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Abstract
The nucleon-quark mixed matter is defined in the Brueckner-Hartree-Fock framework, in which quark

densities are determined by equilibrium conditions between nucleon and quark chemical potentials, and
nucleon-quark interactions play critical roles for resulting EoSs (equation of state). The two models of
EoSs are derived from the nucleon-quark mixed matter (NQMM): The NQMM-A EoSs are based on the
simple assumption that nucleons and free quarks occupy their respective Fermi levels and their Fermi spheres
overlap from each other. In NQMM-B EoSs, the quark Fermi repulsion effect is incorporated on the basis of
quakyonic matter, meaning that the nucleon Fermi levels are pushed up from the quark Fermi sphere by the
Pauli exclusion principle. For the NQMM-A EoSs, the neutron-star mass-radius (𝑀𝑅) curves are pushed
up above the region of 𝑀 ∼ 2.1𝑀⊙ and 𝑅2.1𝑀⊙

∼ 12.5 km indicated by the recent observations, as the 𝑞𝑁
repulsions increase. For the NQMM-B EoSs, the similar results are obtained by the combined contributions
from the 𝑞𝑁 repulsion and the quark Fermi repulsion. In both models of EoSs, the important roles of the
𝑞𝑁 di-quark exchange repulsions are demonstrated to reproduce reasonable values of 𝑀𝑚𝑎𝑥 and 𝑅2.1𝑀⊙

.
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I. INTRODUCTION

The massive neutron stars (NS) with masses over 2𝑀⊙ have been reliably established by the
observations of J1614−2230 [1], J0348+0432 [2], J0740+6620 [3] and J0952-0607 [4]. Despite
these observations of massive neutron stars over 2𝑀⊙, the hyperon mixing in neutron-star matter
brings about a remarkable softening of the EoS (equation of state) and a maximum mass is reduced
to a value far less than 2𝑀⊙, being called “hyperon puzzle in neutron stars". The EoS softening
is caused by changing of high-momentum neutrons at Fermi surfaces to low-momentum hyperons
via strangeness non-conserving weak interactions overcoming rest masses of hyperons. Generally,
such mechanisms can be due to possible appearance of other hadronic degrees of freedom, such as
Δ isobars [5], meson condensates [6–10] or quark phases [11–22]. Since such mechanisms of EoS
softening are inevitable in neutron-star matter, it has been one of the central issues in this field to
model EoSs giving star masses over 2𝑀⊙.

From the analyses for the X-ray data taken by the Neutron Star Interior Composition Explorer
(NICER) and the X-ray Multi-Mirror (XMM-Newton) observatory, the radius information of NSs
have been obtained for the massive NS PSR J0740+6620 [23–27]. The radius information of
massive NSs give important constraints for neutron-star EoSs, which are demonstrated critically
by reproducing the neutron-star radii [22].

Recently, they have given a more precise measurement of the radius of PSR J0740+6620 using
updated NICER data as 𝑅 = 12.49+1.28−0.88 km with the determined mass 𝑀 = 2.08 ± 0.07𝑀⊙ [26].
We adopt their median values of 𝑀 = 2.1𝑀⊙ and the radius 𝑅2.1𝑀⊙

= 12.5 km at 𝑀 = 2.1𝑀⊙
for comparison with our calculated results. These values are used as the criterion for EoSs, which
is far more severe than the one using only the mass values such as 2𝑀⊙. In mass and radius (𝑀𝑅)
relations of neutron stars, the criterion for𝑀𝑅 curves is to reach the point (𝑀 = 2.1𝑀⊙, 𝑅2.1𝑀⊙

=
12.5 km).

There have been proposed several mechanisms to reproduce masses over 2𝑀⊙, solving the “hy-
peron puzzle". Among them, the baryonic approach is to introduce the repulsive hyperonic three-
body forces at the baryon level [28–35]. In [30–32], the multi-pomeron exchange potential (MPP)
was introduced as a model of universal repulsions among three and four baryons on the basis of the
extended soft core (ESC) baryon-baryon interaction model developed by two of the authors (T.R.
and Y.Y.) and M.M. Nagels [36–38]. In their modeling for hyperonic three-body repulsions, the
EoS softening by hyperon mixing is not completely recovered by the MPP repulsions: The max-
imum masses do not significantly exceed 2𝑀⊙, even if MPP repulsions are taken strong enough.
It seems difficult to reproduce both of 𝑀𝑚𝑎𝑥 ∼ 2.1𝑀⊙ and 𝑅2.1𝑀⊙

∼ 12.5 km by hadronic-matter
EoSs with hyperon mixing, as discussed in the following section.

The challenging subject is to study quark deconfinement phase transitions from a hadronic-
matter EoS to a sufficiently stiff quark-matter EoS giving 𝑀𝑚𝑎𝑥 ∼ 2.1𝑀⊙ and 𝑅2.1𝑀⊙

∼ 12.5 km.
It is known that quark-hadron phase transitions should be crossover or at most of weak first-order
in order to obtain EoSs stiff enough, because strong first-order transitions soften EoSs remarkably
[11–21]. Then, it is essential that repulsive effects in quark phases are needed to result in massive
stars over 2𝑀⊙. Without such repulsive effects, the quark mixing in neutron-star matter brings
about a remarkable softening of the EoS and a maximum mass is reduced to a value far less than
2𝑀⊙, where the softening is caused by changing of high-momentum neutrons to low-momentum
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quarks. In the Nambu-Jona-Lasinio (NJL) model, for instance, repulsions to stiffen EoSs are given
by vector interactions. In the case of our quark-hadron transition (QHT) model [21, 22], the quark-
quark (𝑞𝑞) repulsions composed of meson-exchange and one-gluon-exchange potentials.

Another type of quark phase in neutron-star interiors is given by the so-called quarkyonic matter
[22, 39–46], where the degrees of freedom inside the Fermi sea are treated as free quarks, and
nucleons exist at the surface of the Fermi sea. In the quarkyonic matter, the existence of free
quarks inside the Fermi sphere gives nucleons extra kinetic energy by pushing them up to higher
momenta, leading to increasing pressure. This mechanisms stiffening EoSs are completely different
from the quark-hadron transition models in which the essential roles for EoS stiffening are played
by the 𝑞𝑞 repulsions. In our previous work [22], we investigated the roles of quark-quark (𝑞𝑞)
and quark-neutron (𝑞𝑛) interactions in the quakyonic matter, which were not taken into account
in [41]. However, there remain two important problems in our treatment: The first is that the
roughly approximated version is used for the 𝑞𝑛 interactions. The second is that in quakyonic
matter formalism [41] the thickness parameter Δ for the neutron Fermi layer plays the decisive
role for neutron-star 𝑀𝑅 (mass-radius) curves, and then no important conclusions can be drawn
regarding minor effects of 𝑞𝑛/𝑞𝑞 interactions.

In this paper, we propose the nucleon-quark mixed matter (NQMM) model in the Brueckner-
Hartree-Fock (BHF) framework, which is suitable to clarify effects of quark-nucleon (𝑞𝑁) and 𝑞𝑞
interactions. As a first step, in treating mixed-matter hyperon and 𝑠-quark mixings are not included
for simplicity.

In this framework quark densities in nucleon-quark mixed matter are determined by equilibrium
conditions between chemical potentials of neutrons and free 𝑢 and 𝑑 quarks without using ad hoc
parameters such as the Fermi-layer thickness Δ. We define here the two models of nucleon-quark
mixed matter; NQMM-A and NQMM-B. In NQMM-A, nucleons (free quarks) occupies simply
their Fermi sphere from zero momentum to Fermi momentum 𝑘𝑁𝐹 (𝑘𝑞𝐹 ). In NQMM-B, the Fermi
repulsion effects for nucleons are incorporated on the basis of quakyonic matter, in which nucleon
Fermi levels are pushed up to those with higher momenta by the Fermi exclusion for nucleons from
the quark Fermi sphere. In the derivations of EoSs for NQMM-A and NQMM-B, calculations are
performed with use of the realistic 𝑞𝑁 interactions given in [49, 50] together with the realistic
𝑁𝑁 and 𝑞𝑞 interactions. The derived EoSs are used to obtain the neutron-star 𝑀𝑅 curves by
solving the Tolmann-Oppenheimer-Volkoff (TOV) equations. Then, it is possible to study how the
conditions of reproducing 𝑀𝑚𝑎𝑥 ∼ 2.1𝑀⊙ and 𝑅2.1𝑀⊙

∼ 12.5 km are realized by our EoSs.
This paper is organized as follows: In Sect.II-A, the hadronic-matter EoSs in our previous works

[30–32] are recapitulated, which is the basis of deriving the nucleon-quark mixed matter EoS. In
Sect.II-B, our 𝑞𝑁 interactions are explained, which play important roles for the derived EoSs and
neutron-star 𝑀𝑅 curves. In Sect.II-C, our EoSs for NQMM-A and NQMM-B are formulated in
the BHF framework. In Sect.III-A, the calculated results are shown for densities, energy densities,
chemical potentials and pressures in nucleon-quark mixed matter, leading to our EoSs. In III-B, the
𝑀𝑅 curves of neutron stars are obtained by solving the TOV equation with our EoSs for NQMM-A
and NQMM-B. The conclusion of this paper is given in Sect.IV.
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II. NUCLEON-QUARK MIXED MATTER

A. Toward quark mixing in hadronic matter

The hadronic matter is defined as 𝛽-stable hyperonic nuclear matter. As a starting point for
investigating the nucleon-quark mixed matter, we recapitulate a typical hadronic-matter EoS com-
posed of 𝑛, 𝑝+, Λ, 𝑒− in the BHF framework with use of the ESC baryon-baryon (𝐵𝐵) interaction
model [30–32].

Our baryonic interactions are composed of two-body part 𝑉𝐵𝐵 and three-body part 𝑉𝐵𝐵𝐵. 𝐵𝐵
G-matrix interactions 𝐵𝐵 are derived from𝐵𝐵 bare interactions 𝑉𝐵𝐵 or 𝑉𝐵𝐵+𝑉𝐵𝐵𝐵 [30]. They are
given for each (𝐵𝐵′, 𝑇 , 𝑆, 𝑃 ) state, 𝑇 , 𝑆 and 𝑃 being isospin, spin and parity in a two-body state,
respectively, and represented as 𝑇𝑆𝑃𝐵𝐵′ . In the following sections, we need only the nucleon-nucleon
sectors, 𝑆𝑃𝑁𝑁 .

As is well known, the nuclear-matter EoS is stiff enough to assure neutron-star masses over
2𝑀⊙, if the strong three-nucleon repulsion is taken into account. However, there appears a re-
markable softening of EoS by inclusion of exotic degrees of freedom such as hyperon mixing. As
one of the ideas to avoid this “hyperon puzzle", it was proposed that the three-body repulsions
worked universally for every kind of baryons [28]. In [30–32], the multi-pomeron exchange poten-
tial (MPP) was introduced as a model of universal repulsions among three and four baryons. The
recent ESC works are mentioned in [36–38].

In [32] they proposed three versions of MPP (MPa, MPa+, MPb), where MPa and MPa+ (MPb)
include the three- and four-body (only three-body) repulsions. The obtained 𝑀𝑅 curves are given
in Fig.3 [32], where the curves move upwards with increase of MPP repulsions. The important
criterion in this paper is the value of 𝑅1.4𝑀⊙

: We adopt MPb, giving 𝑅1.4𝑀⊙
≈ 12.4 km. As shown

later, this 𝑅1.4𝑀⊙
value of MPb persists in the nucleon-quark mixed matter EoS.

In [32], values of 𝑀𝑚𝑎𝑥 and 𝑅2𝑀⊙ are obtained from the EoSs including MPb for 𝛽-stable
nuclear matter with and without Λ mixing, which are 𝑀𝑚𝑎𝑥∕𝑀⊙= 2.06 (2.19), and 𝑅2𝑀⊙

= 11.3
km (11.8 km) for the EoS with (without) Λ mixing. The values of 𝑅2𝑀⊙

for the hadronic matter
EoSs are substantially smaller than 12.5 km. By such hadronic-matter EoSs, it difficult to satisfy
the criterion reproducing (𝑀𝑚𝑎𝑥 = 2.1𝑀⊙, 𝑅2.1𝑀⊙

= 12.5 km). It is commented that the three-
nucleon repulsion included in MPb is stronger than the corresponding one (UIX) in the standard
model by APR [47] giving rise to 𝑅1.4𝑀⊙

≈ 11.6 km [48].

In order to explore possibilities of getting larger values of 𝑅2.1𝑀⊙
under 𝑀𝑚𝑎𝑥 ∼ 2.1𝑀⊙, the

BHF framework for hadronic matter is extended to the nucleon-quark mixed matter composed of
𝑛, 𝑝, 𝑢, 𝑑 and 𝑒−, where strangeness degrees of freedom are not taken into account for simplicity.
Because 𝑢 and 𝑑 quarks are treated in the BHF base, it is necessary to use quark-nucleon (𝑞𝑁) and
quark-quark (𝑞𝑞) two-body interactions in BHF calculations as well as 𝑁𝑁 interactions. In the
treatment of quark mixing, we learn from the simple case of Λ mixing in neutron matter where Λ
mixing rates are determined by chemical equilibrium conditions 𝜇𝑛 = 𝜇Λ with chemical potentials
𝜇𝑛 and 𝜇Λ of neutron and Λ, respectively. In the case of neutron-quark mixing, correspondingly,
quark mixing rates in neutron matter are determined by chemical equilibrium conditions 𝜇𝑛 =
𝜇𝑢 + 2𝜇𝑑 with chemical potentials 𝜇𝑢 and 𝜇𝑑 of 𝑢 and 𝑑 quarks, respectively.
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B. 𝑞𝑁 and 𝑞𝑞 interactions

In BHF calculations of nucleon-quark mixed matter, quark-quark (𝑞𝑞) and quark-nucleon (𝑞𝑁)
two-body interactions are needed as well as 𝑁𝑁 interactions. In our previous works [21, 22], the
quark-matter calculations were performed with use of the two-body 𝑞𝑞 interaction. The basic part
of this 𝑞𝑞 interaction is given by the extended meson-exchange (EME) potential 𝑉 (𝑞𝑞)

𝐸𝑀𝐸 , derived
from the ESC 𝐵𝐵 potential so that the 𝑞𝑞𝑀 couplings are related to the 𝐵𝐵𝑀 couplings through
folding procedures with Gaussian baryonic quark wave functions. In [21], this 𝑞𝑞 potential was
named as Q0, and the more repulsive versions are given by adding instanton-exchange and one-
gluon exchange (OGE) potentials (Q1), and furthermore the multi-pomeron exchange potential
(Q2). In this work, we use the simplified version Q3 composed of EME and OGE potentials, being
adjusted so as to be similar to Q2. Qualitatively, however, resulting EoSs do not much depend on
whether Q0, Q1, Q2 or Q3 is used for 𝑞𝑞 interactions, because quark densities in nucleon-quark
mixed matter are not large compared to nucleon densities and partial pressures of free quarks are
far smaller than those of nucleons.

In [49], 𝑞𝑞 potentials 𝑉 (𝑞𝑞)
𝐸𝑀𝐸 and 𝑞𝑁 potentials 𝑉 (𝑞𝑁)

𝐸𝑀𝐸 are derived together, in which meson-
quark-quark and meson-nucleon-nucleon couplings are determined consistently. In addition to the
meson-exchange potentials, we introduce the di-quark exchange (DQE) potential 𝑉 (𝑞𝑁)

𝐷𝑄𝐸 derived in
[50]: The total 𝑞𝑁 interaction is

𝑉 (𝑞𝑁) = 𝑉 (𝑞𝑁)
𝐸𝑀𝐸 + 𝑉 (𝑞𝑁)

𝐷𝑄𝐸 . (2.1)

As shown later, 𝑉 (𝑞𝑁)
𝐷𝑄𝐸 plays a more important role than 𝑉 (𝑞𝑁)

𝐸𝑀𝐸 in our calculations.
In Appendix A a brief description of the derivation of the di-quark exchange contact potential

is given. This is based on a phenomenological description of the confinement-deconfinement at
high nucleon-densities via a nucleon-triquark 𝜆3-coupling, using a quark-diquark description of the
triquark. The resulting NJL-type quark-nucleon interaction is

(2)
𝑖𝑛𝑡 = −𝜆23

(

�̄�(𝑥)𝛾5𝛾𝜇𝝉𝑄
)

⋅
(

�̄�𝛾5𝛾
𝜇𝝉𝜓

)

∕2 (2.2)

with  = ℏ𝑐. (Choosing  differently merely means a rescaling of 𝜆3.) In (2.2) we used the
isospin spinor 𝑄 = (𝑢, 𝑑).

The di-quark exchange (central) potential from the Lagrangian (2.2) is given by [50]

𝑉 (𝑞𝑁)
𝐷𝑄𝐸 (𝑟) = −𝜆23

Λ
4𝜋

√

𝜋
Λ2

2
(𝝉1 ⋅ 𝝉2)(𝝈1 ⋅ 𝝈2) 𝑥 ⋅

×
[

1 − 3Λ2

4𝑚𝑁𝑚𝑞

(

1 − Λ2𝑟2

6

)]

exp
[

−Λ2𝑟2

4

]

, (2.3)

where the baryon-triquark coupling 𝜆3 in MeV−2, 𝑥 the space-exchange operator, and Λ and ,
can be treated as adjustable parameters.

Considering the chiral symmetry breaking as the QCD non-perturbative effect, constituent quark
masses in quark matter become smaller than those in vacuum and move to current masses in the
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high-density limit. In our previous works [21, 22], we introduced phenomenologically the density-
dependent quark mass

𝑀∗
𝑄(𝜌𝑄) =𝑀0∕[1 + exp{𝛾(𝜌𝑄 − 𝜌𝑐}] + 𝑚0 + 𝐶 (2.4)

with 𝐶 =𝑀0 −𝑀0∕[1 + exp(−𝛾𝜌𝑐)] assuring 𝑀∗
𝑄(0) =𝑀0 +𝑚0, where 𝜌𝑄 is quark density. The

effect of using this quark masses is demonstrated in Fig.11, where the parameters are chosen as
𝜌𝑐 = 7𝜌0, 𝑀0 = 362 MeV and 𝛾 = 1.2 [22].

C. Framework of Nucleon-Quark mixed matter

Our nucleon-quark mixed matter is composed of nucleons (𝑛 and 𝑝+), quarks (𝑢 and 𝑑) and elec-
trons (𝑒−), where a nucleon number density 𝜌𝑁 is given by a sum of neutron and proton densities,
𝜌𝑁 = 𝜌𝑛+𝜌𝑝, and a quark number density 𝜌𝑞 by a sum of u-quark and d-quark densities, 𝜌𝑞 = 𝜌𝑢+𝜌𝑑 .
In our treatment of nucleon-quark mixed matter, the BHF framework is adopted on the basis of two-
body 𝑁𝑁 , 𝑞𝑞 and 𝑞𝑁 potentials. Correlations induced by bare potentials are renormalized into
coordinate-space G-matrix interactions, treated as effective two-body interactions used in matter
calculations. G-matrix interactions 𝑁𝑁 ′ , 𝑞𝑁 , 𝑞𝑁 and 𝑞𝑞′ with 𝑁,𝑁 ′ = 𝑛, 𝑝 and 𝑞, 𝑞′ = 𝑢, 𝑑 are
derived from the above bare𝑁𝑁 , 𝑞𝑁 and 𝑞𝑞 interactions. They are given for each (𝑇 , 𝑆, 𝑃 ) state,
𝑇 , 𝑆 and 𝑃 being isospin, spin and parity in a two-body state, respectively.

Single particle potentials of 𝑁 and 𝑞 are given by

𝑈𝑁 (𝑘) =
∑

𝑁 ′=𝑛,𝑝
𝑈 (𝑁 ′)
𝑁 (𝑘) +

∑

𝑞′=𝑢,𝑑
𝑈 (𝑞′)
𝑁 (𝑘)

=
∑

𝑁 ′=𝑛,𝑝

∑

𝑘′<𝑘(𝑁
′)

𝐹

⟨𝑘𝑘′|𝑁𝑁 ′|𝑘𝑘′⟩

+
∑

𝑞′=𝑢,𝑑

∑

𝑘′<𝑘(𝑞
′)

𝐹

⟨𝑘𝑘′|𝑁𝑞′|𝑘𝑘′⟩ (2.5)

𝑈𝑞(𝑘) =
∑

𝑞′=𝑢,𝑑
𝑈 (𝑞′)
𝑞 (𝑘) +

∑

𝑁 ′=𝑛,𝑝
𝑈 (𝑁 ′)
𝑞 (𝑘)

=
∑

𝑞′=𝑢,𝑑

∑

𝑘′<𝑘𝑞
′
𝐹

⟨𝑘𝑘′|𝑞𝑞′|𝑘𝑘′⟩

+
∑

𝑁 ′=𝑛,𝑝

∑

𝑘′<𝑘(𝑁
′)

𝐹

⟨𝑘𝑘′|𝑞𝑁 ′|𝑘𝑘′⟩ (2.6)

where 𝑘𝑁𝐹 and 𝑘𝑞𝐹 is the Fermi momenta of nucleon 𝑁 and quark 𝑞, respectively. Spin and isospin
quantum numbers are implicit.

The quark energy density for 𝑞 = 𝑢, 𝑑 in our nucleon-quark mixed matter is given by

𝜀𝑞 = 𝑚𝑞𝜌𝑞 + 𝑔𝑠𝑁𝑐 ∫

𝑘𝑞𝐹

0

𝑑3𝑘
(2𝜋)3

{√

ℏ2𝑘2 + 𝑚2
𝑞 +

1
2
𝑈𝑞(𝑘)

}

. (2.7)
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where Fermion spin and quark-color degeneracies give rise to 𝑔𝑠 = 2 and 𝑁𝑐 = 3, respectively.
The nucleon energy density for 𝑁 = 𝑛, 𝑝 is given by

𝜀𝑁 = 𝑚𝑁𝜌𝑁 + 𝜏𝑁 + 𝜐𝑁

= 𝑚𝑁𝜌𝑁 + 𝑔𝑠 ∫

𝑘𝑁1

𝑘𝑁0

𝑑3𝑘
(2𝜋)3

{

√

ℏ2𝑘2 + 𝑚2
𝑁 + 1

2
𝑈𝑁 (𝑘)

}

. (2.8)

It is necessary, here, to explain upper and lower limits of integral (𝑘𝑁0 and 𝑘𝑁1 ). In the simple case
of deriving NQMM-A EoSs, they are chosen as 𝑘𝑁1 = 𝑘𝑁𝐹 and 𝑘𝑁0 = 0 as usual.

On the other hand, in the case of deriving NQMM-B EoSs, according to the concept of the
quarkyonic matter [41], where interacting quarks near the Fermi sea form interacting neutrons, and
the remaining quarks fill the lowest momenta up to 𝑘𝑞𝐹 . The nucleon Fermi levels of 0 < 𝑘 < 𝑘𝑁𝐹
are pushed up to those of 𝑘𝑁0 < 𝑘 < 𝑘𝑁1 as a result that nucleons below 𝑘𝑁0 are excluded by the
Pauli principle.

Then, 𝑘𝑁0 and 𝑘𝑁1 are given as follows: The density of the nucleon Fermi sphere with radius 𝑘𝑁0
is given by (𝑘𝑁0 )3

3𝜋2
, and the density of the quark Fermi sphere with radius 𝑘𝑞𝐹 is given by 𝜌𝑞 =

3𝑁𝑐 (𝑘
𝑞
𝐹 )

3

3𝜋2
.

Considering that the 𝑘𝑁0 value is determined by the condition that the densities of nucleon and
quark Fermi spheres are equal to each other, we have

(𝑘𝑁0 )
3

3𝜋2
= 𝜌𝑞 , (2.9)

from which the value of 𝑘𝑁0 is obtained. The value of 𝑘𝑁1 is obtained from the relation

(𝑘𝑁1 )
3

3𝜋2
−

(𝑘𝑁0 )
3

3𝜋2
=

(𝑘𝑁𝐹 )
3

3𝜋2
= 𝜌𝑁 . (2.10)

These values of 𝑘𝑁0 and 𝑘𝑁1 are lower and upper limits of the integral in Eq.(2.8). The relations (2.9)
and (2.10) are considered as plausible assumptions to determine 𝑘𝑁0 and 𝑘𝑁1 , respectively, which
plays a decisive role to give nucleon partial pressures pushed up by the quark Fermi repulsion in
the NQMM-B case. In this work, it is out of our scope to derive the quark Fermi repulsion more
microscopically.

Here, the potential-energy part in Eq.(2.8) is approximated by the following expression

�̄�𝑁 = 𝑔𝑠 ∫

𝑘𝑁𝐹

0

𝑑3𝑘
(2𝜋)3

{1
2
𝑈𝑁 (𝑘)

}

, (2.11)

meaning that the Fermi repulsion for low-momentum neutrons are determined by kinetic-energy
densities. Furthermore, this Fermi exclusion effects for low-momentum components are neglected
for protons.

Our total energy density is given by

𝜀 = 𝜀𝑛 + 𝜀𝑝 + 𝜀𝑢 + 𝜀𝑑 + 𝜀𝑒 . (2.12)
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The chemical potential 𝜇𝑖 (𝑖 = 𝑛, 𝑝, 𝑢, 𝑑, 𝑒) and pressure 𝑃 are expressed as

𝜇𝑖 =
𝜕𝜀𝑖
𝜕𝜌𝑖

, (2.13)

𝑃 =
∑

𝑖=𝑛,𝑝,𝑢,𝑑,𝑒
𝜇𝑖𝜌𝑖 − 𝜀 . (2.14)

When 𝑃 and 𝜀 are given, sound velocities are defined by 𝑐2𝑠 = 𝜕𝑃∕𝜕𝜀. Our BHF framework
is basically non-relativistic, and a causal condition of 𝑐𝑠 < 𝑐 is not always assured: In regions of
𝑐𝑠 > 𝑐, sound velocities are approximated to be 𝑐𝑠 = 𝑐.

In the EoS of 𝛽-stable nucleon-quark mixed matter composed of 𝑛, 𝑝, 𝑢, 𝑑 and 𝑒, the equilibrium
conditions are given as

(1) chemical equilibrium conditions,

𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒 (2.15)
𝜇𝑛 = 𝜇𝑢 + 2𝜇𝑑 (2.16)

(2) charge neutrality,

𝜌𝑝 = 𝜌𝑒 (2.17)

(3) baryon number conservation,

𝜌 = 𝜌𝑛 + 𝜌𝑝 + 𝜌𝑄 , (2.18)

where 𝜌𝑄 is a baryonic (3 quarks) number density which is related to a quark number density 𝜌𝑞
by 𝜌𝑄 = 𝜌𝑞∕3 with 𝜌𝑞 = 𝜌𝑢 + 𝜌𝑑 , and 𝜌 is a total number density. For simplicity, the ratio of 𝑢
and 𝑑 quarks in nucleon-quark mixed matter is assumed to be 𝜌𝑢∕𝜌𝑑 = 1∕2 as well as the one in
neutron-quark mixed matter, and the equilibrium condition 𝜇𝑝 = 2𝜇𝑢+𝜇𝑑 is not taken into account.

Defining 𝑌𝑝 = 𝜌𝑝∕𝜌𝑁 with 𝜌𝑁 = 𝜌𝑛 + 𝜌𝑝 and 𝑌𝑄 = 𝜌𝑄∕(𝜌𝑁 + 𝜌𝑄), energy densities (𝜀𝑛, 𝜀𝑝,
𝜀𝑢, 𝜀𝑑) and chemical potentials (𝜇𝑛, 𝜇𝑝, 𝜇𝑢, 𝜇𝑑) are given as a function of 𝜌𝑁 , 𝑌𝑝 and 𝑌𝑄. Then,
𝑌𝑝 and 𝑌𝑄 values included in the EoS are obtained by solving the equations 𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒 (2.15)
and 𝜇𝑛 = 𝜇𝑢 + 2𝜇𝑑 (2.16). Solutions are obtained in an approximate way: First, 𝑌𝑝 values are
obtained by solving the equation 𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒 for given values of 𝜌𝑁 within nucleon components
(taking 𝑌𝑄 = 0) in nucleon-quark mixed matter. Next, 𝑌𝑄 values are obtained by solving the
equation 𝜇𝑛 = 𝜇𝑢+2𝜇𝑑 for given values of 𝜌𝑁 and 𝑌𝑝. The radius of the quark Fermi sphere (Fermi
momentum) 𝑘𝑞𝐹 is related to 𝑌𝑄 by

𝑘𝑞𝐹 = (3𝜋2𝑌𝑄(𝜌𝑁 + 𝜌𝑄))1∕3 . (2.19)

Then, lower and upper limits of the integral in Eq.(2.8), 𝑘𝑁0 and 𝑘𝑁1 , are obtained by using (2.9)
and (2.10), meaning that the 𝑌𝑄 values determine the nucleon Fermi layer pushed up by the Fermi
repulsion.

The quark-mixing rates 𝑌𝑄 are determined by the equilibrium condition Eq.(2.16) for nucleon
and quark chemical potentials. The latter includes constituent quark masses 𝑚𝑞, values of which
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are related sensitively to onset densities of quark mixing in nucleonic matter. A simple choice of
constituent quark mass is 𝑚𝑞 = 𝑚𝑁∕3 = 313 MeV. In [55], however, they obtain 𝑚𝑞 = 362 MeV
which is determined to reproduce 𝑚𝑁 = 938 MeV with the confining and one-gluon exchange
potentials among three quarks. We adopt their values of 362 MeV for constituent quark masses.
It is confirmed that this large value of 362 MeV is favorable to give larger values of quark onset
densities than the small value of 313 MeV, being important for deriving reasonable 𝑀𝑅 curves of
neutron stars. For further tuning of quark onset densities, we introduce corrections for mass terms
of quark chemical potentials by replacing 𝑚𝑞 to 𝑚𝑞 + Δ𝑚𝑞 with parameters Δ𝑚𝑞. This tuning of
quark onset densities by 𝑚𝑞 is important for obtaining reasonable 𝑀𝑅 curves.

In the above, our quark states in nucleon-quark mixed matter are represented in the BHF frame-
work, where formations of e.g. superconducting pairs are neglected, which could probably soften
the EoS. In the confinement-deconfinement mechanism considered in this paper the naturally ap-
pearing diquarks have spin-1. This means that in the ground-state of matter they do not condensate
because of rotational invariance, unless one assumes e.g. a strong spin-spin attraction between pairs
causing (quasi) spin-less bound states. An extension to include color superconducting spin-zero
diquarks with use of the Hartree-Fock-Bogoliubov (HFB) theory and the impact on the softening
of the EoS is an interesting future problem.

III. RESULTS AND DISCUSSION

The EoSs are derived from NQMM-A and NQMM-B for nucleon-quark mixed matter, respec-
tively, without and with the Pauli-exclusion effect for neutrons from the quark Fermi sphere. The
adjustable parameters included in these EoSs are (1) the nucleon-triquark coupling constant 𝜆3 in
𝑉 (𝑄𝑁)
𝐷𝑄𝐸 and (2) the corrections Δ𝑚𝑞 for constituent quark masses:

(1) Nucleon-triquark coupling constants are chosen as 𝜆3∕
√

4𝜋= 0, 0.1, 0.2, 0.4, 0.8, 1.5, and re-
sulting 𝑞𝑁 interactions are denoted as 𝜆0, 𝜆01, 𝜆02, 𝜆04, 𝜆08, 𝜆15, respectively. Here 𝜆3∕

√

4𝜋=0
(𝜆0) means to take only the meson-exchange parts 𝑉 (𝑄𝑁)

𝐸𝑀𝐸 without the direct-quark-exchange parts
𝑉 (𝑄𝑁)
𝐷𝑄𝐸 . The limiting case of switching off all 𝑞𝑁 and 𝑞𝑞 interactions is denoted as "𝑞𝑡", where only

kinetic energies are taken into account in free quark states. In Fig.11, the density-dependent quark
mass Eq.(2.4) is used in the 𝜆15 case, denoted as 𝜆15′.
(2) Parameters Δ𝑚𝑞 control onset densities for quark mixing: In the cases of NQMM-A (NQMM-
B), parametersΔ𝑚𝑞 are chosen so that the onset density is 2.5𝜌0, 2.0𝜌0 and 1.6𝜌0 with 𝜌0=0.17fm−3,
which are denoted as NQMM A16, NQMM A20 and NQMM A25 (NQMM B16, NQMM B20 and
NQMM B25), respectively. For instance, a NQMM-A EoS for 𝜆15 with an onset density 2.0𝜌0 is
denoted as NQMM A20-𝜆15.

For each 𝑞𝑁 interaction, values of Δ𝑚𝑞 are determined so as to give onset densities 2.5𝜌0, 2.0𝜌0
and 1.6𝜌0. The determined values of Δ𝑚𝑞 are tabulated in Table I.
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TABLE I: Values of Δ𝑚𝑞 (MeV).

𝑞𝑡 𝜆0 𝜆01 𝜆02 𝜆04 𝜆08 𝜆15
2.5𝜌0 15. 10. 25. 40. 65. 120. 200.
2.0𝜌0 −5. −15. −5. 10. 30. 70. 140.
1.6𝜌0 −20. −28. −20. −10. 5. 40. 90.

A. EoS

Let us demonstrate the repulsive 𝑞𝑁 interactions. In Fig.1, averaged potential energy of neutron
⟨𝑈𝑛⟩ in the case of 𝑌𝑝 = 0 are drawn as a function of neutron number density 𝜌𝑛. ⟨𝑈𝑛⟩ is defined
by the expression

⟨𝑈𝑛⟩ =
∑

𝑞=𝑢,𝑑

1
𝜌𝑞 ∫

𝑘𝑞𝐹

0

𝑑3𝑘
(2𝜋)3

𝑈 (𝑞)
𝑛 (𝑘) (3.1)

where 𝑈 (𝑞)
𝑛 (𝑘) given by Eq.(2.5) are obtained from 𝑞𝑛 interactions. Dotted, short-dashed and solid

curves are obtained in the cases of 𝑞𝑛 interactions 𝜆0, 𝜆04 and 𝜆15, respectively, where thick (thin)
curves are in the cases of 𝑌𝑄 = 0.2 (0.6). It is noted that the repulsive contributions of ⟨𝑈𝑛⟩ by
𝑞𝑛 repulsions increase rapidly with density 𝜌𝑛, which work to stiffen EoSs in high density regions.
Even in the case of 𝜆0, there exists the weakly repulsive contribution from 𝑉 (𝑄𝑁)

𝐸𝑀𝐸 .
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FIG. 1: (Color online) Averaged potential energy of neutron ⟨𝑈𝑛⟩ given by Eq.(2.5) as a function of neutron
number density 𝜌𝑛. Dotted, short-dashed and solid curves are obtained in the cases of 𝜆0, 𝜆04 and 𝜆15,
respectively, Thick (thin) curves are in the cases of 𝑌𝑄 = 0.2 (0.6).

In our nucleon-quark mixed matter, the quark mixing rate 𝑌𝑄 is determined by the chemical
equilibrium condition 𝜇𝑛 = 𝜇𝑢 + 2𝜇𝑑 Eq.(2.16) with chemical potentials 𝜇𝑛, 𝜇𝑢 and 𝜇𝑑 . In Fig.2,
values of 𝑌𝑄 are given as a function of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄. The solid, short-dashed, dotted
and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case of onset
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FIG. 2: (Color online) Quark mixing rates 𝑌𝑄 given as a function of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄. Solid,
short-dashed, dotted and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case
of onset density 2.0𝜌0. Dot-dashed curve is proton mixing rates 𝑌𝑃 as a function of 𝜌.
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FIG. 3: (Color online) Neutron (quark) chemical potentials 𝜇𝑛 (𝜇𝑢 + 2𝜇𝑑) as a function of 𝑌𝑄 in the case of
𝜌 = 𝜌𝑁 + 𝜌𝑄 = 4𝜌0. Solid, short-dashed, dotted and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and
𝑞𝑡, respectively, in the case of onset density 2.0𝜌0. Increasing and decreasing curves show 𝜇𝑢 + 2𝜇𝑑 and 𝜇𝑛,
respectively. 𝑌𝑄 values satisfying equilibrium conditions (𝜇𝑛 = 𝜇𝑢 + 2𝜇𝑑) are given by abscissa values of
cross points, where 𝑌𝑄 values for 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡 are 0.22, 0.205, 0.19 and 0.16, respectively.

density 2.0𝜌0. In the important density region lower than about 5𝜌0, the 𝑌𝑄 values are noted to
become larger, as the 𝑞𝑁 interactions become more repulsive from 𝜆0 to 𝜆15. For reference, the
𝑌𝑝 values as a function of 𝜌 are shown by the dot-dashed curve.

The relations between the 𝑌𝑄 values and the strengths of 𝑞𝑁 repulsions are demonstrated in
Fig.3, where the quark and neutron chemical potentials 𝜇𝑢 + 2𝜇𝑑 and 𝜇𝑛 are drawn as a function of
𝑌𝑄 in the case of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄 = 4𝜌0. The solid, short-dashed, dotted and thin-solid
curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case of onset density 2.0𝜌0.
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FIG. 4: (Color online) Partial pressures of nucleons as a function of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄. The dot-
dashed curve is pressures in nucleonic matter. Solid, short-dashed, dotted and thin-solid curves are pressures
for 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case of NQMM-A20.
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FIG. 5: (Color online) Partial pressures of free quarks as a function of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄. Sold,
short-dashed, dotted and thin-solid curves are pressures for 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case of
NQMM-A20.

The increasing (decreasing) curves show 𝜇𝑢 + 2𝜇𝑑 (𝜇𝑛), and the chemical equilibrium conditions
𝜇𝑛 = 𝜇𝑢 + 2𝜇𝑑 are satisfied at cross points of increasing and decreasing curves, namely 𝑌𝑄 val-
ues satisfying equilibrium conditions are given by abscissa values of cross points, as indicated by
vertical lines. The 𝑌𝑄 values at cross points are noted to become larger as the 𝑞𝑁 interactions
become more repulsive, which is the reason why the 𝑌𝑄 values in Fig.2 become larger as the 𝑞𝑁
interactions become more repulsive.

In Fig.4 and Fig.5, partial pressures of nucleons and free quarks, 𝑃𝑁 and 𝑃𝑄, are given as a
function of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄, respectively. In Fig.4, the dot-dashed curve is pressures
in nucleonic matter. The solid, short-dashed, dotted and thin-solid curves are pressures for 𝜆15,
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𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case of NQMM-A20. In Fig.5, solid, short-dashed, dotted and
thin-solid curves are pressures 𝑃𝑄 of free quarks for 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively, in the case
of NQMM-A20. 𝑃𝑄 values increase when the 𝑞𝑁 repulsions and 𝑌𝑄 values increase from 𝜆0 to
𝜆15. Anyway, partial pressures of free quarks are substantially smaller than those of neutrons.
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FIG. 6: (Color online) Pressures as a function of energy densities for NQMM-𝜆15. Solid, short-dashed and
dotted curves are in the cases of A20, A25 and A16. The dot-dashed curve is pressures in nucleonic matter.
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FIG. 7: (Color online) Pressures as a function of energy densities for NQMM-A20. Solid, short-dashed,
dotted and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively. The dot-dashed curve is
pressures in nucleonic matter.

In Fig.6, pressures 𝑃 for NQMM-A EoSs are drawn as a function of the energy density 𝜀, that
is 𝑃 (𝜀), in the cases of 𝜆15 with different quark onset densities. The solid, short-dashed and dotted
curves are in the cases of A20, A25 and A16, respectively. The dot-dashed curve is pressures in
nucleonic matter. The branching points of the above three curves from this dot-dashed curve are
related to the quark onset densities. Sudden increase in pressure at a quark onset point means that
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the derivative 𝜕𝑃∕𝜕𝜀 is discontinuous, and the phase transition from nucleonic matter to nucleon-
quark mixed matter is second-order. As shown later, such a rapid change of pressure for energy
density produces a peak in the speed of sound [20].

In Fig.7, pressures 𝑃 for NQMM-A20 EoSs are drawn as a function of the energy density 𝜀 in the
case of quark onset density 2.0𝜌0. The dot-dashed curve is pressures in nucleonic matter. The solid,
short-dashed, dotted and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively. The
solid curve in this figure is the same as the solid one in Fig.6, both of which are obtained by NQMM
A20-𝜆15. One should note, here, the remarkable reduction of pressures from the dot-dashed curve
for nucleonic matter to the thin-solid curve (𝑞𝑡), which can be considered as the EoS softening
caused by quark mixing in the case of no 𝑞𝑁 and 𝑞𝑞 repulsions. In the cases of 𝜆15 and 𝜆04 with
strong 𝑞𝑁 di-quark repulsions, the EoS softening is recovered by sudden increases in pressure at
quark onset points. In the case of 𝜆0, such effects are not so noticeable.
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FIG. 8: (Color online) Pressures as a function of energy densities for NQMM-B20 EoSs. Solid, short-
dashed, dotted and thin-solid curves are in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively. The dot-dashed
curve is pressures in nucleonic matter.

In Fig.8, pressures 𝑃 are drawn as a function of the energy density 𝜀 for NQMM-B20 EoSs with
quark onset density 2.0𝜌0. The dot-dashed curve is pressures in nucleonic matter. The solid, short-
dashed, dotted and thin-solid curves are obtained in the cases of 𝜆15, 𝜆04, 𝜆0 and 𝑞𝑡, respectively.
These curves are noted to be above the dot-dashed curve for nucleonic matter. The curves for 𝜆15
and 𝜆04 are pushed up by the combined effects of the Fermi repulsions for nucleons from the quark
Fermi sphere and the di-quark exchange 𝑞𝑁 repulsions.

In Fig.9, pressures 𝑃 for NQMM-𝜆02 EoSs are drawn as a function of the energy density 𝜀 for
different quark onset densities. The solid, short-dashed and dotted curves are in the cases of B20,
B25 and B16, respectively. The solid curve in this figure is the same as the solid one in Fig.8,
both of which are obtained for NQMM B20-𝜆02. The dot-dashed curve is pressures in nucleonic
matter. The different quark onset densities lead to the different branching points from the dot-
dashed curve. Sudden increase in pressure at a quark onset point (second-order phase transition)
is related to rising of a 𝑀𝑅 curve at a corresponding onset density, producing a peak in the speed
of sound.
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FIG. 9: (Color online) Pressures as a function of energy densities for NQMM-𝜆02. Solid, short-dashed and
dotted curves are in the cases of B20, B25 and B16. The dot-dashed curve is pressures in nucleonic matter.
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FIG. 10: (Color online) Sound velocities 𝑐2𝑠 = 𝜕𝑃∕𝜕𝜀 are drawn as a function of baryonic density 𝜌 =
𝜌𝑁 + 𝜌𝑄. The dot-dashed curve is sound velocities in the nucleonic matter. Solid, short-dashed and dotted
curves are sound velocities in nucleon-quark mixed matter for NQMM A20-𝜆15, A25-𝜆15 and B20-𝜆02,
respectively.

In Fig.10, sound velocities 𝑐2𝑠 = 𝜕𝑃∕𝜕𝜀 in nucleon-quark mixed matter are drawn as a function
of total density 𝜌 = 𝜌𝑁 + 𝜌𝑄. The dot-dashed curve is sound velocities in the nucleonic mat-
ter. Solid, short-dashed and dotted curves are sound velocities in the cases of NQMM A20-𝜆15,
A25-𝜆15 and B20-𝜆02, respectively, where the peaks appear at quark onset densities 2.0𝜌0 (A20
and B20) and 2.5𝜌0 (A25). The peak structures of sound velocities are produced by the second-
order phase transitions from nucleonic to nucleon-quark mixed states at quark onset densities. This
mechanism is the same as the one in [41].
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FIG. 11: (Color online) Star masses as a function of radius 𝑅 for NQMM-A EoSs. In the left panel, thin-
solid, dotted, short-dashed, dashed, solid and short-dotted curves are for 𝑞𝑡, 𝜆0, 𝜆04, 𝜆08, 𝜆15 and 𝜆15′,
respectively, in the cases of the onset density 2.0𝜌0 (A20). In the right panel, 𝑀(𝑅) curves are for 𝜆15 with
different quark onset densities. Solid, short-dashed and dashed curves are in the cases of onset densities
2.5𝜌0 (A25), 2.0𝜌0 (A20) and 1.6𝜌0 (A16), respectively. In both panels, the dot-dashed curves are for the
nucleonic matter EoS.

B. 𝑀𝑅 diagrams

We have the EoSs for several models of nucleon-quark mixed matter (MQMM-A and NQMM-
B). These EoSs are connected to the crust EoS [56, 57] at 𝜌 = 0.22 fm−3 with smooth interpolations.
Star masses𝑀 as a function of radius𝑅, that is𝑀(𝑅), are obtained by solving the TOV equations
with these EoSs for nucleon-quark mixed matter.

In the following figures for 𝑀(𝑅) curves, the regions given by 𝑀 = 2.08 ± 0.07𝑀⊙ and 𝑅 =
12.49+1.28−0.88 km [26] are drawn by dotted rectangles, and the point (𝑀 = 2.1𝑀⊙, 𝑅2.1𝑀⊙

=12.5 km)
is indicated by a cross symbol. In the analysis of 𝑀(𝑅) curves, our critical guideline is that an
obtained 𝑀(𝑅) curve reaches above this cross symbol in the 𝑀𝑅 diagram.

In the right panel of Fig.11, star masses are given as a function of radius 𝑅 for the NQMM-A
EoSs in the cases of 𝜆15 with different quark onset densities, corresponding to the 𝑃 (𝜀) curves in
Fig.6. The dot-dashed curves are obtained by the nucleonic matter EoS. The solid, short-dashed
and dashed curves are in the cases of quark onset densities 2.0𝜌0 (A20), 2.5𝜌0 (A25) and 1.6𝜌0
(A16), respectively.

In the left panel of Fig.11, star masses are given as a function of radius 𝑅 for NQMM-A EoSs
in the case of quark onset density 2.0𝜌0. The thin-solid, dotted, short-dashed, dashed and solid
curves are in the cases of 𝑞𝑡, 𝜆0, 𝜆04, 𝜆08 and 𝜆15, respectively. The dot-dashed curve is obtained
by the nucleonic matter EoS. The thin-solid curve (𝑞𝑡) is obtained by the EoS in which all 𝑞𝑁
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FIG. 12: (Color online) Star masses as a function of radius 𝑅 for NQMM-B EoSs In the left panel, the
thin-solid, dotted, short-dashed and solid curves are for 𝑞𝑡, 𝜆0, 𝜆01 and 𝜆02, respectively. In the right panel,
𝑀(𝑅) curves are for 𝜆02 with different quark onset densities. Solid, short-dashed and dashed curves are
in the cases of onset densities 2.5𝜌0 (B25), 2.0𝜌0 (B20) and 1.6𝜌0 (B16), respectively. In both panels, the
dot-dashed curves are obtained by the nucleonic matter EoS.

and 𝑞𝑞 interaction are switched of. The reason of the small maximum mass in this case is because
of the EoS softening caused by changing of high-momentum neutrons at Fermi surfaces to low-
momentum free quarks, which is the same as the mechanism of the EoS softening by hyperon
mixing. It should be noted that the 𝑀(𝑅) curves are pushed up by the increasing 𝑞𝑁 repulsions
from 𝜆0 to 𝜆15. The short-dotted curve above the solid curve for 𝜆15 is obtained by using the
density-dependent quark mass Eq.(2.4) in the case of 𝜆3∕

√

4𝜋=1.5 (denoted as 𝜆15′) and the quark
onset density 2.0𝜌0. The 𝑀(𝑅) curve turns out to be pushed up further by the density-dependent
effects of quark masses.

In Fig.12, star masses are given as a function of radius 𝑅 for NQMM-B EoSs. In the left
panel, the thin-solid, dotted, short-dashed and solid curves are obtained for 𝑞𝑡, 𝜆0, 𝜆01 and 𝜆02,
respectively, with quark onset density 2.0𝜌0. In the right panel, they are obtained for 𝜆02 EoSs with
different quark onset densities. The solid, short-dashed and dashed curves are in the cases of quark
onset densities 2.0𝜌0 (B20), 2.5𝜌0 (B25) and 1.6𝜌0 (B16), respectively. The dot-dashed curves in
both panels are obtained by the nucleonic matter EoS. The𝑀(𝑅) curves (onset density 2.0𝜌0) in the
left panel are of good correspondence to the 𝑃 (𝜀) curves in Fig.8. It should be noted that all𝑀(𝑅)
curves for nucleon-quark mixed matter EoSs are above this dot-dashed curve differently from those
in the left panel of Fig.11. Though the𝑀(𝑅) curve for NQMM-A (𝑞𝑡) gives small maximum mass
due to the EoS softening, the curve for NQMM-B (𝑞𝑡) is pushed up by the Fermi repulsion for
nucleons from the quark Fermi sphere and give maximum mass over that for the nucleonic EoS.
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In Fig.12, the 𝑀(𝑅) curves for 𝜆01 and 𝜆02 are pushed up by the combined effects of the quark
Fermi repulsions and the increasing 𝑞𝑁 di-quark exchange repulsions.

In Fig.13, star masses are given as a function of central baryon density 𝜌𝐵𝑐, that is 𝑀(𝜌𝐵𝑐).
The dot-dashed curve is obtained by the nucleonic EoS. The solid, short-dashed and dotted curves
are by NQMM A20-𝜆15, A25-𝜆15 and B20-𝜆02, respectively. The behaviors of 𝑀(𝜌𝐵𝑐) curves
respond well to the corresponding 𝑃 (𝜀) curves in Fig.7 and Fig.8. The 𝑃 (𝜀) curves, as well as the
𝑀(𝜌𝐵𝑐) curves, are noted to be above the dot-dashed curves by the nucleonic EoS.
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FIG. 13: (Color online) Star masses as a function of central baryon density 𝜌𝐵𝑐 . The dot-dashed curve is
obtained by the nucleonic EoS. Solid, short-dashed and dotted curves are by NQMM A20-𝜆15, A25-𝜆15
and B20-𝜆02, respectively.

Table II summarize the values of maximum masses 𝑀𝑚𝑎𝑥∕𝑀⊙ and radii 𝑅2.1𝑀⊙
(km) found

in Fig.11 and Fig.12, where the values of 𝑅2.1𝑀⊙
turn out to be consistent with the observed data

𝑅 = 12.49+1.28−0.88 km [26].

IV. CONCLUSION

The nucleon-quark mixed matter is defined in the BHF framework, which is suitable to treat 𝑞𝑁
and 𝑞𝑞 interactions without being obscured by ad hoc parameters such as thickness Δ of neutron
Fermi layer used in the quarkyonic matter [41]. In this framework the quark density in nucleon-
quark mixed matter is determined by the equilibrium conditions between chemical potentials of
nucleons and free quarks. Our 𝑞𝑁 interaction is composed of meson-exchange and di-quark ex-
change potentials, playing critical roles for our nucleon-quark mixed matter EoS. The di-quark
potential is strongly repulsive and the nucleon-triquark coupling constant plays a role as a criti-
cal parameter for the stiffness of our EoS. In the nucleon-quark mixed matter, Fermi spheres of
nucleons and free quarks are occupied by nucleons with momenta of 0 < 𝑘 < 𝑘𝑁𝐹 and quarks
with momenta of 0 < 𝑘 < 𝑘𝑞𝐹 , respectively, from which NQMM-A EoSs are derived straightfor-
wardly. Taking the basic concept of quakyonic matter [41] into account, the nucleon Fermi levels
are pushed up to the one with momenta of 𝑘𝑁0 < 𝑘 < 𝑘𝑁1 (Fermi layer) by the Fermi exclusion effect
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TABLE II: Values of maximum masses𝑀𝑚𝑎𝑥∕𝑀⊙ and radii𝑅2.1𝑀⊙
(km) at 2.1𝑀⊙ obtained for NQMM-A

and NQMM-B EoSs. NUC give the values for nucleonic matter EoS.

𝑀𝑚𝑎𝑥∕𝑀⊙ 𝑅2.1𝑀⊙
(km)

A20 𝑞𝑡 1.68
𝜆0 1.83
𝜆4 2.05
𝜆8 2.23 13.1
𝜆15 2.47 13.3
𝜆15′ 2.64 13.3

A25 𝜆15 2.37 12.5
B20 𝑞𝑡 2.22 12.0

𝜆0 2.23 12.1
𝜆1 2.43 12.8
𝜆2 2.57 13.1

B25 𝜆2 2.60 12.7
NUC 2.10 11.3

for nucleons from the quark Fermi sphere. The NQMM-B EoSs are derived by incorporating this
quark Fermi repulsion into our nucleon-quark mixed matter.

Our EoSs are controlled basically by the strength of di-quark exchange repulsion and the effec-
tive quark mass: The former and latter determine the stiffness of EoS and the quark onset density,
respectively. Then, the phase transition from nucleonic matter to nucleon-quark mixed matter is
second-order, and there appear peak structures in sound velocities at quark onset densities.

The features of our nucleon-quark mixed matter are demonstrated by pressures as a function of
energy density 𝑃 (𝜀) and neutron-star mass-radius curves 𝑀(𝑅). In the cases of NQMM-A EoSs,
the 𝑃 (𝜀) and𝑀(𝑅) curves for nucleon-quark mixed matter are pushed up above those for nucleonic
matter by the 𝑞𝑁 repulsive interactions, as found in Fig.7 and Fig.11. These pushing-up effects
are further enhanced by taking account of density dependences of quark masses. In the limiting
case of switching off all 𝑞𝑁 and 𝑞𝑞 interactions, the 𝑀(𝑅) curves are far below the curves for
nucleonic matter, which can be considered as remarkable EoS softening caused by changing of
high-momentum neutrons to low-momentum free quarks. As 𝑞𝑁 repulsions increase, the 𝑀𝑅
curves for nucleon-quark mixed matter are pushed above the point (𝑀 = 2.1𝑀⊙, 𝑅2.1𝑀⊙

=12.5
km) indicated by the recent radius observation of the massive neutron stars. In our nucleon-quark
mixed matter different from the quakyonic matter [41], these pushing-up effects for 𝑀𝑅 curves
are realized by the strong 𝑞𝑁 repulsions in NQMM-A EoSs, without taking account of the Fermi
exclusion effect for nucleons from the quark Fermi sphere included in NQMM-B EoSs.

In the cases of NQMM-B EoSs, the 𝑃 (𝜀) and𝑀(𝑅) curves for nucleon-quark mixed matter are
always above those for nucleonic matter, as found in Fig.8 and Fig.12, respectively. Even if the 𝑞𝑁
repulsions are switched off, the 𝑀𝑅 curves come near the point (𝑀 = 2.1𝑀⊙, 𝑅2.1𝑀⊙

=12.5 km)
owing to the Fermi repulsion for nucleons from the quark Fermi sphere. In the case of NQMM-B
EoSs, the pushing-up effects for 𝑀𝑅 curves are realized by additive contributions from the 𝑞𝑁
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repulsions and the Fermi exclusion effect from the quark Fermi sphere.
Our approach to neutron-star EoSs is based on the nucleon-quark mixed matter in the BHF

framework, in which the 𝑞𝑁 di-quark exchange repulsions play important roles. The derived EoSs
are consistent with observed data of 𝑀𝑚𝑎𝑥 and 𝑅2𝑀⊙

. In relation to the “hyperon puzzle", there
still remains the issue of the size of an EoS softening induced by hyperon/𝑠-quark mixing in the
nucleon/baryon-quark mixed matter. The extension to include hyperons and strange-quarks is a
natural step in the further development of this work. Furthermore, an extension by incorporating
color superconductivity spin-zero pairs using the HFB theory, studying e.g. the impact on the
softening of the EoS is interesting.
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Appendix A: Di-quark exchange Interaction

The di-quark exchange potential 𝑉 (𝑞𝑁)
𝐷𝑄𝐸 is derived from a description of the confinement-

deconfinement process at high baryon-densities via the (density dependent) nucleon-triquark cou-
pling

(1)
𝑖𝑛𝑡 = −𝜆3

[

�̄�(𝑥)𝜂𝑁 (𝑥) + �̄�𝑁 (𝑥)𝜓(𝑥)
]

(A1)

with [51]

𝜂𝑁 (𝑥) =
[

𝑞𝑎(𝑥)𝐶𝛾𝜇𝑞𝑏(𝑥)
]

𝛾5𝛾𝜇𝑞
𝑐(𝑥)𝑓 𝑎𝑏𝑐, (A2)

where C is the charge conjugation operator, and momentarily we left out the isospin labels.
The interaction Lagrangian in (A1) with the tri-quark field 𝜂𝑁 (𝑥) is rewritten using di-quark fields
for two reasons: (i) the functional form of the partition function is difficult to handle, and (ii)
di-quarks are meaningful physical entities. In terms of the (bosonic) di-quark fields 𝜒𝑎𝜇(𝑥)

𝜂𝑁 (𝑥) = (ℏ𝑐)2𝛾5𝛾𝜇𝑞𝑎(𝑥) ⋅ 𝜒𝑎𝜇(𝑥), (A3a)
𝜒𝑎𝜇(𝑥) ≡ 𝑓 𝑎𝑏𝑐𝑞𝑏(𝑥)𝐶𝛾𝜇𝑞𝑐(𝑥)∕(ℏ𝑐)2. (A3b)

The interaction (A1) becomes

(1)
𝑖𝑛𝑡 = −𝜆3(ℏ𝑐)2

[(

�̄�(𝑥)𝛾5𝛾𝜇𝑞𝑎(𝑥)
)

𝜒𝑎𝜇(𝑥) + ℎ.𝑐.
]

(A4)

Using the grand-canonical partition functional 𝐺 description of matter and treating 𝜒𝑎𝜇(𝑥)
within the auxiliary field method [52] by introducing the 𝜒𝑎𝜇(𝑥)-field via the Lagrangian

𝜒 = �̄�23

{

𝜒𝑎†𝜇 (𝑥)𝜒𝜇𝑎(𝑥) −
[

𝜒𝑎†𝜇 (𝑥)
(

𝑞𝑏(𝑥)𝐶𝛾𝜇𝑞𝑐(𝑥)
)

𝑓 𝑎𝑏𝑐 + ℎ.𝑐.
]

}

(A5)
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the partition functional becomes, see [53],

𝑍𝐺 = ∫ [𝑑�̄�][𝑑𝜓][𝑑𝑞][𝑑𝑞][𝑑𝜎][𝑑𝜔𝜇]∫ 𝜒𝑎𝜇𝜒𝑎†𝜇 exp
[

∫

𝛽

0
𝑑𝜏 ∫ 𝑑3𝑥 ⋅

×
(

𝑁 + 𝑄 + 𝑀 + 𝜒 + 𝜇𝑁𝜓†𝜓 + 𝜇𝑄𝑞†𝑞
)

]

. (A6)

For example in the Walecka-model [54]

𝑄 → 𝑞(𝑥)
[

𝑖𝛾𝜇
(

𝜕𝜇 + 𝑖
3
𝑔𝜔𝜔

𝜇
)

−
(

𝑚𝑄 − 1
3
𝑔𝜎𝜎

)

]

𝑞(𝑥) (A7a)

𝑁 → �̄�(𝑥)
[

𝑖𝛾𝜇
(

𝜕𝜇 + 𝑖𝑔𝜔𝜔𝜇
)

−
(

𝑚𝑁 − 𝑔𝜎𝜎
)

]

𝜓(𝑥) (A7b)

𝑀 → +1
2
(

𝜕𝜇𝜎𝜕𝜇𝜎 − 𝑚2
𝜎𝜎

2) − 1
4
𝜔𝜇𝜈𝜔

𝜇𝜈 + 1
2
𝑚2
𝜔𝜔𝜇𝜔

𝜇 (A7c)

The terms in 𝜒 are schematically, apart from an overall factor �̄�23,

𝜒 ∼ 𝜒†
𝜇𝜒

𝜇 − 𝜒†
𝜇𝐵

𝜇 − 𝐵†
𝜇𝜒

𝜇 = (𝜒𝜇 − 𝐵𝜇)†(𝜒𝜇 − 𝐵𝜇) − 𝐵†
𝜇𝐵

𝜇, (A8)

with𝐵𝜇 =
[

�̄�(𝑥)𝛾5𝛾𝜇𝑞(𝑥)
]

∕(ℏ𝑐)2. The integration over the shifted
(

𝜒𝑎𝜇 − 𝐵
𝑎
𝜇

)

di-quark fields gives
in the exponential of 𝑍𝐺 the term

−�̄�23 𝐵
†
𝜇𝐵

𝜇 = −�̄�23(�̄�𝛾5𝛾𝜇𝑞)(𝑞𝛾5𝛾
𝜇𝜓) (A9)

where �̄�3 ≡ 𝜆3∕(ℏ𝑐). The Lagrangian in 𝐺 becomes  = 𝑁 + 𝑄 + 𝑀 + (2)
𝑖𝑛𝑡 with

(2)
𝑖𝑛𝑡 = −�̄�23 𝐵

†
𝜇𝐵

𝜇 = −�̄�23
(

�̄�𝛾5𝛾𝜇𝑞
)(

𝑞𝛾5𝛾
𝜇𝜓

)

, (A10)

which is the interaction in (2.2).
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