density in Eq.(2.20) to Eq.(2.21),
being the approximated treatment in [45]. This approximation to use Eq.(2.21) is found to
reduce masses and to increase radii.
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FIG. 8: (Color online) Star masses as a function of radius 𝑅. The dot-dashed curves are by the 𝛽-stable
nucleonic matter EoS. The solid curve is for Λ380with B1. Dashed and short-dashed curves are by the
quarkyonic-matter EoSs forΛ380 andΛ400with B2, respectively. The horizontal dotted lines indicates
𝑅1.4𝑀⊙

= 12.56+1.00−1.07 km and 𝑅2.0𝑀⊙
= 12.41+1.00−1.10 km.
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FIG. 9: (Color online) Star masses as a function of radius 𝑅. The dot-dashed curves are by the 𝛽-stable
nucleonic matter EoS. The solid curve is obtained by the quarkyonic-matter EoS for Λ380with 𝜅 = 0.3
in the case of using B1. The dashed (short-dashed) curve is for Λ380 with 𝜅 = 0.3 (𝜅 = 0.4) by the
approximation to neglect potential sectors in quark energy densities. The dotted curve is obtained by
replacing the potential energy density in Eq.(2.20) to Eq.(2.21). The horizontal lines indicates 𝑅1.4𝑀⊙

=
12.56+1.00−1.07 km and 𝑅2.0𝑀⊙

= 12.41+1.00−1.10 km.

C. Discussion

In [7], they present the neutron-star properties such as maximum mass, radius, tidal de-
formability, pressure and central density inferred from their analysis, for which the median
and 90%highest-probability-density credible regions are given. FromTable II of [7], we choose
the quantities in the case of w/J0740+6620 Miller+ in order to compare with the correspond-
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TABLE I: Maximum masses𝑀𝑚𝑎𝑥, pressures 𝑝 at 𝜌0, 2𝜌0 and 6𝜌0), radii 𝑅 and tidal deformabilities Λ
at 1.4𝑀⊙ and 2.0𝑀⊙, central densities 𝜌𝑐 at 1.4𝑀⊙, 2.0𝑀⊙ and𝑀𝑚𝑎𝑥. Results for the 𝛽-stable nucle-
onic matter EoS denoted as NUC, the QHT-matter EoS Q4 and the quarkyonic matter EoS V380 are
compared with the values taken from [7].

NUC Q4 Λ380 Ref.[7]
𝑀𝑚𝑎𝑥∕𝑀⊙ 2.19 2.40 2.64 2.21+0.31−0.21

𝑝(𝜌0) (1033dyn∕cm2) 5.27 5.27 5.27 4.30+3.37−3.80
𝑝(2𝜌0) (1034dyn∕cm2) 2.76 5.09 4.42 4.38+2.46−2.96
𝑝(6𝜌0) (1035dyn∕cm2) 6.94 12.0 22.6 7.41+5.87−4.18

𝑅1.4𝑀⊙
(km) 12.5 12.7 12.5 12.56+1.00−1.07

𝑅2.0𝑀⊙
(km) 11.8 12.5 12.6 12.41+1.00−1.10

𝑅2.0𝑀⊙
− 𝑅1.4𝑀⊙

(km) −0.72 −0.14 +0.03 −0.12+0.83−0.85
Λ1.4 779 525 473 507+234−242
Λ2.0 128 46 49 44+34−30

𝜌𝑐(1.4𝑀⊙) (1014g∕cm3) 7.9 6.6 6.8 6.7+1.7−1.3
𝜌𝑐(2.0𝑀⊙) (1014g∕cm3) 12. 9.1 8.0 9.7+3.6−3.1
𝜌𝑐(𝑀𝑚𝑎𝑥) (1015g∕cm3) 1.8 1.6 1.3 1.5+0.3−0.4

ing values obtained from our QHT-matter and the quarkyonic matter EoSs. In Table I, tabu-
lated are maximum masses 𝑀𝑚𝑎𝑥, pressures 𝑝 at 𝜌0, 2𝜌0 and 6𝜌0, radii 𝑅 and dimensionless
tidal deformabilities Λ at 1.4𝑀⊙ and 2.0𝑀⊙, central densities 𝜌𝑐 at 1.4𝑀⊙, 2.0𝑀⊙ and𝑀𝑚𝑎𝑥.
Here, our results are for the 𝛽-stable nucleonic matter EoS denoted as NUC, the QHT-matter
EoS Q4 and the quarkyonic matter EoS V380. These EoSs are adjusted so as to reproduce
𝑅1.4𝑀⊙

with an accuracy of a few hundred meters. Then, the key feature of 𝑅2𝑀⊙
≈ 𝑅1.4𝑀⊙

is
found in the cases of Q4 and V380 EoSs, contrastively to the case of the nucleonic EoS giv-
ing 𝑅2𝑀⊙

< 𝑅1.4𝑀⊙
. The values of 𝑅2.0𝑀⊙

, central densities and tidal deformabilities for Q4 and
V380 EoSs are far closer to themedian values than those for nucleonic EoS, demonstrating the
clear impacts of quark phases in Q4 and V380 EoSs. The deviations from themedian values in
the latter are considerably larger than those in the formers. Especially, the values of Λ1.4 and
Λ2.0 for the nucleonic EoS are noted to be out of 90% credible regions.

In the case of the quarkyonic matter EoS for V380, the values of𝑀𝑚𝑎𝑥 and 𝑝(6𝜌0) are found
to be far larger than that for the nucleonic EoS. It is interesting that such a large value of𝑀𝑚𝑎𝑥
can be obtained straightforwardly from the quarkyonic-matter EoS, considering the implica-
tion of the large mass (2.35±0.17)𝑀⊙ for PSR J0952-0607 [4]. The reason why a large value of
𝑀𝑚𝑎𝑥 is obtained n the case of the quarkyonic matter EoS is because the pressure rises rapidly
in the region of 𝜌𝐵 ∼ 2𝜌0 as found in Fig.2. In the McLerran-Reddy model of the quarky-
onic matter, the resulting EoS is mainly controlled by the one parameter ∆𝑞𝑦𝑐 for Fermi-layer
thickness. Then, it is difficult to reproduce simultaneously𝑀𝑚𝑎𝑥 = 2.2𝑀⊙ and 𝑅2.0𝑀⊙

= 12.4
km.
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IV. CONCLUSION

The observed masses and radii of neutron stars give constraints on the dense matter EoSs
and resulting 𝑀𝑅 diagrams. In this sense, the observations of massive stars over 2𝑀⊙ and
the NICER implication of 𝑅2𝑀⊙

≈ 𝑅1.4𝑀⊙
are critically important for restricting neutron-star

matter EoSs. In the case of hadronic matter, even if the nucleonic matter EoS is constructed so
as to be stiff enough to give the maximum mass over 2𝑀⊙, the hyperon mixing brings about
a remarkable softening of the EoS. The EoS-softening by hyperon mixing can be reduced,
for instance, by introducing many-body repulsions which work universally for every kind of
baryons. However, such a repulsive effect does not cancel out completely the EoS softening
by hyperon mixing: In the case of hadronic matter EoS with hyperon mixing, it is difficult
to obtain maximum masses over 2𝑀⊙. The most promising approach to solve this “hyperon
puzzle" is to assume the existence of quark phases in inner cores of neutron stars, namely
hybrid stars having quark matter in their cores.

When quark deconfinement phase transitions from a hadronic-matter EoS to a sufficiently
stiff quark-matter EoS are taken into account in the neutron-star interiors, repulsive effects
such as 𝑄𝑄 repulsions in quark phases are needed in order to obtain sufficiently stiff EoSs
resulting in massive hybrid stars with masses over 2𝑀⊙. In our QHT matter, it is possible to
reproduce maximum masses over 2𝑀⊙ consistently with the NICER implication, where the
𝑄𝑄 repulsion is taken to be strong enough and the quark-hadron transition density is adjusted
so as to be about 2𝜌0 by tuning of the density dependence of effective quark mass.

In the quarkyonicmatter, the degrees of freedom inside the Fermi sea are treated as quarks,
andnucleons exist at the surface of the Fermi sea. The existence of free quarks inside the Fermi
sea gives nucleons extra kinetic energy by pushing them to highermomenta. This mechanism
of increasing pressure is completely different from the above mechanism of EoS stiffening by
strong𝑄𝑄 repulsions in theQHTmatter. In calculations of𝑀𝑅 diagramswith the quarkyonic-
matter EoS, the critical quantity is the thickness ∆𝑞𝑦𝑐 of Fermi layer controlled by the param-
eters Λ and 𝜅. With the reasonable choice of these parameters, the𝑀𝑅 curves of quarkyonic
hybrid stars are obtained so as to be consistent with the NICER implication.

As well as 𝑅2.0𝑀⊙
, central densities and tidal deformabilities are inferred from the analysis

of the NICER data. The QHT-matter and quarkyonic EoSs can be adjusted so as to reproduce
these inferred quantities far closer to the median values than those for nucleonic matter EoS,
demonstrating the clear impacts of quark phases in these cases..

Thus, the reasonable𝑀𝑅 curves of neutron stars can be derived from bothQHT-matter and
quarkyonic-matter EoSs, having completely different mechanisms to stiffen EoSs. However,
when both EoSs are adjusted so as to be consistent with the NICER implication, themaximum
mass for the quakyonic-matter EoS is considerably larger than that for the QHT-matter EoS.
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