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I. INTRODUCTION

Recently a polarization experiment has been done with the elastic reactions [1]:

Σ− + p → Λ + n
→ Σ0 + n

involving a low energetic polarized Σ−-beam incident on an unpolarized proton target. Po-
larization phenomena of nucleon-nucleon scattering have been discussed thoroughly in the
literature [2]. But the polarization phenomena in scattering of two non-identical spin-1

2
baryons, e.g. hyperon-nucleon scattering, have not been discussed in detail yet. This is in
particular the case for inelastic reactions. Gardner and Welton [3] consider the polarization
of the Λ in elastic Λ-proton scattering. However, they restrict themselves to the case of
incoming and outgoing S-waves only, and so neglect also 3S1 → 3D1 transitions. Downs and
Schrils [4] study the possible differences between the polarizations of the scattered particle
and the recoil target, due to singlet-triplet transitions, which are absent in nucleon-nucleon
scattering (up to electromagnetic corrections) because of the Pauli-principle. Their argu-
ments are only valid for elastic scattering with no initial polarizations. Deloff [5] reviews
the applications of these results to ΛN elastic scattering.

In this report we present the polarization formulae for the scattering of two spin-1
2 parti-

cles in the case of a polarized beam and an unpolarized target. These formulae are expressed
in terms of the scattering matrix, which is written on the singlet-triplet basis in spin-space.

We specialize those formulae for low energy scattering in terms of the partial wave
amplitudes, considering only S and P waves together with 3S1 → 3D1 transitions and neglect
possible singlet-triplet transitions, which amounts to neglecting 1P1 → 3P1 amplitudes. We
list the familiar experimental quantities and propose a new one: the asymmetry An between
the averaged polarization along the normal, of the particles scattered to the right and to the
left. The latter quantity can give additional information about the 3S1 → 3D1 transition1.

The second issue of this report is the derivation of some theorems of a more general
nature, due to the conditions of invariance under rotation, parity and time-reversal. Here
the consequences of the presence or absence of singlet-triplet transitions will be discussed at
several points. Firstly, we proof that the averaged polarization along the normal equals the
averaged polarization along the normal if no initial polarization of the beam was present.
So, the averaged polarization resulting from a completely unpolarized scattering can also be
measured if the beam is polarized. Secondly, we proof that the left-right asymmetry ε fi in
the angular distribution of the scattering of a polarized beam incident on an unpolarized
target equals the polarization of the scattered particle of the inverse reaction, where the
latter has no initial polarization. Obviously, here time reversal invariance was employed.
For example, from the left-right asymmetry in the angular distribution of the reactions

Σ− + p → Σ0 + n
→ Λ + n

1In the case of only s-waves plus 3S1 → 3D1 the depolarization D and the asymmetry An are the
only independent polarization quantities.
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with a polarized Σ−-beam2, one infers the polarization from the inverse reactions

Σ0 + n → Σ− + p
Λ + n →

if no initial polarization was present.
Finally we write down the relations between the transition matrix elements following

from time reversal invariance and discuss the number of independent amplitudes in several
cases.

The plan of this report is as follows. In section II the density matrix formalism is shortly
reviewed. In section III the differential cross section and the polarization are calculated for
the case of a polarized beam and an unpolarized target in terms of the scattering matrix
M in spin-space. In spin-space we work in particular on the ‘singlet-triplet’ basis. In sec-
tion IV the formulae for cross sections and polarizations are given in terms of the partial
waves taking into account only S- and P -waves together with the 3S1 → 3D1 coupling.
Section V describes the well-known measurable quantities and proposes a new one: An. In
Appendix A some symmetry properties of the M-matrix and the spin matrices are derived
from invariance under rotations and parity. Furthermore some theorems are proven concern-
ing the polarization. Appendix B discusses the implications of time reversal invariance for
the M-matrix. The equality of the left-right asymmetry of i → f and the final polarization
if no initial polarization was present for f → i, is proven. Finally the relations between
the M-matrix elements are stated and from them, and other results and considerations, we
conclude to the number of independent ampitudes in several cases.

II. GENERAL DENSITY MATRIX FORMALISM

A general asymptotic wave function for the scattering 1 + 2 → 1′ + 2′ in the center of mass
may be written as:

4
∑

j=1
ψas

j (x)ξj '
4

∑

j=1
aj



ξjeikizηi +
(

vi

vf

)1/2 4
∑

`=1

M`j(θ, φ)ξ`
eikf r

r
ηf



 , (2.1)

where vi and vf are the relative velocities of the initial and final particles and the ξj provide
a basis in the composite spin space. The ηi and ηf indicate the different channels. If one
takes as a spin basis the column vectors and considers the m-th component, then

ψas
m(r) ' ameikizηi +

(

vi

vf

)1/2 4
∑

j=1
Mmj(θ, φ)aj

eikf r

r
ηf . (2.2)

The density matrix ρi for a beam of N particles is defined by

2Note that it is clear that when there is no initial polarization, there will be no left-right asymmetry
in the angular distribution; this because of rotational invariance!
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(ρi)jk =
N

∑

n=1
aj(n)a∗k(n) . (2.3)

Similarly, the density matrix ρf of the final system is

(ρf )jk =
N

∑

n=1
a(f)

j (n)a(f)
k

∗
(n) . (2.4)

Note that ρ is a hermitean matrix.
In view of eq. (2.2) we define

a(f)
m (n) =

4
∑

j=1
Mmj(θ, φ)aj(n) , (2.5)

then it follows immediately

ρf = MρiM † . (2.6)

The expectation value of an operator O in spin space, averaged over an ensemble, is then
given by

〈O〉 =
∑

n,k,` a∗k(n)a`(n)〈ξk|O|ξ`〉
∑

n,k,` a∗k(n)a`(n)〈ξk|ξ`〉
=

Tr (ρO)
Tr (ρ)

. (2.7)

We can express every hermitean 4×4 matrix in terms of 16 independent hermitean matrices
Sµ (µ = 1, . . . , 16) with the property

Tr (SµSν) = 4δµν , (2.8)

therefore

ρ =
1
4

16
∑

ν=1
Tr (ρSν)Sν . (2.9)

The polarization P1,2 is defined as the expectation value of σ1,2 averaged over the ensemble

P1,2 = 〈σ1,2〉 =
Tr (ρσ1,2)

Tr (ρ)
. (2.10)

If one takes as the 16 Sµ the direct product matrices

1l ⊗ 1l , σ1 ⊗ 1l , σ2 ⊗ 1l , σ1 ⊗ σ2 ,

then it follows obviously from eq. (2.9) that in the case of a polarized beam incident or an
unpolarized target

ρi =
1
4

Tr (ρi)[1 + Pi · σ1] , (2.11)
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where Pi is the polarization of the beam (particle 1). If one takes Tr (ρi) = 1 then eq. (2.11)
reduces to

ρi =
1
4

[1 + Pi · σ1] . (2.12)

In the case of an unpolarized beam and unpolarized target one has, of course, a density
matrix that is a multiple of the unit matrix3.

From eq. (2.1) one can easily calculate the differential cross section

dσ(i)
dΩ

=
∑

mnp Mmnan(i)a∗p(i)M
†
pm

∑

n |an(i)|2
. (2.13)

For an ensemble of N scatterings one gets then by virtue of eq. (2.3)

dσ
dΩ

=
Tr (MρiM †)

Tr (ρi)
=

Tr (ρf )
Tr (ρi)

. (2.14)

In the case of an unpolarized beam and unpolarized target, eq. (2.14) reduces to
[

dσ
dΩ

]

u

=
1
4

Tr (MM †) . (2.15)

In the case of a polarized beam incident on an unpolarized target we have (cfr eq. (2.11))

dσ
dΩ

= Tr
[

M
1
4
(1 + Pi · σ1)M †

]

=
[

dσ
dΩ

]

u

(1 + Pi · ε) (2.16)

where the so-called left-right asymmetry ε is defined by

ε =
Tr (M †Mσ1)
Tr (MM †)

. (2.17)

The final polarizations are according to the definition (2.10) given by

P f
1,2 =

Tr (ρfσ1,2)
Tr ρf

, (2.18)

hence using eq. (2.14)

dσ
dΩ

·P f
1,2 =

Tr (MρiM †σ1,2)
Tr ρi

. (2.19)

3Here and everywhere else we suppose that there are no correlations between the spins of the
particles in the beam and those of the particles in the target.
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When one deals with an unpolarized beam and an unpolarized target, eq. (2.18) becomes
simply

[P f
1,2]u =

Tr (MM †σ1,2)
Tr (MM †)

. (2.20)

The difference between eqs (2.17) and (2.20) should be noted!
We shall proof in Appendix B that from time-reversal invariance the following relation

holds (see Eqn. (A14))

εfi = [P if
1 ]u .

Here and in the following the superscript fi denotes the reaction i → f : 1 + 2 → 1′ + 2′,
and the superscript if denotes the reaction f → i: 1′ + 2′ → 1 + 2. Also for the reaction
i → f (inverse reaction f → i) we call 1 (1′) the beam- and 2 (2′) the target-particle.

Equation (A14) expresses the fact that the left-right asymmetry, which can be observed
in an experiment with a polarized beam, incident on an unpolarized target equals the
polarization of the scattered beam in an experiment investigation the inverse reaction with
an unpolarized beam and unpolarized target.

So, for elastic scattering the observed left-right asymmetry reveals immediately the po-
larization of an experiment with no initial polarization.

III. POLARIZED BEAM INCIDENT ON AN UNPOLARIZED TARGET

1. For the reaction 1+2 → 1′+2′ a coordinate system in the center of mass frame is chosen
in the following way (figure 1):

The initial momentum ki points in the positive z-direction; the beam is polarized along
the x-direction with polarization Pi; the final momentum kf lies in the direction (θ, φ). The
normal to the reaction plane is defined as

n̂ =
ki × kf

|ki × kf |
= (− sin φ, cos φ, 0) . (3.1)

2. The initial density matrix is then according to eq. (2.12) given by

ρi =
1
4
[1 + Piσ1x ] . (3.2)

As quantization axis of the spin serves the z-axis. If α =
(

1
0

)

and β =
(

0
1

)

denote the

usual spin basis for spin-1
2 particles, we then choose as triplet-singlet basis in the composite

spin space the following set

α(1)α(2)
1√
2

[β(1)α(2) + α(1)β(2)]
β(1)β(1)











Triplet

1√
2

[α(1)β(2)− β(1)α(2)] Singlet

(3.3)
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The matrix ρi expressed on this basis can then easily be calculated

ρi =
1
4













1 Pi/
√

2 0 −Pi/
√

2
Pi/

√
2 1 Pi/

√
2 0

0 Pi/
√

2 1 Pi/
√

2
−Pi/

√
2 0 Pi/

√
2 1













(3.4)

3. The scattering matrix M(θ, φ) has the following property (see Appendix A, eqs (A1)-(A5))

M fi(θ, φ)S1S2
m′m = Mfi(θ)S1S2

m′mei(m−m′)φ ,

where

Mfi(θ) ≡ M fi(θ, 0) ,

and S1, S2 refer to the total spin of the basis (0 or 1) and m′, m to the z-component of this
total spin.

It is also proven in Appendix A that the relation holds

Mfi(θ)S2
ρ

S1
λ = (−1)S2−S1+ρ−λMfi(θ)S2S1

−ρ−λ .

Note that it follows from this relation that

Mfi(θ)1 0
0 0 = Mfi(θ)0 1

0 0 = 0 .

The scattering matrix therefore reads explicitly

M fi(θ, φ) =











M11(θ) M10(θ)e−iφ M1−1(θ)e−2iφ M1S(θ)e−iφ

M01(θ)eiφ M00(θ) M0−1(θ)e−iφ 0
M−11(θ)e2iφ M−10(θ)eiφ M−1−1(θ) M−1S(θ)eiφ

MS1(θ)eiφ 0 MS−1(θ)e−iφ MSS(θ)











(3.5)

where the indices fi as well as the total spin quantum numbers are suppressed. The index
S refers to singlet states. Straightforward evaluation of eq. (2.14) using the relations (3.5)
and (A4) yields for the angular distribution

dσ
dΩ

=
1
2

[

|M11|2 + |M10|2 + |M1−1|2 + |M01|2 + 1
2 |M00|2+

1
2 |MSS|2 + |M1S|2 + |MS1|2 + Pi

√
2 Im

{

M10M∗
11−

M10M∗
1−1 +M00M∗

01 +M11M∗
1S +M1−1M∗

1−S −

MSSM∗
S1

}

sin φ
]

(3.6)

The total cross section is then easily obtained by integrating over dΩ

σtot =
1
4

∫

dΩ
[

∑

m′m

|Mm′m|2 +
∑

m
{|MmS|2 + |MSm|2}+ |MSS|2

]

=
1
4

∫

dΩ
[

∑

m′m

|Mm′m(θ, φ)|2 +
∑

m
{|MmS(θ, φ)|2 + |MSm(θ, φ)|2}+ |MSS(θ, φ)|2

]

= σS + σSt + σt (3.7)
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where the singlet cross section is defined as

σS =
1
4

∫

dΩ |MSS(θ, φ)|2 , (3.8)

and the singlet-triplet transition cross section as

σSt =
1
4

∫

dΩ
∑

m
{|MmS(θ, φ)|2 + |MSm(θ, φ)|2} , (3.9)

and the triplet cross section as

σt =
1
4

∫

dΩ
∑

m′m

|Mm′m(θ, φ)|2 , (3.10)

i.e. the statistical factors are included. In the above formulae m and m′ run over 1, 0, and
−1. Evaluation of eq. (2.19) gives the polarizations of the jth particle after the scattering
(j = 1, 2)

dσ
dΩ

P f
xj

=
1
2

[√
2 Im

{

M11M∗
01 −M1−1M∗

01 +M10M∗
00 + (−1)j+1 ·

· (MS1M∗
11 +MS1M∗

1−1 −M1SM∗
SS)

}

sin φ

+Pi

{

Re (M00M∗
11 +MSSM∗

11 −M01M∗
10)

+Re (M00M∗
1−1 −MSSM∗

1−1 +M01M∗
10) cos 2φ

−2Re (MS1M∗
1S) sin2 φ · (−1)j+1

−2Re (MS1M∗
10(−1)j+1 +M1SM∗

01) cos2 φ
}]

(3.11)

dσ
dΩ

P f
yj

=
1
2

[

−
√

2 Im
{

M11M∗
01 −M1−1M∗

01 +M10M∗
00 + (−1)j+1·

· (MS1M∗
11 +MS1M∗

1−1 −M1SM∗
SS)

}

cos φ

+Pi

{

Re (M00M∗
1−1 −MSSM∗

1−1 +M01M∗
10) sin 2φ

+2Re (MS1M∗
1S) sin φ cos φ(−1)j+1

− 2Re (MS1M∗
10(−1)j+1 +M1SM∗

01) cos φ sin φ
}]

(3.12)

dσ
dΩ

P f
zj

=
Pi√
2

Re
{

M10M∗
11 +M10M∗

1−1 −MSSM∗
01 −M11M∗

1S+

M1−1M∗
1S +M00M∗

S1(−1)j+1
}

cos φ (3.13)

In the direction of the normal one finds then
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dσ
dΩ

P f
j · n̂ =

1
2

[

−
√

2 Im {M11M∗
01 −M1−1M∗

01 +M10M∗
00+

(−1)j+1(MS1M∗
11 +MS1M∗

1−1 −M1SM∗
SS)

}

+

PiRe
{

M00M∗
1−1 −M00M∗

11 −MSSM∗
1−1−

2M01M∗
10 + 2MS1M∗

1S(−1)j+1
}

sin φ
]

(3.14)

Putting Pi = 0 gives, of course, only polarization along the normal (cfr. Appendix A).
The difference of the polarization along the normal of the scattered particle and the

recoil target is then given by

dσ
dΩ

Pf
1 · n̂−

dσ
dΩ

Pf
2 · n̂ = −

√
2 Im (MS1M∗

11 +MS1M∗
1−1

− M1SM∗
SS) + 2Pi Re (MS1M∗

1S) sin φ . (3.15)

IV. S AND P WAVES

The scattering matrix Mm′,m(θ, φ) (eq. (2.3)) can be written as

Mm′,m(θ, φ) =
∑

j``′

√

4π(2` + 1)i`−`′C`′
m−m′

s
m′

j
mC`

0
s
m

j
m ·

×Y (`′)
m−m′(θ, φ)

〈

f`′
∣

∣

∣

∣

sj − 1
2iki

∣

∣

∣

∣

`i
〉

(4.1)

This formula can be simplified for singlet states:

MSS(θ, φ) =
∑

`

√

4π(2` + 1)Y (`)
0 (θ, φ)

〈

f`
∣

∣

∣

∣

sj − 1
2iki

∣

∣

∣

∣

`i
〉

(4.2)

Specializing to S and P waves only, the notation for
〈

f`′
∣

∣

∣

∣

sj − 1
2iki

∣

∣

∣

∣

`i
〉

is given in table I.
We have calculated the terms occurring in the amplitude Mm′m(θ) for ` and j values of

interest to us, apart from the factor
〈∣

∣

∣

sj−1
2iki

∣

∣

∣

〉

, in table II.
Working out the formulae (3.13) and (3.14) we obtain the following results

(i) Angular distribution:

dσ
dΩ

= A1 + A2 cos θ + A3 cos2 θ + Pi

[

A4 sin θ sin φ + A5 sin θ cos θ sin φ
]

, (4.3)

where the coefficients Ai are:
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2S+1Lj → 2S+1L′j notation
1S0 → 1S0 S
1P1 → 1P1 P
3S1 → 3S1 S1
3S1 → 3D1 D
3P0 → 3P0 P0
3P1 → 3P1 P1
3P2 → 3P2 P2

TABLE I. Note, that we take the 3S1 → 3D1 coupling into account, but not the 3P2 → 3F2.
Not considering singlet-triplet coupling means omitting 1P1 → 3P1 for these waves.

A1 =
1
4

[

|S|2 + 3|S1|2 + 3|D|2 + |P0|2 +
9
4
|P1|2 +

13
4
|P2|2

+ Re
(

−2P0 −
9
2
P1

)

P ∗
2

]

A2 =
1
4

Re
[

6SP ∗ + 2S1(P ∗
0 + 3P ∗

1 + 5P ∗
2 ) +

√
2D(2P ∗

0 − 3P ∗
1 + P ∗

2 )
]

A3 =
1
16

[

36|P |2 + 9|P1|2 + 21|P2|2 + Re {(24P0 + 54P1)P ∗
2 }

]

A4 =
1
8

Im
[

2S1(2P ∗
0 + 3P ∗

1 − 5P ∗
2 ) +

√
2D(4P ∗

0 − 3P ∗
1 − P ∗

2 )
]

A5 =
3
4

Im
[

(2P ∗
0 + 3P ∗

1 )P2

]

(4.4)

The total cross section becomes:

σtot = 4π
[

A1 + 1
3A3

]

. (4.5)

(ii) Polarizations:

dσ
dΩ

P f
x = {X1 sin θ + X2 sin θ cos θ} sin φ

+Pi

[{

X3 + X4 cos θ + X5 cos2 θ + X6 cos3 θ
}

+
{

X7 sin2 θ + X8 sin2 θ cos θ
}

cos 2φ
]

(4.6)

where the coefficients Xi are:

X1 =
1
4

Im
[

S1(2P ∗
0 + 3P ∗

1 − 5P ∗
2 ) +

√
2D(−P ∗

0 + 3P ∗
1 − 2P ∗

2 )
]

X2 =
3
4

Im
[

(2P ∗
0 + 3P ∗

1 )P2

]

= A5
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





1 0 0
0 1 0
0 0 1













−1
4

√
2(3 cos2 θ − 1) −3

2 sin θ cos θ −3
4

√
2 sin2 θ

−3
2 sin θ cos θ 1

2

√
2(3 cos2 θ − 1) 3

2 sin θ cos θ
−3

4

√
2 sin2 θ 3

2 sin θ cos θ −1
4

√
2(3 cos2 θ − 1)







3S1 → 3S1
3S1 → 3D1







−1
2

√
2 0 0

0
√

2 0
0 0 −1

2

√
2













0 −1
2

√
2 sin θ 0

0 cos θ 0
0 1

2

√
2 sin θ 0







3D1 → 3S1
3P0 → 3P0







3
2 cos θ 0 0

3
4

√
2 sin θ 0 −3

4

√
2 sin θ

0 0 3
2 cos θ













3
2 cos θ 1

2

√
2 sin θ 0

−3
4

√
2 sin θ 2 cos θ 3

4

√
2 sin θ

0 −1
2

√
2 sin θ 3

2 cos θ







3P1 → 3P1
3P2 → 3P2

[1] [3 cos θ]

1S0 → 1S0
1P1 → 1P1

TABLE II. Angular dependent factors in Eqn. (4.1) for different partial waves.

11



X3 =
1
8

[

4|S1|2 − |D|2 + Re
{

4S1 · S∗ −
√

2D(S∗1 − S∗) + 3(P0 − P2)(P ∗
1 − P ∗

2 )
}]

X4 =
1
4

Re
[

S1(6P ∗ + 2P ∗
0 + 3P ∗

1 + 7P ∗
2 ) +

1
4

√
2 D(6P ∗ − 4P ∗

0

+ 3P ∗
1 − 5P ∗

2 ) + 3S(P ∗
1 + P ∗

2 )]

X5 =
3
8

[

−|D|2 + 3|P2|2 + Re
{√

2D(S∗1 − S∗) + 6P (P ∗
1 + P ∗

2 )

+ P0(P ∗
1 + 3P ∗

2 ) + 5P1P ∗
2

}]

X6 =
9
16

√
2 Re

[

D(−2P ∗ + P ∗
1 + P ∗

2 )
]

X7 =
3
8

[

|D|2 + Re
{

−
√

2D(S∗1 − S∗)− (P0 − P2)(P ∗
1 − P ∗

2 )
}]

X8 =
9
16

√
2 Re

[

D(2P ∗ − P ∗
1 − P ∗

2 )
]

= −X6 (4.7)

dσ
dΩ

P f
y =

{

Y1 sin θ + Y2 sin θ cos θ
}

cos φ + Pi

{

Y3 sin2 θ + Y4 sin2 θ cos θ
}

sin 2φ (4.8)

where the coefficients Yi are:

Y1 = −X1

Y3 = X7

Y2 = −X2

Y4 = X8
(4.9)

dσ
dΩ

P f
z = Pi

{

Z1 sin θ + Z2 sin θ cos θ + Z3 sin θ cos2 θ
}

cos φ , (4.10)

where the coefficients Zi are:

Z1 =
1
4
Re

[

(−2S1 +
√

2D)(P ∗
0 − P ∗

2 )− 3S(P ∗
1 − P ∗

2 )
]

Z2 =
3
4

[

|D|2 + Re
{

−
√

2D(S∗1 − S∗)− 3P (P ∗
1 − P ∗

2 )

−(P1 + P2)(P ∗
0 − P ∗

2 )
}]

Z3 =
9
8

√
2 Re

{

D(2P ∗ − P ∗
1 − P ∗

2 )
}

= −2X6 (4.11)

dσ
dΩ

Pf · n̂ = −
{

X1 sin θ + X2 sin θ cos θ
}

+ Pi

{

−X3 + X7−

− (X4 + X6) cos θ − (X5 + X7) cos2 θ
}

sin φ . (4.12)
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V. MEASURABLE QUANTITIES

1. Besides the total cross section (4.5) and the differential cross section (4.1) one defines
usually two more experimental quantities related to the angular distribution:

(i) the ‘forward-backward’ ratio:

F −B
F + B

=
{

∫ 2π

0
dφ

∫ 1

0
d cos θ

dσ
dΩ

−
∫ 2π

0
dφ

∫ 0

−1
d cos θ

dσ
dΩ

}

/σtot (5.1)

From (4.1) we find

F −B
F + B

= 2πA2/σtot . (5.2)

(ii) the ‘polar to equatorial’ ratio:

P − E
P + E

=
{

∫ 2π

0
dφ

(

∫ − 1
2

−1
+

∫ 1

1
2

)

d cos θ
dσ
dΩ

−
∫ 2π

0
dφ

∫ 1
2

− 1
2

d cos θ
dσ
dΩ

}

/σtot . (5.3)

From (4.1) we find

P − E
P + E

= 2πA3/σtot . (5.4)

(iii) the (averaged) left-right asymmetry:
The asymmetry with respect to the plane of the incident momentum and the direction of
the initial polarization is (see also (2.17)):

ε =
{

∫ π

0
dφ

∫ +1

−1
d cos θ

dσ
dΩ

−
∫ 2π

π
dφ

∫ +1

−1
d cos θ

dσ
dΩ

}

/σtot . (5.5)

Again from (4.1) we find

ε = 2πA4/σtot . (5.6)

So, the coefficients A1, A2, A3 and A4 can be determined from σtot, F−B
F+B , P−E

P+E , and ε.
Remark about the angular distribution: one sees from (4.1) that the angular distribution

becomes isotropic in the case of only S-waves and also if one has in addition the presence
of S −D transitions.

2. Here and from now on we restrict ourselves to the case of hyperon-nucleon scattering
Y + N → Y ′ + N ′. So Y and Y ′ stand for one of the particles Λ, Σ+, Σ0 and Σ−. Similarly
N and N ′ for p or n. For the determination of the average polarization vector of a sample
of hyperons at rest one can sometimes use the non-leptonic hyperon decay, Y → N + π, as
a polarization analyzer.

In section III we have expressed the polarization vector in the center-of-mass frame for
the hyperon-nucleon system. Since we consider only low energetic hyperons, we may apply
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a parallel Galilei-transformation to each individual hyperon in order to transform it to its
rest frame. The coordinate system in this rest frame is taken parallel to that described in
section III.

Under this transformation the solid angle Ω and so, dσ/dΩ are invariant. Also the
components of the polarization vector do not change under this operation. Therefore the
components of the polarization vector of the sample at rest are the same as those of the
same sample in the center-of-mass frame.

Now the average polarization vector of the sample, formed by the hyperons, which are
scattered into the solid angle Ω, in the center-of-mass frame, and so also in the rest frame
under the above stated conditions, is

P =
∫

Ω
dΩ P(f)(Ω)

dσ
dΩ

/σtot , (5.7)

then, we have for the decay angular distribution of the hyperons, taken at rest, with respect
to the x-direction

W (Θx) = const. (1 + αP x cos Θx) , (5.8)

where α denotes the decay parameter for the hyperons involved, and cos Θx the direction
cosine of the π-momentum with respect to the x-axis.

Analogous formulae hold for W (Θy) and W (Θz). So, from (5.7) one sees that when α is
known and unequal to zero: the asymmetry in the decay enables us to determine P. The
experimental values are [6]:

asymmetry parameter decay mode

αΛ = 0.645± 0.016 Λ → p + π−

= 0.71± 0.18 Λ → n + π0

αΣ+ = −0.995± 0.022 Σ+ → p + π0

= +0.068± 0.016 Σ+ → n + π+

αΣ− = −0.078± 0.020 Σ− → n + π−

For Σ0 one has almost exclusively the decay Σ0 → Λ + γ and therefore cannot be discussed
in the above stated terms.

From the quoted data one can conclude that the average polarization vector of a sample
of Λ- or Σ+-hyperons indeed can be determined by observation of the non-leptonic decay of
these hyperons.

We work out the following distributions:
(i) The depolarization is defined as D(Ω) = Px(Ω)/P0, then, the average depolatization is
obtained from (5.6) as D = P x/Pi, where the solid angle Ω (see (5.6)) includes all directions.
So from (4.3) follows

D = 2π
[

|S1|2 −
1
2
|D|2 +

3
2
|P2|2 + Re

{

S1 · S∗ +

+ P1

(

P ∗
0 +

1
2
P ∗

2 +
3
2
P ∗

)

+
3
2
P · P ∗

2

}]

/σtot . (5.9)
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If one neglect the P waves, the angular distribution is isotropic and (4.3) and (5.8) reduce
to

D = 2π
[

|S1|2 −
1
2
|D|2 + Re S1S∗

]

/σtot . (5.10)

Note that in (5.9) two partial cross sections occur

σ(3S1 → 3S1) = 3π|S1|2 , σ(3S1 → 3D1) = 3π|D|2 .

If one considers only S-waves and no S − D-coupling, the formulae (4.3) and (5.8) reduce
to the Gardner and Welton formula

D = D =
2{|S1|2 + Re S1S∗}

|S|2 + 3|S1|2
. (5.11)

(ii) The average polarization in the direction of the normal can, of course, also be measured.
From (4.8) it follows

P f
n = −π2X1/σtot , (5.12)

which is pure interference (cfr. eq. (4.3)). Note also that P f
n is independent of Pi, which is

a general feature and will be proven in Appendix A.

(iii) An interesting quantity is the asymmetry between the averaged polarization along the
normal, of the particles scattered to the right and to the left

An ≡ P f
n (r)− P f

n (`) =

=
∫ π

0
dφ

∫ +1

−1
d cos θ(Pf · n̂)

dσ/dΩ
σtot

−
∫ 2π

π
dφ

∫ +1

−1
d cos θ(Pf · n̂)

dσ/dΩ
σtot

=
8(−X3 − 1

3X5 + 2
3X7)

σtot
. (5.13)

In the case of only S-waves and S −D-transition, formula (5.12) becomes

An = −4

[

|S1|2 − |D|2 + Re (S1S∗) + 1
2

√
2 Re (S∗1 − S∗)D

]

4π[3|S1|2 + |S|2 + 3|D|2]
. (5.14)

Note that An can be written as (cfr. (5.10))

An = − 2
π
D +

2|D|2 −
√

2 Re {(S∗1 − S∗)D}]
σtot

. (5.15)

So, in this case two independent quantities can be measured: D and An.
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APPENDIX A:

1. In this appendix we derive firstly a few symmetry properties both for the M-matrix and
for the spin-matrices.
(i) From rotational invariance we will proof the following relation

MS1S2
αβ (θ, φ)fi = MS1S2

αβ (θ, 0)fiei(β−α)φ . (A1)

Proof:

MS1S2
αβ (θ, φ)fi ≡ 〈f ; kf , θ, φ; S1, α|M |i; ki, 0, 0; S2, β〉

= 〈f ; kf , θ, φ; S1, α|R−1(φ0, 0, 0)MR(φ0, 0, 0)|i; ki, 0, 0; S2, β〉
= 〈f ; kf , θ, φ + φ0; S1, α|M |i; ki, 0, 0; S2, β〉e−i(β−α)φ0

= MS1S2
αβ (θ, φ + φ0)fie−i(β−α)φ0

Putting φ = 0 in the above expression yields (A1). Defining now

MS1S2
αβ (θ)fi ≡ MS1S2

αβ (θ, 0)fi (A2)

gives then

MS1S2
αβ (θ, φ)fi ≡MS1S2

αβ (θ)ei(β−α)φ . (A3)

(ii) By virtue of rotational invariance we can derive another useful symmetry property

MS1S2
αβ (θ)fi = (−1)−S1+S2+α−βMS1S2

−α−β(θ)fi (A4)

by considering a rotation over π around the y-axis together with invariance under parity

MS1S2
αβ (θ)fi = MS1S2

αβ (θ, 0)fi

= 〈f ; kf , θ, 0; S1, α|M |i; ki, 0, 0; S2, β〉
= 〈f ; kf , θ, 0; S1, α|P−1R−1(0, π, 0)MR(0, π, 0)P |i; ki, 0, 0; S2, β〉
=

∑

γδ

dS1
αγ(π)〈f ; kf , θ, 0; S1, γ|M |i; ki, 0, 0; S2, δ〉dS2

δβ(π)

= (−1)−S1+α+S2−β〈f ; kf , θ, 0; S1,−α|M |i; ki, 0, 0; S2,−β〉
= (−1)−S1+S2+α−βMS1S2

−α−β(θ)fi

From (A4) one can immediately conclude

M0
0

1
0(θ) = M1

0
0
0(θ) = 0 (A5)

(iii) The symmetry relations of the σ-matrices are derived in a similar manner. From the
commutation relations of σi, i = 1, 2

R(π, 0, 0)







σix

σiy

σiz





 R(π, 0, 0)−1 =







−σix

−σiy

+σiz





 (A6)
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we get

〈

χ(S1)
α

∣

∣

∣

∣

∣

∣

∣







σix

σiy

σiz







∣

∣

∣

∣

∣

∣

∣

χ(S2)
β

〉

=

〈

χ(S1)
α

∣

∣

∣

∣

∣

∣

∣

R−1(π, 0, 0)







−σix

−σiy

σiz





 R(π, 0, 0)

∣

∣

∣

∣

∣

∣

∣

χ(S2)
β

〉

= −(−1)α−β

〈

χ(S1)
α

∣

∣

∣

∣

∣

∣

∣







σix

σiy

−σiz







∣

∣

∣

∣

∣

∣

∣

χ(S2)
β

〉

(A7)

In a different notation they read therefore

(σix)S1S2
α β = −(−1)α−β(σix)S1S2

α β (A8)

similar for y, and

(σiz)S1S2
α β = (−1)α−β(σiz)S1S2

α β . (A9)

From (A8) it is clear that σix and σiy have a checker-board pattern.

(iv) A rotation over an angle π around the y-axis gives us the next result. Again from the
commutation relations it follows

R(0, π, 0)







σix

σiy

σiz





 R(0, π, 0)−1 =







−σix

σiy

−σiz





 (A10)

therefore for the σ-matrices we get

〈

χ(S1)
α

∣

∣

∣

∣

∣

∣

∣







−σix

σiy

−σiz







∣

∣

∣

∣

∣

∣

∣

χ(S2)
β

〉

=

= ΣγδdS1
γα(π)

〈

χ(S1)
γ

∣

∣

∣

∣

∣

∣

∣







σix

σiy

σiz







∣

∣

∣

∣

∣

∣

∣

χ(S2)
δ

〉

dS2
βδ(π)

= (−1)S2−S1−β+α

〈

χ(S1)
−α

∣

∣

∣

∣

∣

∣

∣







σix

σiy

σiz







∣

∣

∣

∣

∣

∣

∣

χ(S2)
−β

〉

= (−1)S2−S1−β+α

〈

χ(S2)
−β

∣

∣

∣

∣

∣

∣

∣







σix

−σiy

σiz







∣

∣

∣

∣

∣

∣

∣

χ(S1)
−α

〉

(A11)

where use has been made in the last step of the fact that σiy is purely imaginary, the
hermiticity of the σi and the reality of the spin basis. Rewritten in a different notation
(A11) reads
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





σix

σiy

σiz







S1 S2

α β = (−1)S2−S1−β+α







−σix

σiy

−σiz







S1 S2

−α −β (A12)

and

(σi)
S1 S2

α β = −(−1)S2−S1−β+α(σi)
S1 S2

−α −β (A13)

(v) From the explicit forms of the spin basis (3.3) it is obvious that the following relation
holds

σS1S2
1 = (−1)S1−S2σS1S2

2 . (A14)

2. Having derived some symmetry properties of the M-matrix and the σ-matrices, we can
show a few general features of the polarization:

(i) In the case of an unpolarized beam and an unpolarized target, we can easily demonstrate
that the final polarization is in the direction of the normal, due to rotational symmetry
around the z-axis and invariance under parity. Because of the rotational symmetry around
the z-axis we may put φ = 0 without loss of generality. The scattering is then in the x− z
plane and the normal points into the y-direction. The polarization was defined in Eqn. (2.10)

[

Pf
1,2

]

u
=

Tr [M(θ, 0)fiM(θ, 0)†fiσ1,2]
Tr [M(θ, 0)fiM †(θ, 0)fi]

Now, using (A4) and (A12) yields

Tr (MM †)







P f
x

P f
y

P f
z







1,2u

= MS1S2
αβ (θ)fiMS3S2

γβ (θ)∗fi







σ1,2x

σ1,2y

σ1,2z







S2 S1

γ α

=
1
2





MS1S2
αβ (θ)fiMS3S2

γβ (θ)∗fi







σ1,2x

σ1,2y

σ1,2z







S3 S1

γ α

+ MS1S2
−α−β(θ)fiMS3S2

−γ−β(θ)∗fi







−σ1,2x

σ1,2y

−σ1,2z







S3 S1

−γ −α







= MS1S2
αβ (θ)fiMS3S2

γβ (θ)∗fi







0
σ1,2y

0







S3 S1

γ α (A15)

where also is summed over S1, S2 amd S3. In the above result we see that the final polar-
ization is in the direction of the normal. If we have φ 6= 0, then, of course the rotation over
φ around the z-axis to the new situation would not affect the z-components of [P f ]u: it is
always zero.

Note that the use of invariance under parity is hidden in employing (A4).
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(ii) The averaged final polarization along the normal is always independent of the initial
polarization. In fact we will proof that

Pf
1,2 · n̂ = [Pf

1,2]u · n̂ , (A16)

where the average is defined in equation (5.6).
Proof:
Inserting (2.12) into (2.19) and recalling (2.18) and (2.20) yields

dσ
dΩ

Pf
1,2 · n̂ = Tr

[

M
1
4
(1 + Pi · σ)M †σ1,2

]

=
[

dσ
dΩ

]

u

Tr [MM †σ1,2]
Tr [MM †]

· n̂ +
1
4
Tr

[

M(Pi · σ1)M †σ1,2

]

· n̂

=
[

dσ
dΩ

]

u

[Pf
1,2]u · n̂ +

1
4
Tr

[

M(Pi · σ1)M †σ1,2

]

· n̂ (A17)

The next step is to show that the latter term of (A17) vanishes by integration over φ. In
our coordinate system we have Pi = Pix̂ and n̂ = − sin φx̂ + cos φŷ. So using (A1)

∫ 2π

0
dφ Tr [M(Pi · σ1)M †σ1,2] · n̂ =

= Pi
∑

S1S2S3S4

∫ 2π

0
dφMS1S2

αβ (θ)(σ1x)S2S3
βγ MS4S3

δγ (θ)∗ ·

×
[

−(σ1,2x)
S4 S1

δ α sin φ + (σ1,2y)
S4 S1

δ α cos φ
]

ei(β−α−γ+δ)φ .

(A18)

Now (σ1,2x)
S1 S2

µ ν and (σ1,2y)
S1 S2

µ ν have only nonzero elements for µ−ν = ±1 (cfr. (A8)).

Therefore in the above expression β − γ = ±1 and δ−α = ±1. Since β −α− γ + δ is even,
it is obvious that the integral over φ in (A18) vanishes. Averaging equation (A17) yields
immediately (A16).

(iii) Finally, it follows from (3.11) to (3.13) that in the case of no singlet-triplet coupling,
i.e.

MS1S2
αβ (θ, φ)fi = 0 if S1 6= S2 (A19)

that

[Pf
1 ]u = [Pf

2 ]u . (A20)
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APPENDIX B:

The quantization axis of the spin is chosen to point in the ki-direction. Moreover, we
attribute phases to the spin states in such a way that for the time reversed state, the
relation holds:

T χ(s)
m = (−)s−mχ(s)

−m . (B1)

Then the condition of time reversal invariance for the T-matrix reads

〈f ;kf , s1, ν|T |i;ki, s2, µ〉 = (−)−S1+ν+S2−µ ·
〈i;−ki, s2,−µ|T |f ;−kf , s1,−ν〉 . (B2)

Using invariance under the parity transformation, we can rewrite (B2)

〈f ;kf , s1, ν|T |i;ki, s2, µ〉 = (−)−S1+ν+S2−µ ·
〈i;ki, s2,−µ|T |f ;kf , s1,−ν〉 . (B3)

In the coordinate system, where k̂i points in the positive z-direction, we have the relation

k̂f = R(φ, θ,−φ)k̂i . (B4)

If we now change the spin quantization axis to k̂f , then the connection between the two
spinbases is

χ(s)
µ = Ds†

ρµ(φ, θ,−φ)χ(s)′
ρ , (B5)

where the summation over repeated indices is, of course, understood. In the following the
prime refers to this new spin basis. Rewriting the r.h.s. of (B4) on the new spin basis, yields

〈f ;kf , s1, ν|T |i;ki, s2, µ〉 = (−)−S1+ν+S2−µ ·

DS2
−µ,ρ(φ, θ,−φ)′〈i;ki, s2, ρ|T |f ;kf , s1, λ〉′D

S†1
λ,−ν(φ, θ,−φ) . (B6)

The relation between the M-matrix, defined in (2.1) and the T-matrix is

Tfi = 〈f |T |i〉 =
〈

f
∣

∣

∣

∣

S − 1
i

∣

∣

∣

∣

i
〉

= −
(

1
mimf

)1/2 (

ki

kf

)

〈f |M |i〉

≡ −
(

1
mimf

)1/2 (

ki

kf

)1/2

Mfi . (B7)

From (B6) follows then the relation for the M-matrices

〈f ;kf , s1, ν|T |i;ki, s2, µ〉 ≡ MS1
ν

S2
µ (kf ,ki)fi =

kf

ki
(−)−S1+ν+S2−µ

DS2
−µ,ρ(φ, θ,−φ)MS2S1

ρ,λ
′
(ki,kf )ifDS1

λ,−ν(φ, θ,−φ) . (B8)

Due to (B4) we can rewrite (B8) in terms of the polar angles
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MS1,S2
ν,µ (θ, φ)fi =

kf

ki
(−)−S1+ν+S2−µDS2

−µ,ρ(φ, θ,−φ)

MS2S1
ρ,λ

′
(θ, φ + π)ifD

S†1
λ,−ν(φ, θ,−φ) =

kf

ki
(−)−S1+ν+S2−µ

(

DS2(φ, θ,−φ)MS2S1 ′(θ, φ + π)ifDS†1(φ, θ,−φ)−µ,−ν

)

(B9)

For scattering of a polarized beam incident on an unpolarized target, we have derived for
the angular distribution (cfr. (2.18))

dσfi

dΩ
=

[

dσfi

dΩ

]

u

(1 + εfi ·Pi) , (B10)

where the left-right asymmetry εfi is defined (cfr. (2.17))

εfi ≡
Tr (M †

fiMfiσ1)

Tr (MfiM
†
fi)

. (B11)

The polarization of the scattered particle in the scattering of an unpolarized beam incident
on an unpolarized target for the reaction f → i is defined

[Pif
1 ]u =

Tr (MifM
†
ifσ1)

Tr (MifM
†
if )

. (B12)

Next we will proof that the following relation holds

εfi = [Pif
1 ]u . (B13)

Proof:
By using (B9) and the properties of the rotation matrices we get

Tr (M †(θ, φ)fiM(θ, φ)fiσ1) =
∑

S1S2S3

MS2
α

S1
α (θ, φ)∗fiM

S2
β

S3
γ (θ, φ)fi(σ1) S3

γ
S1
α

=
(

kf

ki

)2
∑

S1S2S3

(−)−S1+S3+α−γ
[

DS1MS1S2 ′(θ, φ + π)ifDS2†
]∗

−α,−β
·

·
[

DS3MS3S2 ′(θ, φ + π)ifDS2†
]

−γ,−β
(σ1) S3

γ
S1
α =

=
(

kf

ki

)2
∑

S1S2S3

(−)−S1+S3+α−γ
[

DS3MS3S2 ′(θ, φ + π)ifMS2S1†′(θ, φ + π)ifDS1†
]

−γ,−α
·

· (σ1) S3
γ

S1
α , (B14)

where the arguments of the DS are (φ, θ,−φ).
Combining (B5), (A13) yields

(σ1) S3
γ

S1
α = −(−)S1−S3−α+γ(σ1) S1

−α
S3
−γ +−(−)S1−S3−α+γ

[

DS1(φ, θ,−φ)(σ)′S1S3DS3(φ, θ,−φ)†
]

−α,−γ
. (B15)
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Inserting this expression into (B14) gives as a result

Tr (M †(θ, φ)fiM(θ, φ)fiσ1) = −
(

kf

ki

)2

·

·
[

DS3MS3S2(θ, φ + π)′ifM
S2S1†(θ, φ + π)′ifD

S1†DS1(σ1) S1S3DS3†
]∗

−α,−α

= −
(

kf

ki

)2

Tr
[

M(θ, φ + π)′fi M †(θ, φ + π)′fiσ
′
1

]

(B16)

Using (A1) together with (A6) and the fact that Tr (MM †σiz) = 0 (cfr. equation (A15)),
we can rewrite (B16)

Tr (M †(θ, φ)fiM(θ, φ)fiσ1) =
(

kf

ki

)2

Tr (M(θ, φ)′ifM
†(θ, φ)′ifσ1

′) (B17)

It is obvious from relation (B9) and (A1) that

Tr (M(θ, φ)fiM †(θ, φ)fi) =
(

kf

ki

)2

Tr (M(θ, φ)′ifM
†(θ, φ)′if ) (B18)

Combining (B11), (B12), (B17) and (B18) we can conclude to (B13)

εfi =
[

Pif
1

]

u
. (B19)

Next we consider equation (B9). We rewrite this equation using relation (A1) and the
properties of the rotation matrices and find

dS1
κρ(θ)(−)S1−ρMS1

ρ
S2
µ (θ)fi = dS2

µρ(θ)(−)S2−ρMS2
ρ

S1
κ (θ)1

if (B20)

In the case of elastic scattering this leads to two non-trivial relations

M11
11 −M11

1−1 −M11
00 =

√
2 cot θ(M11

01 +M11
10) (B21)

and

M10
10 = M01

01 (B22)

where in the above relations we have suppressed the argument θ of the matrix elements.
Relation (B21) can be found e.g. in [2], but is here derived in a more direct manner employing
space-time symmetries.

Finally we discuss the number of independent amplitudes on the basis of the relations
among the singlet-triplet amplitudes due to rotation and parity invariance, eq. (A4), and
time-reversal invariance, eq. (B21) and eq. (B22). So, we consider only the reduction of the
number of independent amplitudes coming from space-time symmetries, but not an eventual
further reduction due to other principles as e.g. charge-conjugation – or G-parity invariance,
SU(3) symmetry.
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A priori we have 16 amplitudes, among which there are only 8 independent over by
eq. (A4). (On the ‘helicity’ basis the counting is even easier!) Therefore an inelastic reaction
has in general 8 independent amplitudes. For instance in case of an inelastic hyperon-nucleon
reaction 8 independent ‘invariant’ amplitudes have been constructed by Protopapadakis [7].

An elastic reaction has in general 6 independent amplitudes, because of a further re-
duction of 2 amplitudes, by eq. (B21) and eq. (B22).

If one has to do with identical particles such that the Pauli-principle is operative, as for
instance in nucleon-nucleon scattering, one has only 5 independent amplitude (see Ref. [2]).
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