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Abstract

Background: This paper presents the Extended-Soft-Core (ESC) potentials ESC16 for baryon-baryon
(𝐵𝐵) channels with total strangeness 𝑆 = −3,−4. For these channels no experimental scattering
data exist, apart from very recently measured preliminary correlations. Also there is no infor-
mation from hypernuclei or hyperonic matter.

Purpose: The aim is to calculate the predictions of the ESC16 model for the 𝑆 = −3,−4 𝐵𝐵 channels.

Methods: The potential models for 𝑆 = −3,−4 are based on SU(3) extensions of potential models for
the 𝑆 = 0,−1 and 𝑆 = −2 sectors, which are fitted to experimental data. Flavor SU(3) symmetry
is broken ’kinematically’ by the masses of the baryons and the mesons. The fit to the 𝑆 = 0,−1
sectors provides the necessary constraints to fix all free parameters, i.e. baryon-baryon-meson
(BBM) couplings and cut-off masses. The 𝑆 = −2 systems are constrained by the ∆𝐵ΛΛ value
from the Nagara event, and the requirement of 𝑈Ξ ≈ −10MeV.

Results: Various properties of the potentials are illustrated by giving results for scattering lengths,
bound states, and phase-parameters.

Conclusions: No ΞΞ,ΞΛ,ΞΣ bound states are predicted by the ESC16 model.
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I. INTRODUCTION

In this paper we present the results of the ESC16-model for channels with total strangeness
𝑆 = −3,−4. This is a further SU(3) generalization of the ESC16 models on 𝑁𝑁 [1], 𝑌𝑁 [2],
and 𝑌𝑌 [3] for baryon-baryon channels, which are henceforth referred to as paper I, II, and
III respectively. A similar approach has been performed in [4], where the Nijmegen soft-core
one-boson-exchange (OBE) interactions NSC97a-f for baryon-baryon (𝐵𝐵) systems for 𝑆 =
−2,−3,−4 were presented.

This paper forms the completion of the study of baryon-baryon interactions with the ESC-
interactions, comprising all {8}⊗ {8} channels, i.e. all strangeness S=(0,-1,-2,-3,-4) channels.
The basis of this work is broken SU(3) symmetry and the𝑁𝑁,𝑌𝑁,𝑌𝑌-data. In this paper we
show the S=-3,-4 results for the ESC16 model, which can be considered being typical for this
approach to the BB-interactions. (For results and review of former versions ESC04 and ESC08
as well as applications to hypernuclei for S=(0,-1,-2) see Ref. [5].)

The OBE-models NSC97 [4] and ESC-models are the first models for which the 𝑆 < −2
interactions contain no free parameters. Compared toNSC97 the overall description of the BB-
interaction in the ESCmodels is clearly an improvement. In the ESCmodels the 𝑆 = 0,−1,−2
interactions are fitted very succesfully to the two-body scattering data. For S=-2 there is a
difficulty with (i) the Ξ−𝑝-correlations found in the ALICE-experiment at CERN [6–8], and
(ii) the J-PARC/E05 data on 12

Ξ Be [9]. This hints at an incompleteness of the BB-interactions in
ESC04, ESC08, and ESC16. To account for this in the ESC16⋆(A,B) versions SU(3) symmetric
contact terms have been added.

After the Nijmegen work [4] all BB-channels have been studied also in the framework of
the resonating-group method (RGM) using the SU(6) quark model [10]. Furthermore in the
last years there are also studies of the S=-3,-4 systems using BB-interactions from LQCD [11,
12], and recently also results for S=-3,-4 have been given from BB-interactions from chiral-
effective-field-theory [13].

For the 𝑆 = −3,−4 channels virtually no experimental scattering information is available,
except preliminary Ξ−Ξ− and Ξ−Λ correlation data [14]. Also the information from hypernu-
clei is non-existent. For 𝑆 = −2 there are data on doubleΛΛ-hypernuclei, which became very
much improved by the observation of the Nagara-event [15]. This event indicates that the
ΛΛ-interaction is rather weak, in contrast to the estimates based on the older experimental
observations [16, 17]. This has always been a characteristic feature of the Nijmegen soft-core
models. The ESC16 model describes all experimental information on the 𝑆 = 0,−1,−2 sys-
tems, two-body scattering and hypernuclei, very satisfactorily. An exception is the (weakly)
repulsive Ξ-nucleus interaction, which is attractive experimentally. This is repaired with
ESC16⋆(A,B).

Recently more Ξ-hypernuclei have been studied and observed [18–20], also indicating that
the Ξ-nucleus interaction is attractive and the Ξ𝑁 − ΛΛ coupling is weak [21].

Also, the ESCmodels are rather in accordance with QCD, see [1–3, 22, 23] for an exposition
of the arguments. Therefore, the predictions for the 𝑆 = −3,−4-channels can be expected to
be realistic.

The study of strangeness-rich systems in astrophysics is an important topic in the last sixty
years with many contributions. We refer to the (general) review papers [24, 25] for refer-
ences. In particular, the Λ-hyperon-puzzle in neutron star matter [26] is reviewed in [25].
Strangeness-rich systems can be exotic multi-quark systems consisting of up (𝑢), down (𝑑),
and strange (𝑠) quarks; like the elusive 𝐻 dibaryon, a 6-quark 𝑢𝑢𝑑𝑑𝑠𝑠 system predicted by
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Jaffe [27]. But they can also simply be bound states of nucleons (𝑁), hyperons (𝑌 = Λ,Σ), and
cascades (Ξ). In order to get a better handle on the latter possibility, we are in need of potential
models which describe all possible interactions between nucleons, hyperons, and cascades.

In the virtual absence of experimental information for S=-3,-4, we assume that the
potentials obey (broken) flavor SU(3) symmetry. As in papers I-III, the S=-3,-4 potentials are
parametrized in terms of meson-baryon-baryon, and meson-pair-baryon-baryon couplings
and gaussian form factors. This enables us to include in the interaction one-boson-exchange
(OBE), two-pseudoscalar-exchange (TME), and meson-pair-exchange (MPE), without any
new parameters. All parameters have been fixed by a simultaneous fit to the 𝑁𝑁 and 𝑌𝑁
data, scattering and hypernuclear, see I and II. Each 𝑁𝑁 ⊕ 𝑌𝑁-model leads to a 𝑌𝑌-model
in a well defined way. SU(3) symmetry allows us to define all coupling constants needed to
describe the multi-strange interactions in the baryon-baryon channels occurring in {8}⊗ {8}.
In all ESC models it is assumed that the coupling constants, apart from meson-mixing, are
SU(3)-symmetric. The success of the ESC models suggests that for the coupling constants
deviations from SU(3) symmetry are small.

In paper III new phenomenological gaussian SU(3) symmetric two-body BB potentials are
introduced in addition to the meson- andmeson-pair-exchanges to investigate the possible in-
completeness of the ESC-interactions considered thus far in the ESC models. The motivation
for this are the recent S=-2 hypernuclei experimental observations [9, 28, 29] and G-matrix
calculations [30]. Also, ESC16 fails to describe the Ξ−𝑝-correlations found in the ALICE-
experiment at CERN [6, 8]. Then, fitting to the 𝑁𝑁 ⊕ 𝑌𝑁 ⊕ 𝑌𝑌 data resulted in good BB
well-depths. In this paper we include the 𝑆 = −3,−4 results for ESC16, and the effective
range parameters for the two variants ESC16⋆(A) and (B) [3].

Most of the details on the SU(3) description are well known, and in particular for baryon-
baryon scattering they can be found in papers I-III, and e.g. [31, 32]. So, here we restrict
ourselves to a minimal exposition of these matters, necessary for the readability of this paper.

The contents of this paper is as follows. In Sec. II the 𝑆 = −3,−4 thresholds are displayed
and the multi-channel description is reviewed. Furthermore, for completeness we repeat the
SU(3)-symmetric interaction Lagrangian describing the interaction vertices between mesons
and members of the 𝐽𝑃 = (1∕2)+ baryon octet, and define their coupling constants. We then
identify the various channels which occur in the 𝑆 = −3,−4 baryon-baryon systems. We de-
scribe the R-conjugation operation which is useful for the comparison of the (ΛΞ,ΣΞ)- and
the (Λ𝑁,Σ𝑁)-potentials. In Sec. III the numerical values of the used baryon masses and of
the thresholds momenta are listed. In Sec. IV the meson- andmeson-pair baryon-baryon cou-
plings are addressed. In Sec. V the results for the multi-channel effective-range parameters,
partial wave phaseshifts and inelasticity parameters are given, and possible bound-states are
considered. In Sec. VI the paper is concluded with a short discussion and summary.

In Appendix A the SU(3)-irreps and baryon-baryon Isospin-states are displayed. In Ap-
pendix B tables with the OBE meson coupling constants, and in Appendix C the meson-pair
couplingsMPE for themodels ESC16 and ESC16⋆(𝐴, 𝐵) are given. In Appendix D tables with
the coupled-channel phase parameters are shown for model ESC16.
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II. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Multi-channel Formalism

For the kinematics and the definition of the amplitudes, we refer to paper II of this se-
ries. Similar material can be found in [32]. Also, in paper I the derivation of the Lippmann-
Schwinger equation in the context of the relativistic two-body equation is described.

On the physical particle basis, there are four charge channels:

𝑞 = +1 ∶ Σ+Ξ0 → Σ+Ξ0,
𝑞 = 0 ∶ (ΛΞ0,Σ0Ξ0,Σ+Ξ−)→ (ΛΞ0,Σ0Ξ0,Σ+Ξ−) ; Ξ0Ξ0 → Ξ0Ξ0,
𝑞 = −1 ∶ (ΛΞ−,Σ0Ξ−,Σ−Ξ0)→ (ΛΞ−,Σ0Ξ−,Σ−Ξ0) ; Ξ0Ξ− → Ξ0Ξ−,
𝑞 = −2 ∶ Σ−Ξ− → Σ−Ξ− ; Ξ−Ξ− → Ξ−Ξ−. (2.1)

We note here that in strong interactions S is conserved and hence in the q=-1,-2 channels there
is no coupling of the ΞΞ-channels in (2.1) with the others.
Like in [31, 32] and in papers I-III, the potentials are calculated on the isospin basis. For
𝑆 = −3,−4 hyperon-hyperon systems there are three isospin channels:

𝑌 = −1, 𝑆 = −3, 𝐼 = 1∕2 ∶ (ΛΞ,ΣΞ→ ΛΞ,ΣΞ),
𝑌 = −1, 𝑆 = −3, 𝐼 = 3∕2 ∶ (ΣΞ→ ΣΞ),
𝑌 = −2, 𝑆 = −4, 𝐼 = 0, 1 ∶ (ΞΞ→ ΞΞ). (2.2)

The relation between the charge (Q), isospin (I) and hypercharge (Y) is given by the Gell-
Mann-Nishijima relation 𝑄 = 𝑌∕2 + 𝐼3, where in terms of the baryon number (B) and
strangeness (S) the hypercharge Y=B+S.

The two-particle thresholds in the YY-channels for S=-3,-4 are shown in Fig. 1. For ΛΞ at
the ΣΞ and ΛΞ∗ thresholds the (average) 𝑝Λ laboratory momenta are indicated. Similarly for
ΣΞ the 𝑝Σ at the ΣΞ∗ threshold. For the ΞΞ at the ΞΞ⋆ threshold 𝑝Ξ is shown. Here, only the
𝐽𝑃 = 1∕2+ octet and 𝐽𝑃 = 3∕2+ decuplet baryons are considered.

For the kinematics of the reactions and the various thresholds, see [31]. In this work we
do not solve the Lippmann-Schwinger equation, but the multi-channel Schrödinger equation
in configuration space, completely analogous to [32]. The multi-channel Schrödinger equa-
tion for the configuration-space potential is derived from the Lippmann-Schwinger equation
through the standard Fourier transform, and the equation for the radial wave function is found
to be of the form [32]

𝑢′′𝑙,𝑗 + (𝑝2𝑖 𝛿𝑖,𝑗 − 𝐴𝑖,𝑗)𝑢𝑙,𝑗 − 𝐵𝑖,𝑗𝑢′𝑙,𝑗 = 0, (2.3)

where 𝐴𝑖,𝑗 contains the potential, nonlocal contributions, and the centrifugal barrier, while
𝐵𝑖,𝑗 is only present when non-local contributions are included. The solution in the presence
of open and closed channels is given, for example, in Ref. [33]. The inclusion of the Coulomb
interaction in the configuration-space equation is well known and included in the evaluation
of the scattering matrix. The Coulomb interaction is present only in the channels Σ+Ξ− and
Ξ−Ξ−.

Obviously, the potentials on the particle basis for the 𝑌 = −2 channels are given by the
𝐼 = 0, 1 ΞΞ-potential on the isospin basis. For 𝑌 = −1 channels the potentials are related to
the potentials on the isospin basis by an isospin rotation. Ordering the channels in the 𝑞 = 0
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FIG. 1: Thresholds in YY-channels for 𝑆 = −3,−4. The laboratory threshold momenta 𝑝Λ, 𝑝Σ and 𝑝Ξ
are given in GeV/c2.

sector according to increasing rest mass (ΛΞ0,Σ0Ξ0,Σ+Ξ−) one obtains in channel space the
potential matrix , 𝑉𝑎𝑏(𝐼) ≡ 𝑉𝑎,Ξ;𝑏,Ξ(𝐼), with 𝑎, 𝑏 ≡ Λ,Σ,

𝑉(𝑞 = 0, 𝑌 = −1) =

⎛
⎜
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⎜
⎜
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, (2.4)

and for 𝑞 = −1 we have now the ordering (ΛΞ−,Σ−Ξ0,Σ0Ξ−), and we get for the potential
matrix

𝑉(𝑞 = −1, 𝑌 = −1) =

⎛
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[
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⎟
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⎟
⎠

. (2.5)

The connection between the 𝐵𝐵 isospin states and the SU(3)-irreps is given in Table I, and
in the figures of Appendix A the𝑁𝑁,𝑌𝑁, and𝑌𝑌 content is given for the irreps {8}, {27}, {10∗},
{10} and {1}.

The momentum space and configuration space potentials for the ESC16-model have been
described in papers I and II for baryon-baryon in general. Therefore, they apply also to
hyperon-hyperon and we can refer for that part of the potential to these papers. Also in the
ESC-model, the potentials are of such a form that they are exactly equivalent in both momen-
tum space and configuration space. The treatment of the mass differences among the baryons
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are handled exactly similar as is done in [31, 32]. Also, exchange potentials related to strange
meson exchange 𝐾,𝐾∗ etc. , can be found in these references.

The baryonmass differences in the intermediate states for TME- andMPE- potentials have
been neglected for YN and YY scattering. This, although possible in principle, becomes rather
laborious and is not expected to change the characteristics of the baryon-baryon potentials.

TABLE I: SU(3) content of the different interaction channels. 𝑆 is the total strangeness and 𝐼 is the
isospin. The upper half refers to the space-spin symmetric states 3𝑆1, 1𝑃1, 3𝐷, . . . , while the lower half
refers to the space-spin antisymmetric states 1𝑆0, 3𝑃, 1𝐷2, . . .

Space-spin symmetric
𝑆 𝐼 Channels SU(3)-irreps
0 0 𝑁𝑁 {10∗}
–1 1/2 Λ𝑁, Σ𝑁 {10∗}, {8}𝑎

3/2 Σ𝑁 {10}
–2 0 Ξ𝑁 {8}𝑎

1 Ξ𝑁, ΣΣ {10}, {10∗}, {8}𝑎
ΣΛ {10}, {10∗}

–3 1/2 ΞΛ, ΞΣ {10}, {8}𝑎
3/2 ΞΣ {10∗}

–4 0 ΞΞ {10}

Space-spin antisymmetric
𝑆 𝐼 Channels SU(3)-irreps
0 1 𝑁𝑁 {27}
–1 1/2 Λ𝑁, Σ𝑁 {27}, {8}𝑠

3/2 Σ𝑁 {27}
–2 0 ΛΛ, Ξ𝑁, ΣΣ {27}, {8}𝑠, {1}

1 Ξ𝑁, ΣΛ {27}, {8}𝑠
2 ΣΣ {27}

–3 1/2 ΞΛ, ΞΣ {27}, {8}𝑠
3/2 ΞΣ {27}

–4 1 ΞΞ {27}

B. SU(3) Symmetry and R-conjugation

The SU(3)-invariant interaction Hamiltonian for the baryon-baryon (BB) pseudoscalar (P)
meson interaction reads [34]

ℋ𝐼 = 𝑔𝑃,8
√
2
{
𝛼𝑃 [�̄�𝐵𝑃]𝐹 + (1 − 𝛼𝑃) [�̄�𝐵𝑃]𝐷

}

+𝑔𝑃,1 [�̄�𝐵𝑃]𝑆 . (2.6)
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Here, the baryons are the members of the 𝐽𝑃 = 1

2

+
baryon octet

𝐵 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Σ0
√
2
+ Λ
√
6

Σ+ 𝑝

Σ− − Σ0
√
2
+ Λ
√
6

𝑛

−Ξ− Ξ0 −2Λ√
6

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

The meson nonet 3×3 matrix P can be written as

𝑃 = 𝑃{1} + 𝑃{8}, (2.8)

where the singlet 3×3 matrix 𝑃{1} has the elements 𝜂0∕
√
3𝛿𝛼𝛽 , and the octet matrix 𝑃{8} is given

by

𝑃{8} =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜋0
√
2
+

𝜂8√
6

𝜋+ 𝐾+

𝜋− − 𝜋0
√
2
+

𝜂8√
6

𝐾0

𝐾− 𝐾0 −
2𝜂8√
6

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2.9)

Similarly the interaction with the vector 𝐽𝑃𝐶 = 1−−, scalar 𝐽𝑃𝐶 = 0++, axial-vectors 𝐽𝑃𝐶 = 1++
and 𝐽𝑃𝐶 = 1+− mesons. With the SU(2) isosinglet Λ, isodoublets

𝑁 = ( 𝑝
𝑛
) , Ξ = ( Ξ

0

Ξ−
) , and

𝐾 = ( 𝐾
+

𝐾0 ) , 𝐾𝑐 = ( 𝐾0

−𝐾− ) , (2.10)

and isovectors (Σ+,Σ0,Σ−) and (𝜋+, 𝜋0, 𝜋−), the SU(3) invariant interaction Hamiltonian (2.6)
can be written in the isospin basis, see e.g. [34] and [3] formula (2.9). All coupling constants
can be expressed in terms of only four parameters. The explicit expressions can be found in
Refs. [31, 34]. For example, in the case of the pseudoscalar mesons the parameters are (i) the
octet coupling 𝑔𝑁𝑁𝜋, the F/(F+D)-ratio 𝛼𝑃, the singlet coupling 𝑔𝜂0 , and the 𝜂8 − 𝜂0 mixing
angle 𝜃𝑃. In Table II B the relation between the potentials on the isospin-basis is given, see
(2.4)-(2.5), and the SU(3)-irreps. Here 𝑉ΞΞ = 𝑉ΞΞ,ΞΞ, 𝑉ΛΛ = 𝑉ΛΞ,ΛΞ etc.

In paper III we have introduced as an extension of the ESC16 model the ESC16⋆ models A
and B with additional SU(3)-symmetric central and spin-spin gaussian-contact BB s-channel
potentials

𝑊𝜇,𝑐(𝑟) = 𝐴𝜇𝑓𝑊(𝑟), 𝑊𝜇,𝜎(𝑟) = 𝐵𝜇𝑓𝑊(𝑟)σ1 ⋅ σ2,

where 𝑓𝑊(𝑟) = 𝑚𝑊 exp(−𝑚2
𝑊𝑟

2), 𝑚𝑊 = 300 MeV. The s-channel coefficients 𝐴𝜇, 𝐵𝜇 for
ESC16⋆(A) are derived from Tables XVIII and XIX in paper III, and given in Table III. Here,
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TABLE II: SU(3)-contents of the various potentials on the isospin basis.

Space-spin antisymmetric states 1𝑆0, 3𝑃, 1𝐷2, ...
ΞΞ→ ΞΞ 𝑌 = −2, 𝐼 = 1 𝑉ΞΞ(𝐼 = 1) = 𝑉27
ΛΞ→ ΛΞ 𝑉ΛΛ

(
𝐼 = 1

2

)
=
(
9𝑉27 + 𝑉8𝑠

)
∕10

ΛΞ→ ΣΞ 𝑌 = −1, 𝐼 = 1
2

𝑉ΣΛ
(
𝐼 = 1

2

)
=
(
−3𝑉27 + 3𝑉8𝑠

)
∕10

ΣΞ→ ΣΞ 𝑉ΣΣ
(
𝐼 = 1

2

)
=
(
𝑉27 + 9𝑉8𝑠

)
∕10

ΣΞ→ ΣΞ 𝑌 = −1, 𝐼 = 3
2

𝑉ΣΣ
(
𝐼 = 3

2

)
= 𝑉27

Space-spin symmetric states 3𝑆1, 1𝑃1, 3𝐷, ...
ΞΞ→ ΞΞ 𝑌 = −2, 𝐼 = 0 𝑉ΞΞ(𝐼 = 0) = 𝑉10
ΛΞ→ ΛΞ 𝑉ΛΛ

(
𝐼 = 1

2

)
=
(
𝑉10 + 𝑉8𝑎

)
∕2

ΛΞ→ ΣΞ 𝑌 = −1, 𝐼 = 1
2

𝑉ΣΛ
(
𝐼 = 1

2

)
=
(
𝑉10 − 𝑉8𝑎

)
∕2

ΣΞ→ ΣΞ 𝑉ΣΣ
(
𝐼 = 1

2

)
=
(
𝑉10 + 𝑉8𝑎

)
∕2

ΣΞ→ ΣΞ 𝑌 = −1, 𝐼 = 3
2

𝑉ΣΣ
(
𝐼 = 3

2

)
= 𝑉10⋆

TABLE III: ESC16⋆(A): Coupling constants SU(3)-symmetric gaussian potentials.

{𝜇} {27} {8𝑠} {1} {8𝑎} {10∗} {10}
A{𝜇} –0.109 –0.219 –1.568 –3.322 –0.635 –0.635
B{𝜇} 0.156 –0.356 0.459 3.594 0.123 0.123

we have chosen to exhibit the s-channel contact-potentials rather than the t,u-channel ones
in paper III. The largest contact-potentials occur in the {8𝑎} and {1} irreps. The s-channel co-
efficients for model ESC16⋆(B) with R-symmetry [35] for the gaussian contact BB potentials
are given in Table IV.

For model ESC16⋆(A) the entries for the irreps {10} and {10∗} in Table III are the same. The
reason is that we neglect the {8𝑠} ↔ {8𝑎} transitions in the contact potentials. These lead to
spin singlet-triplet transitions 1𝑃1 ↔3 𝑃1 etc., which are small and do not occur in s-waves. So,
de facto the contact potentials have R-symmetry.

TABLE IV: ESC16⋆(B): Coupling constants SU(3)-symmetric gaussian potentials.

{𝜇} {27} {8𝑠} {1} {8𝑎} {10∗} {10}
A{𝜇} –0.118 0.071 –0.874 –3.003 –1.635 –1.635
B{𝜇} 0.261 –0.851 0.084 3.268 –0.302 –0.302

To compare the SU(3)-structure for the BB-states Gell-Mann’s R-conjugation [35, 36] is
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useful. R-conjugation is the inversion operation on the baryon and pseudo-scalar octet states

𝑝 ↔ Ξ−, 𝑛 ↔ Ξ0, Λ↔ Λ, Σ0 ↔ Σ0,
(2.11)

𝐾+ ↔ 𝐾−, 𝐾0 ↔ �̄�0, 𝜂 ↔ 𝜂, 𝜋0 ↔ 𝜋0.
(2.12)

For the BB-states one has

𝑅𝜓27(𝑌, 𝐼, 𝐼3) = 𝜓27(−𝑌, 𝐼,−𝐼3) ,
𝑅𝜓10(𝑌, 𝐼, 𝐼3) = 𝜓10⋆(−𝑌, 𝐼,−𝐼3) ,
𝑅𝜓8𝑠(𝑌, 𝐼, 𝐼3) = 𝜓8𝑠(−𝑌, 𝐼,−𝐼3) ,
𝑅𝜓8𝑎(𝑌, 𝐼, 𝐼3) = −𝜓8𝑎(−𝑌, 𝐼,−𝐼3) ,
𝑅𝜓1(𝑌, 𝐼, 𝐼3) = 𝜓1(−𝑌, 𝐼,−𝐼3). (2.13)

Therefore, in comparing the SU(3)-structure of the (Λ𝑁,Σ𝑁)-potentials with the (ΛΞ,ΣΞ)-
potentials the irreps {10} and {10⋆} are interchanged. Similarly, for the𝑁𝑁-potentials and the
ΞΞ-potentials. The entries of Table II B, apart from using SU(3) Clebsch-Gordan coefficients,
can be derived from Table I in Ref. [2] using R-conjugation.

The R-conjugation is not an SU(3)-transformation, and also it is not a symmetry of the
strong-interactions. The latter would mean no {8𝑠}↔ {8𝑎}-transitions, because ⟨{8𝑎}|𝑉|{8𝑠}⟩ =
⟨{8𝑎}|𝑅−1𝑉𝑅|{8𝑠}⟩ = −⟨{8𝑎}|𝑉|{8𝑠}⟩ = 0. This would imply that the transitions 1𝑃1 ↔3 𝑃1
are forbidden, and so no anti-symmetric spin-orbit forces. However, for the vector- and axial-
vector exchange with different F/(F+D) ratios for the direct and derivative couplings the an-
tisymmetric spin-orbit potentials are non-zero, while having SU(3) symmetry. The extra re-
striction from R-conjugation symmetry w.r.t. SU(3) is that 𝑉{10} = 𝑉{10∗}. Then, the central-,
spin-spin-, tensor-, spin-orbit-, and quadratic spin-orbit potential have R-symmetry for exact
SU(3) symmetry. In the ESC models the 𝑉10 ≈ 𝑉10∗ , see [3], and the singlet-triplet transitions
are small. So, we conclude that R-conjugation is an approximate symmetry in the ESCmodels,
and is broken "kinematically" exactly similar to SU(3).

C. Solving the multi-channel Schrödinger equation

Themethod of evaluation of the ESC16models for the S=-3,-4 channels follows closely that
for the S=0,-1,-2 channels. For details see paper III [3], sections II and III. The main features
are: (i) The multi-channel Schrödinger equation is solved for the physical particle channels.
The S=-3,-4 BB-channels can be classified according to their total charge𝑄; these are given in
(2.1). (ii) Average baryon and meson masses are used in the potentials, i.e. isospin is treated
as a good quantum number. The only breaking of isospin symmetry occurs via the inclusion
of the Coulomb interaction. (iii) The isospin matrix elements for the various OBE potentials
are given in Table V, where we use the pseudoscalar mesons as a specific example. The flavor-
exchange operator 𝑃𝑓 is +1 for a flavor symmetric and −1 for a flavor anti-symmetric states.
Since two-baryons states are totally anti-symmetric 𝑃𝑓 = −𝑃𝑥𝑃𝜎. Therefore, the exchange
operator 𝑃𝑓 has the value 𝑃𝑓 = +1 for even-𝐿 singlet and odd-𝐿 triplet partial waves, and
𝑃𝑓 = −1 for odd-𝐿 singlet and even-𝐿 triplet partial waves. For total strangeness 𝑆 = −3, the
final-state interchanged diagram only occurs when the exchanged meson carries strangeness
(𝐾, 𝐾∗, 𝜅, 𝐾∗∗). (iv) For a proper derivation of the exchange operator 𝑃𝑓 and the exchange
forces, see Ref. [3] section III.
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TABLE V: Isospin factors for the various meson exchanges in the different channels with total
strangeness and isospin. 𝑃𝑓 is the flavor-exchange operator. Non-existing channels are marked by a
long-dash.

𝑆 = −3 𝐼 = 1∕2 𝐼 = 3∕2
(ΛΞ|𝜂, 𝜂′|ΛΞ) 1 —
(ΣΞ|𝜂, 𝜂′|ΣΞ) 1 1
(ΣΞ|𝜋|ΣΞ) -2 1
(ΣΞ|𝜋|ΛΞ)

√
3 —

(ΛΞ|𝐾|ΞΛ) 𝑃𝑓 —
(ΣΞ|𝐾|ΞΣ) −𝑃𝑓 2𝑃𝑓
(ΛΞ|𝐾|ΞΣ) 𝑃𝑓

√
3 —

𝑆 = −4 𝐼 = 0 𝐼 = 1
(ΞΞ|𝜂, 𝜂′|ΞΞ) 1

2
(1 − 𝑃𝑓)

1
2
(1 + 𝑃𝑓)

(ΞΞ|𝜋|ΞΞ) − 3
2
(1 − 𝑃𝑓)

1
2
(1 + 𝑃𝑓)

III. MULTI-CHANNEL THRESHOLDS S=-3 CHANNELS

As seen from (2.1) the 𝑆 = −3 two-baryon channels consist of two separate coupled-
channel systems separated by the charge. The thresholds are due to the baryon mass dif-
ferences. The used baryon masses are the same as in [1–3], and are given in Table VI. The

TABLE VI: Baryon masses in MeV/𝑐2.

Baryon Mass
Nucleon 𝑝 938.2796

𝑛 939.5731
Hyperon Λ 1115.60

Σ+ 1189.37
Σ0 1192.46
Σ− 1197.436

Cascade Ξ0 1314.90
Ξ− 1321.32

laboratory momenta, starting from the baryons at the lowest threshold, are shown in Fig. 1.
Taking the charge dependence of the masses into account gives a splitting of the thresholds,
e.g.:
For (ΛΞ−,Σ−Ξ0,Σ0Ξ−):

𝑝𝑡ℎΛ (ΛΞ
− → Σ−Ξ0) = 578.9 MeV∕c,

𝑝𝑡ℎΛ (ΛΞ
− → Σ0Ξ−) = 584.8 MeV∕c. (3.1)
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For (ΛΞ0,Σ0Ξ0,Σ+Ξ−):

𝑝𝑡ℎΛ (ΛΞ
0 → Σ0Ξ0) = 572.2 MeV∕c,

𝑝𝑡ℎΛ (ΛΞ
0 → Σ+Ξ−) = 585.5 MeV∕c. (3.2)

The meson masses are the same as in [1–3], as well as the cut-off masses. The threshold
differences lead to effective masses for the meson with non-zero strangeness, see [3, 4, 37]
for details and references. For S=-3 channels these masses are for the pseudoscalar meson
𝑚𝐾 = 453.4MeV, and the vector meson 𝑚𝐾∗ = 869.1MeV, These effects are not included for
the scalar and axial mesons.

A further subdivision is according to the total isospin. The different thresholds have been
discussed in detail in [4], and we show them here in Fig. 1 for the purpose of general ori-
entation. Their presence turns the Lippmann-Schwinger and Schrödinger equation into a
coupled-channel matrix equation, where the different channels open up at different energies.
In general one has a combination of ’open’ and ’closed’ channels. For a discussion of the solu-
tion of such a mixed system, we refer to [37].

IV. ESC-MODEL PARAMETERS

A complete set of meson coupling constants for ESC16 and ESC16⋆ are given in Ap-
pendix B, Tables VII, and VIII, respectively. The corresponding meson-pair couplings are
given in Appendix C, Tables IX, and X, respectively.

For othermodel parameters as gaussian cut-off’s, mesonmixing angles, etc. see Ref.’s [1–3].

V. RESULTS

Themain purpose of this paper is to present the properties of the ESC16, andESC16⋆ poten-
tials for the S=-3,-4 sectors. We found that the results for S=-3,-4 for the different models are
not significantly different. We will show the detailed results for ESC16, which are sufficient
to represent the possible kind of results.

In the following we will present the model predictions for scattering lengths, bound states,
and cross sections.

A. Effective-range parameters

The (multi-channel) effective-range expansion, see [33], reads

𝑝𝐿+1∕2(�̄�𝐽)−1𝑝𝐿+1∕2

−𝐴−1 + 1
2(𝑝

2 − 𝑝20)
1∕2 𝑅 (𝑝2 − 𝑝20)

1∕2,

where �̄�𝐽 is the mutilated 𝐾𝐽 matrix with the 3𝐷1 channels being cut out, 𝐴−1 is the inverse
scattering-length matrix, 𝑅 the effective-range matrix, 𝑝𝐿+1∕2 and (𝑝2−𝑝20)

1∕2 are the diagonal
matrices with elements 𝑝𝐿+1∕2𝑖 and (𝑝2𝑖 − 𝑝

2
0𝑖)

1∕2. Here, 𝑝0𝑖 denotes the momentum at the ΣΞ0-
threshold, see below.
Next, we give the low-energy parameters, i.e. scattering-lengths and effective-ranges, for the
following models:
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B. S=-4 Results

The following S=-4 low-energy parameters of ESC16 are obtained, where the C denotes
Coulomb included

𝑎𝐶ΞΞ(
1𝑆0) = −1.81 [𝑓𝑚], 𝑟𝐶ΞΞ(

1𝑆0) = 3.89 [𝑓𝑚],
𝑎ΞΞ(1𝑆0) = −1.90 [𝑓𝑚], 𝑟ΞΞ(1𝑆0) = 4.28 [𝑓𝑚],
𝑎ΞΞ(3𝑆1) = +0.52 [𝑓𝑚], 𝑟ΞΞ(3𝑆1) = 2.74 [𝑓𝑚].

For ESC16⋆(A):

𝑎ΞΞ(1𝑆0) = −1.69 [𝑓𝑚], 𝑟ΞΞ(1𝑆0) = 4.71 [𝑓𝑚],
𝑎ΞΞ(3𝑆1) = +0.48 [𝑓𝑚], 𝑟ΞΞ(3𝑆1) = 3.41 [𝑓𝑚].

For ESC16⋆(B):

𝑎ΞΞ(1𝑆0) = −1.86 [𝑓𝑚], 𝑟ΞΞ(1𝑆0) = 4.45 [𝑓𝑚],
𝑎ΞΞ(3𝑆1) = +0.49 [𝑓𝑚], 𝑟ΞΞ(3𝑆1) = 3.16 [𝑓𝑚].

C. S=-3,I=3/2 Results

For ESC16:

𝑎ΣΞ0(1𝑆0) = −1.71 [𝑓𝑚], 𝑟ΣΞ0(1𝑆0) = 3.71 [𝑓𝑚],
𝑎ΣΞ0(3𝑆1) = −0.85 [𝑓𝑚], 𝑟ΣΞ0(3𝑆1) = 8.02 [𝑓𝑚].

For ESC16⋆(A):

𝑎ΣΞ(1𝑆0) = −1.41 [𝑓𝑚], 𝑟ΣΞ(1𝑆0) = 4.29 [𝑓𝑚],
𝑎ΣΞ(3𝑆1) = −1.31 [𝑓𝑚], 𝑟ΣΞ(3𝑆1) = 5.47 [𝑓𝑚].

For ESC16⋆(B):

𝑎ΣΞ(1𝑆0) = −1.64 [𝑓𝑚], 𝑟ΣΞ(1𝑆0) = 4.00 [𝑓𝑚],
𝑎ΣΞ(3𝑆1) = −1.90 [𝑓𝑚], 𝑟ΣΞ(3𝑆1) = 4.20 [𝑓𝑚].

D. S=-3,I=1/2 Results

For ESC16:

𝑎ΛΞ0(1𝑆0) = −0.56 [𝑓𝑚], 𝑟ΛΞ0(1𝑆0) = 8.32 [𝑓𝑚],
𝑎ΛΞ0(3𝑆1) = +0.40 [𝑓𝑚], 𝑟ΛΞ0(3𝑆1) = 2.52 [𝑓𝑚].
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Around the ΣΞ0-threshold for I=1/2 states

ΣΞ0(1𝑆0) ∶ 𝐴−1 = ( 31.537 −29.454
−29.454 34.928

) ,

𝑅 = ( 89.479 19.524
19.524 −160.211

) ,

ΣΞ0(3𝑆1) ∶ 𝐴−1 =
⎛
⎜
⎜
⎝

1.708 2.377 0.662
2.377 62.133 −16.828
0.662 −16.828 2.377

⎞
⎟
⎟
⎠

,

𝑅 =
⎛
⎜
⎜
⎝

−0.208 13.675 −3.522
13.675 −472.466 98.143
−3.522 98.143 −15.637

⎞
⎟
⎟
⎠

,

For ESC16⋆(A):

𝑎ΛΞ0(1𝑆0) = −1.147 [𝑓𝑚], 𝑟ΛΞ0(1𝑆0) = 4.849 [𝑓𝑚],
𝑎ΛΞ0(3𝑆1) = +0.088 [𝑓𝑚], 𝑟ΛΞ0(3𝑆1) = 76.227 [𝑓𝑚].

Around the ΣΞ0-threshold for I=1/2 states

ΣΞ0(1𝑆0) ∶ 𝐴−1 = ( 6.641 2.230
2.230 −1.110

) ,

𝑅 = ( −18.459 10.465
10.465 2.826

) ,

ΣΞ0(3𝑆1) ∶ 𝐴−1 =
⎛
⎜
⎜
⎝

2.750 6.882 −0.150
6.882 −89.577 2.952
−0.150 2.952 −0.267

⎞
⎟
⎟
⎠

,

𝑅 =
⎛
⎜
⎜
⎝

−0.410 17.883 −2.294
17.883 −312.978 45.798
−2.294 45.798 −3.493

⎞
⎟
⎟
⎠

,

For ESC16⋆(B):

𝑎ΛΞ0(1𝑆0) = −1.382 [𝑓𝑚], 𝑟ΛΞ0(1𝑆0) = 4.342 [𝑓𝑚],
𝑎ΛΞ0(3𝑆1) = +0.002 [𝑓𝑚], 𝑟ΛΞ0(3𝑆1) = 1.079 ∗ 102 [𝑓𝑚].
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Around the ΣΞ0-threshold for I=1/2 states

ΣΞ0(1𝑆0) ∶ 𝐴−1 = ( 8.826 1.680
1.680 −0.569

) ,

𝑅 = ( −14.077 9.210
9.210 2.375

) ,

ΣΞ0(3𝑆1) ∶ 𝐴−1 =
⎛
⎜
⎜
⎝

3.018 6.448 −0.004
6.448 −61.994 0.131
−0.004 0.131 0.210

⎞
⎟
⎟
⎠

,

𝑅 =
⎛
⎜
⎜
⎝

0.648 5.124 −0.729
5.124 −232.352 34.303
−0.729 34.303 −2.321

⎞
⎟
⎟
⎠

.

E. Bound states in 𝑆 waves

The scattering lenghts and effective ranges in both models show no sign of a bound state.
In particular this is the case for ΞΞ(1𝑆0), which shows a weaker attraction than in 𝑝𝑝(1𝑆0).
Similarly for ΞΞ(3𝑆1). The effective range formula for the pole position of a possible bound
state in momentum space is

𝜅± =
(
1 ±

√
1 − 2𝑟∕𝑎

)
∕𝑟, 𝐵± = −𝜅2±∕(2𝑚𝑟𝑒𝑑),

where the momentum is 𝑝± = 𝑖𝜅±. The pole closest to the lowest threshold is given by 𝜅−, and
(usually) 𝜅+ is outside the region of the approximate validity of the effective-range formula.
which for ΞΞ(1𝑆0) gives 𝜅− < 0, meaning an anti-bound state, and 𝜅+ is too large for the
effective range expansion to be valid. In the case of ΞΞ(3𝑆1) the root is imaginary, and so
no bound state. (Apparently there is enough SU(3)- and R-symmetry breaking to prevent
a deuteron-like bound state in this channel.) Similar analysis shows that also in the other
channels there do not occur bound states.

A discussion of the possible bound-states, using the SU(3) content of the different 𝑆 =
0,−1,−2 channels is given in [31]. In contrast to the NSC97 models, we find no S<0 bound
states in the ESC16 models.

F. Partial Wave Phase BKS-Parameters

For theBB-channels below the inelastic thresholdwe use for the parametrization of the am-
plitudes the standard nuclear-bar phase shifts [38]. The information on the elastic amplitudes
above thresholds is most conveniently given using the BKS-phases [39–42]. For uncoupled
partial waves, the elastic BB 𝑆-matrix element is parametrized as

𝑆 = 𝜂𝑒2𝑖𝛿 , 𝜂 = cos(2𝜌) . (5.1)
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For coupled partial waves the elastic BB-amplitudes are 2 × 2-matrices. The BKS 𝑆-matrix
parametrization reads

𝑆 = 𝑒𝑖𝛿𝑒𝑖𝜖𝑁 𝑒𝑖𝜖𝑒𝑖𝛿 , (5.2)
where

𝛿 = ( 𝛿𝛼 0
0 𝛿𝛽

) , 𝜖 = ( 0 𝜖
𝜖 0

) , (5.3)

and 𝑁 is a real, symmetric matrix parametrize as

𝑁 = ( 𝜂11 𝜂12
𝜂12 𝜂22

) . (5.4)

In Fig. 2 the S=-4 ESC16 nuclear-bar phases for Ξ0Ξ0(1𝑆0, 𝐼 = 1) and Ξ0Ξ−(3𝑆1, 𝐼 = 0) are
shown. Fig. 3 shows the ΛΞ0(1𝑆0) and ΛΞ−(3𝑆1 −3 𝐷1) phase parameters. Fig. 4 and Fig. 5
show for ESC16 the Σ0Ξ0(𝐼 = 1∕2) BKS phase shift and inelasticity parameters for 1𝑆0 and 3𝑆1
respectively. Similarly, Fig. 6 shows the Σ+Ξ0(𝐼 = 3∕2) phase shifts.
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FIG. 2: ESC16 Ξ0Ξ0(1𝑆0, 𝐼 = 1)- and Ξ0Ξ−(3𝑆1, 𝐼 = 0) phases.

The Ξ−Ξ−,Ξ0Ξ−,Ξ0Ξ0 nuclear-bar phase shifts for I=1 and I=0 as a function of the
momentum and energy are given in the tables in Appendix D for ESC16, and in Appendix E
for ESC16⋆(A). Similarly, for the BKS-parameters ΛΞ0,ΛΞ(𝐼 = 1∕2),ΣΞ0(𝐼 = 1∕2), and
Σ+Ξ0(𝐼 = 3∕2). the inelasticity parameters 𝜌 and 𝜂11, 𝜂12, 𝜂22, which contains the information
to construct the 𝛿−, 𝜖−, 𝑁- and S-matrix.

The ΞΞ(1𝑆0, 𝐼 = 1) phase shift is in agreement with LQCD, see Ref. [12] Fig.2. For example
at 𝑝𝑙𝑎𝑏 = 200MeV/c, which means 𝑇𝑐𝑚 = 3.8MeV, ESC16 has 𝛿(1𝑆0, 𝐼 = 1) = 23.71 deg, see
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FIG. 3: ESC16 ΛΞ 𝐼 = 1∕2 phases.
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FIG. 4: ESC16 𝐼 = 1∕2 1𝑆0(Σ0Ξ0) phases and 𝜂-inelasticities.
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FIG. 5: ESC16 𝐼 = 1∕2 3𝐶1(Σ0Ξ0)-phases and 𝜂-inelasticities.
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FIG. 6: ESC16 𝐼 = 3∕2 Σ+Ξ0-phases.
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Table XI, and ESC16⋆(𝐴) has 𝛿(1𝑆0, 𝐼 = 1) = 21.45 deg, which both match with the LQCD
result.
Notice that theΞΞ(3𝑆1, 𝐼 = 0)-phase shows repulsion, except for very low energies. Thismeans
that the the potential has a weak long range attractive tail from one-pion-exchange. Qualita-
tive this also agrees with the LQCD result.

VI. DISCUSSION AND SUMMARY

An important result is that in the ESC16 models there is no bound state in the Ξ0Ξ0(𝐼 =
1,1 𝑆0)-channel, which is in the SU(3)-irrep {27}. Since 𝑝𝑝(1𝑆0), 𝑛𝑛(1𝑆0) are in the same irrep
and quite attractive it might be expected naively that because of the larger Ξ-mass a bound
state might occur. Similarly, in the past sometimes it was speculated that a bound state could
appear in Σ+𝑝. Apparently the breaking of SU(3) symmetry, due to using the physical meson
and baryon masses, prevents such bound states.

It is seen from Fig. 2 and Table XII that the Ξ0Ξ0(1𝑆0) indicate an attractive interaction but
this is weaker than in the case of e.g. Σ+𝑝. Also the preliminary data of STAR [14] indicate
that the ΞΞ interaction in the 1𝑆0 is much weaker than in 𝑝𝑝.

In order to illustrate the basic properties of the potentials for S=-3,-4 we have presented
results for scattering lengths and phaseshifts in the tables. From these the differential and
total cross sections can be calculated easily.

The results for the S=-3,-4 channels of ESC16 and ESC16⋆(A,B) are qualitatively similar.
From Table I it is seen that the same SU(3)-irreps occur in these channels as for S=0,-1, where
experimental data determine the interactions to a great extent.

Summarizing, the ESC16 and ESC16⋆(A,B) provide an SU(3)-based unified realistic de-
scription of all BB-interactions, using single (OBE) and double (TME,MPE) meson-exchange
potentialswith gaussian form factors. Here, the baryons are the SU(3) octet ground-stateswith
𝐽𝑃 = 1∕2+. The baryon-meson coupling constants can be systematically related to the quark-
antiquark pair creation process with 3𝑃0 dominance. Using (heavy) meson dominance this
can be extended to the baryon-meson-pair couplings as well. The ESC-potentials have been
applied to calculate the properties of nuclei, hypernuclei, including double-Λ andmore exotic
YY-hypernuclei. Also, the interactions can be explored to studymultiply-strange systems, and
strange nuclear matter.

Application of the ESC interactions to the study of all {8} ⊗ {8} two-baryon correlations
measured in heavy-ion collission experiments is a future project, with the prospect of further
insight into the low and intermediate energy baryon-baryon interactions.
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Appendix A: SU(3)-irreps and Baryon-baryon Isospin-states

The BB-irreps are diplayed in Fig. 7 and Fig. 8 showing the two-baryon content, and the
hypercharge Y=N+S of the SU(2)-isospin multiplets.

I = 1/2 : ΛN,ΣN

I = 1 : ΞN,ΛΣ

I = 0 : ΛΛ,ΞN,ΣΣ

I = 1/2 : ΛΞ,ΣΞ

Y = 1, S = −1

Y = 0

S = −2

Y = −1, S = −3

)

I = 1 : nn, np, pp

I = 3/2, 1/2 : ΣN,ΛN

I = 0, 1, 2 : ΛΛ,ΞN,ΛΣ,ΣΣ

ΞΣ(I = 3/2, 1/2 : ΣΞ,ΛΞ

I = 1 : Ξ−Ξ−,Ξ−Ξ0,Ξ0Ξ0

Y = 2, S = 0

Y = 1, S = −1

Y = 0, S = −2

Y = −1, S = −3

Y = −2, S = −4

1

FIG. 7: Baryon-Baryon {8}- and {27}-states.

D: NP(I=0)

ΛN, ΣN (I=1/2)

Ξ N, ΛΣ,ΣΣ(I = 1)

ΞΣ (I=3/2)

S= 0

S=-1

S=-2

S=-3

I = 3/2 : ΣN

I = 1 : ΞN,ΣΣ,ΛΣ

I = 1/2 : ΛΞ,ΣΞ

I = 0 : ΞΞ

Y = 1, S = −1

Y = 0, S = −2

Y = −1, S = −3

Y = −2, S = −4

1

FIG. 8: Baryon-baryon antidecuplet {10∗}- and {10}-states.

Appendix B: Meson coupling constants

In Table VII and Table VIII the rationalized 𝑁𝑁𝑀,𝑌𝑌𝑀 and 𝑌𝑁𝑀 OBE-couplings are
given for models ESC16 and ESC16∗ respectively. This for pseudoscalar, vector, scalar and
axial-vector mesons.

Appendix C: Meson-pair coupling constants

In Table IX and Table X the rationalized𝑁𝑁𝑀𝑝, 𝑌𝑌𝑀𝑝 and 𝑌𝑁𝑀𝑝 couplings are given for
models ESC16 and ESC16∗ respectively. This for scalar, vector and axial-vector meson-pairs
𝑀𝑝.
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TABLEVII: Coupling constants formodel ESC16, divided by
√
4𝜋. 𝑀 refers to themeson. The coupling

constants are listed in the order pseudoscalar, vector (𝑔 and 𝑓), axial vector A (𝑔 and 𝑓), scalar, axial
vector B, and diffractive.

𝑀 𝑁𝑁𝑀 ΣΣ𝑀 ΣΛ𝑀 ΞΞ𝑀 𝑀 Λ𝑁𝑀 ΛΞ𝑀 Σ𝑁𝑀 ΣΞ𝑀
𝑓 𝜋 0.2684 0.1955 0.1968 –0.0725 𝐾 –0.2681 0.0713 0.0725 –0.2684
𝑔 𝜌 0.5793 1.1586 0.0000 0.5793 𝐾∗ –1.0034 1.0034 –0.5793 –0.5793
𝑓 3.7791 3.5185 2.3323 –0.2606 –4.2132 1.8810 0.2606 –3.7791
𝑔 𝑎1 –0.8172 –0.6260 –0.5822 0.1912 𝐾1𝐴 0.8333 –0.2511 –0.1912 0.8172
𝑓 –1.6521 –1.2656 –1.1770 0.3865 1.6846 –0.5076 –0.3865 1.6521
𝑔 𝑎0 0.5393 1.0786 0.0000 0.5393 𝜅 –0.9341 0.9341 –0.5393 –0.5393
𝑓 𝑏1 –2.2598 –1.8078 –1.5656 0.4520 𝐾1𝐵 2.3484 –0.7828 –0.4520 2.2598

𝑀 𝑁𝑁𝑀 ΛΛ𝑀 ΣΣ𝑀 ΞΞ𝑀 𝑀 𝑁𝑁𝑀 ΛΛ𝑀 ΣΣ𝑀 ΞΞ𝑀
𝑓 𝜂 0.1368 –0.1259 0.2599 –0.1958 𝜂′ 0.3181 0.3711 0.2933 0.3852
𝑔 𝜔 3.1148 2.4820 2.4820 1.8492 𝜙 –1.2384 –2.0171 –2.0171 –2.7958
𝑓 –0.5710 –3.2282 –0.2863 –4.4144 2.8878 –0.3819 3.2380 –1.8416
𝑔 𝑓′1 –0.7596 –0.1213 –1.0133 0.0710 𝑓1 0.5147 1.0503 0.3019 1.2117
𝑓 –4.4179 –3.1274 –4.9307 –2.7386 4.4754 5.5582 4.0450 5.8844
𝑔 𝜀 2.9773 2.3284 2.3284 1.6795 𝑓0 –1.5766 –2.2485 –2.2485 –2.9205
𝑓 ℎ′1 –1.2386 0.1171 –1.6905 0.5690 ℎ1 –0.0830 1.8346 –0.7222 2.4738
𝑔 𝑃 2.7191 2.7191 2,7191 2.7197
𝑔 𝑂 4.1637 4.1637 4.1637 4.1637
𝑓 –3.8859 –3.8859 –3.8859 –3.8859

Appendix D: ESC16 BKS-phase parameters

The ESC16 Ξ−Ξ− and Ξ−Ξ0 nuclear-bar phase shifts as a function of energy are given in Ta-
bles XII. The ΛΞ BKS phase shifts and inelasticities are given in Table XIII and Table XIV re-
spectively. Table XV shows the Σ0Ξ0 phase parameters, and Table XVI the I=3/2 Σ+Ξ0 phases.
Notice that the 3𝑆1-phase shows repulsion, except for very low energies. This means that the
the potential has a weak long range attractive tail.

Appendix E: ESC16⋆(A) BKS-phase parameters

The ESC16⋆(A) Ξ0Ξ0 and Ξ−Ξ0 nuclear-bar phase shifts as a function of energy are given
in Tables XVII. The ΛΞ BKS phase shifts and inelasticities are given in Table XVIII and Ta-
ble XIX respectively. Table XX shows the Σ0Ξ0 phase parameters, and Table XXI the I=3/2
Σ+Ξ0 phases.

20



TABLE VIII: Coupling constants for model ESC16⋆(𝐴), divided by
√
4𝜋. 𝑀 refers to the meson. The

coupling constants are listed in the order pseudoscalar, vector (𝑔 and 𝑓), axial vector A (𝑔 and 𝑓), scalar,
axial vector B, and diffractive.

𝑀 𝑁𝑁𝑀 ΣΣ𝑀 ΣΛ𝑀 ΞΞ𝑀 𝑀 Λ𝑁𝑀 ΛΞ𝑀 Σ𝑁𝑀 ΣΞ𝑀
𝑓 𝜋 0.2680 0.1978 0.1952 –0.0701 𝐾 –0.2689 0.0737 0.0701 –0.2680
𝑔 𝜌 0.5821 1.1641 0.0000 0.5821 𝐾∗ –1.0082 1.0082 –0.5821 –0.5821
𝑓 3.7601 3.8215 2.1355 0.0614 –4.3773 2.2418 –0.0614 –3.7601
𝑔 𝑎1 –0.8526 –0.6681 –0.5988 0.1845 𝐾1𝐴 0.8780 –0.2792 –0.1845 0.8526
𝑓 –3.1888 –2.4987 –2.2395 0.6902 3.2837 –1.0441 –0.6902 3.1888
𝑔 𝑎0 0.4905 0.8043 0.1019 0.3139 𝜅 –0.7575 0.6456 –0.3139 –0.4905
𝑓 𝑏1 –2.4303 –1.9442 –1.6837 0.4861 𝐾1𝐵 2.5256 –0.8419 –0.4861 2.4303

𝑀 𝑁𝑁𝑀 ΛΛ𝑀 ΣΣ𝑀 ΞΞ𝑀 𝑀 𝑁𝑁𝑀 ΛΛ𝑀 ΣΣ𝑀 ΞΞ𝑀
𝑓 𝜂 0.1394 –0.1243 0.2584 –0.1966 𝜂′ 0.3181 0.3712 0.2941 0.3858
𝑔 𝜔 3.0977 2.4618 2.4618 1.8260 𝜙 –1.2183 –2.0007 –2.0007 –2.7831
𝑓 –0.5473 –3.3080 –0.6144 –4.7218 3.3335 –0.0634 3.2510 –1.8032
𝑔 𝑓′1 –0.7254 –0.0528 –0.9702 0.1611 𝑓1 0.4301 0.9945 0.2247 1.1739
𝑓 –4.8976 –2.3822 –5.8134 –1.5824 4.2124 6.3231 3.4440 6.9942
𝑔 𝜀 3.1268 2.6704 2.7949 2.2762 𝑓0 –1.5956 –2.1876 –2.0261 –2.6989
𝑓 ℎ′1 –1.2386 0.2194 –1.7246 0.7054 ℎ1 –0.1553 1.9069 –0.8428 2.5944
𝑔 𝑃 2.8256 2.8256 2,8256 2.8256
𝑔 𝑂 4.1637 4.1637 4.1637 4.1637
𝑓 –3.8859 –3.8859 –3.8859 –3.8859

TABLE IX: Pair coupling constants for model ESC16, divided by
√
4𝜋. 𝐼(𝑀𝑝) refers to the isospin of the

pair𝑀𝑝 with quantum-numbers 𝐽𝑃𝐶 .

Pair 𝐽𝑃𝐶 Type 𝐼(𝑀𝑝) 𝑁𝑁𝑀𝑝 ΣΣ𝑀𝑝 ΣΛ𝑀𝑝 ΞΞ𝑀𝑝 𝐼(𝑀𝑝) Λ𝑁𝑀𝑝 ΛΞ𝑀𝑝 Σ𝑁𝑀𝑝 ΣΞ𝑀𝑝

𝜋𝜂 0++ 𝑔 1 –0.6881 –1.3763 0.0000 –0.6881 1∕2 1.1919 –1.1919 0.6881 0.6881
0 –1.1919 0.0000 0.0000 1.1919

𝜋𝜋 1−− 𝑔 1 0.2514 0.5028 0.0000 0.2514 1∕2 –0.4354 0.4354 –0.2514 –0.2514
0 0.4354 0.0000 0.0000 –0.4354

𝜋𝜋 1−− 𝑓 1 –1.7729 –1.4183 –1.2283 0.3546 1∕2 1.8425 –0.6142 –0.3546 1.7729
0 –0.6142 1.2283 –1.2283 1.8425

𝜋𝜌 1++ 𝑔 1 5.6913 4.5530 3.9431 –1.1383 1∕2 –5.9147 1.9715 1.1383 –5.6913
0 1.9715 –3.9431 3.9431 –5.9146

𝜋𝜎 1++ 𝑔 1 –0.3892 –0.3114 –0.2697 0.0778 1∕2 0.4045 –0.1348 –0.0778 0.3892
0 –0.1348 0.2697 –0.2697 0.4045

𝜋𝜔 1+− 𝑔 1 –0.3281 –0.2624 –0.2273 0.0656 1∕2 0.3409 –0.1136 –0.0656 0.3281
0 –0.1136 0.2273 –0.2273 0.3409
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TABLE X: Pair coupling constants for model ESC16⋆(𝐴), divided by
√
4𝜋. 𝐼(𝑀𝑝) refers to the isospin

of the pair𝑀𝑝 with quantum-numbers 𝐽𝑃𝐶 .

Pair 𝐽𝑃𝐶 Type 𝐼(𝑀𝑝) 𝑁𝑁𝑀𝑝 ΣΣ𝑀𝑝 ΣΛ𝑀𝑝 ΞΞ𝑀𝑝 𝐼(𝑀𝑝) Λ𝑁𝑀𝑝 ΛΞ𝑀𝑝 Σ𝑁𝑀𝑝 ΣΞ𝑀𝑝

𝜋𝜂 0++ 𝑔 1 –0.2683 –0.5365 0.0000 –0.2683 1∕2 0.4646 –0.4646 0.2683 0.2683
0 –0.4646 0.0000 0.0000 0.4646

𝜋𝜋 1−− 𝑔 1 0.2514 0.4071 0.0553 0.1557 1∕2 –0.3802 0.3249 –0.1557 –0.2514
0 0.3249 –0.0553 0.0553 –0.3802

𝜋𝜋 1−− 𝑓 1 –1.7729 –1.3973 –1.2404 0.3756 1∕2 1.8303 –0.5899 –0.3756 1.7729
0 –0.5899 1.2404 –1.2404 1.8303

𝜋𝜌 1++ 𝑔 1 5.8748 1.7084 5.7973 –4.1665 1∕2 –4.3782 –1.4192 4.1665 –5.8748
0 –1.4192 –5.7973 5.7973 –4.3782

𝜋𝜎 1++ 𝑔 1 –0.3835 –0.1115 –0.3784 0.2720 1∕2 0.2858 0.0926 –0.2720 0.3835
0 0.0926 0.3784 –0.3784 0.2858

𝜋𝜔 1+− 𝑔 1 –0.4364 –0.3491 –0.3023 0.0873 1∕2 0.4535 –0.1512 –0.0873 0.4364
0 –0.1512 0.3023 –0.3023 0.4535

TABLE XI: ESC16 nuclear-bar Ξ−Ξ−(𝐼 = 1,1 𝑆0) and Ξ0Ξ−(𝐼 = 0,3 𝑆1) phases in degrees.

𝑝Λ 10 50 100 200 300 400 500 600

𝑇lab 0.038 0.95 3.77 15.05 36.63 59.22 91.94 129.85

1𝑆0 0.04 7.01 17.27 23.71 19.43 11.69 3.05 -5.60
3𝑆1 -0.75 -3.77 -7.72 -16.27 -25.36 -34.40 -42.86 -50.43
𝜖1 0.00 0.03 0.19 0.68 1.02 1.14 1.10 0.94
3𝑃0 0.00 0.02 0.21 0.96 1.09 -0.53 -3.96 -8.63
1𝑃1 0.00 0.02 0.24 1.64 3.76 15.21 5.13 3.51
3𝑃1 -0.00 -0.00 -0.02 0.03 0.06 -0.51 -1.94 -4.11
3𝑃2 0.00 0.01 0.10 0.68 1.31 1.14 -0.11 -2.20
𝜖2 -0.00 -0.00 -0.01 -0.07 -0.23 -0.47 -0.76 -1.07
3𝐷1 -0.00 -0.00 -0.01 -0.13 -0.36 -0.80 -1.77 -3.543
1𝐷2 0.00 0.00 0.01 0.16 0.74 1.95 3.66 5.49
3𝐷2 0.00 0.00 0.03 0.31 0.93 1.66 2.16 2.18
3𝐷3 0.00 0.00 0.00 0.04 0.20 0.40 0.37 -0.12
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TABLE XII: ESC16 nuclear-bar Ξ−Ξ0 phases in degrees.

𝑝Ξ 50 100 200 300 400 500 600 700 800 900

𝑇lab 0.95 3.80 15.12 33.79 59.50 91.86 130.42 174.72 224.24 278.51

1𝑆0 12.65 20.69 23.73 18.44 10.44 1.77 -6.84 -15.11 -22.94 -30.28
3𝑆1 -3.77 -7.72 -16.27 -25.36 -34.39 -42.85 -50.42 -56.98 -62.54 -67.19
𝜖1 0.03 0.19 0.68 1.02 1.14 1.10 0.94 0.70 0.40 0.05
3𝑃0 0.04 0.25 0.99 0.99 -0.78 -4.32 -9.06 -14.41 -19.95 -25.41
1𝑃1 0.04 0.31 1.78 3.88 5.23 5.03 3.31 0.45 -3.18 -7.29
3𝑃1 -0.01 -0.02 0.03 0.03 -0.61 -2.10 -4.30 -6.933 -9.75 -12.57
3𝑃2 0.02 0.13 0.73 1.32 1.09 -0.23 -2.35 -4.90 -7.61 -10.33
𝜖2 -0.00 -0.01 -0.08 -0.24 -0.48 -0.77 -1.07 -1.36 -1.60 -1.81
3𝐷1 -0.00 -0.01 -0.13 -0.36 -0.80 -1.77 -3.54 -6.14 -9.42 -13.19
1𝐷2 0.00 0.01 0.16 0.74 1.94 3.65 5.48 6.98 7.82 7.86
3𝐷2 0.00 0.03 0.31 0.93 1.66 2.16 2.18 1.64 0.61 -0.77
3𝐷3 0.00 0.00 0.04 0.20 0.40 0.37 -0.12 -1.11 -2.50 -4.12
𝜖3 0.00 0.00 0.04 0.15 0.29 0.40 0.48 0.52 0.53 0.51
3𝐹2 0.00 0.00 0.01 0.07 0.21 0.42 0.55 0.43 -0.11 -1.16

TABLE XIII: I=1/2: ESC16 nuclear-bar ΛΞ0 phases in degrees.

𝑝Λ 10 50 150 250 350 450 550 650

𝑇lab 0.038 0.95 8.53 23.56 45.79 74.88 110.40 151.90

1𝑆0 0.74 3.58 8.41 8.873 5.93 1.04 -4.82 -10.97
3𝑆1 -0.53 -2.65 -8.02 -13.50 -18.94 -24.09 -28.78 -32.73
𝜖1 -0.00 -0.00 -0.12 -0.50 -1.26 -2.47 -4.20 -6.76
3𝑃0 -0.00 -0.00 -0.06 -0.42 -1.42 -3.20 -5.64 -8.52
1𝑃1 0.00 0.00 0.09 0.24 0.18 -0.32 -1.34 -2.80
3𝑃1 -0.00 -0.00 -0.10 -0.47 -1.35 -2.79 -4.70 -6.85
3𝑃2 0.00 0.00 -0.01 -0.15 -0.64 -1.59 -2.98 -4.68
𝜖2 -0.00 -0.00 -0.00 -0.01 -0.03 -0.06 -0.08 -0.09
3𝐷1 0.00 0.00 0.01 0.09 0.36 0.96 2.05 4.15
1𝐷2 0.00 0.00 0.01 0.10 0.41 1.04 1.99 3.20
3𝐷2 -0.00 -0.00 -0.00 -0.00 -0.03 -0.14 -0.42 -0.87
3𝐷3 -0.00 -0.00 -0.00 -0.01 -0.09 -0.35 -0.91 -1.80
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TABLEXIV: ESC16 1𝑆0,3 𝑆1−3𝐷1(ΛΞ→ ΛΞ, 𝐼 = 1∕2) BKS-phase parameters in [degrees] as a function
of the laboratory momentum 𝑝Λ in [MeV]. The Σ0Ξ0 and Σ+Ξ− thresholds are at 𝑝Λ = 689.97MeV and
𝑝Λ = 706.47MeV respectively.

𝑝Λ 𝛿(1𝑆0) 𝜌(1𝑆0) 𝛿(3𝑆1) 𝜖1 𝛿(3𝐷1) 𝜂11 𝜂12 𝜂22
10 0.74 1.00 –0.53 –0.00 0.00 1.00 0.00 1.00
50 3.58 1.00 –2.65 –0.00 0.00 1.00 0.00 1.00
100 6.52 1.00 –5.31 –0.04 0.00 1.00 0.00 1.00
150 8.41 1.00 –8.02 –0.12 0.01 1.00 0.00 1.00
200 9.16 1.00 –10.75 –0.27 0.03 1.00 0.00 1.00
250 8.87 1.00 –13.50 –0.50 0.09 1.00 0.00 1.00
300 7.72 1.00 –16.24 –0.83 0.19 1.00 0.00 1.00
350 5.93 1.00 –18.94 –1.26 0.36 1.00 0.00 1.00
400 3.65 1.00 –21.56 –1.80 0.61 1.00 0.00 1.00
450 1.04 1.00 –24.09 –2.47 0.96 1.00 0.00 1.00
500 -1.82 1.00 –26.51 –3.26 1.43 1.00 0.00 1.00
550 -4.82 1.00 –28.78 –4.20 2.05 1.00 0.00 1.00
600 -7.90 1.00 –30.89 –5.32 2.90 1.00 0.00 1.00
650 -10.97 1.00 –32.73 –6.76 4.15 1.00 0.00 1.00
700 -13.80 0.990 –34.47 1.20 5.99 0.92 0.31 0.91
750 -17.14 0.972 –38.66 3.64 4.65 0.88 0.30 0.84
850 -23.997 0.956 –45.41 5.34 3.07 0.87 0.28 0.81
950 -30.624 0.945 –51.22 6.21 1.93 0.87 0.28 0.73
1050 -36.967 0.936 –56.42 6.69 0.70 0.87 0.28 0.71
1150 -42.966 0.928 –61.15 6.91 –0.70 0.88 0.28 0.68
1250 -41.319 0.921 –65.53 6.93 –2.26 0.89 0.29 0.66
1350 -35.927 0.915 –69.50 6.81 –4.06 0.89 0.29 0.64
1450 -30.988 0.908 –73.07 6.59 –5.96 0.90 0.29 0.64
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TABLE XV: ESC16 1𝑆0,3 𝑆1 −3 𝐷1(Σ0Ξ0 → Σ0Ξ0, 𝐼 = 1∕2) BKS-phase parameters in [degrees] as a
function of the laboratory momentum 𝑝Σ in [MeV]. The Σ+Ξ−-threshold at 𝑝Σ = 138.15MeV.

𝑝Σ 𝛿(1𝑆0) 𝜌(1𝑆0) 𝛿(3𝑆1) 𝜖1 𝛿(3𝐷1) 𝜂11 𝜂12 𝜂22
10 –0.18 1.00 0.44 0.00 0.00 0.99 0.00 1.00
50 –0.85 1.00 2.19 0.01 0.00 0.96 0.00 1.00
100 –1.11 0.99 4.46 0.04 0.01 0.94 0.01 1.00
150 –2.38 0.83 8.14 –0.09 0.09 0.87 0.00 1.00
200 –3.65 0.67 7.38 –0.42 0.19 0.78 0.01 1.00
250 –10.02 0.59 6.01 –0.63 0.33 0.75 0.03 0.99
300 –16.30 0.55 4.24 –0.75 0.49 0.73 0.04 0.98
350 –22.32 0.52 2.12 –0.77 0.67 0.72 0.05 0.97
400 –28.05 0.50 –0.30 –0.69 0.86 0.71 0.07 0.96
450 –33.45 0.49 –2.99 –0.51 1.03 0.70 0.08 0.95
500 –38.52 0.48 –5.93 –0.27 1.20 0.69 0.09 0.93
550 –43.27 0.48 –9.07 0.04 1.34 0.68 0.09 0.91
600 –42.29 0.48 –12.37 0.37 1.46 0.68 0.10 0.89
650 –38.16 0.48 –15.81 0.72 1.56 0.67 0.10 0.87
700 –34.30 0.49 –19.32 1.04 1.64 0.67 0.10 0.85
750 –30.72 0.50 –22.85 1.34 1.68 0.67 0.10 0.83
850 –24.23 0.52 –29.86 1.78 1.63 0.67 0.09 0.80
950 –18.55 0.55 –36.59 2.05 1.28 0.68 0.08 0.76
1050 –13.51 0.58 –42.90 2.21 0.52 0.69 0.07 0.74
1150 –9.84 0.61 –48.69 2.30 –0.72 0.70 0.06 0.72
1250 –5.02 0.64 –53.98 2.39 –2.41 0.71 0.06 0.70
1350 –1.31 0.67 –58.93 2.51 –4.32 0.72 0.05 0.70
1450 1.94 0.70 –63.54 2.62 –6.62 0.74 0.04 0.69
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TABLE XVI: I=3/2: ESC16 nuclear-bar Σ+Ξ0 phases in degrees.

𝑝Σ+ 50 150 250 350 450 550 650 750 850 950

𝑇lab 1.05 9.42 25.99 50.43 82.28 121.01 166.03 216.72 272.51 332.83

1𝑆0 12.15 22.97 19.53 10.95 1.04 -8.89 -18.41 -27.33 -35.62 -43.27
3𝑆1 6.08 11.86 9.42 2.98 -4.90 -13.09 -21.11 -28.73 -35.86 -42.47
𝜖1 0.09 1.38 3.59 5.99 8.21 10.13 11.75 13.10 14.23 15.16
3𝑃0 -0.07 -0.97 -2.63 -5.43 -9.75 -15.24 -21.33 -27.53 -33.52 -39.11
1𝑃1 -0.07 -1.32 -4.55 -9.70 -16.21 -23.39 -30.68 -37.72 -44.28 -50.21
3𝑃1 0.03 0.41 0.06 -1.69 -4.59 -8.15 -11.96 -15.78 -19.45 -22.90
3𝑃2 0.01 0.04 -0.23 -1.31 -3.38 -6.19 -9.37 -12.67 -15.93 -19.08
𝜖2 0.00 0.07 0.20 0.20 0.06 -0.08 -0.15 -0.10 0.05 0.26
3𝐷1 -0.00 -0.04 -0.20 -0.45 -0.81 -1.37 -2.22 -3.39 -5.29 -7.67
1𝐷2 -0.00 -0.01 0.25 1.33 3.29 5.65 7.65 8.75 8.73 7.62
3𝐷2 0.00 0.17 1.07 3.21 6.63 10.63 14.17 16.54 17.55 17.34
3𝐷3 0.00 0.02 0.18 0.62 1.26 1.82 1.99 1.58 0.53 -1.11
𝜖3 0.00 0.01 0.11 0.32 0.69 1.23 1.90 2.65 3.44 4.27
3𝐺3 -0.00 -0.00 -0.01 -0.03 -0.05 -0.03 0.08 0.31 0.72 1.35

TABLE XVII: ESC16⋆(A) nuclear-bar Ξ0Ξ0 and Ξ−Ξ0 phases in degrees.

𝑝Ξ 50 100 200 300 400 500 600 700 800 900

𝑇lab 0.95 3.80 15.12 33.79 59.50 91.86 130.42 174.72 224.24 278.51

1𝑆0 11.40 18.76 21.45 16.07 8.01 -0.72 -9.36 -17.66 -25.51 -32.86
3𝑆1 -3.48 -7.15 -15.26 -24.03 -32.81 -40.98 -48.21 -54.35 -59.44 -63.59
𝜖1 0.03 0.17 0.61 0.88 0.92 0.76 0.48 0.11 -0.35 -0.88
3𝑃0 0.04 0.25 1.03 1.10 -0.63 -4.15 -8.85 -14.12 -19.50 -24.72
1𝑃1 0.04 0.31 1.75 3.70 4.72 4.08 1.92 -1.33 -5.28 -9.64
3𝑃1 -0.00 0.01 0.22 0.46 0.06 -1.30 -3.43 -6.05 -8.893 -11.76
3𝑃2 0.02 0.15 0.89 1.72 1.72 0.62 -1.29 -3.57 -5.96 -8.30
𝜖2 -0.00 -0.01 -0.07 -0.23 -0.46 -0.74 -1.04 -1.32 -1.57 -1.78
3𝐷1 -0.00 -0.01 -0.11 -0.28 -0.62 -1.47 -3.12 -5.63 -8.83 -12.53
1𝐷2 0.00 0.01 0.17 0.78 2.05 3.83 5.69 7.14 7.89 7.80
3𝐷2 0.00 0.02 0.30 0.94 1.74 2.36 2.51 2.11 1.23 -0.03
3𝐷3 0.00 0.00 0.05 0.25 0.53 0.59 0.17 -0.76 -2.10 -3.66
𝜖3 0.00 0.00 0.04 0.14 0.27 0.37 0.44 0.46 0.45 0.42
3𝐹2 0.00 0.00 0.01 0.07 0.22 0.45 0.61 0.50 -0.06 -1.14
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TABLE XVIII: I=1/2: ESC16⋆(A) nuclear-bar ΛΞ0 phases in degrees.

𝑝Λ 10 50 150 250 350 450 550 650

𝑇lab 0.038 0.95 8.53 23.56 45.79 74.88 110.40 151.90
1𝑆0 1.61 7.72 17.17 18.01 14.07 8.05 11.30 -5.35
3𝑆1 -0.13 -0.69 -2.61 -5.69 -9.74 -14.30 -19.06 -23.84
𝜖1 -0.00 -0.00 -0.12 -0.47 -1.12 -2.02 -3.11 -4.30
3𝑃0 0.00 0.01 0.16 0.40 0.31 -0.45 -1.91 -3.86
1𝑃1 0.00 0.01 0.17 0.47 0.47 -0.20 -1.62 -3.53
3𝑃1 0.00 0.01 0.13 0.38 0.45 0.05 -0.87 -2.10
3𝑃2 0.00 0.01 0.22 0.72 1.21 1.32 0.93 0.08
𝜖2 -0.00 -0.00 -0.00 -0.01 -0.03 -0.05 -0.06 -0.05
3𝐷1 0.00 0.00 0.01 0.14 0.56 1.43 2.83 4.98
1𝐷2 0.00 0.00 0.02 0.16 0.62 1.54 2.91 4.59
3𝐷2 0.00 0.00 0.00 0.05 0.17 0.34 0.48 0.54
3𝐷3 0.00 0.00 0.00 0.03 0.07 0.03 -0.22 -0.77
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TABLE XIX: ESC16⋆(A) 1𝑆0,3 𝑆1 −3 𝐷1(ΛΞ → ΛΞ, 𝐼 = 1∕2) BKS-phase parameters in [degrees] as a
function of the laboratory momentum 𝑝Λ in [MeV]. The Σ0Ξ0 and Σ+Ξ− thresholds are at 𝑝Λ = 689.97
MeV and 𝑝Λ = 706.47MeV respectively.

𝑝Λ 𝛿(1𝑆0) 𝜌(1𝑆0) 𝛿(3𝑆1) 𝜖1 𝛿(3𝐷1) 𝜂11 𝜂12 𝜂22
10 1.61 1.00 –0.13 –0.00 0.00 1.00 0.00 1.00
50 7.72 1.00 –0.69 –0.00 0.00 1.00 0.00 1.00
100 13.67 1.00 –1.52 –0.04 0.00 1.00 0.00 1.00
150 17.17 1.00 –2.61 –0.12 0.01 1.00 0.00 1.00
200 18.43 1.00 –4.00 –0.26 0.05 1.00 0.00 1.00
250 18.01 1.00 –5.69 –0.47 0.14 1.00 0.00 1.00
300 16.43 1.00 –7.62 –0.76 0.30 1.00 0.00 1.00
350 14.07 1.00 –9.74 –1.12 0.56 1.00 0.00 1.00
400 11.21 1.00 –11.98 –1.54 0.93 1.00 0.00 1.00
450 8.05 1.00 –14.30 –2.02 1.43 1.00 0.00 1.00
500 4.71 1.00 –16.67 –2.55 2.05 1.00 0.00 1.00
550 1.30 1.00 –19.06 –3.11 2.83 1.00 0.00 1.00
600 –2.09 1.00 –21.45 –3.69 3.77 1.00 0.00 1.00
650 –5.35 1.00 –23.84 –4.30 4.98 1.00 0.00 1.00
700 –8.16 0.981 –26.28 0.10 6.36 0.99 0.17 0.97
750 –11.74 0.945 –28.80 0.36 7.01 0.98 0.17 0.91
850 –19.42 0.912 –33.44 0.08 7.95 0.98 0.19 0.89
950 –26.85 0.892 –37.97 –0.18 9.27 0.97 0.22 0.87
1050 –34.01 0.878 –42.44 –0.37 10.20 0.96 0.23 0.85
1150 –40.80 0.872 –46.81 –0.53 10.48 0.96 0.23 0.83
1250 –42.77 0.873 –51.09 –0.69 10.11 0.95 0.23 0.81
1350 –36.83 0.879 –55.17 –0.84 9.08 0.94 0.23 0.79
1450 –31.51 0.888 –58.93 –0.98 7.57 0.94 0.22 0.78
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TABLE XX: ESC16⋆(A) 1𝑆0,3 𝑆1 −3 𝐷1(Σ0Ξ0 → Σ0Ξ0, 𝐼 = 1∕2) BKS-phase parameters in [degrees] as a
function of the laboratory momentum 𝑝Σ in [MeV]. The Σ+Ξ−-threshold at 𝑝Σ = 138.15MeV.

𝑝Σ 𝛿(1𝑆0) 𝜌(1𝑆0) 𝛿(3𝑆1) 𝜖1 𝛿(3𝐷1) 𝜂11 𝜂12 𝜂22
10 0.75 1.00 7.96 0.00 0.00 0.99 –0.00 1.00
50 3.86 0.99 36.17 0.00 0.00 0.96 –0.00 1.00
100 9.04 0.98 64.73 0.02 0.02 0.98 –0.01 1.00
150 21.73 0.54 –41.70 –0.03 0.06 0.23 0.05 1.00
200 5.03 0.44 15.37 –1.93 0.23 0.25 0.04 1.00
250 –2.78 0.45 18.87 –2.18 0.41 0.40 0.05 0.99
300 –8.41 0.46 18.07 –2.34 0.67 0.49 0.06 0.99
350 –13.13 0.48 16.00 –2.44 1.01 0.56 0.07 0.98
400 –17.32 0.49 13.32 –2.48 1.43 0.61 0.09 0.97
450 –21.10 0.51 10.27 –2.47 1.92 0.64 0.09 0.96
500 –24.53 0.54 7.00 –2.42 2.48 0.67 0.10 0.94
550 –27.65 0.56 3.58 –2.34 3.09 0.69 0.10 0.93
600 –30.48 0.59 0.07 –2.24 3.74 0.70 0.11 0.91
650 –33.06 0.63 –3.50 –2.15 4.40 0.72 0.10 0.89
700 –35.44 0.66 –7.08 –2.07 5.06 0.72 0.10 0.87
750 –37.59 0.69 –10.65 –2.02 5.66 0.73 0.09 0.85
850 –41.48 0.76 –17.62 –2.02 6.67 0.75 0.07 0.81
950 –44.97 0.82 –24.28 –2.09 7.18 0.76 0.05 0.79
1050 –41.75 0.87 –30.56 –2.18 7.09 0.77 0.03 0.76
1150 –38.59 0.90 –36.40 –2.23 6.32 0.78 0.02 0.75
1250 –35.49 0.93 –41.78 –2.21 4.95 0.79 –0.00 0.74
1350 –32.28 0.95 –46.86 –2.15 3.25 0.80 –0.02 0.74
1450 –29.00 0.96 –51.70 –2.03 1.12 0.81 –0.03 0.74
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TABLE XXI: I=3/2: ESC16⋆(A) nuclear-bar Σ+Ξ0 phases in degrees.

𝑝Σ+ 50 150 250 350 450 550 650 750 850 950

𝑇lab 1.05 9.42 25.99 50.43 82.28 121.01 166.03 216.72 272.51 332.83

1𝑆0 10.77 20.54 16.99 8.37 -1.59 -11.58 -21.14 -30.11 -38.44 -46.11
3𝑆1 8.64 16.67 14.29 7.58 -0.48 -8.72 -16.68 -24.18 -31.17 -37.62
𝜖1 0.10 1.42 3.59 5.87 9.93 9.66 11.07 12.21 13.14 13.89
3𝑃0 -0.06 -0.88 -2.38 -5.03 -9.24 -14.62 -20.56 -26.53 -32.18 -37.31
1𝑃1 -0.07 -1.25 -4.34 -9.38 -15.84 -23.06 -30.46 -37.67 -44.46 -50.68
3𝑃1 0.03 0.48 0.31 -1.21 -3.92 -7.32 -11.01 -14.72 -18.29 -21.66
3𝑃2 0.01 0.09 -0.07 -1.06 -3.08 -5.84 -8.98 -12.20 -15.35 -18.35
𝜖2 0.00 0.07 0.19 0.19 0.06 -0.09 -0.15 -0.10 0.04 0.23
3𝐷1 -0.00 -0.04 -0.19 -0.41 -0.72 -1.23 -2.03 -3.22 -4.89 -7.08
1𝐷2 -0.00 -0.01 0.29 1.44 3.51 5.94 7.95 8.99 8.85 7.62
3𝐷2 0.00 0.17 1.09 3.32 6.90 11.08 14.80 17.30 18.41 18.27
3𝐷3 0.00 0.02 0.19 0.67 1.34 1.91 2.04 1.58 0.49 -1.20
𝜖3 0.00 0.01 0.10 0.31 0.68 1.22 1.89 2.64 3.43 4.24
3𝐺3 -0.00 -0.00 -0.01 -0.03 -0.04 -0.01 0.12 0.37 0.81 1.45
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