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Abstract
The Quark-quark (QQ) and Quark-nucleon (QN) interactions in this paper are derived from the Extended-

soft-core (ESC) interactions. The meson-quark-quark (MQQ) vertices are determined in the framework of the
constituent quark-model (CQM). These vertices are such that upon folding with the ground-state baryonic quark
wave functions the one-boson-exchange amplitudes for baryon-baryon (BB), and in particularly for nucleon-
nucleon (NN), are reproduced. This opens the attractive possibility to define meson-quark interactions at the
quark-level which are directly related to the interactions at the baryon-level. The latter have been determined
by the baryon-baryon data. Application of these "realistic" quark-quark interactions in the quark-matter phase
is presumably of relevance for the description of highly condensed matter, as e.g. neutron-star matter.
These quark-quark potentials consist of local- and non-local-potentials due to (i) One-boson-exchanges (OBE),

which are the members of nonets of pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) Diffractive exchanges,
(iii) Two pseudo-scalar exchange (PS-PS), and (iv) Meson-Pair-exchange (MPE). Both the OBE- and Pair-vertices
are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment
of the cut-off masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for
OBE, and a similar scheme for MPE. The model is presented in the framework of the Kadyshevski formalism,
which has the advantage that in momentum space fully relativistic potentials can be used in principle.
Like previous ESC models, the recent ESC16 describes nucleon-nucleon (NN), hyperon-nucleon (YN), and

hyperon-hyperon (YY) in a unified way using broken SU(3)-symmetry. Novel ingredients are the inclusion of
(i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These inno-
vations made it possible to keep the parameters of the model closely to the predictions of the quark-antiquark
pair creation (QPC) model, with a dominance of the 3P0-pair creation. This is also the case for the flavor SU(3)F∕(F + D)-ratio’s. In this QPC-model to the couplings in the framework of the CQM the mesons are coupled
directly to the quarks. Therefore, it is most natural to consider meson-exchange on the quark-level as the basis
for the meson-exchange BB-potentials. In this paper we derive the QQ- and QN-interactions for the two-quark
and the quark-nucleon channels of the basic isodoublet i.e. U,D quarks: (i) UU-, UD-, and DD-channels, and (ii)
UP-, UN- and DN-channels, with P=proton, N=neutron. Applications of these potentials can be made for the
mixed nuclear and quark matter, which probably occurs for example inside neutron stars.
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I. INTRODUCTION

The Quark-quark and Quark-nucleon/baryon interactions in this paper are derived from the
Extended-soft-core (ESC) interactions. In [1, 2] we have determined the meson-quark-quark (QQM)
vertices in the framework of the constituent quark-model (CQM) [3–6]. These QQM-vertices are such
that upon folding with the effective ground-state baryonic harmonic oscillator quark wave functions,
the one-boson-exchange amplitudes for nucleon-nucleon (NN) are reproduced. This opens the attrac-
tive possibility to define meson-quark interactions at the quark-level which are directly related to the
interactions at the baryon-level. The latter have been determined by the baryon-baryon data. These
"unified" quark-quark and quark-nucleon/baryon interactions can be applied to the nucleon-quark
mixed-matter phase, which is relevant for the description of highly condensed matter, as e.g. neutron-
star matter.

In QCD two non-perturbative effects occur: (i) confinement and (ii) chiral symmetry breaking.
The SU(3)LxSU(3)R chiral symmetry is spontaneously broken to an SU(3)v symmetry at some scaleΛ�SB ≈ 1 GeV. Below this scale there is an octet of pseudoscalar Goldstone-bosons: (�, K, �). The
confinement scale ΛQCD ≈ 100 − 330 MeV. The complex QCD-vacuum structure can be described as
an BPST instanton/anti-instanton liquid giving the valence quarks a dynamical or constituent effective
mass ≈ MN∕3 [7, 8]. This corresponds to the CQM [6], which is the basis for the quark-quark and
quark-nucleon interactions proposed in this paper.

The QQ-interactions in this paper consist of local- and non-local-potentials due to (i) One-boson-
exchanges (OBE), which are the members of nonets of pseudo-scalar-, vector-, scalar-, and axial-
mesons, (ii) Diffractive exchanges, (iii) Two pseudo-scalar exchange (PS-PS), and (iv) Meson-Pair-
exchange (MPE). Both the OBE- and Pair-vertices are regulated by gaussian form factors producing po-
tentials with a soft behavior near the origin. The assignment of the cut-offmasses for the BBM-vertices
is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for
MPE.

The ESC-models in general, and so also the recent version ESC16 [9–11], describe nucleon-nucleon
(NN) and hyperon-nucleon (YN) in a unified way using broken SU(3)-symmetry. Novel ingredients in
ESC16 are the inclusion of (i) the axial-vectormeson potentials, (ii) a zero in the scalar- and axial-vector
meson form factors. These innovations made it possible for the first time to keep the parameters of the
model closely to the predictions of the 3P0 quark-antiquark creation (QPC)model [3, 5]. This is also the
case for the F∕(F + D)-ratio’s. The application of the QPC model to the couplings was executed in the
framework of the constituent quark-model. Therefore, it is most natural to consider meson-exchange
on the quark-level. In this paper we derive the QQ-interactions for the two-quark channels of the basic
triplet i.e. U,D, and S quarks: (i) UU-, UD-, and DD-, (ii) US- and DS-, (iii) SS-channels.

The BBM-vertices are described by coupling constants and form factors, which correspond to the
Regge residues at high energies [12]. The form factors are taken to be of the gaussian-type, like the
residue functions in many Regge-pole models for high energy scattering. Although the gaussian quark
wave functions lead to gaussian type of form factors, also in (nonrelativistic) quark models (QM’s) a
gaussian behavior of the form factors is most natural, because the mesons are Reggeons. These quark-
quark-meson form factors evidently guarantee a soft behavior of the potentials in configuration space
at small distances.

In the ESCmodels, see e.g. [13], the assignment of the cut-off parameters in the form factors is made
for the individual baryon-baryon-meson (BBM) vertices, constrained by broken SU(3)-symmetry. The
same scheme we follow here for the QQM-vertices.

Confinement is related to the infrared behavior of QCD. This plays an important role when the
quarks are not close together. In quark-matter the quark-density is high and therefore the quark-quark
interaction is dominantly of short range. So, the infrared behavior can be ignored,being the justification
for the use of the same formalism for quarks in (dense) quark matter as for nucleons in nuclear matter.
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The contents of this paper are as follows. In section II we review some facts about the "constituents
quarks", within the context of spontaneously broken chiral symmetry (Nambu-Goldstone), and the
complex structure of the QCD vacuum. In section III the relation between the ESC BBM-couplings
and the QQM-couplings is argued for the CQM. In section IV we present the Kadyshevsky formal-
ism [14–17] for baryon-baryon channels and the three-dimensional "quasi-potential equation. From
this a in section V a Thompson-type relativistic Lippmann-Schwinger is derived using a standard [14]
on-energy-shell version of the Kadyshevsky equation. In section VI the Lippmann-Schwinger and the
Bethe-Goldstone equations are given. In section VII the ESCmeson-quark-quark and meson-nucleon-
nucleon interaction Hamiltonians are displayed, both for the QQM/NNM-vertices as well as for the
pair-verticesQQMM/NNMM. Here also themeson-pair interactionHamiltonians are given in the con-
text of SU(3). Expressions for the meson-pair-exchange (MPE) graphs are given, again in an immedi-
ately programmable form. In section VIII we describe the S = 0,−1, −2 QQ-channels on the isospin
(i) and hypercharge (y) and particle basis. Here also the SU(3)-structure of the QQM/NNM-couplings
are given both in the 3 × 3-matrix and cartesian-nonet description. Outlined is the (numerical) eval-
uation of the couplings which occur in the OBE- and TME-diagrams. In section IX the same is done
for the meson-pair couplings and MPE-diagrams. Here also the gaussian form factors are mentioned.
In section X the connection between the QQM- and BBM-couplings are listed. In section XI the one-
gluon-exchange (OGE) and confining potentials are described. In section XII the SU(3) Nambu-Jona-
Lasinio (NJL) form of the instanton potential is worked out. with the ESC-couplings is discussed. In
section XIII the simultaneousNN⊕YN fitting procedure of the meson-exchange parameters is briefly
reviewed, and the results for the coupling constants and F∕(F +D)-ratios for OBE and MPE are given.
Furthermore, results for the QQ-, QN-, and NN-phase-shifts are given. This is only meant for a compar-
ison of the strength of the QQ- and QN-interactions and the NN-interactions. In section XIV a summary
and an outlook is given.
In Appendix A the the Bethe-Goldstone-Kadyshevsky equation and the correspondent G-matrix are
described. In Appendix B a simple model for the relation between the meson-couplings using the
Fierz-transformation is described. In Appendix C the complete meson-quark vertices in Pauli-spinor
space are given. In Appendix D the one-boson-exchange quark-quark potentials in momentum- and
configuration-space are given for the vertices which also occur at the baryon-level. In Appendix E the
additional quark-quark potentials are given, which are due to the extra meson-vertices at the quark-
level. Next we included some miscellaneous topics: In Appendix F discusses the inclusion of the Z-
graphs in the MPE-ineteraction is implicit.

II. CONSTITUENT QUARKS AND INSTANTONS

The spectra of the nucleons, ∆ resonances and the hyperons Λ, Σ, Ξ are descibed in detail by the
Glozman-Riska model [18]. This is a modern version of the CQM [4] based on the Nambu-Goldstone
spontaneous chiral-symmetry breaking (SCSB) with quarks interacting by the exchange of the SU(3)F
octet of pseudoscalar mesons [18]. The pseudoscalar octet are the Nambu-Goldstone bosons (NGB’s)
associated with the hidden (approximate) chiral symmetry of QCD. The confining potential is cho-
sen to be harmonic, as is rather common in constituent quark models. In line with this, we used
harmonic wave functions in the derivation of the connection between the meson-baryon and meson-
quark couplings [1]. The �′, which is dominantly an SU(3) singlet, decouples from the original nonet
because of the U(1) anomaly [19, 20]. According to the two-scale picture of Manohar and Georgi [6]
the effective degrees for the 3-flavor QCD at distances beyond that of SCSB (Λ−1�SB ≈ 0.2 − 0.3 fm),
but within that of the confinement scale Λ−1QCD ≈ 1 fm, should be the constituent quarks and chiral
meson fields. The two non-perturbative effects in QCD are confinement and chiral symmetry break-
ing. The SU(3)L⊗SU(3)R chiral symmetry is sponteneously broken to an SU(3)v symmetry at a scale
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Λ�SB ≈ 1 GeV. The confinement scale is ΛQCD ≈ 100 − 300 MeV, which roughly corresponds to the
baryon radius ≈ 1 fm. Due to the complex structure of the QCD vacuum, which can be understood as
a liquid of BPST instantons and anti-instantons [7, 8, 21, 22], the valence quarks acquire a dynamical
or constituent mass [6, 8, 19, 22, 23]. The interaction between the instanton and the anti-instanton is
a dipole-interaction [24], similar to ordinary molecules: weak attraction at large distances and strong
repulsion at small ones. With the empirical value of the gluon condensate [25] as input the instan-
ton density and radius become [24] nc = 8 ⋅ 10−4 GeV−4, and �c = (600 MeV)−1 ≈ 0.3 fm respec-
tively. Also, with these parameters the non-perturbative vacuum expectation value for the quark fields
is ⟨vac| ̄ |vac⟩ ≈ −10−2 GeV3 and the quark effective (u,d) masses ≈ 200 MeV, i.e. much larger
than the almost massless "current masses". In the calculation of light quarks in the instanton vacuum
[8] the effective quark mass mQ(p = 0) = 345 MeV was calculated, which is remarkably close to the
constituent massMN∕3.

Very notable is the role of the instantons for the light meson spectrum. They give a non-perturbative
gluonic interaction between quarks in QCD. For example the instanton-induced interaction, as pro-
posed by ’t Hooft [20], generates at low momenta the constituent quark mass [8], i.e. breaks chiral
symmetry. This interaction supplies a strong attractive attraction in the pseudoscalar-isovector quark-
antiquark system - pions -, which makes them anomalously light, with zero mass in the chiral limit.
This is the mechanism by which the pions, being quark-antiquark bound states, appear as Nambu-
Goldstone bosons of the SCSB symmetry. This strongly attractive interaction is absent in vectormesons
[26, 27], making the masses of the vector mesons ≈ 2mQ in accordance with m� ≈ m! ≈ 2mQ. Since�s ≈ 0.3 the one-gluon-exchage (OGE) is weak, and therefore the � − � mass splitting is not due to
the perturbative color-magnetic spin-spin interaction between the quark and antiquark [26]. Besides
explaining the � − � mass difference, the ’t Hooft interaction also in a natural way solves the UA(1)
problem, and gives the reason why the �′ is heavy, as distinct to the NGB pseudoscalar octet.

The ’t Hooft four-fermion instanton mediated interaction for the light flavor doublet  = (u, d), in
the form of a generalized Nambu-Jona-Lasinio Lagrangian [28], is

ℒI = GI [( ̄ )2 − ( ̄
5� )2 − ( ̄� )2 + ( ̄
5 )2] . (2.1)

Here, the strength of the interactionGI and the ultraviolet cut-off scale 1∕r0 are related in the instanton
liquid model [29]. In this model GI = �ud∕4 = 2n+∕⟨ ̄ ⟩)2. In [30] Glozman and Varga show that the
t-channel iteration of the instanton interaction (2.1) leads to isoscalar and isovector pseudoscalar and
scalar exchange quark-quark potentials. Since these potentials are already included in our model, the
four-fermion instanton interaction does not lead to extra potentials.

In this paper we extend the meson-exchange between quarks by proposing to include, besides the
pseudoscalar, all meson nonets: vector, axial-vector, scalar etc. Since all these meson nonets can be
considered as quark-antiquark bound states, there is no reason to exclude any of these mesons from the
quark-quark interactions. Furthermore, our preferred value for the constituent quark mass has a solid
basis in the instanton-liquid model of the QCD vacuum.

III. ESC-POTENTIALS AND THE CONSTITUENT QUARK-MODEL

The fitted ESC16-couplings and the QPC-couplings agree very well as shown in [9]. In particular,
the SU(6)-breaking improves the agreement significantly. The calculation of Table II in Ref. [9] uses
the constituent quark model (CQM) in the SU(6)-version of [3]. In Appendix B a simple model for
the quark-antiquark creation process exhibits the main features of the meson-coupling pattern in the
ESC models. Since such calculations implicity uses the direct coupling of the mesons to the quarks,
it defines the QQM-vertex. Then, OBE-potentials can be derived by folding meson-exchange with the
quark wave functions of the baryons. Prescribed by the Dirac-structure, at the baryon level the vertices
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have in Pauli-spinor space the 1/MB-expansion

ū(p′, s′)Γu(p, s) = �′†s′ {Γbb + Γbs � ⋅ pE +M − � ⋅ p′E′ +M′Γsb − � ⋅ pE +MΓss � ⋅ p′E′ +M′Γsb} �s
≡ ∑

l
c(l)BB [�′†s′ Ol(p′,p) �s] (√M′M)�l (l = bb, bs, sb, ss). (3.1)

This expansion is general and does not depend on the internal structure of the baryon. A similar expan-

sion can be made on the quark-level, but now with quark masses mQ and coefficients c(l)QQ. It appears
that in the CQM, i.e. mQ = MB∕3, the QQM-vertices can be chosen such that the ratio’s c(l)QQ∕c(l)BB are
constant for each type of meson [1] Then, these coefficients can be made equal by (i) scaling the cou-
plings, (ii) introducing some extra couplings at the quark level, and (iii) introducing a QQM gaussian
form factor. Ipso facto this defines a meson-exchange quark-quark interaction.

IV. KADYSHEVSKY EQUATIONS INMOMENTUM SPACE

Weenvisage the interactionbetween two (constituent) quarks in a densemedium of baryons and/or
quarks. In such a condition it is appropriate to consider the QQ-correlations in the G-matrix formal-
ism in the setting of the Bethe-Goldstone equations [31, 32]. To make contact with the 3-dimensional
potental formalism we employ the Kadyshevsky formalism [14].

A. Relativistic Two-Body Equation

We consider the quark-quark and quark-nucleon baryon-baryon reactions

Qa(pa, sa) + Qb(pb, sb)→ Q′a(p′a, s′a) + Q′b(p′b, s′b), (4.1a)Qa(pa, sa) +Nb(pb, sb)→ Q′a(p′a, s′a) +N′b(p′b, s′b). (4.1b)

The set-up of the scattering formalism for baryon-baryon interactios is given in [9–11] and is given here
for completeness.
Introducing, as usual, the total and relative four-momentum for the initial and final state

P = pa + pb , P′ = p′a + p′b ,p = 1
2 (pa − pb) , p′ = 1

2 (p′a − p′b) , (4.2)

We use in the following the notation P0 ≡W and P′0 ≡W′. In the Kadyshevsky formulation one intro-
duces four-momenta spurions, making formally four-momentum conservation at the vertices. These
are described by quasi-particle states |�⟩, normalized by ⟨�′|�⟩ = �(�′ − �). Then the four-momentum
of such a state is �n�, where n� is time-like with n0 > 0 and n2 = 1. So, we consider the process in (4.1)
with non-conservation of the four-momentum, i.e. off-momentum-shell. This off-shellness is given by

pa + pb + �n = p′a + p′b + �′n (4.3)

In the following, the on-mass-shell momenta for the initial and final states are denoted respectively bypi and pf . So, pi0 = E(pi) =√p2i +M2 and pf0 = E(pf) =√p2f +M2.
In the Kadyshevsky-formulation the particles are on-mass-shell in the Green-functions. The on-

mass-shell propagator S(±)(p) of a spin-0 particle can be written as
S(±)(p) = �±(p2 −M2) = 12E(p)� (p0 ∓ E(p)) , (4.4)
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FIG. 1: M-matrix: Kadyshevsky-Integral Equation

with �±(p2 −M2) ≡ �(±p0)�(p2 −M2). The propagator G0(�) for the quasi-particles is given by [15]
G0(�) = (1∕2�) [1∕(� − i�)] . (4.5)

In the Kadyshevsky-formalism the rules for the computation of the off-shell S-matrix, denoted by R,
corresponding to the analogs of the Feynman graphs are given [15–17]. 1 We introduce the usualM-
matrix by

R�′,�(p′a , p′b;pa, pb) = �(�′ − �)�(p′a − pa)�(p′b − pb) − (2�)4i�4(�′n + p′a + p′b − pa − pb − �n) ⋅×M�′,�(p′a , p′b;pa, pb) . (4.6)

Notice that the S-matrix is given by R0,0 [15]. We also observe that
�(�′ − �)�(p′a − pa)�(p′b − pb) = �(P′ + �′n − P − �n)�(p′a − pa)�(p′b − pb) , (4.7)

showing the overall 4-momentum conservation for the R-matrix, including the momentum spurions.
The M-amplitudes satisfy the Kadyshevsky equation

M�′,�(p′a, p′b;pa, pb) = I�′,�(p′a, p′b;pa, pb) +∫ d4p′′a ∫ d4p′′b ∫ d�′′I�′�′′(p′a, p′b;p′′a , p′′b ) ⋅
×G�′′(p′′a , p′′b )M�′′,�(p′′a , p′′b ;pa, pb) ⋅ �(p′′a + p′′b + �′′n − pa − pb − �n),(4.8)

which is displayed in Fig. 1. Here the propagation of the two nucleons and of the quasi-particle is
described by

G�(pa, pb)�′,�′;�,� = −1(2�)2 �(p2a −M2a)�(p2b −M2b) ⋅ G0(�) . (4.9)

V. THREE-DIMENSIONALTWO-BODY EQUATIONS

The Kadyshevsky analog (4.8) of the Bethe-Salpeter equation we write in the form

M�′,�(p′a, p′b;pa, pb) = I�′,�(p′a , p′b;pa, pb) +∫ d4p′′a ∫ d4p′′b ∫ d�′′ ⋅
×I�′,�′′(p′a , p′b;p′′a , p′′b )G�′′(p′′a , p′′b )M�′′,�(p′′a , p′′b ;pa, pb) ⋅×�(p′′a + p′′b + �′′n − pa − pb − �n) . (5.1)

1 For a general field-theoretical treatment of the Kadyshevsky approach to relativistic two-body scattering, see Refs. [33, 34].
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In the CM-frame we have

P = (W,0) , p = (0,p) ;P′ = (W′, 0) , p′ = (0,p′) . (5.2)

Following [15, 17] we assume that the unit vector n�, which defines the time axis, is collinear to P =pa + pb and hence also to P′ = p′a + p′b. Then 2

n� = p�a + p�b√(pa + pb)2 =
p′�a + p′�b√(p′a + p′b)2

CM⟶ (1, 0) . (5.3)

In the CM-variables, equation (5.1), for the (+,+)-components only, reads
M�′,�(p′,W′;p,W) = I�′,�(p′,W′;p,W) +∫ dW′′∫ d4p′′∫d�′′ ⋅
×I�′,�′′(p′,W′;p′′,W′′)G�′′(p′′,W′′)M�′′(p′′,W′′;p,W) ⋅×� [W′′ −W + (�′′ − �)n0] . (5.4)

In the CM-frame, the two-nucleon propagator (4.9) becomes

G�(W′′, p′′) = −1(2�)2 � (12W′′ + p′′0 − E′′a ) � (12W′′ − p′′0 − E′′b )G0(�′′) . (5.5)

Now, the integrations overW′′, p′′0 , and �′′ can be carried through in (5.4) giving
M�′,�(p′,W′; p,W) = I�′,�(p′,W′; p,W) +∫ d3p′′(2�)3 ⋅
×I�′,�′′(p′,W′; p′′,W′′)(MaMbE′′a E′′b )

1√s′′ − (√s + �) − i�M�′′,�(p′′,W′′; p,W) , (5.6)

with the constraints

W = √s , W′ = √s′ = √s + � − �′ , W′′ = √s′′ = E′′a + E′′b . (5.7)

We notice that the left-half-off-shellM-matrix satisfies an integral equation of the type

M�′,0 = I�′,0 +∫ I�′,�′′ G�′′ M�′′,0
where the �’s are all fixed in terms of the momenta of the particles, since

�′ = √s −√s′ , �′′ = √s −√s′′ .
Defining the T-matrix etc. in terms of the left-half-off-shellM-matrix , and the quasi-potentialK in

terms of the both left and right off-shell interaction kernel I, by
T(p′,p;W) = M�′,�=0(p′,W′; p,W) , K(p′,p;W) = I�′,�=0(p′,W′; p,W) , (5.8)

we will have, instead of (5.6),

T(p′,p;W) = K(p′,p;W) +∫ d3p′′(2�)3 K(p′,p′′;W) (MaMbE′′a E′′b )
1√s′′ −√s T(p′′,p;W), (5.9)

2 Notice that with this choice for n� , the four-velocity of the system is conserved even off the energy-shell.
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which is the so-called ’quasi-potential’ equation. The quantity K playing the role of a potential is in
general a complicated function of the energy W and is called a ’quasi-potential’. Notice, that for � = 0,
one has �′ = √s −√s′, and so �′ is fixed by p = |p| and p′ = |p′|.

For equal masses, i.e. Ma =Mb = M, we have

E′′a = E′′b = E(p′′) , s = 4E2(p) = 4(p2 +M2) , s′′ = 4E2(p′′) = 4(p′′2 +M2). (5.10)

Then, (5.9) goes over into the equation

T(p′,p;W) = K(p′,p;W) + 1(2�)3 ∫ d3p′′2E(p′′) K(p′,p′′;W) M2
E(p′′) ]E(p′′) − E(p) − i�] T(p′′,p;W),(5.11)

which is the quasi-potential equation of Kadyshevsky, see [16] equation (3.33).
In Appendix A the Bethe-Goldstone-Kadyshevsky equation and the corresponding "relativistic" G-

matrix are given.

VI. LIPPMANN-SCHWINGERAND BETHE-GOLDSTONE EQUATION

The Lippmann-Schwinger amplitude is obtained from (5.11) by the transformation

T(p′,p) = N(p′) T(p′,p) N(p) , V(p′,p) = N(p′) K(p′,p) N(p), (6.1)

with N(p) = M∕(√2E(p)). Then, the non-relativistic Lippmann-Schwinger equation is obtained by
using in the Green-function and the potential the non-relativistic approximation E(p) ≈ M + p2∕2M
giving

T(p′,p) = V(p′,p) + 1(2�)3 ∫ d3p′′2E(p′′) V(p′,p′′) M(p′′2 − p2 − i�) T(p′′,p). (6.2)

For the details of the formalism of spin 1/2-1/2 scattering, using the expansion in Pauli-invariants, we
refer to the papers of the ESC-model e.g. [35, 36].

The corresponding Bethe-Goldstone equation reads

G(p′,p) = V(p′,p) +∫ d3p′′(2�)3 V(p′,p′′) ⋅×QP(p′′;pF) g(p′′;W) G(p′′,p) (6.3)

with the standard Green function and Pauli projection operator

g(p;W) = Mnp2i − p2 + i� , QP(p′′;pF) = 1 − nF(p′′). (6.4)

The corrections to the approximation E(+)2 ≈ g(p;W) are of order 1∕M2, which we neglect henceforth.
The transition from Dirac-spinors to Pauli-spinors, is given in Appendix C of Ref. [37], where we

write for the the Bethe-Goldstone equation in the 4-dimensional Pauli-spinor space

G(p′,p) = V(p′,p) +∫ d3p′′(2�)3 V(p′,p′′) ⋅×QP(p′′;pF) g(p′′;W) G(p′′,p) . (6.5)
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The G-operator in Pauli spinor-space is defined by
�(a)†�′a �(b)†�′b G(p′,p) �(a)�a �(b)�b =
ūa(p′,�′a)ūb(−p′,�′b) G̃(p′,p) ua(p,�a)ub(−p,�b).

(6.6)

and similarly for the V-operator. Like in the derivation of the OBE-potentials [38–40] we make the
off-shell and on-shell the approximation, E(p) = M + p2∕2M andW = 2√p2i +M2 = 2M + p2i ∕M
, everywhere in the interaction kernels, which, of course, is fully justified for low energies only. In
contrast to these kinds of approximations, of course the full k2-dependence of the form factors is kept
throughout the derivation of the TME. Notice that the gaussian form factors suppress the high mo-
mentum transfers strongly. This means that the contribution to the potentials from intermediate states
which are far off-energy-shell can not be very large.

Because of rotational invariance and parity conservation, the G-matrix, which is a 4 × 4-matrix in
Pauli-spinor space, can be expanded into the following set of in general 8 spinor invariants, see for
example Ref. [41]. Introducing [42]

q = 12(p′ + p) , k = p′ − p , n = p × p′, (6.7)

with, of course, n = q × k, we choose for the operators Pj in spin-space
P1 = 1, P2 = �1 ⋅ �2,P3 = (�1 ⋅ k)(�2 ⋅ k) − 13(�1 ⋅ �2)k2,P4 = i2(�1 + �2) ⋅ n, P5 = (�1 ⋅ n)(�2 ⋅ n),
P6 = i2(�1 − �2) ⋅ n,P7 = (�1 ⋅ q)(�2 ⋅ k) + (�1 ⋅ k)(�2 ⋅ q),P8 = (�1 ⋅ q)(�2 ⋅ k) − (�1 ⋅ k)(�2 ⋅ q). (6.8)

Here we follow Ref. [40], where in contrast to Ref. [39], we have chosen P3 to be a purely ‘tensor-force’
operator. The expansion in spinor-invariants reads

G(p′,p) = 8∑
j=1 G̃j(p′2,p2,p′ ⋅ p) Pj(p′,p) . (6.9)

Similarly to (6.9) we expand the potentialsV. In the case of the axial-vectormeson exchange there will
occur terms proportional to

P′5 = (�1 ⋅ q)(�2 ⋅ q) − 13(�1 ⋅ �2)q2. (6.10)

The proper treatment of such a (non-local) Pauli-invariant has been developed for the ESC16-models,
which is described in [9], Appendix B . For the treatment of the potentials with P8 we use the identity
[43]

P8 = −(1 + �1 ⋅ �2)P6. (6.11)

Under time-reversal P7 → −P7 and P8 → −P8. Therefore for elastic scattering V7 = V8 = 0. Antici-
pating the explicit results for the potentials in section IVA we notice the following: (i) For the general
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BB-reaction we will find no contribution toV7. The operators P6 and P8 give spin singlet-triplet transi-
tions. (ii) In the case of non-strangeness-exchange (∆S = 0), V6 ≠ 0 and V8=0. The latter follows from
our approximation to neglect the mass differences among the nucleons, between the Λ and Σ’s, and
among the Ξ’s. (iii) In the case of strangeness-exchange (∆S = ±1), V6, V8 ≠ 0. The contributions toV6 come from graphs with both spin- and particle-exchange, i.e. Majorana-type potentials having thePfP�P6 = −PxP6-operator. Here, PfP� reflect our convention for the two-particle wave functions, see
[38]. The contributions to V8 come from graphs with particle-exchange and spin-exchange, becauseP8 = −P�P6. Therefore, we only have to apply Pf in order to map the wave functions after such ex-
change onto our two-particle wave-functions. So, we have the PfP8 = +PxP6-operator. Here, we used
that for BB-systems the allowed physical states satisfy PfP�Px = −1.
In the SU(6) quark model [3], instead of the Pauli-spinors, one uses for the quarks the Dirac-spinors

u(0)i (pi) =
√Ei +mi2mi [ 1�i⋅piEi+mi

]⊗ �i, (6.12)

where pii denotes the three-momentum of the quarks in e.g. the CM-system.

VII. EXTENDED-SOFT-CORE QQMANDNNM INTERACTIONS

In theESC-model there are single- and pair-meson quark-quark couplings. They are the basis for the
OBE, TME andMPE potentials. The nucleon-nucleon-meson (NNM) interactions have been described
in detail in [9]. Therefore, we restrict ourselves in this section to the quark-quark-meson (QQM) inter-
actions. The meson-quark couplings are designed such as to reproduce the ESC-potentials for baryon-
baryon when folded in with the constituent quark wave functions of the SU(6) quark-model. Strictly,
for the TME and MPE potentials a modification should be made in the presence of quark matter. In
this paper such quark density corrections are omitted.

A. Meson-quark-quark Interactions

The potential of the ESC-model contains the contributions from (i) One-boson-exchanges, (ii) Un-
correlated Two-Pseudo-scalar exchange, and (iii) Meson-Pair-exchange. In this section we review the
potentials and indicate the changes with respect to earlier papers on the OBE- and ESC-models. The
spin-1 meson-exchange is an important ingredient for the baryon-baryon force. In the ESC16-model
we treat the vector-mesons and the axial-vector mesons according to the Proca- [44] and the B-field-
[45, 46] formalism respectively. For details, we refer to [9], Appendix C.

B. One-Boson-Exchange Interactions in Momentum Space

The local interaction Hamilton densities for the different couplings are [47]

a) Pseudoscalar-meson exchange (JPC = 0−+)
ℋpv(x) = fpvm�+ q̄(x)
�
5q(x))��P(x). (7.1)

This is the pseudovector coupling, and the relation with the pseudoscalar coupling is gp = 2mQ∕m�+ ,
wheremQ is the quark mass.
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b) Vector-meson exchange (JPC = 1−−)
ℋ1)v = gvq̄(x)
�q(x)��V + fv4ℳ q̄(x)���q(x)()���V − )���V)

= [(q̄(x)
�q(x)) f1,v + i
2 (q̄(x) ↔)� q(x)) f2,v] ⋅ ��V ,

(7.2)

where ��� = i[
�, 
�]∕2, and f1,v = gv+(mQ∕ℳ)fv, f2,v = −fv∕ℳ. The scalingmassℳ will be taken
to be the proton mass. The Gordon decomposition

)� [q̄(x)���q(x)] = 2m̄Qq̄(x)
�q(x) + iq̄(x)↔) �q(x)
with m̄Q = (m′Q +mQ), shows that the magnetic-coupling consists of a pure vector and scalar bilinear
quark-field part. As deduced in [1], an extra interaction is needed in order to give the correct structure
of the baryon-baryon potential. Therefore, on the quark-level we add the interaction

ℋ2)v = − □
4m2Q [[q̄(x)
�q(x)]f′1,v + (iq̄(x) ↔)� q(x))f′2,v] ⋅ ��V ,

where f′1,v = (4∕9)f1,v, f′2,v = (4∕9)f2,v. Then, the total vector-exchange interaction is
ℋv = ḡvq̄(x)
�q(x)��V + f̄v4ℳ q̄(x)���q(x)()���V − )���V),
ḡv = gv ⎛⎜⎝1 −

g′vgv □
4m2Q

⎞⎟⎠ , f̄v = fv ⎛⎜⎝1 −
f′vfv □
4m2Q

⎞⎟⎠ .
(7.3)

An attractive alternative to the inclusion of the (g′v, f′v)-couplings would be to have a zero in the QQV
form factors. For g′v∕gv = f′v∕fv = 4∕9 this zero is at k2 =M2N , i.e. a short range effect.
c) Axial-vector-meson exchange ( JPC = 1++, 1st kind):

ℋ(1)a = ga[q̄(x)
�
5q(x)]��A + ifaℳ [q̄(x)
5q(x)] )���A. (7.4)

We impose axial-current conservation by the relation fa = (m2A1∕(2mQℳ)−1 ga [48]. The details of
the treatment of the axial-vector mesons are given in [9], Appendix B. It was found in [1] that the cor-
rect reproduction of the baryon-baryon spin-orbit potential obtained by a folding of the axial-exchange
between quarks requires the additional interaction

ℋ(2)a = −i g′aℳ2
{"����[)�q̄(x)
�)�q(x)]} ⋅ ��A (7.5)

with g′a = ga.
d) Axial-vector-meson exchange ( JPC = 1+−, 2nd kind):

ℋb = ifbmB [q̄(x)���
5q(x) )���B . (7.6)
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Like for the axial-vector mesons of the 1st-kind we include an SU(3)-nonet with membersb1(1235), ℎ1(1170), ℎ1(1380). In the quark-model they are QQ̄(1P1)-states.
e) Scalar-meson exchange (JPC = 0++):

ℋs = gs ⎧⎨⎩
gs − g′sgs □

4m2Q
⎫
⎬⎭
[q̄(x)q(x)] ⋅ �S, (7.7)

with g′s∕gs = −8∕9. Again, the requirement from the folding of meson-exchange between quarks into
the baryon gives g′s ≈ −gs. It is clear that inclusion of the g′s does not introduce a zero in the scalar-
quark-quark coupling. The additional contribution from the g′s coupling is taken onto account easily. In
the ESC-models we include a zero in the form factor, which we also keep in the quark-quark potential.
f) Pomeron-exchange (JPC = 0++): The vertices for this ‘diffractive’-exchange have the same Lorentz
structure as those for scalar-meson-exchange.

g) Odderon-exchange (JPC = 1−−):
ℋO = gO[ ̄
� ]��O + fO4ℳ [ ̄��� ]()���O − )���O). (7.8)

Since the gluons are flavorless, Odderon-exchange is treated as an SU(3)-singlet. Furthermore, since
the Odderon represents a Regge-trajectory with an intercept equal to that of the Pomeron, and is
supposed not to contribute for small k2, we include a factor k2∕ℳ2 in the coupling.

Including form factors f(x′ − x) , the interaction hamiltonian densities are modified to
HX(x) =∫d3x′ f(x′ − x)ℋX(x′), (7.9)

for X = P, V, A, and S (P = pseudo-scalar, V = vector, A = axial-vector, and S = scalar). The
potentials inmomentum space are the same as for point interactions, except that the coupling constants
are multiplied by the Fourier transform of the form factors.

In the derivation of the Vi we employ the same approximations as in [39, 40], i.e.
1. We expand in 1∕M: E(p) = [k2∕4 + q2 +M2] 12

≈ M + k2∕8M + q2∕2M and keep only terms up to first order in k2∕M and q2∕M. This except
for the form factors where the full k2-dependence is kept throughout the calculations. Notice
that the gaussian form factors suppress the high k2-contributions strongly.

2. In the meson propagators (−(p1 − p3)2 +m2) ≈ (k2 +m2) .
3. When two different baryons are involved at a BBM-vertex their average mass is used in the po-

tentials and the non-zero component of the momentum transfer is accounted for by using an
effective mass in the meson propagator (for details see [40]).

Due to the approximationswe get only a linear dependence onq2 forV1. In the following, separating
the local and the non-local parts, we write

Vi(k2,q2) = Via(k2) + Vib(k2)(q2 + 1
4k2), (7.10)

where in principle i = 1, 8.
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The OBE-potentials are now obtained in the standard way (see e.g. [39, 40]) by evaluating the BB-
interaction in Born-approximation. We write the potentials Vi of Eqs. (7.10) in the form

Vi(k 2,q 2) =∑
X Ω(X)i (k 2) ⋅ ∆(X)(k2,m2,Λ2). (7.11)

Furthermore for X = P,V
∆(X)(k2,m2,Λ2) = e−k2∕Λ2∕ (k2 +m2) , (7.12)

and for X = S,A a zero in the form factor

∆(S)(k2, m2,Λ2) = (1 − k2∕U2) e−k2∕Λ2∕ (k2 +m2) , (7.13)

and for X = D,O
∆(D)(k2, m2,Λ2) = 1ℳ2 e−k2∕(4m2P,O). (7.14)

In the latter expressionℳ is a universal scaling mass, which is again taken to be the protonmass. The
mass parameter mP controls the k2-dependence of the Pomeron-, f-, f′-, A2-, and K⋆⋆-potentials.
Similarly,mO controls the k2-dependence of the Odderon.
In the following we give the OBE-potentials in momentum-space for the hyperon-nucleon systems. From
these those for NN and YY can be deduced easily. We assign the particles 1 and 3 to be hyperons, and parti-
cles 2 and4 to benucleons. Mass differences among the hyperons andamong thenucleonswill be neglected.

C. TheMeson-Pair Interactions

For the phenomenological SU(2) meson-pair interactions the Hamiltonians, for meson-pairs with
quantum numbers (J,P,C), for the non-strange quarks i.e. below q(x) ≡ Q1(x), are

JPC = 0++ ∶ ℋS = q̄(x)q(x) [g(��)0� ⋅� + g(��)�2] ∕m�, (7.15a)ℋE = q̄(x)�q(x) ⋅ � [g(��)� + g(��′)�′] ∕m�, (7.15b)ℋS2 = q̄(x)q(x) ℎ(��)0)�� ⋅)��∕m3�, (7.15c)JPC = 1−− ∶ ℋV = g(��)1 q̄(x)
��q(x) ⋅ (�×)��)∕m2�
−f(��)12ℳ q̄(x)����q(x))� ⋅ (�×)��)∕m2�, (7.15d)

JPC = 1++ ∶ ℋA = g(��)1 q̄(x)
5
��q(x) ⋅ (� × ��)∕m�, (7.15e)ℋP = g(��)q̄(x)
5
��q(x) ⋅ (�)�� − �)��)∕m2�+ g(�P)q̄(x)
5
��q(x) ⋅ (�)�P − P)��)∕m2�, (7.15f)JPC = 1+− ∶ ℋH = −ig(��)0 q̄(x)
5���q(x))�(� ⋅��)∕m2�, (7.15g)ℋB = −ig(�!)q̄(x)
5����q(x) ⋅ )�(� !�)∕m2� . (7.15h)

For the SU(3) generalization see Ref. [36] section III.
In Eq. (7.15) also the Pomeron contribution is listed, but in recent ESC-models g(�P) = 0. The

same is true for theℋS2 interaction, which we will discuss in connection with the FM three-body force
[49, 50].
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As for the scaling of the pair-coupling parameters, the �+-mass was choosen. For the operators )��(x)
this follows the non-linear chiral models. The other scaling m�-factors may be could be better replaced
by M, the nucleon mass. This would presumably represent better the scale of the physics involved. For
example pair-couplings fromNN̄-pairs (’negative-energy states’) would be parameterized more naturally
this way. However, in our works on the ESC-model we sofar always used the m�-mass as a scaling
parameter, and therefore we will do this also in this paper.

VIII. CHANNELS, POTENTIALS, AND SU(3) SYMMETRY

A. Channels and Potentials

In this paper we consider the quark-quark and quark-nucleon reactions with strangeness S=0:

Q(sa, ia) + Q(sb, ib) → Q(s′a , i′a) + Q(s′b, i′b), (8.1a)Q(sa, ia) +N(sb, ib) → Q(s′a , i′a) +N(s′b , i′b), (8.1b)

where Q = U,D andN = P,N are iso-doublets. The 3-components of the spins and isospins are ±1∕2.
Like in Ref.’s [40] we will also refer to a and a′ as particles 1 and 3, and to b and b′ as particles 2 and 4.
For the kinematics and the definition of the amplitudes, we refer to papers [35, 36] of the series of papers
on the ESC04 model. Here we note that both the BB- and QQ-channels are of the same type, nanely
spin-1/2-spin 1/2 scattering. Similar material can be found in [40]. Also, in paper I the derivation of
the Lippmann-Schwinger equation in the context of the relativistic two-body equation is described.

For the quark-quark and quark-nucleon there are three channels with different charges for the
baryon-number B:

B = 2∕3 ∶ ⎧
⎨⎩
q = +4∕3 ∶ UU → UU,q = +1∕3 ∶ UD → UD,q = −2∕3 ∶ DD → DD, (8.2a)

B = 4∕3 ∶
⎧⎪⎨⎪⎩

q = +5∕3 ∶ UP → UP,q = +2∕3 ∶ UN → UN,q = +2∕3 ∶ DP → DP,q = −1∕3 ∶ DN → DN,
(8.2b)

(8.2c)

Note that since the spin and isospin of these quarks and the nucleons are identical the spin and isospin
factors of the potentials are completely analogous to that for the nucleon-nucleon potentials. Therefore, we
refer for these factors to the NN-papers, e.g. [35] etc..
Like in [35, 40], the potentials are calculated on the isospin basis. there are only two isospin channels:

(i) I = 1 ∶ (UU, (UD+DU)∕√2, DD), and (ii) I = 0 ∶ (UD−DU)∕√2. Similarly for theQN-channels.
In this work we give the QQ- and the QN-potentials for the Lippmann-Schwinger equation in mo-

mentum space, and the Schrödinger equation in configuration space.
The momentum space and configuration space potentials for the ESC models have been described

in papers [35] and [9] for baryon-baryon in general. Also in the ESC-model, the potentials are of such a
form that they are exactly equivalent in bothmomentum space and configuration space. The treatment
of themass differences among the quarks are handled exactly similar as is done in [40]. Also, exchange
potentials related to strange meson exchange K,K∗ etc. , can be found in these references.
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The quark mass differences in the intermediate states for TME- and MPE- potentials will be ne-
glected for QQ-scattering. This, although possible in principle, becomes rather laborious and is not
expected to change the characteristics of the quark-quark potentials much.

B. QQM-couplings in SU(3), Matrix-representation

The Q = (U,D, S)-quarks are in the fundamental {3}-irrep, and in matrix notation represented
by a collumn. In previous work of the Nijmegen group, e.g. [40], the treatment of SU(3) has been
given in detail for the BBM interaction Lagrangians and the coupling coefficients of the OBE-graphs.
However, for the ESC-models we also need the coupling coefficients for the TME- and theMPE-graphs.
Since there are many more TME- and MPE-graphs than OBE-graphs, an computerized computation
is desirable. As in the baryon-baryon papers, here the so-called ’cartesian-octet’-representation for the
mesons is quite useful. Therefore, we give an exposition of this representation, its connection with the
matrix representation used in our previous work, and the formulation of the coupling coefficients used
in the automatic computation.

The various meson nonets (we take the pseudoscalar mesons with JP = 0+ as an example), see e.g.
[51, 52], are represented by

P = P{1} + P{8}, (8.3)

where the singlet matrix P{1} has elements �0∕√3 on the diagonal, and the octet matrix P{8} is given by

P{8} =
⎛⎜⎜⎜⎜⎜⎝

�0√2 + �8√6 �+ K+

�− − �0√2 + �8√6 K0

K− K0 −2�8√6

⎞⎟⎟⎟⎟⎟⎠
. (8.4)

The SU(3)-invariant BBP-interaction Lagrangian can be written as [51]
ℋI = g8 8∑

p=1
[Q̄a (�p)ab Qb]�8,p + g1 [Q̄Q] �9. (8.5)

where g8 and g1 are the singlet and octet couplings. We write the octet coupling in the form of the
meson matrix M:

ℋI(8) = g8√2 [Q̄M(8)Qb] , M(8)ab =
8∑

p=1
(�p)ab �8,p. (8.6)

The convention used for the isospin doublets is

n = ( ud ) , K = ( K+K0 ) , Kc = ( K0−K− ) . (8.7)
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Working out (8.5) on the isospin basis we have

ℋI(8) = g8√2 (ū, d̄, s̄)
⎛⎜⎜⎜⎝

�0√2 + �8√6 �+ K+
�− �0√2 + �8√6 K0
K− K̄0 −2�8√6

⎞⎟⎟⎟⎠
⎛⎜⎝
uds
⎞⎟⎠

= g8 [n̄(� ⋅ �)n +√2 ((n̄ ⋅ K)s + s̄(K̄ ⋅ n)) + 1√3(n̄ n)�8 − 2√3(s̄s)�8]= gnn� n̄(� ⋅ �)n + gsnK ((n̄ ⋅ K)s + s̄(K̄ ⋅ n)) + gnn�(n̄n)�8 + gss�(s̄s) �8. (8.8)

Here, we introduced the isospin-basis couplings

gnn� = g8 , gsnk = √2g8 , gnn� = 1√3g8 , gss� = − 2√3g8. (8.9)

These couplings are similar to the OBE-couplings in baryon-baryon, and convenient for the transcrip-
tion of the OBE-potentials from baryon-baryon to quark-quark.
The precise connection with the couplings of ESC models is given in Appendix B, where the (g8, g1)
are defined in the framework of the quark-pair-creation (QPC) model. Furthermore, the connection
between QQM-couplings in the constituent quark-model (CQM) and the BBM-couplings gives a direct
determination of the QQM-couplings from the NN and YN data fitting.
For the numerical evaluation of the TME and MPE potentials we use the cartesian-octet presentation,
see below.

C. Cartesian-octet Representation

For the numerical evaluation of the TME andMPE diagrams the cartesian-octet presentation is very
convenient. The particle states created by the field operators are given inTableVIII C [51]. Here also the
annihilation operators corresponding to the pseudo-scalar SU(3) octet-representation {8} are given in
terms of the cartesian octet fields. For the pseudo-scalar mesons these are denoted by �i(i = 1, 2,… , 8)
[51, 52]. Similar expressions hold for the vector, axial-vector, and scalar mesons. The connection be-
tween the matrix-representation (8.5) and the cartesian-octet representation is

Pab = 1√2
8∑
i=1(�i)ab�i , �i =

1√2
3∑

a,b=1(�i)abPab (8.10)

where �i, i = 1, 8 are the Gell-Mann matrices [51, 52], and where the indices (a, b = 1, 2, 3). Similar
expressions hold for the vector-, scalar-, and axial-mesons. The Gell-Mann matrices satisfy the the
following commutation and anti-commutation relations

[�i, �j] = 2ifijk �k, {�i, �j} = 43�ij + 2dijk �k . (8.11)

where fijk are the totally anti-symmetric SU(3)-structure constants, and dijk are the totally symmetric
constants.
The quark-quark matrix elements can now be computed using the cartesian octet states

⟨Q3, Q4|M|Q1, Q2⟩ = C∗3jC∗4n M(j, n; i, m) C1iC2m , (8.12)
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|�+⟩ = −�+†|0⟩ �+ =
1√2 (�1 − i�2)

|�−⟩ = �−†|0⟩ �− =
1√2 (�1 + i�2)

|�0⟩ = �0†|0⟩ �0 = �3
|K+⟩ = K+†|0⟩ K+ =

1√2 (�4 − i�5)

|K0⟩ = K0†|0⟩ K0 =
1√2 (�6 − i�7)

|K−⟩ = K−†|0⟩ K− =
1√2 (�4 + i�5)

|K̄0⟩ = K̄0†|0⟩ K̄0 =
1√2 (�6 + i�7)

|�8⟩ = �†8|0⟩ � = �8

TABLE I: Octet RepresentationMesons States and Fields.

where C-coefficients relate the particle states to the cartesian states, see Table VIII C, andM(j, n; i, m)
depends on the structure of the graph. Below, we work out theM-operator for OBE-, TME-, and MPE-
graphs in the cartesian-octet representation. Then, the physical two-baryon matrix elements in (8.12)
can be obtained easily.

D. Computations for OBE-, TME-graphs SU(3)-factors

∙ One-Boson-Exchange: The SU(3)matrix element for the OBE-graph Fig. 2 is given by
Mobe(j, n; i, m) = ′∑

p H(a)1 (j, i;p) H(a)2 (n,m;p) , (8.13)

where a = P,V,A, S and
Ha(j, i;p) = g(a)8 �(p)ji + g(a)1√6 �ji�p9. (8.14)

The summation over p determines whichmesons contribute to (8.14), and the prime indicates that one
may restrict this summation in order to pick out a particular meson. This is in general necessary be-
cause within an SU(3) nonet themesons have different masses, andwe need their couplings separately
for a proper calculation of the potentials.

To illustrate this method of computation we consider �-exchange in the quark charge-exchange
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i

m

j

n

p

FIG. 2: Octet representation indices OBE-graphs. The solid lines denote quarks with labels i, m, j, n. The dashed
lines with label p refers to the bosons: pseudo-scalar, vector, axial-vector, or scalar mesons.

reactionU + D → D +U. We have for the isospin matrix element
⟨d, u|M�|u, d⟩ = 8∑

i,j,m,n=1
3∑

p=1⟨d|qj⟩⟨u|qn⟩⟨qjqn|M�|qiqm⟩ ⋅
×⟨qi|u⟩⟨qm|d⟩ = 8∑

i,j,m,n=1
3∑

p=1�2j�1n�i1�m2 ⋅
× {g8�(p)ji

} {g8�(p)nm
} = 2g28. (8.15)

Similarly, one gets ⟨d, u|M�|u, d⟩ = −g2a, which combined with (8.15) gives for the I=0 UD-state−3g2a,
as expected.

∙ Two-Meson-Exchange: The SU(3) matrix elements for the parallel (//) and crossed (X) TME-
graphs Fig. 3 and Fig. 4 are given by

M(∕∕)tme (j, n; i, m) = ′∑
p,q,r,sH2(j, r; q) H1(r, i;p)

× H2(n, s; q) H1(s, m;p) (8.16)

M(X)tme(j, n; i, m) = ′∑
p,q,r,sH2(j, r; q) H1(r, i;p)

× H1(n, s; q) H2(s, m;p) (8.17)

Again, like in the OBE-case, the numerical values of the SU(3) matrix elements for TME can be
computed easily making a computer program.
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j

n

p q
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s

FIG. 3: Octet representation indices TME-parallel-
graphs. The solid lines denote quarks with labels
i, m, j, n, r, s. The dashed lines with labels p, q
refers to the pseudo-scalar mesons.
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j

n

p q
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s

FIG. 4: Octet representation indices TME-crossed-
graphs. The solid lines denote quarks with labelsi, m, j, n, r, s. The dashed lines with labels p, q
refers to the pseudo-scalar mesons.
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IX. MPE INTERACTIONSAND SU(3)
A. Pair Couplings and SU(3)-symmetry

The SU(3) octet and singlet mesons, denoted by the subscript 8 respectively 1, are in terms of the
physical ones defined as follows:

(i) Pseudo-scalar-mesons:

�1 = cos �PV�′ − sin �PV��8 = sin �PV�′ + cos �PV�
Here, �′ and � are the physical pseudo-scalar mesons �(957) respectively �(548).

(ii) Vector-mesons:

�1 = cos �V! − sin �V��8 = sin �V! + cos �V�
Here, � and ! are the physical vector mesons �(1019) respectively !(783).

Similarly for the scalar and axial-vector mesons. The meson mixing angles are given in Ref. [10] Table
IV. The SU(3)-invariant pair-interactionHamiltonians is given in Ref. [36] section III.

B. ComputationsMPE-graphs SU(3)-factors

The SU(3)matrix elements for the graphswithmeson-pair vertices, the so-calledMPE-graphsFig. 5
and Fig. 6 are, using the cartesian-octet representation in section VIII C, given by

M(1−pair)(j, n; i, m) = ′∑
p,q,r,sHpair(j, i, s) O(q, p, s)

× H2(m, r, q) H1(r, m, p) (9.1)

M(2−pair)(j, n; i, m) = ′∑
p,q,r,s=1Hpair(j, i, s) O(q, p, s)

× O(q, p, r) Hpair(n,m, p) (9.2)

Again, like in the OBE-case, the numerical values of the SU(3) matrix elements for MPE can be com-
puted straightforwardly making a computer program.
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p q

s

FIG. 5: Octet representation indicesMPEone-pair-
graphs. The solid lines denote quarks with labelsi, m, j, n, s. The dashed lines with labels p, q refers
to the pseudo-scalar etc. mesons.

i

m

j

n

p q

FIG. 6: Octet representation indicesMPE two-pair-
graphs. The solid lines denote quarks with labelsi, m, j, n. The dashed lines with labels p, q refers
to the pseudo-scalar etc. mesons.
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C. Form Factors

Also in this work, like in the NSC97-models [53], the form factors depend on the SU(3) assignment
of the mesons, In principle, we introduce form factor masses Λ8 and Λ1 for the {8} and {1} members
of each meson nonet, respectively. In the application to YN and YY, we allow for SU(3)-breaking, by
using different cut-offs for the strange mesons K, K∗, and �. Moreover, for the I = 0-mesons we assign
the cut-offs as if there were nomeson-mixing. For example we assignΛ1 for �′, !, �, andΛ8 for �, �, S∗,
etc.

X. RELATIONQQM- AND BBM-COUPLINGS

In [1] the relation between the QQM- and BBM-couplings is determined by requiring that the
1/M-expansion of the baryon-baryon potentials is reproduced by folding, using the SU(6) quark-model
[3]. The relations are

(a) Pseudoscalar mesons:

fpQQ� = fPBB�, (10.1)

and similar relations for the �, K, �′. This follows from gpQQ� = gpBB�∕3 andmq =MB∕3.
(b) Vector mesons:

gvQQ� = 13gVBB� , fvQQ� = 13fVBB�, (10.2)

and similar relations for �,K∗, !.
(c) Scalar mesons:

gsQQa0 = 13gSBBa0 , (10.3)

and similar relations for f0(993), �, � = f0(620).
(d) Axial-vector mesons (I):

gaQQA1 = 13gABBA1 , faQQA1 = 13fABBA1 , (10.4)

and similar relations for D1(1285), KA(1336), E1(1420).
(e) Axial-vector mesons (II):

fbQQB1 = 13fBBBB1 , (10.5)

and similar relations for D1(1285), KB(1300), and E1(1420).
(f) Diffractive exchanges: Under the usual assumption of the quark-additivity of the pomeron couplings
[4] one has gQQP = gNNP∕3, and similarly for the odderon couplings.
XI. GLUON AND CONFINING POTENTIALS

The one gluon-exchange (OGE) has the form

VOGE = A (�1 ⋅ �2) VV(mG , r,ΛG), (11.1)
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S I C ⟨�1 ⋅ �2⟩ ⟨�1 ⋅ �2⟩
0 0 {3∗} -8/3 -3
0 1 {6} +4/3 -3
1 0 {6} +4/3 +1
1 1 {3∗} -8/3 +1

TABLE II: Color and Spin matrix elements, F = �∕2.
where VV is the OBE vector exchange potential. Here,mG = 480MeV, which is the mass of the gluon
propagator in the "liquid instantonmodel" [54]. In [55, 56] the confining potential is taken to be a scalar
color-octet exchange potential. In [57] the confining potential is color-singlet scalar exchange of the
form

Vconf = C0 + C1 (�1 ⋅ �2) r2, (11.2)

where C0 is adjusted to give the 939 MeV for the nucleon mass, and depends on the other parts of the
total Q-Q potential. For the GBE-model [18, 58] in [57] table III the fitted GBE parameters are C0=
-416 MeV, C1= 2.33.
Since the GBE-model approach is also that of Manohar-Georgi, we choose in this work the confining
potential in (11.2).

XII. SU(3) NJL-FORM INSTANTON POTENTIALS

For SU(2) with  = (u, d) and �0 = 1, the ’t Hooft quark-quark interaction reads
ℒud = GI [( ̄�0 )2 + ( ̄i
5� )2 − ( ̄� )2 − ( ̄i
5�0 )2] , (12.1)

The SU(3) generalization of the ’t Hooft interaction for the (u,d,s) quarks in the NJL-form reads

ℒuds = GI [( ̄�0 )2 + ( ̄i
5� )2 − ( ̄� )2 − ( ̄i
5�0 )2] , (12.2)

with GI = �ud∕4, and where  = (u, d, s) i.e. the flavor {3}-irrep spinor field, �0 = √4∕3 1, and�a, a = 1, 8 are the Gell-Mann matrices.
1. Diagonal Potentials: Working out the diagonal terms we have

ℒuds ⇒ GI(�0,1�0,2 − �1 ⋅ �2) [(q̄iqi)2 + (q̄i
5qi)2] ,
with i=u,d,s. In the CM-system assigning the momenta (p,−p) in the initial state and (p′,−p′) in the
final state one has

(q̄q)2 → 1 − 14M2
[2p′ ⋅ p + i(�1 + �2) ⋅ p′ × p],

(q̄
5q)2 → − 14M2 �1 ⋅ (p′ − p) �2 ⋅ (p′ − p)
Using the variables k = p′ − p and q = (p′ + p)∕2 the potential becomes
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Ṽ(p′,p) = −2GI (�0,1�0,2 − �1 ⋅ �2)[1 + (1 − 13�1 ⋅ �2) k24M2 − q2 + k2∕42M2
− 14M2 (�1 ⋅ k�2 ⋅ k − 13�1 ⋅ �2 k2) + i4M2 (�1 + �2) ⋅ n+ 116M4 (�1 ⋅ n)(�2 ⋅ n)],

(12.3)

where n = q × k, and the quadratic-spin-orbit term is added for completenes.
Adding a gaussian cut-off FI(k2) = exp[−k2∕(Λ2], with mI = Λ∕2, the local instanton potentials
become, apart from the flavor factor,

VI = − 2gI�√� m
3IΛ2 [1 + m2I2M2

(3 − 2m2I r2) (1 − 13�1 ⋅ �2) + m2I3M2 (mIr)2 S12
+m2IM2 L ⋅ S + m4IM4 Q12] exp[−m2I r2]. (12.4)

Taking Λ = 1 GeV/c2, GI = �ud∕4 the coupling gI = GIΛ2 = 2.0 − 2.5.
For u,d quarks the flavor factor becomes, see also (2.1), (1− �1 ⋅ �2), which gives 0 and 4 for I=1 and

I=0 respectively. FormI = 200MeV andM = mQ =MN∕3 ≈ 315MeV, the factor (1+3m2I ∕2M2) ≈ 1.6.
This gives VI(1S0, I = 1) = 0 and VI(3S1, I = 0) < 0 for r=0.
In analyzing the U(1)-problem, Weinberg [19] chooses �0 = √2∕3 1 giving for u,d quarks (1∕3−�1 ⋅�2)
which is -2/3 and 10/3 for I=1 and I=0 respectively. This gives repulsion and attraction for respectively1S0(I = 1) and 3S1(I = 0).
The non-local term in (12.3) has the same sign as for scalar and vector exchange, and opposite to
Pomeron exchange. Therefore, compare [39] formula (34), one has

Vn.l.(r) = −GI {(2 exp[−14Λ2r2] + exp[−14Λ2r2](2}
≡ −[(2 �(r)2Mred + �(r)2Mred ], (12.5)

which, withMred = M∕2, gives
�(r) = +(GIM2)( Λ2√�M)3 exp [−14Λ2r2] . (12.6)

Now, (Λ∕2√�M) ≈ 0.85 and 0.56 for the u,d and s quark respectively. For gI = GIM2 = 2.0 − 2.5 the
non-local function �(r) is not small.
The flavor factor for the non-strange quarks becomes (1 − �1 ⋅ �2), which is due to the choice for �0.
2.1. Non-diagonal Potentials: There are no non-diagonal terms!? For example s → u:

( ̄� )2 → ( ̄�4 )2 + ( ̄�5 )2 → (ūs)2 − (ūs)2 = 0, etc.
XIII. ESC16-MODEL: FITTINGNN ⊕YN ⊕YY-DATA

In the simultaneous �2-fit of theNN-, YN-, and YY-data a single set of parameters was used, which
means the same parameters for all BB-channels. The input NN-data are the same as in Ref. [35], and
we refer the reader to this paper for a description of the employed phase shift analysis [59, 60].
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It appeared that the OBE-couplings could be constrained successfully by the ’naive’ predictions of
the QPC-model [3, 5]. Although these predictions, see section V, are ’bare’ ones, the policy was to keep
themanyOBE-couplings in the neighborhood of the QPC-values. Also, it appeared thatwe could either
fix the F∕(F+D)-ratios to those as suggested by the QPC-model, or apply the same restraining strategy
as for the OBE-couplings.

A. Fitted BB-parameters

The treatment of the broad mesons � and � was similar to that in the OBE-models [39, 40]. For the�-meson the same parameters are used as in these references. However, for the � = f0(620) assumingm� = 620MeV and Γ� = 464MeV the Bryan-Gersten parameters [61] are used. For the chosen mass
and width they are: m1 = 496.39796 MeV, m2 = 1365.59411 MeV, and �1 = 0.21781, �2 = 0.78219.
Other mesonmasses are given in Table XIII B. The sensitivity for the values of the cut-offmasses of the� and �′ is very weak. Therefore we have set the {1}-cut-off imass for the pseudoscalar nonet equal to
that for the {8}. Likewise, for the two nonets of the axial-vector mesons, see table XIII B.

Summarizing the parameters for baryon-baryon (BB) are:
(i) NN Meson-couplings: fNN�, fNN�′ , gNN�, gNN!, fNN�, fNN!, gNNa0 , gNN�, gNNa1 , fNNa1 , gNNf′1 ,fNNf′1 , fNNb1 , fNNℎ′1
(ii) F∕(F + D)-ratios: �mV , �A
(iii) NN Pair couplings: gNN(��)1 , fNN(��)1, gNN(��)1 , gNN�!, gNN��, gNN��
(iv) Diffractive couplings and masslike parameters gNNP, gNNO, fNNO,mP,mO
(v) Cut-off masses: ΛP8 = ΛP1 , ΛV8 , ΛV1 , ΛS8 , ΛS1 , and ΛA8 = ΛA1 .

The pair coupling gNN(��)0 was kept fixed at zero. Note that in the interaction Hamiltonians of the
pair-couplings (7.15) the partial derivatives are scaled bym� , and there is a scaling massMN .

The ESC models, are fully consistent with SU(3)-symmetry using a straightforward extension of
the NN-model to YN and YY. This is the case for the OBE- and TPS-potentials, as well as for the Pair-
potentials. All F∕(F + D)-ratio’s are taken as fixed with heavy-meson saturation in mind.

B. Coupling Constants, F∕(F + D) Ratios, and Mixing Angles

In Table XIII B we give the ESC16 meson masses, and the fitted couplings and cut-off parameters
[9, 10]. Note that the axial-vector couplings for the B-mesons are scaled withmB1 . The mixing for the
pseudo-scalar, vector, and scalar mesons, as well as the handling of the diffractive potentials, has been
described elsewhere, see e.g. Refs. [40, 53]. Themixing scheme of the axial-vectormesons is completely
similar as for the vector etc. mesons, except for themixing angle. As mentioned above, we searched for
solutionswhere all OBE-couplings are compatiblewith theQPC-predictions. This time theQPC-model
contains a mixture of the 3P0 and 3S1 mechanism, whereas in Ref. [35] only the 3P0-mechanism was
considered. For the pair-couplings all F∕(F+D)-ratios were fixed to the predictions of the QPC-model.

One notices that all the BBM �’s have values rather close to that which are expected from the QPC-
model. In theESC16 solution�A ≈ 0.38, which is close to�A ∼ 0.4. As in previousworks, e.g. Ref. [39],�eV = 1 is kept fixed. Above, we remarked that the axial-nonet parameters may be sensitive to whether
or not the heavy pseudoscalar nonet with the �(1300) are included.

In Table XIII B we show the OBE-coupling constants and the gaussian cut-off’s Λ. The used � =∶F∕(F + D)-ratio’s for the OBE-couplings are: pseudo-scalar mesons �pv = 0.365, vector mesons �eV =1.0, �mV = 0.472, and scalar-mesons �S = 1.00, which is calculated using the physical S∗ =∶ f0(993)
coupling etc..

In Table XIII B we list the fitted Pair-couplings for theMPE-potentials. We recall that only One-pair
graphs are included, in order to avoid double counting, see Ref. [35]. The F∕(F+D)-ratios are all fixed,
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meson mass g∕√4� f∕√4� Λ� 138.04 0.2684 1030.96� 547.45 0.1368∗ ,,�′ 957.75 0.3181 ,,� 768.10 0.5793 3.7791 680.79� 1019.41 –1.2384∗ 2.8878∗ ,,! 781.95 3.1149 –0.5710 734.21a1 1270.00 –0.8172 –1.6521 1034.13f1 1420.00 0.5147 4.4754 ,,f′1 1285.00 –0.7596 –4.4179 ,,b1 1235.00 –2.2598 1030.96ℎ1 1380.00 –0.0830∗ ,,ℎ′1 1170.00 –1.2386 ,,a0 962.00 0.5393 830.42f0 993.00 –1.5766∗ ,," 620.00 2.9773 1220.28
Pomeron 212.06 2.7191
Odderon 268.81 4.1637 –3.8859

TABLE III: Meson couplings and parameters employed in the ESC16-potentials. Coupling constants are at k2 =
0. An asterisk denotes that the coupling constant is constrained via SU(3). The masses andΛ’s are given inMeV.

JPC SU(3)-irrep (��) g∕4� F∕(F + D)
0++ {1} g(��)0 — —
0++ ,, g(��) — —
0++ {8}s g(��) -0.6894 1.000
1−− {8}a g(��)1 0.2519 1.000f(��)1 –1.7762 0.400
1++ ,, g(��)1 5.7017 0.400
1++ ,, g(��) –0.3899 0.400
1++ ,, g(�P) — —
1+− {8}s g(�!) –0.3287 0.365

TABLE IV: Pair-meson coupling constants employed in the ESC16 MPE-potentials. Coupling constants are atk2 = 0. The F/(F+D)-ratio are QPC-predictions, except that �(�!) = �P, which is very close to QPC.
assuming heavy-boson domination of the pair-vertices. The ratios are taken from the QPC-model forQQ̄-systems with the same quantum numbers as the dominating boson. For example, the �-parameter
for the axial (��)1-pair could fixed at the quark-model prediction 0.40, see Table XIII B. The BB-Pair
couplings are calculated, assuming unbroken SU(3)-symmetry, from the NN-Pair coupling and theF∕(F+D)-ratio using SU(3). So, in addition to the 14 parameters used in Ref. [62] we now have 6 pair-
coupling fit parameters. In Table XIII B the fitted pair-couplings are given. The (��)1-coupling is large
as expected from A1-saturation, see Ref. [62]. In Table XIII B we show the MPE-coupling constants.
The used � =∶ F∕(F + D)-ratio’s for the MPE-couplings are: (��) pairs �({8s}) = 1.0, (��)1 pairs�eV({8}a) = 1.0, �mV ({8}a) = 0.400, and the (��)1 pairs �A({8}a) = 0.400. The (�!) pairs �({8s}) has been
set equal to �pv = 0.365.
Assuming heavy-meson dominance of the meson-pair couplings, similarly to the QQM-couplings all QQ
meson-pair couplings get a factor 1/3, i.e. gQQm1m2 = GBBm1m2∕3.
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In Tables XIII B, XIII B andXIII B theNN,QN, andQQphases are shown respectively. This for the complete
ESC16 model with NN parameters parbbsc.new17def2. The scale parameters for the QQM-couplings
and quark mass are both 1/3. The gluon massmglu = 420MeV/c2, the QQM form factor cut-off is set toΛQQM = 986.6MeV/c2, and furthermore the confinement potential is left out.
Note: the extra couplings for the QQM-vertex w.r.t. the NNM-couplings are set to zero.

Tlab 0.38 1 5 10 25 50 100 150 215 320

1S0(np) 54.57 62.02 63.47 59.72 50.48 39.82 25.45 15.11 4.65 –8.341S0 14.62 32.62 54.75 55.16 48.67 38.97 25.06 14.85 4.44 –8.533S1 159.39 147.77 118.25 102.72 80.81 63.03 43.62 31.27 19.58 5.83�1 0.03 0.11 0.68 1.17 1.82 2.15 2.50 2.94 3.64 4.933P0 0.02 0.14 1.61 3.81 8.81 11.80 9.68 4.83 –1.86 –11.733P1 –0.01 –0.08 –0.89 –2.04 –4.89 –8.29 –13.28 –17.35 –21.87 –27.901P1 –0.05 –0.19 –1.50 –3.07 –6.39 –9.81 –14.65 –18.75 –23.38 –29.443P2 0.00 0.02 0.22 0.67 2.51 5.80 10.90 14.04 16.24 17.07�2 –0.00 –0.00 –0.05 –0.20 –0.81 –1.71 –2.71 –2.99 –2.84 –2.183D1 –0.00 –0.01 –0.18 –0.68 –2.83 –6.51 –12.40 –16.69 –20.72 –25.043D2 0.00 0.01 0.22 0.85 3.70 8.93 17.22 22.15 24.99 25.051D2 0.00 0.00 0.04 0.17 0.69 1.70 3.78 5.70 7.64 9.203D3 0.00 0.00 0.00 0.00 0.03 0.24 1.17 2.31 3.61 4.86�3 0.00 0.00 0.01 0.08 0.55 1.59 3.46 4.81 5.97 6.993F2 0.00 0.00 0.00 0.01 0.11 0.34 0.80 1.10 1.14 0.393F3 –0.00 –0.00 –0.01 –0.03 –0.23 –0.67 –1.46 –2.06 –2.66 –3.501F3 –0.00 –0.00 –0.01 –0.06 –0.41 –1.10 –2.11 –2.77 –3.46 –4.693F4 0.00 0.00 0.00 0.00 0.02 0.12 0.51 1.04 1.80 3.00�4 –0.00 –0.00 –0.00 –0.00 –0.05 –0.19 –0.53 –0.83 –1.13 –1.463G3 –0.00 –0.00 –0.00 –0.00 –0.05 –0.26 –0.93 –1.73 –2.77 –4.173G4 0.00 0.00 0.00 0.01 0.17 0.71 2.11 3.52 5.17 7.281G4 0.00 0.00 0.00 0.00 0.04 0.15 0.41 0.69 1.06 1.703G5 –0.00 –0.00 –0.00 –0.00 –0.01 –0.05 –0.16 –0.25 –0.28 –0.19�5 0.00 0.00 0.00 0.00 0.04 0.20 0.70 1.22 1.83 2.62

TABLE V: Nucleon-Nucleon ESC16 nuclear-bar PP and NP phases in degrees.

XIV. SUMMARY AND OUTLOOK

TheESC-approach to the baryon-baryon interactions is able tomake a connection between the avail-
able baryon-baryon data on the one hand, and on the other hand the underlying quark structure of
the baryons and mesons. Namely, a succesfull description of both the NN- and YN-scattering data is
obtained with meson-baryon coupling parameters which are almost all explained by the QPC-model,
which implicitly makes use of the CQM. The finding that in the CQM it is possible to derive the ESC
baryon-baryonmeson-exchange potentials frommeson-exchange between quarks via folding with the
ground-state baryon quark wave functions opens the way to derive meson-exchange quark-quark po-
tentials almost parameter free.

The method followed in this paper is based on these observations. The potentials are worked out
in a 1∕mQ-expansion. For quark masses significantly smaller than the constituent quarks the Kady-
shevsky formalism in momentum space provides a suitable framework for relativistic calculations. In
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Tlab 0.38 1 5 10 25 50 100 150 215 320

1S0(np) 0.288 0.445 0.727 0.648 –0.254 –2.278 –6.443 –10.293 –14.761 –20.8941S0 0.194 0.364 0.700 0.650 –2135 –2.207 –6.348 –10.192 –14.661 –20.8043S1 0.544 0.855 1.614 1.865 1.559 0.828 –2.159 –6.54 –10.52 –16.09�1 0.007 0.030 0.260 0.568 1.254 1.828 2.159 2.153 2.021 1.7653P0 0.003 0.015 0.163 0.379 0.885 1.230 0.926 0.052 –1.435 –4.2053P1 –0.002 –0.011 –0.120 –0.283 –0.707 –1.180 –1.677 –1.922 –2.159 –2.6991P1 –0.000 –0.000 –0.000 –0.393 –0.830 –1.141 –1.174 –0.964 –0.680 –0.5683P2 0.000 0.002 0.029 0.085 0.333 0.857 1.977 2.990 3.985 4.720�2 –0.000 –0.000 –0.005 –0.020 –0.089 –0.203 –0.346 –0.402 –0.395 –0.2823D1 –0.000 –0.000 –0.010 –0.042 –0.210 –0.515 –0.864 –0.871 –0.567 0.1903D2 0.000 0.000 0.000 0.000 0.000 0.893 1.755 2.343 2.806 3.0681D2 0.000 0.000 0.000 0.000 0.000 0.201 0.468 0.741 1.068 1.4433D3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.538 1.161�3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.583 0.721 0.7963F2 0.000 0.000 0.000 0.000 0.000 0.033 0.076 0.086 0.042 –0.1213F3 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 –0.281 –0.371 –0.4421F3 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.410 –0.543 –0.7283F4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.127 0.233�4 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.129 –0.1653G3 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.142 –0.199 –0.2133G4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.7281G4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.112 0.1793G5 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000�5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000

TABLE VI: Quark-Nucleon ESC16 nuclear-bar UP and DP phases in degrees.
this case the 1∕mQ-expansion can be avoided by using the complete formulas for the Kadyshevsky dia-
grams. This lowering of the quark mass will happen in dense quark-matter, and therefore a relativistic
many-body theory is eventually needed. Similar to theDirac-Bruckner Theory, theKadyshevsky-Bethe-
Goldstone equation for the G-matrix is obtained in momentum-space, which can be solved using stan-
dard methods.
The tables for the Quark-quark and Quark-nucleon phase shifts have some physical reality only for the
hypothetical case of completely deconfined matter. They mainly serve to give an impression of the strength
of the quark-quark and quark-nucleon interactions compared to the nucleon-nucleon interactions.
Application of this work, for example, can be the study of neutron-star (NS) matter modeled as a mix-
ture of quark and baryon matter. The G-matrices of both kinds of matter are described with largely
common parameters.
Finally, we mention the possibility to derive an ΩΩ-potential by folding the QQ-potentials with the Ω
three-quark wave function.
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Tlab 0.38 1 5 10 25 50 100 150 215 320

1S0(np) 0.864 1.391 3.047 4.203 6.197 –7.869 –9.103 –9.182 –8.529 –6.6861S0 1.099 2.168 5.665 8.144 12.452 16.147 19.268 20.221 20.155 18.7813S1 0.688 1.109 2.440 3.384 5.071 –6.604 –7.982 –8.360 –8.115 -6.853�1 0.001 0.002 0.024 0.060 0.175 0.338 0.569 0.733 0.900 1.1233P0 0.001 0.004 0.050 0.142 5.25 1.330 3.106 4.805 6.688 8.8473P1 0.000 0.001 0.010 0.033 0.152 0.473 1.382 2.466 3.964 6.3281P1 –0.000 –0.000 –0.000 –0.035 –0.093 –0.156 –0.186 –0.145 –0.038 0.1763P2 0.000 0.001 0.017 0.049 0.197 0.559 1.551 2.779 4.600 7.813�2 –0.000 –0.000 –0.000 –0.001 –0.006 –0.021 –0.057 –0.096 –0.147 –0.2133D1 –0.000 –0.000 –0.000 –0.002 –0.011 –0.036 –0.079 –0.088 –0.039 0.1853D2 0.000 0.000 0.000 0.000 0.000 0.060 0.145 0.219 0.303 0.4281D2 0.000 0.000 0.000 0.000 0.000 0.022 0.080 0.173 0.345 0.7433D3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 –0.026 –0.019 0.066�3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.073 0.0993F2 0.000 0.000 0.000 0.000 0.000 0.003 0.016 0.043 0.106 0.2803F3 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 –0.008 0.006 0.0681F3 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.037 –0.052 –0.0663F4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.027�4 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.011 –0.0183G3 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.000 –0.008 –0.016 –0.0313G4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0531G4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.0193G5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000�5 0.000 0.000 0.000 0.000 0.000 0.00R0 0.000 0.000 0.000 0.000

TABLE VII: Quark-Quark ESC16 nuclear-bar UU and DU phases in degrees.

experimental data ESC16

app(1S0) –7.828 ± 0.008 –7.7718rpp(1S0) 2.800 ± 0.020 2.7612∗anp(1S0) –23.748 ± 0.010 –23.7346rnp(1S0) 2.750 ± 0.050 2.6992∗ann(1S0) –18.63 ± 0.48 –17.783rnn(1S0) 2.860 ± 0.15 2.8301∗anp(3S1) 5.424 ± 0.004 5.4396∗rnp(3S1) 1.760 ± 0.005 1.7488∗EB –2.224644 ± 0.000046 –2.224636Qe 0.286 ± 0.002 0.2727

TABLE VIII: ESC16 Low energy parameters: S-wave scattering lengths and effective ranges, deuteron binding
energy EB, and electric quadrupole Qe. Experimental values and references, see [63]. The asterisk denotes that
the low-energy parameters were not searched.
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Appendix A: Kadyshevsky G-matrix Equation

In a fermi-system, e.g. quark matter, the Kadyshevsky-Bethe-Goldstone-Kadyshevsky equation
(BGKE) is depicted in Fig. 7, and reads

ℱ(p′,p;W) = K(p′,p;W) + 1(2�)3 ∫ d3p′′2E(p′′) K(p′,p′′;W) ⋅
× M2
E(p′′) [E(p′′) − E(p) − i�] QP[nF(p′′)] ℱ(p′′,p;W),

(A1)

which corresponds to Eq. (5.11). Then, the Bethe-Goldstone-Kadyshevsky two-particle wave function
reads

 (p;W) =  (0)(p) +∫ d3p′′2E(p′′)(2�)3 ⋅
× M2
E(p′′) [E(p′′) − E(p) − i�] QP[nF(p′′)]  (p′′;W), (A2)

where  (0)(p;W) corresponds to the two-particle plane-wave product state |�0(p1)⟩|�0(p2)⟩, withP = p1 + p2, p = p1 − p2, andW = p01 + p02. Here, �(0)(p) is the plane wave in the case of matter
or a model wave function for finite nuclei.
Then, the corresponding G-matrix is introduced in the standard way by defining G(p;W) =⟨ (0)|Kop | (p;W)⟩, giving the equation

G(p′,p;W) = K(p′,p;W) + 1(2�)3 ∫ d3p′′2E(p′′) K(p′,p′′;W) ⋅
× M2
E(p′′) [E(p′′) − E(p)] QP[nF(p′′)] G(p′′,p;W).

(A3)

This integral equation for the G-matrix is similar to that in the Dirac-Bruckner theory, see e.g. [64, 65].
Notice that in the non-relativistic limit M∕E = 1 and Eqn. (A3) corresponds to the usual employed
G-matrix equation in the many-body problem. In fact, the difference with Eqn. (1) of Refs. [66, 67]
is largely a factor (M∕E(p′′))2 under the integral, and the use of an effective density dependent mass
in the Dirac spinors. Therefore, the momentum space evaluation of the G-matrix partial waves is wel
known.
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pf , mf

ℱ

Pi,Mi

pi, mi

FIG. 7: G-matrix: Kadyshevsky-Bethe-Goldstone Equation
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For a quark pair with flavor quantum numbers f1, f2 in quarkmatter the G-matrix equation for partial
waves in short notation reads

Gcc0(!) = Kcc0 +∑
c′ [ mQ(�f′1 + �f′2)]

2 Kcc′ Qy′! − �f′1 − �f′2 Gc′c0(!), (A4)

where c denotes the ’relative’ state (y, T, L, S, J)with y = (f1, f2). S and T are spin and isospin quantum
numbers, respectively. The energies are �fi =√k2fi +m2Q −mQ, i=1,2. The quark single particle (s.p.)
energy �f in quark matter is

�f(kf) = [√k2f +m2Q] −mQ] +Uf(kf), (A5)

where kf is the f-quarkmomentum (ℏ = c = 1). The potential energyUf is (ontained self-consistently)
in terms of the G-matrix as

Uf(kf) = ∑
|kf′ |

⟨kfkf′|Gff′ (! = �f(kf) + �f′(kf′) |kfkf′⟩. (A6)

The kinetic, potential, and total energies per quark are given by averaged quantities of Tf , Uf, andEf = Tf +Uf in a Fermi sphere.

Appendix B: BBM-couplings in the QPC-model

The BBM-couplings in the ESC models fit very well with the 3P0 ⊕3 S1 quark-pair creation (QPC)
model. A simple (effective) QPC interaction Lagrangian is

ℒI = 
 ⎡⎢⎣A
⎛⎜⎝
∑
j q̄j qj

⎞⎟⎠ ⋅ (
∑
i q̄i qi) + B ⎛⎜⎝

∑
j q̄j
� qj

⎞⎟⎠ ⋅ (
∑
i q̄i
� qi)

⎤⎥⎦ , (B1)

where 
, A, and B are given in Ref. [9] Table II. To see the meson couplings we make the Fierz trans-
formation of (B1) which gives [68]

ℒI = −
4∑i,j [(A + 4B)q̄i qj ⋅ q̄j qi + (A − 4B)q̄i
5qj ⋅ q̄j
5qi
+(A − 2B)q̄i
�qj ⋅ q̄j
�qi − (A + B)q̄i
�
5qj ⋅ q̄j
�
5qi
−(A∕2) q̄i���qj ⋅ q̄j���qi] . (B2)

Identifying the q̄q pairs with the mesons
�Sij ∼ q̄j qi , �Pij ∼ q̄j
5 qi , �V�,ij ∼ q̄j
�qi , �A�,ij ∼ q̄j
5
�qi (B3)

the QQM-couplings are defined. For example, the pseudoscalar couplings are

ℋP = g(p)8
√2 [Q̄M(8)P Q]+ g(p)1

[Q̄M(1)P Q] ∕√3, (B4)

where g(p)8 = −
P(A − 4B)∕4.
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Appendix C: Momentum-spaceMeson-Quark-Quark Vertices

1. Pauli-reduction Dirac-spinor Γ-matrix elements

The transition from Dirac spinors to Pauli spinors is given here, without approximations. We use
the notations ℰ = E +M and ℰ′ = E′ +M′, where E = E(p,M) and E′ = E(p′,M′). Also, we omit, on
the right-hand side in the expressions below, the final and initial Pauli spinors �′† and � respectively,
which are self-evident.

ū(p′)u(p) = +√ ℰ′ℰ4M′M [(1 − p′ ⋅ p
ℰ′ℰ ) − ip′ × p ⋅ �ℰ′ℰ ] , (C1a)

ū(p′)
5u(p) = −√ ℰ′ℰ4M′M [�⋅p′ℰ′ − �⋅p
ℰ ] , (C1b)

ū(p′)
0u(p) = +√ ℰ′ℰ4M′M [(1 + p′ ⋅ p
ℰ′ℰ ) + ip′ × p ⋅ �ℰ′ℰ ] , (C1c)

ū(p′)
 u(p) = +√ ℰ′ℰ4M′M [(p′ℰ′ + p
ℰ) + i (� × p′ℰ′ − � × p

ℰ )] , (C1d)

ū(p′)
5
0u(p) = −√ ℰ′ℰ4M′M [�⋅(p′ℰ′ + �⋅(p
ℰ ] , (C1e)

ū(p′)
5
 u(p) = −√ ℰ′ℰ4M′M [� + (� ⋅ p′) � (� ⋅ p)
ℰ′ℰ ]

= −√ ℰ′ℰ4M′M [(1 − p′ ⋅ p
ℰ′ℰ )� − ip′ × pℰ′ℰ

+ 1
ℰ′ℰ

(� ⋅ p p′ + � ⋅ p′ p)] ≈ −�, , (C1f)

where we defined k = p′ − p, q = (p′ + p)∕2, and �V = fV∕gV .
Using the the Gordon decomposition

i ū(p′) ���(p′ − p)�u(p) = ū(p′) {(M′ +M)
� − (p′ + p)�} u(p) (C2)
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one obtains for the complete vector-vertex

ū(p′)Γ�Vu(p) ≡ ū(p′) [
� + i2ℳ �V���(p′ − p)�]u(p)
= ū(p′) [(1 + M′ +M2ℳ �V) 
� − �V2ℳ (p′ + p)�]u(p)⟹

� = 0 ∶ +√ ℰ′ℰ4M′M [(1 + M′ +M2ℳ �V) (1 + � ⋅ p′ � ⋅ pℰ′ℰ )
− �V2ℳ (E′ + E)(1 − � ⋅ p′ � ⋅ pℰ′ℰ )] , (C3a)

� = i ∶ +√ ℰ′ℰ4M′M [(1 + M′ +M2ℳ �V) {(p′ℰ′ + pℰ) + i (� × p′ℰ′ − � × pℰ )}
− �V2ℳ (p′ + p)(1 − � ⋅ p′ � ⋅ pℰ′ℰ )] . (C3b)

2. 1/M-expansion Γ-matrix elements

The exact transition from Dirac spinors to Pauli spinors is given in Appendix C 1. From the expres-
sions in C 1, keeping only terms up to order 1∕M, and setting the scaling massℳ = M, we find that
the vertex operators in Pauli-spinor space for theNNm vertices are given by

ū(p′)u(p) = [(1 − p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �] , (C4a)

ū(p′)
5u(p) = − 12M [�⋅(p′ − p)] = − 12M [�⋅k] , (C4b)

ū(p′)
0u(p) = [(1 + p′ ⋅ p4M2 ) + i4M2p′ × p ⋅ �] , (C4c)

ū(p′)
 u(p) = 12M [(p′ + p) + i� × (p′ − p)] , (C4d)

ū(p′)
5
0u(p) = − 12M [�⋅(p′ + p)] = − 1M [�⋅q] , (C4e)

ū(p′)
5
 u(p) = − [� + 14M2 (� ⋅ p′) � (� ⋅ p)] = − [(1 − p′ ⋅ p4M2 )�
− i4M2p′ × p + 14M2

(� ⋅ p p′ + � ⋅ p′ p)] ≈ −�, , (C4f)

where we defined k = p′ − p, q = (p′ + p)∕2, and �V = fV∕gV . In passing we note that the inclusion of
the 1∕M2-terms is necessary in order to get spin-orbit potentials, like in the case of the OBE-potentials.

For the magnetic-coupling we use the Gordon decomposition

i ū(p′) ���(p′ − p)�u(p) = ū(p′) {2M
� − (p′ + p)�} u(p) (C5)
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We get

i ū(p′) ���(p′ − p)�u(p)⟹
� = 0 ∶ −M [(1 − p′ ⋅ p4M2 ) + (p′2 + p2)2M2 − i4M2p′ × p ⋅ �] , (C6a)

� = i ∶ − [12(p′ + p) − i2� × (p′ − p)] . (C6b)

For the vector-vertex with direct and derivative coupling one has

ū(p′)Γ�Vu(p) ≡ ū(p′) [
� + i2M�V���(p′ − p)�]u(p)
= ū(p′) [(1 + �V)
� − �V2M (p′ + p)�]u(p)⟹

� = 0 ∶ [(1 + �V)(1 + p′ ⋅ p4M2 + i4M2p′ × p ⋅ �)
−�V Ep′ + Ep2M (1 − p′ ⋅ p4M2 − i4M2p′ × p ⋅ �)] ≈
[1 + (1 + 2�V) {p′ ⋅ p4M2 + i4M2p′ × p ⋅ �} − �V p′2 + p24M2 ] , (C7a)

� = i ∶ 1M [12(p′ + p) + i2(1 + �V)� × (p′ − p)] . (C7b)

3. CompleteMeson-vertices in Pauli-spinor space

The transition fromDirac spinors to Pauli spinors is reviewed in Appendix C of [37]. Following this
reference and keeping only terms up to order (1∕M)2, we find that the vertex operators in Pauli-spinor
space for the QQm vertices are given by

ū(p′)Γ(1)P u(p) = −i fPm�
[�1 ⋅k ± !2M�1 ⋅(p′ + p)] , (C8a)

ū(p′)Γ(1)V u(p) = gV [{(1 + p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �} �0V
− 12M {(p′ + p) + i(1 + �V)�1×k}⋅�V] , (C8b)

ū(p′)Γ(1)A u(p) = gA [− 12M {� ⋅ (p′ + p)} �0A
+{� + 14M2 (� ⋅ p′) � (� ⋅ p)}⋅�A] , (C8c)

ū(p′)Γ(1)S u(p) = gS [(1 − p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �] , (C8d)

where we defined k = p′ − p and �V = fV∕gV. In the pseudovector vertex, the upper (lower) sign
stands for creation (absorption) of the pion at the vertex. In passing we note that the inclusion of the
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1∕M2-terms is necessary in order to get spin-orbit potentials, like in the case of the OBE-potentials.
The complete quark-meson verices are:

(i) Scalar mesons: Including the extra quark-level coupling

ū(p′)ΓSu(p) = gS ⎛⎜⎝1 −
k24m2Q

⎞⎟⎠ [(1 −
p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �] , (C9)

(ii) Vector mesons: For the complete vector-meson coupling to the quarks

Γ�V = Gm
� + 1ℳGe(p′ + p)�, Gm,v = gv + fv , Ge,v = −fv ⎡⎢⎣1 +
k28m2Q

⎤⎥⎦ ,
and writing ΓV = Γ(m)V + Γ(e)V ,

ū(p′)Γ(m)V u(p) = Gm,v [{(1 + p′ ⋅ p4M2 ) + i4M2p′ × p ⋅ �} �0V
+ 12M {(p′ + p) + i�1×k}⋅�V] , (C10a)

ū(p′)Γ(e)V u(p) = Ge,v [ℰ′ + ℰℳ {(1 − p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �} �0V
+(p′ + p)ℳ {(1 − p′ ⋅ p4M2 ) − i4M2p′ × p ⋅ �}}⋅�V]

≈ Ge,v [2Mℳ {(1 + p′2 − p′ ⋅ p + p24M2 ) − i4M2p′ × p ⋅ �} �0V + (p′ + p)ℳ }⋅�V](C10b)
(iii) Axial-vector mesons: The extra QQ axial-coupling has the vertex

ū(p′)Γ(o)A u(p) = g′aℳ2 [ 1M {(p′ ⋅ p − p2)� ⋅ p′ + (p′ ⋅ p − p′2)� ⋅ p} �0A − 2ip′ × p ⋅�A]
= ga4ℳ2 [ 1M {(q ⋅ k � ⋅ k − k2 � ⋅ q} �0A + 2iq × k ⋅ �A]
≈ ga2ℳ2 ⋅ iq × k ⋅ �A, (C11)

i.e. a purely spin-orbit contribution. Using

(� ⋅ p′) � (� ⋅ p) = p′ (� ⋅ p) + p (� ⋅ p′) − p′ ⋅ p � − ip′ × p =
2q(� ⋅ q) − 12k (� ⋅ k) − (q2 − k2∕4) � + iq × k.÷

we obtain for the complete axial-vertex, withℳ = M,

ū(p′)ΓAu(p) = gA [− 1M (� ⋅ q)�0A + {�(1 − q2 − k2∕44M2 )
+ 14M2 (2q(� ⋅ q) − 12k(� ⋅ k)) + 3i4M2q × k}⋅�A] . (C12)
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Appendix D: One-Boson-Exchange Quark-quark Potentials

1. Non-strangeMeson-exchange

For the non-strangemesons the mass differences at the vertices are neglected, we take at theQQM-
andNNM-vertex the average quark and average nucleonmass respectively. This implies that we do not
include contributions to the Pauli-invariants P7 and P8. For vector-, and diffractive OBE-exchange we
refer the reader to Ref. [40], where the contributions to the differentΩ(X)i ’s for baryon-baryon scattering
are given in detail.
Below, for QQ:Mn = My = MQ, and for QN:My = MQ,Mn = MN . For QQ-channels: gx13 = (gxQQ)13
and gx24 = (gxQQ)24 etc., and for QN-channels gx13 = (gxQQ)13 and gx24 = (gxNN)24 etc., where x=p,pv,v,a,
and b.

(a) Pseudoscalar-meson exchange:

Ω(P)2a = −gp13gp24 ( k212MyMn ) , Ω(P)3a = −gp13gp24 ( 14MyMn ) , (D1a)

Ω(P)2b = +gp13gp24 ( k224M2yM2n ) , Ω(P)3b = +gp13gp24 ( 18M2yM2n ) , . (D1b)

PV-formulas:

Ω(P)2a = −fpv13 fpv24 ( k23m2�+ ) , Ω(P)3a = −fpv13 fpv24 ( 1m2�+ ) , (D1c)

Ω(P)2b = +fpv13 fpv24 ( k26m2�+MyMn ) , Ω(P)3b = +fpv13 fpv24 ( 12m2�+M2yM2n ) , . (D1d)

(b) Vector-meson exchange:

Ω(V)1a = {gv13gv24 (1 − k22MyMn ) − gv13fv24 k24ℳMn − fv13gv24 k24ℳMy
+ fv13fv24 k416ℳ2MyMn } , Ω(V)1b = gv13gv24 ( 32MyMn ) ,

Ω(V)2a = −23k2Ω(V)3a , Ω(V)2b = −23k2Ω(V)3b ,
Ω(V)3a = {(gv13 + fv13Myℳ )(gv24 + fv24Mnℳ ) − fv13fv24 k28ℳ2 } ∕(4MyMn),
Ω(V)3b = −(gv13 + fv13Myℳ )(gv24 + fv24Mnℳ )∕(8M2yM2n),
Ω(V)4 = − {12gv13gv24 + 8(gv13fv24 + fv13gv24)

√MyMnℳ − fv13fv243k2ℳ2 } ∕(8MyMn)
Ω(V)5 = − {gv13gv24 + 4(gv13fv24 + fv13gv24)

√MyMnℳ + 8fv13fv24MyMnℳ2 } ∕(16M2yM2n)
Ω(V)6 = −⎧⎨⎩

(gv13gv24 + fv13fv24 k24ℳ2 )(M2n −M2y)4M2yM2n − (gv13fv24 − fv13gv24) 1√ℳ2MyMn
⎫
⎬⎭
.

(D2)
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(c) Scalar-meson exchange:

Ω(S)1a = −gs13gs24 (1 + k24MyMn )
Ω(S)1b = +gs13gs24 [ 12MyMn ] , Ω(S)4 = −gs13gs24 [ 12MyMn ]
Ω(S)5 = gs13gs24 [ 116M2yM2n ] , Ω(S)6 = −gs13gs24 (M2n −M2y)4M2yM2n . (D3)

(d) Axial-vector-exchange JPC = 1++:
Ω(A)2a = −ga13ga24 [1 − 2k23MyMn ]+ [(gA13fA24Mnℳ + fA13gA24Myℳ ) − fA13fA24 k22ℳ2 ] k26MyMn
Ω(A)2b = −ga13ga24 ( 32MyMn )
Ω(A)3 = −ga13ga24 [ 14MyMn ] + [(gA13fA24Mnℳ + fA13gA24Myℳ ) − fA13fA24 k22ℳ2 ] 12MyMn
Ω(A)4 = −ga13ga24 [ 12MyMn ] , Ω(A)6 = −ga13ga24 [ (M2n −M2y)4M2yM2n ]
Ω(A)′5 = −ga13ga24 [ 2MyMn ] (D4)

Here, we used the B-field description with �r = 1, see [13] Appendix A. The detailed treatment
of the potential proportional to P′5, i.e. withΩ(A)′5 , is given in [13], Appendix B.

(e) Axial-vector mesons with JPC = 1+−:
Ω(B)2a = +fB13fB24 (Mn +My)2m2B (1 − k24MyMn )( k212MyMn ) , Ω(B)2b = +fB13fB24 (Mn +My)2m2B ( k28M2yM2n )
Ω(B)3a = +fB13fB24 (Mn +My)2m2B (1 − k24MyMn )( 14MyMn ) , Ω(B)3b = +fB13fB24 (Mn +My)2m2B ( 38M2yM2n ) .

(D5)

(f) Diffractive-exchange (pomeron, f, f′, A2):
The ΩDi are the same as for scalar-meson-exchange Eq.(D3), but with ±gS13gS24 replaced by∓gD13gD24, and except for the zero in the form factor.

(g) Odderon-exchange: The ΩOi are the same as for vector-meson-exchange Eq.(refeq2), but withgV13 → gO13, fV13 → fO13 and similarly for the couplings with the 24-subscript.
As in Ref. [40] in the derivation of the expressions for Ω(X)i , given above, My and Mn denote the

mean hyperon and nucleon mass, respectively My = (M1 + M3)∕2 and Mn = (M2 + M4)∕2, and m
denotes the mass of the exchanged meson. Moreover, the approximation 1∕M2N + 1∕M2Y ≈ 2∕MnMy ,
is used, which is rather good since the mass differences between the baryons are not large.
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2. One-Boson-Exchange Interactions in Configuration Space I

In configuration space the BB-interactions are described by potentials of the general form

V = {VC(r) + V�(r)�1 ⋅ �2 + VT(r)S12 + VSO(r)L ⋅ S + VQ(r)Q12
+VASO(r) 12(�1 − �2) ⋅ L − 12MyMn ((2Vn.l.(r) + Vn.l.(r)(2)} ⋅ P, (D6a)

Vn.l. = {'C(r) + '�(r)�1 ⋅ �2 + 'T(r)S12} ⋅ P, (D6b)

where for non-strange mesons P = 1, and
S12 = 3(�1 ⋅ r̂)(�2 ⋅ r̂) − (�1 ⋅ �2), (D7a)

Q12 = 12 [(�1 ⋅ L)(�2 ⋅ L) + (�2 ⋅ L)(�1 ⋅ L)] , (D7b)

�(r) = �C(r) + ��(r)�1 ⋅ �2, (D7c)

For the basic functions for the Fourier transforms with gaussian form factors, we refer to Refs. [39, 40].
For the details of the Fourier transform for the potentials with P′5, which occur in the case of the axial-
vector mesons with JPC = 1++, we refer to Ref. [13] Appendix B.
(a) Pseudoscalar-meson-exchange:

VPS(r) = m4� [gp13gp24 m24MyMn (13(�1 ⋅ �2) �1C + S12�0T)]P, (D8a)

Vn.l.PS (r) = m4� [gp13gp24 m24MyMn (13(�1 ⋅ �2) �1C + S12�0T)]P. (D8b)
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(b) Vector-meson-exchange:

VV(r) = m4� [{gv13gv24 [�0C + m22MyMn�1C]
+ [gv13fv24 m24ℳMn + fv13gv24 m24ℳMy ]�1C + fv13fv24 m416ℳ2MyMn�2C}
+ m26MyMn {[(gv13 + fv13Myℳ ) ⋅ (gv24 + fv24Mnℳ )]�1C + fv13fv24 m28ℳ2�2C} (�1 ⋅ �2)
− m24MyMn {[(gv13 + fv13Myℳ ) ⋅ (gv24 + fv24Mnℳ )]�0T + fv13fv24 m28ℳ2�1T} S12
− m2MyMn {[32gv13gv24 + (gv13fv24 + fv13gv24)

√MyMnℳ ]�0SO + 38fv13fv24 m2ℳ2�1SO}L ⋅ S
+ m4
16M2yM2n {[gv13gv24 + 4 (gv13fv24 + fv13gv24)

√MyMnℳ + 8fv13fv24MyMnℳ2 ]} ⋅
× 3(mr)2�0TQ12 − m2MyMn {[(gv13gv24 − fv13fv24 m2ℳ2 ) (M2n −M2y)4MyMn
− (gv13fv24 − fv13gv24)

√MyMnℳ ]�0SO} ⋅ 12 (�1 − �2) ⋅ L]P, (D9a)

Vn.l.V (r) = m4� [32gv13gv24 �0C
+ m26MyMn {[(gv13 + fv13Myℳ ) ⋅ (gv24 + fv24Mnℳ )]�1C} (�1 ⋅ �2)
− m24MyMn {[(gv13 + fv13Myℳ ) ⋅ (gv24 + fv24Mnℳ )]�0T} S12]P. (D9b)

Note: the non-local tensor and "associated" spin-spin terms are not included in ESC16 model.

(c) Scalar-meson-exchange:

VS(r) = − m4� [gs13gs24 {[�0C − m24MyMn�1C] + m22MyMn �0SO L ⋅ S + m4
16M2yM2n ⋅

× 3(mr)2�0TQ12 + m2MyMn [ (M
2n −M2y)4MyMn ]�0SO ⋅ 12 (�1 − �2) ⋅ L

+ 14MyMn
((2�0C + �0C(2)}]P. (D10)
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(d) Axial-vector-meson exchange JPC = 1++:
VA(r) = − m4� [{ga13ga24 (�0C + 2m23MyMn�1C) + m26MyMn (ga13fa24Mnℳ + fa13ga24Myℳ )�1C
+fa13fa24 m412MyMnℳ2�2C} (�1 ⋅ �2) − 34MyMn ga13ga24

((2�0C + �0C(2) (�1 ⋅ �2)
− m24MyMn {[ga13ga24 − 2(ga13fa24Mnℳ + fa13ga24Myℳ )]�0T − fa13fa24 m2ℳ2�1T} S12
+ m22MyMn ga13ga24 {�0SO L ⋅ S + m2MyMn [ (M

2n −M2y)4MyMn ]�0SO ⋅ 12 (�1 − �2) ⋅ L}]P. (D11)

(e) Axial-vector-meson exchange JPC = 1+−:
VB(r) = − m4� (Mn +My)2m2 [fB13fB24 { m212MyMn (�1C + m24MyMn�2C) (�1 ⋅ �2)

− m28MyMn
((2�1C + �1C(2) (�1 ⋅ �2) + [ m24MyMn ]�0T S12}]P, (D12a)

Vn.l.B (r) = − m4� (Mn +My)2m2 [fB13fB24 { 3m24MyMn (13�1 ⋅ �2 �1C + S12 �0T)}]P. (D12b)

(f) Diffractive exchange:

VD(r) = mP4� [gD13gD24 4√� m2Pℳ2 ⋅ [{1 + m2P2MyMn (3 − 2m2Pr2) + m2PMyMnL ⋅ S
+( m2P2MyMn )

2 Q12 + m2PMyMn [ (M
2n −M2y)4MyMn ] ⋅ 12 (�1 − �2) ⋅ L⎫⎬⎭

e−m2Pr2

+ 14MyMn
((2e−m2Pr2 + e−m2Pr2(2)]]P. (D13)
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(g) Odderon-exchange:

VO,C(r) = +gO13gO244� 8√�
m5Oℳ4

[(3 − 2m2Or2)
− m2OMyMn

(15 − 20m2Or2 + 4m4Or4)] exp(−m2Or2) , (D14a)

VO,n.l.(r) = −gO13gO244� 8√� m
5Oℳ4 34MyMn

{(2 [(3 − 2m2Or2) exp(−m2Or2)]+
+ [(3 − 2m2Or2) exp(−m2Or2)] (2} , (D14b)

VO,�(r) = −gO13gO244� 83√� m
5Oℳ4

m2OMyMn
[15 − 20m2Or2 + 4m4Or4] exp(−m2Or2) ⋅

× (1 + �O13Myℳ ) (1 + �O24Mnℳ ) , (D14c)

VO,T(r) = −gO13gO244� 83√�
m5Oℳ4

m2OMyMn ⋅m2Or2 [7 − 2m2Or2] exp(−m2Or2) ⋅
× (1 + �O13Myℳ ) (1 + �O24Mnℳ ) , (D14d)

VO,SO(r) = −gO13gO244� 8√�
m5Oℳ4

m2OMyMn
[5 − 2m2Or2] exp(−m2Or2) ⋅

× {3 + (�O13 + �O24)
√MyMnℳ } , (D14e)

VO,Q(r) = +gO13gO244� 2√�
m5Oℳ4

m4OM2yM2n
[7 − 2m2Or2] exp(−m2Or2) ⋅

× {1 + 4 (�O13 + �O24)
√MyMnℳ + 8�13�24MyMnℳ2 } , (D14f)

VO,ASO(r) = −gO13gO244� 4√�
m5Oℳ4

m2OMyMn
[5 − 2m2Or2] exp(−m2Or2) ⋅

× {M2n −M2yMyMn − 4 (�O24 − �O13)
√MyMnℳ } . (D14g)

3. Strange Meson-exchange

The rules for hypercharge nonzero exchange have been given in Ref. [38], see also [10]. The poten-
tials for non-zero hypercharge exchange (K, K∗, �, KA, KB) are obtained from the expressions given in
the previous subsections for non-strangemesons by taking care of the following points: (a) For strange
meson exchange P = −PxP�. (b) In the latter case one has to replace bothMn andMy by√MyMn, and
reverse the sign of the antisymmetric spin orbit.
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Appendix E: Additional One-Boson-Exchange QQ-Potentials

The extra vertices at the quark-level generate additional OBE-potentials. In the case of the vector
mesons the extra vertex gives a change in the couplings

gv → g′v = gv − fv k24ℳmQ , fv → f′v = fv − fv k24m2Q , gs → gs + gs k24m2Q .
The extra vertices at the quark-level generate additional OBE-potentials. Neglecting the k4 etc terms
we obtain the following contributions:

(a) Pseudoscalar-meson exchange: no additional potentials.

(b) Vector-meson exchange:

∆Ω(V)1a = −{gv13fv24 + fv13gv24] k24ℳmQ , ∆Ω(V)1b = 0,
∆Ω(V)2a = −23k2 ∆Ω(V)3a = 0, ∆Ω(V)2b = −23k2 ∆Ω(V)3b = 0,
∆Ω(V)3a = − {(gv13 + fv13Myℳ ) fv24 (1 + MymQ ) + (gv24 + fv24Mnℳ ) fv13 (1 + MnmQ )} k24ℳmQ ∕(4MyMn),
∆Ω(V)4 = +{(3 + 2√MyMnmQ ) (gv13fv24 + fv13gv24) + 4fv13fv24

√MyMnℳ } ( k24ℳmQ ) ∕(2MyMn),
∆Ω(V)5 = +{(1 + 4√MyMnmQ ) (gv13fv24 + fv13gv24) + 8fv13fv24

√MyMnℳ } ( k24ℳmQ ) ∕(16M2yM2n),
∆Ω(V)6 = 0. (E1)

(c) Scalar-meson exchange:

∆Ω(S)1a = −gs13gs24 k22m2Q , ∆Ω(S)1b = 0,
∆Ω(S)4 = −gs13gs24 k24m2Q [

1MyMn ] , ∆Ω(S)5 = gs13gs24 k24m2Q [
18M2yM2n ] ,

∆Ω(S)6 = −gs13gs24 (M2n −M2y)4M2yM2n
k22m2Q . (E2)

item[(d)] See below.

The transcription to configuration space potentials of these additional Pauli-invariants is similar to that
in section D and is readily done. The results are

(a) Pseudoscalar-meson exchange: ∆VP(r) = 0.
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(b) Vector-meson exchange:

∆VV(r) = m4� m24ℳmQ [(gv13fv24 + fv13gv24) �1C(r)
− m26MyMn {(gv13 + fv13Myℳ ) fv24 (1 + MymQ ) + (gv24 + fv24Mnℳ ) fv13 (1 + MnmQ )} �2C(r) (�1 ⋅ �2)
− m24MyMn {(gv13 + fv13Myℳ ) fv24 (1 + MymQ ) + (gv24 + fv24Mnℳ ) fv13 (1 + MnmQ )} �1T(r) S12
− m22MyMn {(3 + 2√MyMnmQ ) (gv13fv24 + fv13gv24) + 4fv13fv24

√MyMnℳ } �1SO(r) L ⋅ S
+ m4
16M2yM2n {(1 + 4√MyMnmQ ) (gv13fv24 + fv13gv24) + 8fv13fv24

√MyMnℳ } 3(mr)2 �1TQ12]. (E3)

(b) Scalar-meson exchange:

∆VS(r) = −gs13gs244� m32m2Q [�1C(r) + m22MyMn �1SO(r) L ⋅ S + m416M2yM2n
3(mr)2 �1T Q12

+ m2MyMn [
(M2n −M2y)4MyMn ]�1SO ⋅ 12 (�1 − �2) ⋅ L]. (E4)

(d) Axial-vector-meson exchange: The additional vertex for the axial-vector mesons is

∆Γ�(p′, p; k) = ig′aℳ2 "����
�p′�p� (E5)

where we takeℳ = MN . Restriction to terms of order 1∕M2N the extra axial-vector exchange
potential becomes

∆VA(p′, p) = igag′aℳ2 [[ū(p′1, s′1)u(p1, s1)] [ū(p′2, s′2)
�
5u(p2, s2)] "����
�1p′�1 p�1
+[ū(p′1, s′1)
�
5u(p1, s1)] [ū(p′2, s′2)u(p2, s2)] "����
�2p′�2 p�2 ] (k2 +m2A)−1 .(E6)

With Pauli-spinors this gives

∆VA(p′, p) = −8gag′aℳ2 [ i2(�1 + �2) ⋅ q × k − 14 (�1 ⋅ k �2 ⋅ k − 13k2 �1 ⋅ �2)
−16k2 �1 ⋅ �2] (k2 +m2A)−1 . (E7)

In configuration space this leads to

∆VA(r) = −gag′a mA4� m2Aℳ2 [8�0SO(r) L ⋅ S + 2�0T(r) S12 + 43�1C(r) (�1 ⋅ �2)] (E8)

In order that folding with the nucleon wave function agrees in the 1/M expansion g′a = ga.
Remark: For the Quark-Nucleon additional potentials there is a factor 1/2. This because there is only
an additional coupling in only one of the vertices of the Feynman-diagram.

41



(a) Z-graph (b) Meson-pair Vertex

FIG. 8: Negative-energy quark contribution⇒MMQQ-coupling

Appendix F: Quarks and Meson-pairs

In the Nijmegen models it was in general assumed that negative-energy nucleons and hyperons are
suppressed at low energies and nuclear densities. In ESC-models it is assumed that in principle the
effects of the negative-energy baryons (Z-graph’s) are eventually included effectively in the meson-pair
couplings to the baryons. The same is assumed for the internal quark negative-energy states. This is
illustrated in Fig. 8: the Z-graph (a) is included into themeson-meson-quark-quark (MMQQ) coupling.
Then, assuming that the negative-energy contributions from the baryons are negligible we can suppose
that the complete MPE in the baryonic nuclear force can be generated by relating the meson-pair cou-
pling to the quarks from that to the baryons, similarly as is done in this paper for the meson-couplings
to the quarks.
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