Quark-Baryon Di-quark-exchange in SU(3)

Th.A. Rijken
Institute of Mathematics, Astrophysics, and Particle Physics
Radboud University, Nijmegen, The Netherlands
(Dated: version of: May 7, 2025)

The quark-baryon (QB) matrix elements for di-quark exchange are derived, which have application
in a medium of mixed nuclear-quark matter. The diquark-exchange for QB — BQ is of the axial-
vector type. Similar as for nucleons, the potential for Q + B — Q + B is repulsive for S-waves,
P-waves, and other partial waves. Parameterizing the strength of this interaction as a function of
the quark density such as to increase with the deconfining rate, it can become rather significant in
neutron stars. This in particular in connection with the ”hyperon-puzzle” and the two-solar mass

neutron stars.

PACS numbers: 13.75.Cs, 12.39.Pn, 21.30.4+y

I. INTRODUCTION

At present the mixed nuclear-quark matter is a much
attended topic, see [1]. In this note we derive the quark-
baryon (QB) couplings due to di-quark D) exchange.

In considering meson coupling to quarks as well as
to baryons leads in a natural way to a coupled chan-
nel treatment in a mixture of nuclear and quark mat-
ter. The tri-quark presentation of the nucleon [2], i.e.
B ~ np = (GCY"q)757,q suggests the reactions B <> 3Q),
which takes place in high density matter.
the treatment of the Lagrangian with the tri-quark field
np(z) in e.g. the functional form of the partition func-
tion for matter is difficult to handle. This problem is cir-
cumvented by avoiding third powers in the quark fields
by the introduction of an auxiliary colored di-quark field
X;:(z) [3], which upon quantization leads to di-quarks D.
Apart from this technical reason it may be that di-quark
configurations play a real physical role.

In [4] nucleon and quark mixed matter is discussed in
the context of the MF-approach in matter in the frame-
work of the grand-partition functional. In [5] the di-
quark propagator is derived using field-theoretical meth-
ods. In these notes we work out the baryon-couplings
using SU(3)-symmetry.

Ezxchange of di-quarks leads in all (S-, P-, etc) waves to
a repulsive interaction between the quark and a baryon.
Crucial is the di-quark field x%(z)-propagator iA%} (x' —
z) = (0|T [x2(z")x5(2)] |0). A detailed study [5] shows
that compared to axial-meson-exchange there is a (-)-
sign difference in the di-quark propagator coming from
the Wick-expansion theorem.

The SU(3)-extension to hyperon-quark channels Yig) +
Q33 — Qs + Y(s} with di-quark-exchange (QQ)q¢}
leads to potentials similar in character to that for N +
Q—>Q+N.

The contents of this paper is as follows. In section II
the representation of the tri-quark states for baryons is
given as well as the Lagrangian for the description of
the mixed matter of quarks and baryons with the baryon
tri-quark transition. Furthermore the di-quark are intro-
duced. In section IIB the SU(3) generalization to hy-

perons and s-quarks is given. In section A details of the
evaluation of the couplings for different B4+Q channels
are given.
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FIG. 1: Tri-quark-Nucleon Vertex

II. INTRODUCTION DI-QUARK-QUARK
PRESENTATION BARYONS

In mixed quark-nucleon matter there are, depending
on the densities, transitions between nucleons and tri-
quarks. For the tri-quark system we choose the operator,
see [2]

v (z) = (§*(2)Cy" " (2)) y57,ua° (2)e™™

where C is the charge conjugation operator in Dirac
space, which has in the PD-representation the proper-
ties C~Iy1C = —4#T, C = —C~' = —CT = —CT. For
the proton and neutron this is

mp(r) = (@(x)Cy*u’ () y57ud (2)e®, (2.2a)
mn(z) = (d*(x)Cy"d"(x)) sy’ (2)™, (2.2b)

where a,b,c denote the SU.(3) color indices of the quark
fields.

A direct way to treat this system in e.g. a mean-field-
theory (MFT) would be to introduce the auxiliary tri-
quark field ny via the Lagrangian density

(2.1)

L, ~ im— [7(q"(@)Cy"¢"(x)) v57,q" ()™ + h.c.]



which via the E.L:. equations gives for the composite
field 1) = (§*(x)Cy*q" (x)) y57uq° (x)e .

However, the occurrence of a triple-quark field makes a
handling of the partition function Zg very complicated.
In the tri-quark nucleon presentation (2.1) the contrac-
tion of the indices, indicated by ( ...), suggest to introduce
instead the di-quark field.

A. Mixed matter: Mean-field with Di-quarks

For a B — 3Q interaction Lagrangian with the tri-
quark field ny(z) the functional form of the partition
function is difficult to handle. In order to avoid third
powers in the quark fields we write ny (x) in terms of the
(bosonic) di-quark field xj; () as

(hc>2 (@157 (), X ()
= £ () Oy () (he)?.

Introduction this auxiliary di-quark field xj, via the La-
grangian density [3]

Ly~ Xl (@) (x) = X1 (@) (3" (2) Oy gc (x) ) e
+hec] (2.4)

nn(z)
(2.3)

gives via the E.L. equation x%(z) ~ (¢°(2)Cry.q°(x))e*.
For N < 3Q interaction L;,; with di-quark takes the
form

['znt — _)‘3{ 757 q ) Xz-I—h.C.}, (25)
where A3 = (hc)?A3. From now on we use the notation
)\3 = )\3.
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FIG. 2: Di-quark-Quark-Nucleon Vertex

B. Baryons Tri-quark and Di-quark-quark
Configurations

To generalize the di-quark-approach for the SU(3)
octet baryons, for the tri-quark system we choose op-
erators np, B = N,A, % =, for which we can assume
that there is a significant transition with the baryons

i.e. (Olnp(x)|B) # 0, see [2].
np-operators are [6]

mp(z) = (@%(x)Cy*ub(z))v57,d°(z)e™, (2.6a)
mn(r) = (d*(x)Cr*d"(x)) syl ()e™, (2.6b)

(@ (2)CA"s" () y57,d ()

For p,n, A, X, = suitable

[SCRI )

na(z) =

—(d*(2)Cy*s" () ys yuu () | €77,

ne(@) = (a%(z)Cvu’(x))ysyus(2)e™, (2.6d)
nz(z) = —(8%x)Cy"s"(z))v5v,ul(z)e™, (2.6¢)

where a,b,c denote the SU.(3) color indices of the quark
fields. C is the charge conjugation operator in Dirac
space, which has in the PD-representation the proper-
ties C~1y1C = -y, C = —C~ ' = —CT = —C". Note
that since the two-quark systems are anti-symmetric in
color they are symmetric in flavor. For the octet baryons
the di-quark fields we introduce as

(2.6¢)

P,Yt o (uu) = (@*(z)Cyrus(z))e, (2.7a)
N, ¢ xi(dd) = (d*(x)Cy"d(x))e™, (2.7b)
A0 X (us) = (@ (z)Cy"s(x))e™e,  (2.7¢)
ALY X(ds) = (dP(x)CysC(x))e™,  (2.7d)

E o xp(ss) = (8°(z)Cyts(z)) ™. (2.7e)

Fig. 3 pictures the exchange potential V, for the baryon-
quark di-quark-exchange interaction BQ — QB.
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FIG. 3: Di-quark-exchange for BQ — @B reaction.

Now we generalize the N < 3@Q interaction L;; (2.5) to
the B > 3Q interaction

Hine — As(Y){(¥B(z)7157"¢")

where A\3(Y) = (he)?A3(Y), and we used a notation for
the di-quark fields appropriate for each baryon, se (2.7).

X5 (B) + h.c.}(2.8)



In deriving further the di-quark-exchange potentials for
baryons A, X, =, we note that all ingredients and steps
are the same for baryons and nucleons. It turns out that
all di-quark-exchange potentials B + Q@ — @Q + B lead
to repulsive QB-potentials for the baryon-octet members.
This because the effective Lagrangian has the same sign
for all baryons etc.

The reactions s + A, ¥ — n+ N from di-quark-exchange
give transition potential having the same spin-space
structure as the di-quark-exchange potentials from n, s+

N,AY — N, ALY +n,s.

The dimensionless tri-quark couplings are related to the
QCD Sum Rules parameter Ay as follows, see [6] equa-
tion (4.71b),

6
Mye

Moy —— N 1073 ( My /he)®
A3 2(2m)4(hc)® 07" (M /he)?,

giving \3/v47m ~ 0.96.

III. GENERAL SUr(3)-COUPLINGS B — D +Q

We use the notations from Ref. [7] for the wave function, Clebsch-Gordan coefficients, and Isoscalar factors:

M1 p2 p) H1
w( V) o Z (Ilyl 12}/2

I,,Y1,12,Y2

where the first factor on the r.h.s. is the so-called Isoscalar factor [7, 8], and

H1 2 _
(mq LY ”ZY> =

which leads to the SU(3) C.G.C.

H2 H B 2
LY (f f ). "
L I 1 ) 1 (2)
Z C<Ilz IQz Iz) ¢N1 d)uz (32)
1127[22
I‘;) (3.3)

Hop2 B I I M1 H2
v va v ) L, I, I, LY, Y;
Here, the hypercharge Y=B+S where B= baryon number and S= strangeness.
1/3,1/3,—2/3 for u,d, s respectively. For the baryons Y = 1,0, 0,

The Wigner-Eckart theorem for SU(3) reads [7]

1 i1
(o) = (23 12 o)

This gives for quarks Y =
—1 for N, A, X, = respectively.

(3.4)

where p; = py = {8} and £mt is an SU(3)-scalar. In the following the reduced matrix is absorbed into the coupling

constant.

A. SUp(3)-couplings B — D+ Q

We consider the tri-quark-baryon, where the baryon is an octet {8}-, the quark a triplet {3}-, and the di-quark a

sextet {6}-state. The flavor interaction is

Ho

Vo UV

() = +23(BTDQ + h.c.)

+93 (m P M) T (@) X2 () DU (2) + hec.

where for the baryons {u} = {8}, the di-quarks {u2} = {6}, and quarks {u;} = {3}. The vertex is

THQ BD BB —
vQ Vp VB

(B(H) |H'Lnt’X

C Ip Ig 1Ip HQ  MD
535\ Lp Lo Lg IoYo InYp

): HQ HD KB
vVQ Vp VB

"
o ) (3.6)




TABLE I: SU(3) Clebsch-Gordan coefficients and Isoscalar (Iscl) factors for {8} ® {3}.

Channel:| LY |vg(I,Y)|ve(I,Y)|C(isospin)|Iscl {15}|Iscl {6}|Iscl {3}| {u}
P+u |1, 3| 4, 3 3.1 1 1 — — 15
P+d: |1, 3| & 1 i1 ﬂ@ 1 — — 15
N+uw [ 1, 5] 3 3 i1 \@ 1 — — 15
N+4uw |0, 4] 2 i1 +4/2 — -1 — 6
P+d: [0, 3| 3,2 i1 -/ — -1 — 6
Pas |4, 100 -2 L1 1 2|/t 5 115,63
Atu [L 1] 22| o0 1 Ve | Ve -y (16,8
A+s: |0, =20, -2 | 00 1 Vil — 1| 153
Stuw | 2, 5] 3, 3 10 1 1 — — 15
St (1, —2| 0, -2 | 10 1 \@ ﬁ — | 15,6
E%+uw |1, -2 3, % | 3 -1 1 1 1 — | 15,6
E%s: |3, =30, -2 |3 -1 1 1 — — 15

and for the di-quark-exchange matrix elements
/ /
(A T I G S 8 | Lk (372

(Quo s Bus ,|M|Buy Qo) =< 58 “f>< 53 “")

VQ,f Vvgy Vf VB,i VQ,i Vi

x (M'@Véz;uievV%!HEZWB,VB;MQ,VQ) (3.7h)
where p; = puy = {8},{10}. The CGC for the initial and final state have the form

3 8 p\ c Ig Ip 1 3 8 I
vQ VB V B IZQ IzB Iz IQ YQ IBYB 1Yy
with u = {15}, {6}, {3}. In Table I the SU;(2) Clebsch-Gordan and Isoscalar coefficients are listed for a set of B+Q

channels. The expression of the interaction matrix elements in the SU(3) reduced matrix elements is obtained as
follows [7]

(s vl s Vol M i) = 3 (130 3 by (60 6 ),

o vg Vg Vy v VQ Vf
X <{M}f’ Vf’Hz('rQL)t’{U}ia Vi) 5ui,uf51/i,uf
_ Z ( {3} {8} {.LVL} ) ( {8} {3} {u} ) (, VHH’E’VQL)t| |,U7 V) (3.8)

! !
" I/Q Vp vp VQ 174

To study the anti-symmetrization between the quarks and the baryons we use the tensor-algebra, see [9], for the
SU(3)-irreps. For the fundamental representation {3} the basic vectors are & = [3,7). For the {8} states £} =
18, 7k) (§ # k:),fg = (V2/3) [|8,p7%) + I8, p’%)]. For the {6} states &x = |6, k), for the {10} states &y = |10, jikl),
and for the {15} states ﬁék = |15, jkl). The QB-states the flavor symmetric and antisymmetric states are |[¢gp)+ =
(& @ €F £ &F ® ¢&;)/V/2. The flavor-spin-orbital group is SU;(3) ® SU,(2) ® O(3), and the anti-symmetry requires
PP, P, = —1 in the subspace of allowed QB-states.

The octet-baryons are in the SU(6) {56}-irrep and have the form, see e.g. ref. [10],

8,2) = % (Prr,5X 0,5 + Gn,AXM,A) (3.9)



We restrict ourselves to the flavor-spin symmetric states and henceforth we wave functions ¢y s in this calculation.
The di-quark wave function is a direct product ¥ (D) = ¥(space — spin) ® V( flavor) ® W(color). The flavor di-quark
flavor wave functions for the SU(3)-irrep {6} are

x(uu) = uu, x(ud) = % (ud + du), x(dd) = dd,
x(us) = % (us + su), x(ds) = \% (ds+ sd), x(ss) = ss. (3.10)

The SU(3) content of the B 4+ Q channels, with vg = {Yg, I, Ip.} and vg = {Yo, 1o, Ig.}, is

[Bus Quai L M) = 3 (”B ha “) lu;Y,I>=c< Is 1o f).

1=15.6,3 vp vV V mp mq M
<y {8 3 | 1Y, 1). (3.11)
s \1BYs IoYo | LY,

Application to a set of channels gives, apart from the SUr(2) Clebsch-Gordan coefficient in (3.11),

P+u:Y:§,I:1 |15;§,1>, N +u Yz%,I—O :\/§|6;§,0>, (3.12a)
peov=biods T b b it b sl

A—&—u:Y:%,I:%: 136]15;;,%> 26;%,%>— %3;%,%)], (3.12b)
A+5:Y:f§,1:0 %|15,f§,0>+ %|3, ;,oﬁ,

E++u:Y:%,I:g : 115;3,;, ¥+ Y_%J:g D4 §|15,%,%>7 (3.12¢)
s e TR BT B e B
E*+u:Y:—§,1:1 - % %}15;—5,0)—\/;6, §,0>], (3.12d)
E_+u:Y:—§,I:O - %_\/%15;—;70”\/26; ;0)].

Since the interactions respect SU(3)-symmetry it follows that ur = p;, Yy = Y;, I; = I;. For example (X°, u|A, u) = 0.
The symmetry w.r.t. the interchange of the B and Q reads [7]

c Io Ip I — (=)l tla—Ic Ip Ig I
mqg mp M mp mqg M

({3} ) {u}>€1()13+1w< ONE {u}>
IoYo IgYp | IY IgYp IgYo | IV ]

where & = +1, —1, —1 for 15, 6, 3 respectively, see [8] Table 2. The expression of the matrix elements (Q, B|£§i)t|B, Q)
in terms of the the SU(3) reduced matrix elements (u||£(2)||p> in (3.8) can be read off from (3.12).

wnt

B. Di-quark-exchange SU;(2) Couplings and Matrix elements.

U 1 ( us+ su
= ,K:\/j , 3.13
" (d) 6 2<ds+sd> ( )

Introducing the isospin doublets,



the isotriplet wg = (uu, (ud + du)/V/2, dd), and isosinglets s and £ = (ss).
The baryon-octet deconfinement interaction reads

k= (2t ) (80 el

The interaction Lagrangians which is are scalar w.r.t. SU;(2) are of the form

Is Is 1
Himh (s, Yo; Is, Ya; Is, V) = g(Ig, Ye: Is, Ys; Is, Ys) > C( o 8)

meg M3 M
me,Mms3,ms 6 3 8

X\P(S)T(I& —ms, 7Yé) X(6) (167 me, Yé) Q(S) (Iq7 my, Yq)

Hs ) o Is I3 g
IgYy me M3 mg

With

Me H3 U8 _ He M3
Ve V3 g IsYs 13Y3

one gets the relations

ngll)t = g3 Z ( be U3 Mg >
I6Ys;13Y3;18Ys IsYs IsY3 | IsYs
XHint (L6, Yo; I3, Ys; Ig, Y3)
and
He M3 He
I, Ys; I3,Y3; Ig, Ys) = .
9(6 6,13, 3; 18 8) g3<IGY6 1,Ys ISY8>

This gives the following SU(3) relations between the couplings

2 1
INur = 93, 9ssr = _\/; INurn, 9EnK = \/; 9INuns; GAnK = YNum,

2
9=sK = —9Num; 9=n¢ = _\/; 9INur-

The SU;(2)-invariant interaction Lagrangian for the coupling of the octet baryons to the di-quarks is

HY = gnnn [(NTrn) + (nITN)] - 6 + gser [(ZF 5) + ()] - 76
+9nsK {ET . (Kgrn) + (nTTKﬁ) . 2} + gnAK [(nTKG)A + AT(Kgn)
+gzerc | (E1Ko)s + 5T (K{D)] + gzne [(EMm) + (17)] &.

In general for the di-quark-exchange matrix element of the Hamiltonian

ng)v,QN = g3 (QsT1By) - (BfT2Qi),

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

with g3 = A3/ M. The matrix element, with I; = I; = I, and the vertices I';, 'y for respectively the upper and lower

vertex in Fig. 3 panel (a), is

M(Iy, I;) = (ffﬂfi)t Z) = +98.Q;0:9B;Q.0s ALy, 1iy i) 01,1,
Ay, I;;i) = (I|T1(3) - To(i)|1) = (=)'V2i + 1
nLLiI

X 1 1 0 <IQf||F1||IBq><IBf||P2||IQ1>
I I

(3.20a)

(3.20Db)



TABLE II: Di-quark-exchange Matrix elements M (I, I;) = (f|H'2)]i) for B+Q — Q+ B. I = I, = I , denotes the total and

int

i the exchanged di-quark isospin. A(Iy, I;) is the isospin factor. The generalized Pauli-principle requires PP, P, = —1
I Channel i |A(I¢, ;)| Coupling | M(If, L) || {u}'s | Pr,Ps, Py |01 02
1| P+u—u+P |1 1 Garnn — g3 15 +, -, + -3
0| N+u—u+N |1 -3 Gnn +39% nn 6 -+, + +1
12| P+s—u+X" | 1| +3 | gsengnne | +V69%nx ||15, 6, 3|+/--/+, +| 0
3218 +u—u+ 2172 43vV3 | Eux | —V39knr 15 +, - + -3
1/2/ 2% +u = u+ %0 |1/2] 46v3 | ¢2.x |-2V3¢%n-||15,6,3] +, -, + -3
172 A+u—u+A |1/2] +1/2 Jank —10%nr ||15,6,3| +, - + -3
/2] Atu—~ut 20 |172) +1/3 |oanxcomnr| = \/30%r 15,6, 8|+/--/+ +| 0)

0| A+s—=s+A |0 1 grsx — G2 15,3 | +,-, + -3

0| Ads—u+E" |1/2] +vV2 |gankgssk | +V20%mx || 15,3 |+/--/+, + 0"

We evaluate the isospin CGC 9j-coefficients using the relation with the 6j-coefficients

L I, I; 1/2

i i :(7)11+I§+Ii+i (217 +1)(215+ 1) I, I I 7 (3.21)
- (26 +1) I{ Ié 7

I LI

where index 7 is the isospin of the exchanged di-quark and I; = Iy denotes the total isospin. The 9j-symbol [] is
defined in [11] which is related to the 9j-coefficient {...} in [12]. The 6j-symbols are tabulated Ref. [12] Table 5.

In Appendix A the details of the evaluation of A(Iy,I;;4) are worked out for the different channels. In Table II
the results are summarized and the matrix elements M (Iy, I;) = +9B,Q;p 98,;Q.p A(ly, ;) are given as a function
of 912er- L The values for oy - o9 are for S-waves (P, = +1), and -3 for 1Sy and +1 for 3S;. In the cases marked
by %) the initial and final states have opposite P; and P,, but the same P,. Furthermore, the 1Sy <3 S; transition
gives (xflo1 - o2]xi) = 0. Consequently for the spin-spin interaction all non-diagonal potentials vanish. This is also
the case for the tensor and spin-orbit potentials, only the (small) anti-symmetric spin-orbit survives.

IV. SUMMARY AND CONCLUSION

From Table IT the non-zero products M (Iy,1;){(o1 - o2) are positive, i.e. the spin-spin potentials are repulsive.
In deriving further the di-quark-exchange potentials for baryons A, ¥, =, we note that all ingredients and steps are
the same for baryons and nucleons. Therefore, all di-quark-exchange potentials B + Q — @ + B lead to repulsive
QB-potentials for the baryon-octet members. This because the effective Lagrangian has the same sign for all baryons.

1 The isospin Py = (—)/1+12+1 which follows from c< Lo Lo ) — (—)’1“2“0( I LI >
mi1 ma m ms mi m



APPENDIX A: MISCELLANEOUS CALCULATIONS

(a): The i=1 exchange between two I=1/2 particles, e.g. P +u — u+ P, is

A(ly, ;) = (If,mf|7'1'T2’Ii,mi):C< LI If> C( L I I >

mi mby my mip mo my

X Z(—)m (15, mb| Tin | T2, m2) (11, my |- |1, ma)
m
_ _3\/?—)0(1;/ 1 If>c<11 L I)
my My mf mi mo MmM;

of 1Yot 1o\ (n 1o
ms m mh m —m 0 mp —m mj

LI L L L L
= 3v3|1 1 0 |=-3V3[QL+1)L+1L+1]"*{ 1 1 0
I 1 Iy I 1 I
— L+I5+1+i / / 12 ) Is 1 I;
= =3V e e+ 1) T (A1)
1 2

Here, we used the reduced matrix element (1/2[|7[/1/2) = V/3,
(al) For i=1 exchange in Neutron-u-quark system the matrix elements M (I, I;)

119 11y
2 2 2 2
A(1,1) = =3V3 |1 10| =41, 40,00=-3vV3|1 10| =-3 (A2)
11 11y
2 2 2 2

(a2): The i=1 exchange between two 1=1/2 particles, e.g. P+ S - U +X° I, =1/2, I, = 0,1, = 1/2, I}, = 1,i = 1,
is

A(If,[i) = (If,mf|(—)mET 7T_m|I,‘,mi) =

m

IoII I I, I
o (k) (mn )
1 my my mi my m;

ol 2t BYo(1 1o\, (nh 15
me m mh m —m 0 mp —m mj

I I, I I I, I
= 3|11 0|=-3/el+neL+DL+1]"*{ 1 1 0
A A
— _3(_)[1+Ié+1i+i [(2[{"‘1)(2]&—'—1)]1/2 I? ]1 IZ 5If7[1;
I I, i
11 o i1l
A(Z.2) = +3V6 2 2 % =3, A3
(272) +\/_{%11} (A3)

(b): The i=1/2 exchange between particles with isospin I} = 1,15 = 1/2, e.g. X" +u — u + X1, The K-exchange
interaction Lagrangian reads

L(SNK) = gsqr{ET (K]TN,) + (NITK) - =}, (A4)



with the isospinors N, = (u,d), K = (KT, K"). For St +u —u+ X%, I} = I, = 1,1, = I] = 1/2, we obtain

ALY = (Ipemglr - mol L) = —3V3 ()l Tithrs [<2I;+1><2z;+1>1”2{

I
12 } 5[f,]i.

Here, we used again the reduced matrix element (1/2[|7]|1/2) = /3, We obtain

= N

= +9\/§{ L

1
2

A(§§)—+9\/§ Lasl_ 55 A(ll)—_m A
2’2 Traf T2 T

(c): The i=1/2 exchange between particles with isospin Iy = 0,1y = 1/2, e.g. A+ U —
interaction Lagrangian reads

L LI
I A

6v/3. (AG)

u + A. The K-exchange

L(AN,K) = grgr {AT- (KINy) + (NIK) - A}, (AT)
(cl): For A+U —-U+A, I =1, =0, =1 =1/2,i = 1/2, we obtain
LA T+ T +i . y 2 ) I I I;
Ay, 1) = (Iy,my|1]L;,mg) = (=) A4 (20 + 1)(215 + 1) I 01,1,
1 42
11 o 1 1 1
A(Z.2) = =2 2 02 % — 4 A8
3) f{%o%} = (A8)
(c2): For A+ S — S+ A, I =1, =1{ = I, =0,i = 0, we obtain
A0,0) = (Ig,my|1|L;,m;) = 1. (A9)
(€3): For A+ U - U+X° I, =0,Ib=1/2,1, =1/2,I, = 1,i = 1/2, we obtain
I+ T4 Ii+i / / 12 ) I L I;
AT, L) = (Ip,mg|1|Liymg) = (=) (21 + 1) (21 + 1) [ 1,1,
1 12
11 Lol 3
A(= 2) = 2 2 4 b A10
(272) +\/6{% 1 %} + B ( )
(cd): For A+ S U +=, I, =0,I, = 0,1} = 1/2,I, = 1/2,i = 1/2, we obtain
LA T+ T +i / / 2 ) I I I;
A(If7ll) = (Ifamf|1|llaml) :(_) 2 [(211+1)(212+1)] I I 6If7111
1 42
11
A(O,O):—Q{???}Z—Q{Z 2 ?}:+\/§. (A11)
23 2 00 3
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The relation between the 9j-symbol in CGC’s and 3j-symbols is

Ji o j2 12 Ji J2 Ji2
ga ga gaa | = [(2412 + 1)(2734 + 1)(2513 + 1)(2524 + 1)}1/2 73 Ja J34
Ji13 Jea J Ji13 J2a J



