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Abstract

A multi-energy phase shift analysis of all published proton-proton (pp) scat-
tering data in the energy range Tlab ≤ 30 MeV is presented. In the descrip-
tion of all partial waves the well-known long range interaction is included:
the improved Coulomb, the vacuum polarization, and the one-pion-exchange
potential. In the lower partial waves the energy-dependent analysis uses a
P -matrix parametrization for the short range interaction. Special attention
is paid to the electric interaction, the definition of the phase shifts and the
selection of the data. The fit to the final data set comprising 360 scattering
observables results in χ2/Ndf = 1.0, where Ndf is the number of degrees of free-
dom. The ppπ0-coupling constant is determined to be g2

ppπ0/4π = 14.5± 1.2,
but there are several indications for a lower value. The optimum value for
the P -matrix radius b ≈ 1.4 fm is satisfying. Single-energy phase shifts with
second derivative matrices, and effective range parameters are given.
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I. INTRODUCTION

An analysis is presented of all proton-proton (pp) scattering data at laboratory kinetic
energies Tlab ≤ 30 MeV. Since the latest analysis of this low energy region by Naisse [1,2]
in 1977, the world set of pp scattering data has grown considerably [3–10], mainly below
10 MeV.

On the theoretical side, improvements over earlier low energy analyses [2,11,12] have
been made by inclusion of an improved Coulomb potential [13,14] and an explicit treatment
of pion-exchange effects. Our P -matrix parametrization of the lower partial waves was an
important improvement especially for the 1S0 partial wave. All parametrized partial waves,
the S-, P -, and D-waves, are treated in the same manner. In an analysis the partial waves
with higher angular momentum have to be taken from theory. In these partial waves we used
the phase shifts due to vacuum polarization (VP) and one-pion-exchange (OPE), computed
in Coulomb-distorted-wave Born-approximation (CDWBA).

In order to get a good fit to the data in this low energy region, one has to take into
account VP, OPE and the relativistic Coulomb parameter η′. The use of the CDWBA
instead of the plane wave Born approximation (BA) in the higher partial waves, and the
inclusion of the full improved Coulomb potential instead of only keeping the η′ term are
less important. They give no significant improvement of the fit, but they do influence the
precise values that are found for the phase shifts and the pion-nucleon coupling constant.

In the past the most widely used parametrizations for the phase shifts at low energies
have been effective range expansions [15,16,2,17,18]. At those energies most of the scattering
happens in the 1S0-state. At 10 MeV for instance, more than 99% of the differential cross-
section is produced by the nuclear interaction in the 1S0 partial wave and the electromagnetic
interaction. Heller [19] derived for the 1S0 an effective range function, in which Coulomb and
VP were included. If additional electromagnetic effects are neglected, this effective range
function will have as its most nearby singularity a cut due to OPE, starting at Tlab = −9.7
MeV in the complex energy plane. Because this is rather close to the physical energy region,
several analyses [11,2] used the Cini-Fubini-Stanghellini (CFS) [20,21] approximation, which
tries to take this nearby singularity approximately into account. It has been shown [17,14] in
a potential model by comparing the CFS approximation with the calculated effective range
function, that the CFS approximation is totally unsuitable for a proper description of the
1S0 partial wave.

Recently, an analysis up to 3 MeV has been done [17], in which the 1S0 phase shift was
parametrized as a function of the energy using a pion-modified effective range formalism.
This approach gives practically identical results as our P -matrix formalism, even for the
entire 0–30 MeV range. The major drawback of modified effective range expansions is
the large effort necessary to compute the modified effective range function with sufficient
accuracy. This problem arises from the singular behavior near the origin of the long range
(Coulomb, VP) potentials. The incentive of the modified effective range formalism was only
to remove the singularities near Tlab = 0 of the effective range function, caused by the tail
of the long range potentials. Since the short range interaction is parametrized anyway, one
can see that the accuracy problem of the modified effective range method is an artificial one,
arising from a too detailed treatment of the short range part of the long range potential.
For higher angular momenta the situation becomes even worse, due to the appearance of
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the centrifugal barrier.
In other analyses [2,12] the interaction in the 1S0-state was parametrized by means of a

parametrized potential. The advantage of this method is that the electromagnetic and OPE
interactions are easily included in the correct way, thereby fixing the tail of the potential.
But it appears that very different forms of the potential in the inner region (r <∼ 1 fm) can
give an equally good fit to the data [12]. Once a specific form is chosen, the data pin down
the parameters of the potential very sharply [2]. Just like in the modified effective range
formalism it appears that specifying the short range potential adds unnecessary detail to
the model.

For the P -waves one usually has taken a simple effective range expansion where only the
Coulomb interaction was included. For the 3P2-wave, however, one did not parametrize the
nuclear phase shift in this way, but its difference with the OPE phase shift (see Sec. II B). For
the 1D2-wave a more phenomenological parametrization has been used in previous analyses
(see Sec. II B).

We present an analysis that has none of the above drawbacks. Theoretically well-known
long range potentials are included easily, no computational problems arise at short distances
and the model-dependence can be kept down to a minimum. Furthermore, all partial waves
are treated with the same long range effects (improved Coulomb, VP, OPE) included. Also
the treatment of coupled channels is straightforward.

In this analysis, we use a P -matrix to parametrize the short range interaction in the
lower partial waves (total angular momentum J < 3). The P -matrix gives in a natural way
a division of the interaction in a short range and a long range part.

Jaffe and Low [22] proposed to use the P -matrix formalism to connect multi-quark states
to hadron-hadron scattering and it has been used in that sense in nucleon-nucleon scattering
by Simonov [23] and Mulders [24]. The formalism is similar to the boundary condition model
of Feshbach and Lomon [25].

The P -matrix is the logarithmic derivative of the radial wave function at a radius b, the
P -matrix radius. It will be described in detail in the next section. For r > b the interaction is
described by a potential tail V . In V we wanted to include those effects that are theoretically
well-understood and are model-independent. The electromagnetic interaction is described
very accurately by the improved Coulomb potential [13,14] and the vacuum polarization
potential [26]. Of the remaining long range nuclear interaction we only took the tail of the
OPE-potential. It appeared not to be necessary to include shorter range nuclear forces in the
potential tail. Here the first uncertainties come into view, since the ppπ0-coupling constant
is not known accurately. Fortunately enough, in this analysis it can be determined by the fit
to the data. In previous analyses [2,12] the pion-coupling constant could not be determined
well from the 0–30 MeV data. When an effective range model was used for the 1S0 partial
wave the reason was the too crude approximation to OPE. When a potential representation
was used, meaningless results for the potential parameters were obtained [2].

Our choice for the potential tail V gives a restriction on the allowed values of b, since if b
is chosen too small, V (r) is no longer a good description of the pp interaction for r > b. Of
course we could have included a two-pion-exchange potential tail, or a full nucleon-nucleon
potential tail with contributions from higher mass mesons [27,28]. This would have resulted
in a more realistic potential for distances close to b. All results that change when a different
(realistic) potential is taken, can be termed model-dependent. We have checked explicitly
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(Sec. VI A) that the inclusion of the heavier-boson-exchanges of the Nijmegen soft core
potential [27] does not change the fit to the data. Only the P -matrix parameters change
in such a way as to give, with this different potential tail, essentially the same phase shifts.
Since it is thus not necessary to rely on a specific potential model for the shorter range
forces, the shortest range potential included here is the OPE-potential.

If the P -matrix is parametrized as a function of the energy one has an energy-dependent
phenomenological description of the phase shifts. We used it for a multi-energy (m.e.) fit
to all data published in a regular physics journal. Unfortunately enough there exist a lot of
data [29–33] that have not been published in a regular physics journal, but that appeared
in conference proceedings or theses only. Inclusion of these data would have changed our
results (see Sec. VI). Furthermore we rejected some data on the basis of sound statistical
criteria. The model, with 12 parameters, gives a statistically satisfying fit to the data. Other
analyses use about the same number of parameters.

The m.e. fit gives us the phase shifts as a function of the energy. Next to this we also did
single-energy (s.e.) fits, giving phase shifts and error-matrices at certain energies. The s.e.
fits were done by clustering the data to form groups near the chosen energies. In order to
do these fits, one needs some of the m.e. results to preserve the proper energy-dependence
and to fix the phase shifts that cannot be fitted at the chosen energy. S.e. phase shifts and
error-matrices are a representation of the data near a certain energy and are probably less
model-dependent than the m.e. results. The s.e. results can be used to judge the amount
of information the data give us at different energies. They can also be used to adjust the
parameters of any model for the pp interaction. The quality of such a model can then be
judged from a comparison of the model’s likelihood-function χ2 with our m.e. χ2, which is
close to the expected value χ2/Ndf = 1 (Sec. V A).

We compare our results with the analyses of Sher, Signell and Heller (SSH) [12], Noyes
and Lipinski [11], Gursky and Heller [15], and Naisse [2]. There are other analyses that
have an overlap in energy range with ours. But the series of analyses by Arndt and co-
workers [34–37] and the analyses by Bystricky et al. [38,39] are not detailed enough for the
very accurate data at low energies. The analysis by Bohannon et al. [40] deals with pp and
np data, but only in the energy range 20–30 MeV, which contains only a small part of the
0–30 MeV pp data. Furthermore the 20–30 MeV data are rather old and not very precise.

In Sec. II the P -matrix is defined, some of its properties are given and we describe how
it is used to divide the interaction into long range (well-known) and short range (less well-
known) interactions. We also discuss its parametrization and the choice of b. Sec. III is
devoted to the potential tail. In Sec. IV the framework for computing the observables is
given. Special attention is paid to the different kinds of phase shifts that have been used in
the past and we also deal with some technical problems. In Sec. V, after a discussion of data
statistics and our criteria to reject data, we enter into the details of defining our final data
set. Sec. VI concludes by giving our results for phase shifts and parameters. Differences
between the phase shifts of our analysis and those computed with the Nijmegen soft core
potential (N78) [27] and the parametrized Paris potential (P80) [28] are discussed. We
also give the effective range parameters that can be deduced from our results. Finally, an
appendix is devoted to a test of some assumptions that were made about the data statistics.
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II. THE P -MATRIX, A PARAMETRIZATION IN THE LOWER PARTIAL
WAVES

A. Definition and properties of the P -matrix

The scattering process of two protons we describe by the relativistic [14] radial
Schrödinger equation (

d2

dr2
+ k2 − L2

r2
−Mp · V (r)

)
χ(r) = 0 , (1)

where χ(r) is the radial wave function, Mp is the proton mass and L2 is shorthand notation
for `(` + 1), with ` the orbital angular momentum. The correct relativistic connection
between the c.m. relative momentum k and the laboratory kinetic energy Tlab is k2 =
MpTlab/2. In the case of two coupled channels, all operators in Eq. (1) become 2×2 matrices,
of which only the potential V (r) is non-diagonal. The number of linearly independent
solutions of Eq. (1) is twice the number of channels. But the complete physical model
has only half that number of independent solutions. Therefore it consists of more than
Eq. (1). For instance in a potential model one has the boundary conditions that the physical
solution is regular at the origin (r = 0). These solutions are then written as the 2 × 2
matrix χ(r). Perhaps one wonders why the relativistic Schrödinger equation can provide
a good relativistic description of the scattering amplitude and of bound state energies.
Then one should realize that this equation is nothing else but a differential form of the
relativistic Lippmann-Schwinger (LS) integral equation. The relativistic LS equation in turn
is totally equivalent with three dimensional integral equations, such as the Blankenbecler-
Sugar equation [41–44]. Important to note is that it is well-known how to calculate the
potential for the use in the relativistic Schrödinger equation [45–47].

Measurements of scattering observables determine the asymptotic behavior (r →∞) of
the physical solution up to an unimportant normalization. For the relation between this
asymptotic behavior (definitions of phase shifts and mixing parameters) and the observable
quantities, see Sec. IV.

In the P -matrix formalism [22–25], that we employ, Eq. (1) is only used for r ≥ b, the
P -matrix radius. All of the interaction inside r = b is absorbed in a boundary condition at
r = b, the P -matrix

P (b; k2) = b

(
dχ

dr
· χ−1

)
r=b

. (2)

Given the asymptotic behavior of χ(r), and the potential V (r) outside r = b, the
P -matrix is uniquely determined. If b is chosen so large that the interaction outside (the long
range interaction) is well-known and model-independent, all models for the pp interaction
that give a good fit to the data should produce the same P -matrix.

If one has a model for the interaction inside r = b, not necessarily a potential model, the
P -matrix connects the physics of the inner region with the physics of the outer region. For
instance, in a bag model, in which quark degrees of freedom play a role inside r = b, the
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P -matrix shows poles at the energies of the eigenstates of the confined system. Jaffe and
Low [22] call these eigenstates bag primitives.

We use a parametrized P -matrix as a means to analyze the experimental data. We add
the well-known long range interaction by means of a potential tail and parametrize the struc-
ture of the P -matrix as a function of the energy. The energy-dependence of the P -matrix
is easier parametrized than the energy-dependence of the phase shifts. The potential V (r)
we use for r ≥ b is discussed in Sec. III, and the parametrizations for the P -matrix are dis-
cussed and compared with earlier partial wave parametrizations in Sec. II B. In this section
we review quickly some properties of the P -matrix.

P is a single-valued function of k2. P is real for real k2 in the case of a unitary S-matrix
and a hermitean potential. In the coupled channel case, time reversal invariance allows the
choice of a symmetric potential and S-matrix, leading to a symmetric P -matrix.

Other important properties of the P -matrix are:

1. If one assumes that a local potential V (r) also exists for r < b, one can show that the
P -matrix can be written as a sum of poles. In the one-channel case we may write

P (b; k2) = c+ k2
∞∑
n=1

rn
k2 − k2

n

. (3)

For comparison, one might look at the trivial case that V (r) = 0 for r < b and orbital
angular momentum `. This leads to

c = `+ 1 ; rn = 2 ; kn = zn/b , (4)

with zn the n-th zero of the spherical Bessel function j`(z).

2. The P -matrix is a decreasing function of the energy. For coupled channels this means
that the derivative with respect to k2 is a negative definite matrix. Without assump-
tions about the potential for r < b, this behavior can be seen as a consequence of
classical causality [25], but it is also possible to express it explicitly in terms of the
potential in the inner region

dP

dk2
= −b

(
χT (b)

)−1
·
∫ b

0
dr χT (r)

[
1−Mp ·

∂V (k2; r)

∂k2

]
χ(r) · (χ(b))−1 ,

(5)

where the superscript T denotes the transpose of a matrix. From this, one can see that
P is a decreasing function of the energy if the energy-dependence of the potential V is
not too strong. In the coupled channel case, Eq. (5) states that the energy-derivative
of P is a non-positive matrix, provided we have a positive matrix between the square
brackets.

3. If one wants the P -matrix at a different value of b, one can use the relation

b
dP

db
= P − P 2 + b2

(
−k2 +

L2

b2
+Mp · V (b)

)
. (6)

6



The potential tail that we use will not be entirely exact, since we do not include nuclear
forces other than OPE. Furthermore, our P -matrix and potential tail does not describe
inelasticity. Therefore we cannot expect all of the above properties to hold exactly. We can
see this by looking at the S-matrix as a function of the complex energy. The S-matrix has
a (purely kinematical) unitarity cut, some right-hand cuts due to inelastic processes and
left-hand cuts due to particle-exchanges. The potential tail that we use does not contain
any meson-exchanges other than OPE, nor does it account for inelastic processes (couplings
to channels with higher thresholds). We can only get the right S-matrix if some of the cuts
are still present in the P -matrix. Therefore, in the P -matrix approach we might be able to
spot a wrong potential tail. If one finds e.g. for some partial wave a P -matrix that increases
as a function of the energy, this is an indication that the potential tail used is wrong.

The lowest lying inelastic channels and the Tlab (in MeV) of the corresponding thresholds
are: ppπ0(279.63), dπ+(287.51), pnπ+(292.30). We expect them to be unimportant for the
P -matrix behavior in our range of energies.

Some of the left-hand cuts in the S-matrix are not present in the P -matrix, since we
include in the potential tail the proper electromagnetic potential and the OPE-potential.
Thus the P -matrix does not have an (improved) Coulomb singularity at Tlab = 0, and also
the nearby cuts due to VP (starting at Tlab = −5.6 × 10−4 MeV) and OPE (starting at
−9.71 MeV) are absent in our P -matrix. Since we solve the Schrödinger equation exactly
for r > b, we expect to have included part of the iterated OPE, and therefore part of the
two-pion-exchange (TPE). There will be left-hand cuts still present in the P -matrix, of
which the most nearby one starts at Tlab = −38.83 MeV and is due to those TPE effects
that are not included in the iterated OPE for r > b. In Fig. 1 the cut-structure of the S- and
P -matrix in the complex energy plane has been sketched. Due to Coulomb there is in the
S-matrix at Tlab = 0 an essential singularity and a ‘logarithmic’ branchpoint, as can be seen
from the ln(η′) term in h(η′) (see Eqs. (9, 10)). The corresponding cut can be chosen along
the negative imaginary k-axis, so along the negative Tlab-axis in the non-physical plane.

B. Parametrizations in the lower partial waves

The P -matrix is a description of the interaction inside r = b, and we will parametrize
it phenomenologically. For the lower partial waves parametrization is essential, since the
interaction in these partial waves is not given by improved Coulomb, VP and OPE alone. For
higher ` parametrization becomes less important, since the interaction for increasing ` is more
and more determined by the well-known long range potential outside r = b. For the higher
partial waves, that we do not parametrize, we take the phase shifts and mixing parameters
of the improved Coulomb, VP and OPE-potential, computed in Coulomb distorted wave
Born approximation (CDWBA) (see Sec. III B). In our analysis, there was no significant
improvement when F -waves (` = 3) or higher were parametrized. In this section we discuss
the parametrizations of earlier analyses and of this analysis for each partial wave in which
parametrization plays a role.

1. 1S0.

The most important wave in our low energy range is the 1S0 partial wave. It has to be
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treated very accurately in order to have a satisfactory description of the very accurate
low energy data.

In earlier analyses two ways of parametrizing the 1S0 have been used: Potential rep-
resentations [12,2] and (modified) effective range parametrizations [15,16,2,17,18].

The potential parametrization approach has the advantage that well-known long range
potentials can be included exactly, but it has also several disadvantages. First of all,
the form of the potential has to be known, also for intermediate and short distances.
Having chosen a specific form for the potential in the inner region, the very accurate
scattering data pin down the potential parameters very precisely. Different forms
give for the important physical parameters (pion-coupling constant, pion-mass) results
that differ much more than the error bars found. Therefore reliable estimates for the
potential parameters can not be given in this way. This is surely not the way to extract
e.g. the ppπ0-coupling constant from the low energy data, as is demonstrated by the
analysis of Naisse [2]. Another disadvantage of potential parametrizations is that they
consume much more computer time than other methods (effective range or P -matrix),
since the Schrödinger equation has to be solved many times for small changes in all
potential parameters, in order to arrive at the parameters that are best in accordance
with the data.

In the effective range method [48–51,19,52,53,17], one splits the potential V into a
well-known long range potential VL and a remainder VS. The phase shift δ` can then
be written as

δ` = (δL)` + (δS)` , (7)

where (δL)` is the phase shift of VL. One then can define an effective range function
(FL(k2))` in which the left-hand singularities due to the long range potential have been
removed. For S-waves one writes

(FL)0 = AL0 k cot(δS)0 +BL
0 , (8)

where the functions AL0 and BL
0 depend on the choice of VL. In the original effective

range function for the case of uncharged particles, one [50,51] used VL = 0. In that
case (δL)0 = 0, AL0 = 1, BL

0 = 0, and the corresponding effective range function is the
well-known F0 = k cot(δ0). The most simple effective range function possible for
pp scattering is obtained by taking VL = VC , the Coulomb potential. This gives the
well-known effective range function [48,49]

(FC)0 = C2
0(η′)k cot(δ0) + 2kη′ h(η′) , (9)

where δ0 is the phase shift (with respect to Coulomb functions) of the wave function.
Here η′ is the standard Coulomb parameter [54], often termed the ‘relativistic’ η, and
C2

0 and h are the standard functions
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η′ =
α

vlab

=
αMp

2k
·

1 + 2k2/M2
p√

1 + k2/M2
p

C2
0(η′) =

2πη′

e2πη′ − 1
(10)

h(η′) = Re (Ψ(1 + iη′))− ln(η′) ,

with Ψ the digamma function. The effective range function (FE)0 when VL = VC+VV P
has first been given by Heller [19]. The effective range function (FEM)0 when VL =
VEM , with VEM consisting of the improved Coulomb potential ṼC [13,14] and VV P , and
the effective range function (FOPE)0 when VL = VEM + VOPE have been derived by
Austen [52] and van der Sanden et al. [17]. The singularity of (FEM)0 that is nearest
to k2 = 0 is a branch point, due to OPE, leading to a left-hand cut, starting at
k = ±imπ0/2 or Tlab = −9.71 MeV. For low energies the standard expansion (effective
range approximation) is

(FEM)0 ≈ −
1

aEM
+

1

2
rEM k2 . (11)

The quality of this approximation can be seen in Figs. 5 and 6 where we have plotted
the shape

(SEM)0 = (FEM)0 −
(
− 1

aEM
+

1

2
rEM k2

)
(12)

versus Tlab. For (FEM)0 and (SEM)0, see also Sec. VI A and VI B, where (SEM)0 is
used to display results for the 1S0 partial wave (Sec. VI A) and to present the effective
range parameters that can be deduced from the very low energy behavior of our 1S0

phase shift (Sec. VI B). From Figs. 5 and 6 it is readily seen that the effective range
approximation Eq. (11), equivalent with the approximation (SEM)0 = 0, is clearly not
in accordance with the experiments, not even for the lowest energies. However, when
one is not interested in a high accuracy description, then the approximation Eq. (11)
gives in the energy region Tlab

<∼ 50 MeV the effective range funcion (FEM)0 up to
± 2.5%. In Fig. 5 two effects are noticeable. In the very low energy region one can
see that (SEM)0 is negative and bending down, which is almost completely due to
the most nearby singularity in the complex energy plane, OPE. For higher energies
(SEM)0 has to bend upward, because it has to rise to +∞ at Tlab ≈ 250 MeV, where
the phase shift is crossing zero, turning negative. That the phase shift turns negative is
in potential models a consequence of the repulsive core. The deviations of the effective
range function from a straight line were first treated in the Cini-Fubini-Stanghellini
(CFS) approximation [20,21]. In this approximation the left-hand cut of the Born
approximated ` = 0 partial wave amplitude was approximated for low energies by
one pole. For (FEM)0 this results in the CFS1 approximation

(FEM)0 = − 1

aEM
+

1

2
rEMk

2 − Pk4

1 +Qk2
, (13)
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where P and Q are complicated functions of aEM , rEM , the pion-mass mπ0 , the pion-
coupling constant g2

ppπ0 , and if Coulomb effects are taken into account, of the strength
of the Coulomb potential. Not counting the pion-coupling constant as a parameter,
Eq. (13) contains two parameters: aEM and rEM . Since the CFS1 parametrization does
not allow (SEM)0 to bend back, this description of the 1S0 phase shift becomes rapidly
very bad (the shape only grows more negative) for energies Tlab ≥ 5 ∼ 10 MeV. For
energies below about 2 MeV this approximation does not produce enough shape. With
the pion-coupling constant as a parameter, this can be mended for very low energies by
enlarging g2

ppπ0 and for higher energies by reducing it. This effect can be seen clearly
in Table 5 of the analysis by Naisse [2]. To repair the features of the shape function
for higher energies a CFS2 approximation has been proposed [52], where

(FEM)0 = − 1

aEM
+

1

2
rEMk

2 − P ′k4

1 +Q′k2

(1− ck2)

(1− dk2)
. (14)

In this approximation the parameter c allows for (SEM)0 = 0 at Tlab ≈ 40 MeV and
the constant d is fixed to have a zero phase shift at Tlab ≈ 250 MeV. Therefore d does
not necessarily have to be regarded as a parameter for our range of energies. P ′ and
Q′ can again be calculated in terms of aEM , rEM , c, d, mπ0 and g2

ppπ0 . Not counting
the pion-coupling constant as a parameter, Eq. (14) contains thus 3 parameters. The
CFS2 approximation is able to describe the features of (SEM)0 discussed above and
shown in Figs. 5 and 6. But still this approximation is not good enough, because it
requires too large values for the ppπ0-coupling constant. By analyzing 1S0 phase shifts
below 30 MeV of a nucleon-nucleon potential it has been shown [52] that the CFS2
parametrization gives a pion-coupling constant that is about 20% too large. Since the
pion-coupling constant can be determined from the low energy data with about 10%
accuracy, the CFS2 approximation is not good enough.

In order to treat OPE better, a pion-modified effective range function (FOPE)0 has
been derived [52,17], where the long range potential is taken to be VL = VEM + VOPE.
This function (FOPE)0 does not contain the left-hand cut due to OPE. For (FOPE)0

the approximation is used [52,17]

(FOPE)0 = − 1

aOPE
+

1

2
rOPEk

2 − POPEk
4

1 +QOPEk2
. (15)

Values for POPE and QOPE are fitted with the restriction that the 1S0 phase shift is zero
at Tlab ≈ 250 MeV, so Eq. (15) contains 3 parameters for the low energy region, if one
does not count the pion-coupling constant. It gives a good description of the 1S0 phase
shift, and reproduces the input pion-coupling constant of the potential within about
2%. The main problem with the pion-modified effective range treatment for the 1S0 is,
that great care has to be taken to get sufficient accuracy. The problem is due to the
singular behavior at r = 0 of the long range potential VL = ṼC + VV P + VOPE. From
all solutions with asymptotically equal norm a specific irregular solution has to be
defined by its behavior around r ≈ 0. Since irregular solutions blow up at r ≈ 0, small
numerical errors made in this behavior around r ≈ 0 mean an unwanted admixture of
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the (much smaller) regular wave function. Since the regular and the irregular solution
have the same norm asymptotically, the small errors made around r ≈ 0 grow more
important for larger r.

The main problems in analyses that use potential parametrizations or effective range
parametrizations are thus due to the inner region of the interaction. The P -matrix
parametrization that we employ here combines the merits of the former methods,
and lacks their problems. At the end of this section, an overview is given of these
advantages for all partial waves.

The 1S0 appeared to be well-described by the one pole P -matrix parametrization

P (k2) = c0 +
r0k

2

k2 − k2
0

, (16)

with the 3 parameters c0, r0, and k0. Of course, also the pion-coupling constant, that
affects all partial waves, and the P -matrix radius b, that affects the lower partial waves,
contribute in the parametrization of the 1S0.

The 1S0 P -matrix does not need more parameters in this energy range. One can
see that the one pole parametrization is a natural low energy version of Eq. (3),
since for low energies higher poles add up to a background P -matrix that can be
absorbed in the constant c0. To analyze a larger energy region one would need a
more detailed parametrization than Eq. (16). This can be seen e.g. by fitting the
three 1S0 P -matrix parameters under the constraint that δ(1S0) = 0 at 240 MeV [36].
This raises the minimal χ2 (χ2

min) on the low energy data by about 9. Our 1S0 phase
parametrization turns out to be able to give the same results as the pion-modified
effective range parametrization of van der Sanden et al. [17] up to 30 MeV, i.e. the
difference between the two methods is much less than the spread in the data. This
is a very nice result, since the phenomenological parametrization of the short range
interaction is accomplished in a different way in the two methods.

2. 3P0, 3P1, and J = 2 coupled channel 3P2-ε2-3F2.

For the P -waves, the analyses of SSH [12] and Naisse [2] use the uncoupled, Coulomb-
modified two-term effective range approximations

(FC)1J = k2
(
1 + η′

2
) [
C2

0(η′)k cot(δ′1J) + 2kη′h(η′)
]

=

= − 1

a1J

+
1

2
r1Jk

2 (J = 0, 1, 2) . (17)

For J = 0, 1 the phase shift δ′1J is taken to be δC1J , the phase shift one would have
if the only electromagnetic interaction present were the 1/r-shaped Coulomb. For
a definition of δC`J see Sec. IV B. One cannot use the same procedure for the 3P2,
since the anomalous threshold behavior of the 3P2 phase shift gives this effective range
function a structure different from a straight line as a function of Tlab. Therefore both
analyses [12,2] use

δ′12 = δC12 − C2
0(η′)

(
1 + η′

2
)
δOPE12 . (18)
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In this rather ad hoc subtraction, the OPE phase shift for uncharged particles δOPE12 is
multiplied with the Coulomb penetration factor. This approximation to the pp OPE
3P2 phase shift is not good enough. In the analysis of van der Sanden et al. [17] a better
pp OPE 3P2 phase shift is subtracted, being the CDWBA to the OPE 3P2 phase shift.
In Fig. 2 it can be seen that the linear approximation to (FC)12 (Eq. (17)) with the
CDWBA to the OPE 3P2 phase shift is better than with the BA. With potential phase
shifts as input, it has been shown [55] that using the BA leads to a pion-coupling
constant that is about 10% higher than the input value.

For the 3P0 and 3P1 Eq. (17) is a satisfactory parametrization, with as only drawback
that in this parametrization the 3P0 and 3P1 do not determine the pion-coupling con-
stant at all. The connection of the 3P2 with the pion-coupling constant in Eq. (18) is
very indirect. One cannot avoid the problem in the 3P2 by using a Coulomb-modified
effective range approximation for the standard low energy combinations of P -wave
phases ∆C ,∆T , and ∆LS, since ∆C = 0 for Tlab ≈ 8 MeV, and therefore the effective
range function is infinite. These P -wave phase shift combinations are defined by

∆C =
1

9
(δ10 + 3δ11 + 5δ12)

∆LS =
1

12
(−2δ10 − 3δ11 + 5δ12) (19)

∆T =
5

72
(−2δ10 + 3δ11 − δ12) ,

where the standard notation δ`J is used for the 3PJ phase shifts. To solve the problem
with the 3P2, one could try a pion-modified effective range function, but since the OPE
potential couples the 3P2 to the 3F2 via the tensor force, one would need a coupled
channels effective range matrix [56,57]. Of course this gives even more numerical ac-
curacy problems than in the 1S0 case, but more important is that one has to introduce
at least one parameter (scattering length) for the 3F2 since the ‘no interaction’ (pa-
rameter free) effective range function is singular. Since the difference of the 3F2 phase
shift and the ε2 mixing parameter with the OPE values is hardly to be seen below 30
MeV, this parameter is not determined by the data.

All of the above problems are solved by the P -matrix method. A two-parameter
description appeared to be necessary. The linear approximation that we use for the
uncoupled P -waves

P (k2) = c1J + d1Jk
2 , (20)

with J = 0, 1 for the 3P0, 3P1, respectively, can be seen as a natural low energy version
of Eq. (16) if the pole is far away.

Also for the J = 2 coupled channels 3P2-ε2-3F2 two parameters are sufficient, so we
use

P (k2) =

(
c12 + d12k

2 0
0 c32

)
, (21)
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with c32 = 4. One can see that all matrix elements, except for the upper-diagonal
one have been set to the Tlab = 0 limit of the P -matrix without interaction inside
r = b. (Eqs. (3, 4)). This coupled approximation, with no parameters for the ε2 or
3F2 corresponds almost exactly to giving the ε2 and 3F2 their OPE values.

3. 1D2.

The 1D2 needs only one parameter up to 30 MeV. In the analyses of SSH [12], Naisse [2],
and van der Sanden et al. [17] the approximation for the 1D2 phase shift used looks
like

δEM2 = δOPE2 (1 + γ · Tlab) . (22)

For the definition of the electromagnetic phase shift δEM` (phase shift with respect to
electromagnetic wave functions) see Sec. IV B. The analyses of SSH [12] and Naisse [2]
take δOPE2 to be the OPE phase shift for uncharged particles. Analyzing potential
phase shifts, it has been shown [55], that this neglection of Coulomb effects leads to a
prediction of the pion-coupling constant that is about 10% too low, as can be seen in
Fig. 3. Correcting the above δOPE2 with only the Coulomb penetration factor leads to
a prediction that is about 10% too high (Fig. 3). Therefore, van der Sanden et al. [17]
calculate δOPE2 using the CDWBA.

We use the natural 1-parameter approximation limit of Eq. (20)

P (k2) = c2 . (23)

Counting the parameters used we arrive at 10 P -matrix parameters plus the P -matrix
radius b for the lower partial waves, and the pion-coupling constant that affects all partial
waves. Of these, b does not necessarily have to be regarded as being a parameter, since
it is not well-determined by the low energy data. As a parameter, b can be compared in
some sense with the parameter that effective range analyses use to ensure the good high
energy behavior of the 1S0 phase shift. Of these two parameters, the P -matrix radius b has
a more direct physical interpretation. Because the long range interaction that we use is only
adequate for not too small r, b can not be chosen too small. From Eqs. (3,4) one can see
that large values of b shift the pole positions to lower energies. Our parametrizations do not
allow for too much structure, so b can not be chosen too large. In order to have a realistic
model, we have to add the restriction that b must be somewhat larger than the range of
interactions that we did not include in the potential tail. So we want b to be larger than
about 1 fm, larger than the range of the two-pion-exchange. Therefore we expect to find
some allowed range of values for b.

From the P -matrix property Eq. (5), that P is a decreasing function of the energy, it can
be expected that r0 > 0 and d1J < 0. By comparing the parameters c0, c1J and c2 with the
free values c`J = `+ 1, one can judge the amount of effective short range interaction. If the
short range interaction is not so attractive that the P -matrix has poles below threshold, then
one can see that an attractive short range interaction makes the P -matrix more negative
than its free value, while a short range repulsion makes it more positive.
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As a conclusion to this section, we give a quick resumé of the advantages of the P -matrix
method over the previously used (modified) effective range and potential parametrization
methods. Well-known long range interactions are included easily. The radial Schrödinger
equation has to be solved only a few times for each energy (see Sec. III). No computational
problems arise at short distances. The phenomenology, necessary to describe accurately
the short and intermediate range interaction, is not mixed up with the well-known long
range interaction. The treatment of the J = 2 coupled channels is straightforward, since a
coupled channels parametrization is available, that uses no parameters for the ε2 and 3F2.
All lower partial waves are treated with the same theoretically well-known long range effects
(improved Coulomb, VP, OPE) included, since we use the same potential outside r = b. In
Sec. III B, where the treatment of the higher partial waves is explained, it is shown that all
these long range effects are also taken into account in the higher partial waves. Therefore
e.g. the pion-coupling constant is determined from all partial waves in a natural way.

III. THE POTENTIAL TAIL

A. Defining the potential

As we employ the P -matrix formalism we only need a potential tail in the region r >
b. Thus only the longest range interactions have to be included in the potential. The
higher partial waves are determined almost completely by the long range interaction and
can therefore be produced by the potential tail alone. For all partial waves we use the same
potential tail

V = VOPE + VEM = VOPE + ṼC + VV P , (24)

where VOPE is the one-pion-exchange potential and VEM is the electromagnetic potential
consisting of the improved Coulomb potential ṼC and the vacuum polarization potential
VV P .

The improved Coulomb potential [13,14] takes into account the lowest order relativistic
corrections to the static Coulomb potential and includes contributions of all two-photon-
exchange diagrams. As will be discussed later, we can neglect in our energy range the
spin-orbit and tensor parts of this potential. We take the ‘gauge’-parameter λ = 0, resulting
in [14]

ṼC = VC1 + VC2

VC1 = α′/r (25)

VC2 = − 1

2M2
p

[
(∆ + k2)

α

r
+
α

r
(∆ + k2)

]
,

where ∆ is the Laplacian and α′ is given by

α′ =
2kη′

Mp

, (26)
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with η′ given by Eq. (10). The most important difference with the standard static Coulomb
potential is the use of α′ instead of α.

The vacuum polarization potential VV P , as derived by Uehling [58] and reviewed by
Durand [26], can be written as

VV P =
2α

3π
· α
′

r
·
∫ ∞

1
dx e−2merx

(
1 +

1

2x2

) √
x2 − 1

x2
. (27)

Here me is the electron mass and α and α′ are as given above. The unprimed α describes
the coupling of a photon to the virtual e+e− pair, the α′ the coupling to the protons.

For one-pion-exchange several potentials could be used, which differ only at short dis-
tances, due to the choice of different form factors. Since we only need the tail of the potential,
we took the simple form

VOPE =
1

3

g2
ppπ0

4π

Mp√
M2

p + k2

m3

4M2
p

e−mr

mr

[
(~σ1 · ~σ2) + S12

(
1 +

3

(mr)
+

3

(mr)2

)]
(28)

where m is the π0 mass and g2
ppπ0/4π is the ppπ0-coupling constant. This coupling constant

is not known accurately. From pion-nucleon scattering one knows the NNπ±-coupling, but
the ppπ0-coupling could well be different. Besides, we are here in a totally different kinematic
region. The best place to determine the ppπ0-coupling constant is probably in pp scattering.
For that reason we have fitted in this analysis the coupling constant to the data. Since g2

ppπ0

is extracted only from the tail of the interaction, where no theoretical uncertainties exist,
we believe that this is a rather model-independent determination (see also Sec. VI).

We now quickly review the effects we included in our potential tail, in order of diminishing
strength.

The potential VC1 of Eq. (25) is the dominant interaction for small scattering angles,
especially at low energies. At Tlab = 10 MeV, the Coulomb potential still dominates for c.m.
angles below 20 degrees, which makes it imperative to include it. The importance of the
one-pion-exchange tail can be seen from the fact that from the data its coupling constant is
determined with about 10% accuracy. Therefore, if the effect would be entirely neglected,
corresponding to a zero coupling constant, no good fit to the data could be expected. We
have explicitly checked the importance of the vacuum polarization, by completely removing
it from our model. This means that it was left out of the potential tail and, as explained
above, was no longer present in any partial wave. After that, all model-parameters were
refitted. The resulting mimimal χ2 then remains higher by ca. 100, compared with the
complete model. The vacuum polarization is thus seen in the data with a significance of 10
standard deviations (s.d.).

In the same way we tested the use of α′ instead of α. The use of α gives in our final fit
to the data an increase in χ2 of about 20, so this effect has a significance of 4.5 s.d.

The term VC2 of Eq. (25) does not give a significantly better fit. The magnitude of this
effect is about 10 times smaller than the vacuum polarization, as can be seen for instance
from the phase shifts (Sec. IV). Still we do not want to neglect this effect, because its
presence will slightly influence the energy-dependence that our model can give to the phase
shifts. Especially the threshold behavior of the 1S0 phase shift, near Tlab = 0, will only be
correct if the long range interactions are treated correctly.
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Finally we mention the magnetic moment interactions. As was stated earlier, we neglect
these terms of the potential. The reason is, that these interactions are again ca. 10 times
smaller than VC2. The magnetic moment interaction in the 1S0 partial wave is a δ-function in
the origin and is therefore included in the short range interaction, which is described by the
P -matrix. In the P -waves its phase shifts are less then 10−4 degrees. A detailed treatment
of this effect can be found in Ref. [59], where its importance is also found to be negligible.

B. Calculations

In order to see how the potential tail is used in our model, we first turn to those partial
waves that have a parametrized P -matrix. For these waves, the P -matrix value for a certain
energy is given by the parametrization. Knowing the P -matrix is enough to give the radial
wave function and its derivative, χ and χ′, at r = b, up to a common normalization factor.
The Schrödinger equation enables us then to compute χ(r) for all r > b. This wave function
will, for very large r, have the asymptotic behavior

χ(r) ∼r→∞ F`(η′, kr)C1 +G`(η
′, kr)C2 , (29)

where F` and G` are the regular and irregular Coulomb functions as defined in Ref. [60] and
η′ is as defined in Eq. (10). In the nucleon-nucleon interaction the spin-triplet states with
J = `± 1 are coupled. In that case Eq. (29) becomes a matrix equation. The 2× 2-matrix
χ consists then of columns which are independent two-component solutions, and F` and
G` become diagonal matrices. The coefficient(-matrices) C1 and C2 of Eq. (29) contain all
necessary information about the partial wave. In terms of C1 and C2, the K-matrix and
S-matrix are defined as

KJ = C2C
−1
1

SJ =
1 + iKJ

1− iKJ

. (30)

In Sec. IV A the decomposition of the S-matrix into phase shifts will be discussed.
In practice, the calculations have to be repeated many times while the P -matrix pa-

rameters are fitted. Because it would be rather time consuming, it is not desirable to solve
the Schrödinger equation each time to compute the asymptotic behavior of χ. For each
energy, we need only once to compute two independent solutions χ1(r) and χ2(r) of the
wave equation, satisfying the boundary conditions at r = b

χ1(r) = 1 ; d
dr
χ1(b) = 0

χ2(r) = 0 ; d
dr
χ2(b) = 1 . (31)

Their asymptotic behavior for r →∞ is given by

χ1(r) = F`(η
′, kr)A+G`(η

′, kr)B

χ2(r) = F`(η
′, kr)C +G`(η

′, kr)D . (32)

For any P -matrix P , we then can compute C1 and C2 of Eq. (29)
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C1 = A+ C · P/b
C2 = B +D · P/b . (33)

The coefficients A, B, C, and D have to be computed for each parametrized partial wave
and for all energies appearing in the data set. A complication arises if the potential tail
contains parameters, as in our case the pion-coupling constant g2

ppπ0 . We solved this by
interpolating each coefficient, using computed values for 3 different values of g2

ppπ0 .
The improved Coulomb potential (Eq. 25) cannot be used directly in a radial wave

equation. It contains a non-local potential of the form

V (r) = V0(r)− 1/Mp [∆φ(r) + φ(r)∆] . (34)

A widely used method to deal with this problem is to define

χ(r) =
√

1 + 2φ(r) χ(r) . (35)

The function χ then is a solution of the normal radial Schrödinger equation with the local
potential

W =
V0

1 + 2φ
+

1

MP

(
2φk2

1 + 2φ
− φ′2

(1 + 2φ)2

)
. (36)

For any P -matrix, one can compute the boundary condition for χ with Eq. (35). Writing χ
as a linear combination of χ1 and χ2, Eqs. (30,32,33) give then the S-matrix (if φ(r) → 0
sufficiently fast for r →∞ ).

We mentioned before, that for the partial waves with higher angular momentum, we
would like to use fixed phase shifts that are produced by our chosen potential tail. The
higher partial wave phase shifts are very insensitive to the short range potential. Whether
one adds to the potential tail V (r) of Eqs. (24–28) a zero potential for r < 1.4 fm or one
adds a form factor continuation of V (r) for r < 1.4 fm, gives at 30 MeV only a difference
of 10−3 degrees in the δ(3F4), 2 × 10−4 degrees in the δ(3F3), and even less in the other
(higher) partial waves. Thus for the partial waves with ` ≥ 3 any reasonable choice for the
short range part of the potential would give the same result. One does not have to solve
the Schrödinger equation in the higher partial waves, as the BA or the CDWBA will get
accurate enough as ` increases. This is shown in Table I, where we give the 3F3, 3F4, and
1G4 phase shifts and the ε4 mixing parameter computed for the α′/r Coulomb potential
plus the VOPE with a form factor continuation inside r = 1.4 fm (C+OPE), and the BA and
CDWBA to these phase shifts and mixing parameter.

In our fits we use for J ≥ 3 the CDWBA, which is seen to be a more accurate approxi-
mation to the K-matrix elements than the BA. The computation of CDWBA phase shifts
leads to integrals for the partial wave K-matrix elements

K`′,` = −MP

k

∫ ∞
0

dr F`′(η
′, kr) (VC2 + VV P + VOPE )F`(η

′, kr) . (37)

VOPE consists of terms of the type e−mr/rn. Integrals of these functions between Coulomb
functions can be computed accurately in a fast and elegant way using recursion relations [55].
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The other two potentials, VC2 and VV P , do not couple partial waves with different angular
momentum, thus for their contribution to the K-matrix in (Eq. 37) one needs only to
consider `′ = `. For the contribution of VV P one can use the results of Durand [26]. In
our calculations we used an expansion in log(Tlab), like Eq. (8.3) of Durand, but with more
terms to extend the energy range to lower energies. To compute the contribution of VC2

(Eq. (25)) we consider first the operator ∆ + k2. From the three dimensional wave equation
with potential VC1

(∆ + k2)ψ(~r ) = MpVC1(r)ψ(~r ) (38)

follows that in CDWBA the operator ∆ + k2 is equivalent with MpVC1 = Mpα
′/r. There-

fore the contribution of the potential VC2 in Eq. (37) can be written as (suppressing some
arguments)

∫ ∞
0

dr F`VC2 F` = −αα
′

Mp

∫ ∞
0

dr
F 2
`

r2
. (39)

In CDWBA the potential VC2 is therefore equivalent with V ′C2 = −αα′/Mpr
2. The

Schrödinger equation with the potential VC1 + V ′C2 can be solved exactly, because V ′C2 can
be absorbed in the centrifugal barrier. The solution is a regular Coulomb function F`′ with
`′ ≈ ` − αα′/(2` + 1) up to leading order in α. The phase shift ρ` of V ′C2 can be obtained
from the asymptotic behavior of the regular Coulomb function

F`(η
′, kr) ∼r→∞ sin

(
kr − π`

2
+ σ` − η′ ln(2kr)

)
, (40)

where

σ` = arg (Γ(`+ 1 + iη′)) . (41)

Then one finds that in very good approximation

ρ` ≈
αα′

2`+ 1

(
π

2
− dσ`

d`

)
=
αk

Mp

1

2`+ 1

1− C2
0(η′) + 2η′2

∑̀
j=1

1

η′2 + j2

 , (42)

with C2
0(η′) as given by Eq. (10).

IV. PHASE SHIFTS AND AMPLITUDES

A. Basic definitions

In order to define phase shifts for an interaction which contains the Coulomb force, one
has to match the wave function asymptotically to Coulomb functions (Eq. (29)). One then
defines the K- and S-matrix by Eq. (30). For an uncoupled channel the phase shift δ is
defined by tan δ = K, or S = e2iδ. In the case of 2 coupled channels we use the ‘bar’ phase
shifts [61], defined by
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SJ =

(
eiδ1

eiδ2

)(
cos 2εJ i sin 2εJ
i sin 2εJ cos 2εJ

)(
eiδ1

eiδ2

)
. (43)

This is possible because the S-matrix is unitary and symmetric. The phase shifts δ1 and
δ2 are usually denoted as δ`J , so δJ−1,J and δJ+1,J respectively. For the uncoupled channels
one uses δ` to denote the spin-singlet phase shift and δ`` for the uncoupled triplet, which
has ` = J .

Because we deal with identical particles the amplitude, or M -matrix, in the spin space
of both particles must be symmetrized. This results in

〈s,m′ |M(θ, φ) | s,m〉 = 〈sm′ |MC(θ) | s,m〉+ 2
∑
`′,J,`

s+` even

Y `′

m−m′(θ, φ)×

× C`′

m−m′
s
m′

J
m i`−`

′
eiσ`′
〈`′, s | SJ − 1 | `, s〉

2ik
×

× eiσ` C`
0
s
m

J
m

√
4π(2`+ 1) , (44)

where C`
m`

s
ms

J
M is a Clebsch-Gordan coefficient and Y `

m(θ, φ) is a spherical harmonic. The
σ` are the Coulomb phase shifts, defined up to an unimportant, `-independent constant (see
Ref. [62,63]) by Eq. (41).

The symmetrized Coulomb M -matrix for proton-proton is

〈s,m′ |MC(θ) | s,m〉 = δm′m [fC(θ) + (−1)sfC(π − θ)] , (45)

where

fC(θ) = − η
′

2k

e2iσ0(
sin2 θ

2

)1+iη′ . (46)

All scattering observables can be expressed in terms of the M -matrix [64,65].

B. Different types of phase shifts

The kind of phase shifts defined above, are unfortunately not the only ones in use. To
compare our results with other publications, we have to introduce some other kinds as well.
A phase shift, as the word says, is a shift of one wave function with respect to another. For
the kind of phase shift of Sec. IV A these are the physical wave function χ and the Coulomb
wave function F`, respectively. Since each choice for the interaction leads to a particular
regular wave function, we can define phase shifts of different interactions (or potentials)
with respect to each other. For the moment we disregard coupled channels and suppress the
indices ` and J .

We denote by δVW the phase shift of the solution with potential W with respect to the
solution with V as the interaction. We apply this to the case where we have a potential
consisting of a Coulomb potential VC = α′/r, some additional electromagnetic corrections
VEMC, and the nuclear part VN . The phase shifts as defined in Sec. IV A, which were denoted
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as δ, can now be fully denoted as δCC+EMC+N . We keep the short notation as an alternative.
We now use

δCC+EMC+N = δC+EMC
C+EMC+N + δCC+EMC . (47)

The δC+EMC
C+EMC+N are also denoted as δEM . They are called phase shifts with respect to

electromagnetic wave functions, or nuclear-electromagnetic phase shifts. The first name
expresses that they can also be defined using Eqs. (29,30,43) with F` and G` replaced by a
regular and irregular solution for the potential VC + VEMC.

The phase shifts δEM are useful because, as we will show later, they can speed up the
summation involved in Eq. (44). One more reason to define them is their appearance in
effective range functions to extend the region of convergence of the effective range series.
A difficulty is that the definition of the δEM depends on the choice of the potential VEMC.
If the correction VEMC only consists of the vacuum polarization potential VV P , it gives the
so-called nuclear-electric phase shifts, denoted by a superscript ‘E’. They satisfy

δ` = δE` + τ` , (48)

where τ` is the vacuum polarization phase shift. Often more effects are included in VEMC. For
instance SSH [12] included magnetic moment interactions and finite size effects. However,
they still denoted their nuclear-electromagnetic phase shifts with a superscript ‘E’. They
also used an effective range formula that was meant to be used with phase shifts δE. In our
analysis we neglect magnetic moment interactions, as explained in Sec. III A. We also do
not include finite size effects, since the entire short range interaction is parametrized. Our
VEMC consists of VV P and VC2 (Eqs. (24,25,27)), which leads to

δ` = δEM` + τ` + ρ` . (49)

Here we used the fact that the potentials VV P and VC2 are weak, so their phase shifts τ` and
ρ` can simply be added to get the phase shift of VEMC.

We employ the same mechanism for partial waves with coupled channels. We therefore
have to translate the addition law (Eq. (48)) for phase shifts into a multiplication law for
S-matrices. For this we use

SCC+EMC+N =
(
SCC+EMC

)1/2
SC+EMC
C+EMC+N

(
SCC+EMC

)1/2
. (50)

The two matrices SCC+EMC+N and SCC+EMC can be defined by Eqs. (29, 30) and are symmetric
and unitary. Eq. (50) defines SC+EMC

C+EMC+N , also denoted as SEM and called the nuclear-
electromagnetic S-matrix. By construction it is also unitary and symmetric. We need here
the square root of a symmetric S-matrix, which is related to a real and symmetric K-matrix.
One can explicitly define

S1/2 =
(
1 +K2

)1/2
(1− iK)−1 , (51)

where the first factor, the square root of a positive definite matrix, is uniquely defined.
The nuclear-electromagnetic S-matrix can also be defined by matching the wave function

to ‘electromagnetic wave functions’. This means that one can apply Eqs. (29–30), with the
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matrix solutions F and G replaced by F and G, a regular and irregular solution for the
potential VC + VEMC. F and G can be defined very concisely by demanding them to be real
and to satisfy

F − iG ∼
r→∞ (F − iG)

(
SCC+EMC

)1/2
. (52)

Since SEM is symmetric and unitary we apply Eq. (43) to decompose it into nuclear-
electromagnetic phase shifts.

We now look at the case of our model, where VEMC is spin-independent, so SCC+EMC is
diagonal. Eq. (50) then implies for the phase shifts

δ`J = δEM`J +
(
δCC+EMC

)
`

= δEM`J + τ` + ρ` (53)

εJ = εEMJ . (54)

Here the δ`J and εJ are found decomposing SCC+EMC+N , the total S-matrix which was termed
S above. Since Eq. (50) is also valid for uncoupled channels, we can substitute it for the
S-matrix in Eq. (44). This equation can then be rewritten as

M = MC +MEMC +MNUC , (55)

where

〈s,m′ |MEMC(θ) | s,m〉 = δm′m
[
fEMC(θ) + (−1)sfEMC(π − θ)

]
, (56)

with

fEMC(θ) =
∞∑
`=0

e2iσ`
e2i(δCC+EMC)` − 1

2ik
(2`+ 1)P`(θ) , (57)

and

〈s,m′ |MNUC(θ, φ) | s,m〉 = 2
∑
`′,J,`

s+` even

Y `′

m−m′(θ, φ) C`′

m−m′
s
m′

J
m×

×i`−`′ ei(σ`′+τ`′+ρ`′ ) 〈`
′, s | SEMJ − 1 | `, s〉

2ik
ei(σ`+τ`+ρ`) ×

×C`
0
s
m

J
m

√
4π(2`+ 1) . (58)

In a phase shift analysis, the splitting of Eq. (55) is useful. The reason is that the first
two terms are fixed and only have to be computed once. Only the summation of Eq. (58) for
the nuclear part of the amplitude has to be repeated many times in the fitting process, and
this summation converges much more rapidly than Eq. (44), because the nuclear interaction
is of much shorter range than the electromagnetic forces. In our energy range it is sufficient
to use only terms up to J = 10. The slowly converging part, which is still present in Eq. (57),
needs several hundreds of terms.

Finally we mention another type of phase shift that is frequently used. It is denoted by
δC and can be defined, using our full notation, as δC = (δCC+N)`. Within a potential model
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these phase shifs can be obtained by removing the (very long range) VEMC from the model,
so they are much easier to compute. Another advantage is that an effective range formula
for δC is much simpler than those for other types. Unfortunately, the definition of δC is
model-dependent. The difference between the ordinary δ and δC can be given in distorted
wave Born approximation

δ` − δC` = (δCC+EMC+N)` − (δCC+N)` ≈ −
Mp

k

∫ ∞
0

dr χ`(r)VEMC(r)χ`(r) , (59)

where χ` is the wave function for the potential VC + VN . The case where VEMC contains
only the vacuum polarization potential was first treated by Foldy et al. [66]. In that case
the phase shift difference in Eq. (59) is termed the Foldy-correction

∆` = (δCC+V P+N)` − (δCC+N)` ≈ −
Mp

k

∫ ∞
0

dr χ2
`(r)VV P (r) . (60)

In our case VEMC also contains VC2 of the improved Coulomb potential (Eq. (25)). Therefore
we we define an improved Coulomb Foldy correction ∆̃` by

∆̃` = (δC
C̃+V P+N

)` − (δCC+N)` ≈ −
Mp

k

∫ ∞
0

dr χ`(r)(VV P (r) + VC2(r))χ`(r) . (61)

∆` and ∆̃` are in principle model-dependent quantities, depending on the nuclear inter-
action, via the wave function χ`(r). For the higher partial waves, that are at low energies
only weakly affected by the nuclear interaction, one can approximate χ`(r) by the regular
Coulomb function. In practice this suffices for all partial waves except the 1S0. For ` ≥ 1,
Eq. (59) therefore reduces to the CDWBA for the phase shifts δCC+EMC and we have

∆` = τ` ` ≥ 1

∆̃` = τ` + ρ` ` ≥ 1 .
(62)

Hence the phase shifts of type δC for ` ≥ 1 are practically equal to the nuclear-
electromagnetic phase shifts δEM of Eq. (49). This also applies to the coupled channels
case (Eq. (54)).

Only for the 1S0 one has to do better, the correct χ` has to be used in Eq. (59). Noyes
and Lipinski [11] give ∆0 for three (simple) potential models. We have computed ∆0 up to
30 Mev for two modern NN -potentials: the Nijmegen (N78) [27] and the Paris (P80) [28]
potential. The values never differ more than 10−3 degrees between these models, except for
model (c) of Ref. [11], which consists of OPE plus a purely attractive Bargmann potential.
Since this is smaller than the accuracy with which the 1S0 phase shift is determined at
any energy (Sec. VI C), we believe that these corrections are sufficiently model-independent
for a wide range of nuclear interaction models. If one wants to treat the electromagnetic
interaction better, the next step in improvement would be taking into account the spatial
extension of the charges [67]. This would give rise to a further improved Foldy-correction.

The values obtained with the Nijmegen (N78) [27] potential for ∆0 and ∆̃0 are given in
Table V. There one also finds the vacuum polarization phase shift τ` and the phase shift ρ`
of VC2. With these quantities any other type of phase shift can be translated to a standard
phase shift δ` as defined in Sec. IV A.
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We believe that the results of an analysis should preferably be given as phase shifts of
this latter type, δ` or (δCC+EMC+N)`, because they are most directly related to the asymptotic
wave function. The definition of the other types is model-dependent. Only the δE of Eq. (49)
could in principle be used, but the symbol δE has also been used to denote other kinds of
phase shifts [12,17]. Therefore we always use the δ` type to give our results.

V. DATA ANALYSIS

A. Statistical considerations

1. The procedure

In any kind of fitting one compares the predictions of a certain model with the experi-
mental data and then adjusts the parameters of this model to obtain the best agreement.
In our analysis we are mainly interested in extracting values for the phase shifts and the
pion-coupling constant from the data. We employ the P -matrix model (Sec. II) to describe
the phase shifts as energy-dependent quantities. We make use of three kinds of fitting:

• In a multi-energy (m.e.) fit, all parameters of our model are fitted to all data of our
selected data set in the entire energy range.

• In a single-group fit only data of one experiment are used. Only 1 or 2 phase shifts at
the energy of the experiment (or at some central energy if the data within this group
have been taken at different energies) serve as parameters. Other phase shifts and, if
necessary, the energy-dependence of the phase shifts searched for, are fixed using m.e.
results. The purpose of single group fits is to judge the quality of each group in the
determination of the phase shifts. These single group phase shifts can show friction
between groups. They can also serve as a means to detect systematic errors that have
not been specified in the data publication. In Sec. V A 5 we will give an example of
such a situation.

• In a single-energy (s.e.) fit, the subset of data with energies close to some central value
is used. The phase shifts one wants to search for at these energies act as parameters.
Their proper energy-dependence has to be preserved using m.e. results.

Since the energy-dependence of the phase shifts produced by the model is not so im-
portant in s.e. fits, s.e. fits are less model-dependent and can be used to judge the m.e.
parametrization. Furthermore, s.e. fits are more likely to satisfy the conditions for a least
squares fit (see Sec. V A 3 condition (ii)). Therefore, the values for the phase shifts with
error matrices resulting from s.e. fits are the most reliable, model-independent description
of the data in terms of phase shifts. They can be used to judge a model of the interaction
or to adjust its parameters to the data. The advantage of a m.e. fit over a s.e. fit is that it
averages the statistical fluctuations at different energies. In all three kinds of fits the method
of least squares has been used, which will be described below.
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2. Least squares fit

We consider the case of a data set consisting of several groups of measurements. A group
is a set of measurements obtained from one experiment. The measurements within a group
usually have a common normalization uncertainty and there may also be other systematic
errors. We denote the NA measurements and errors within a group A by EA,i ± εA,i (i =
1, . . . , NA). Suppose for a moment that no groups contain specified systematic errors, such
as normalization uncertainties. The model values for the scattering observables we call
MA,i(~p ). They depend on the model parameters pα (α = 1, . . . , Npar). The agreement
between theory and experiment can then be seen in χ2

χ2(~p ) =
∑
A

χ2
A(~p ) =

∑
A

NA∑
i=1

(
MA,i(~p )− EA,i

εA,i

)2

. (63)

A least squares fit now means that Eq. (63) has to be minimized with respect to all parame-
ters pα. The obtained parameter values are the predictions we get from the data. The error
matrix E for these parameters is related to the second derivative of χ2, evaluated at χ2

min,
the minimum of χ2 with respect to all parameters

(E−1)αβ =
1

2

d2χ2(~p )

dpαdpβ

∣∣∣∣∣
~p=~pmin

. (64)

From the error matrix E one defines the one standard deviation (s.d.) error for parameter
pα as (Eαα)1/2. By approximating χ2 as a quadratic function near its minimum, one can
show that

(Eαα)−1 =

1

2

d2

dp2
α

min
pβ
β 6=α

χ2(~p )


∣∣∣∣∣∣∣
pα=(~pmin)α

. (65)

This means that the error (Eαα)1/2 is the maximum deviation possible in pα without raising
χ2 by more than 1, while other parameters are allowed to vary. Eq. (65) is valid also if
α stands for a subset of the parameters. Then Eαα is the errormatrix, truncated to this
subset of parameters. We make use of this to define χ2 when, as usual, groups of data have
an overall (multiplicative) norm uncertainty. Such a normalization has to be introduced as
a normalization parameter νA, for which the experimentalist states: νA = 1 ± εA,0. This
would lead to a χ2 depending on many more parameters. Since we are usually interested in
determining the model parameters only, we avoid this by defining

χ2(~p ) =
∑
A

χ2
A(~p ) =

∑
A

min
νA

NA∑
i=1

(
νA ·MA,i(~p )− EA,i

εA,i

)2

+

(
νA − 1

εA,0

)2

, (66)

where ~p contains only the model parameters. The use of this χ2 in Eq. (64) immediately gives
the errormatrix, restricted to the model parameters. For calculations, the χ2 of Eq. (66) is
very useful. The minimum with respect to the normalization parameters νA can be found
trivially, by minimizing a quadratic function. Therefore one can easily compute χ2(~p ) of
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Eq. (66) with the νA adjusted implicitly. So the function to be minimized iteratively, depends
only on the model parameters. For the groups where νA is entirely unknown (εA,0 =∞), the
second squared term in Eq. (66) is absent. If νA is exactly known (εA,0 = 0), νA is fixed to 1
and the second squared term is again absent. Some groups [3] have, apart from νA, some more
specified systematic errors, given as normalization parameters with different angle-dependent
influences. These more complicated systematic errors can be treated analogously.

Since the first derivative of χ2 with respect to all parameters is zero in the minimum,
the second derivative matrix S = 2E−1 together with the minimum value of χ2 (χ2

min), can
serve as an approximation for χ2(~p ) in the neighborhood of the minimum. In the case of
our s.e. fits, where the parameters are phase shifts, this allows the computation of χ2 for
any model that produces phase shifts. Fitting the parameters of such a model to our s.e.
values and error matrices has several advantages. First of all, one does not have to compute
model values for every measured observable. Also the detailed analysis and selection of the
data is avoided. Finally, the obtained χ2 can be compared with the value we reach in our
m.e. fit. Our s.e. minima of χ2 show the minimum values that are attainable.

It is better not to compare phase shifts with our results by using only the errors computed
from the diagonal elements of our errormatrix, because phase shifts that seem to be in
reasonable accordance with ours (when this accordance is measured in terms of these errors)
can still be very bad, due to the correlation between the phase shifts.

3. Conditions for a least squares fit

In order to get meaningful results from a least squares fit some conditions must be
satisfied.

(i) The model should be able to give (almost) the true values of the observables for some
values of the parameters. This could be called the true values of the parameters.

(ii) The model predictions MA,i(~p ) should be approximately linear as a function of the
parameters in the parameter region where χ2 − χ2

min
<∼ 1.

(iii) The measurements have to be free from unspecified systematic errors (unbiased), and
their statistical errors should be specified correctly. Stated differently, each measurement
should have a probability distribution function, which has as its expectation value the true
value of the observable, and as its variance (mean square deviation from the expectation
value) the ε2

A,i. The shape of the probability distribution function may be arbitrary, as long
as the variance exists.

If these conditions are met, one can derive some desired properties for the parameters
obtained in the fit. The least squares fit is viewed then as a method (estimator) to derive pa-
rameters as a function of the input measurements. Since the latter are stochastic variables,
the same is valid for the parameters. These parameters will now have as their expectation
values precisely the true values, mentioned above. So the least squares method provides an
unbiased estimate for the parameters. Furthermore, the variance matrix of these parameters
is precisely the matrix E defined by Eq. (63), which is the justification for calling this the
error matrix. If the measurements have Gaussian probability distribution functions, one
obtains for the parameters a probability distribution function, that is also Gaussian (mul-
tivariate normal distribution). If the data have arbitrary probability distribution functions,
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then, due to the central limit theorem of statistics, one still obtains a Gaussian probability
distribution function for the parameters in the limit of a large number of data.

We now return to the three conditions. As stated above, we would like to satisfy them
especially in s.e. fits, in order to get a reliable representation of the χ2 hypersurface. In
these analyses only a limited number of phase shifts can be used as parameters. To satisfy
condition (i) the phase shifts not searched for (higher ` phases) have to be fixed at the
correct values. Therefore an important quantity with respect to this condition is MEMC, the
long range amplitude of Eqs. (56,57). If one disregards some small contribution to MEMC or
to the higher ` phase shifts, this can still result in a good fit, but the fitted phase shifts will
be biased. An example of such a situation can be seen in older analyses that neglect vacuum
polarization for orbital angular momentum ` > 0. This error is compensated roughly by
changing the central P -wave phase shift combination ∆C [26].

One can see that condition (ii) is easily satisfied, since the parameter region involved is
typically much less than a degree in each phase shift.

If condition (iii) is violated by some measurements, it will often be necessary to reject
them, in order to obtain reliable results. We will now describe some means to detect such
data.

4. Expectations for χ2

In a least squares fit to data as described above, we have to define the following numbers.
The number of data Ndat consists of the Nobs measured scattering observables and the Nne

normalization parameters for which an error is given: Ndat = Nobs + Nne. Thus Ndat is
the number of squared terms in Eq. (66). The total number of parameters Nfp used to
minimize χ2 (Eq. (66)) includes the Npar model parameters plus the Nn fitted normalization
parameters: Nfp = Npar + Nn. So Nn − Nne is the number of unbounded normalization
parameters, which will be equal to the number of groups of relative measurements. The
number of ‘degrees of freedom’ Ndf is given by the difference between the number of data
and the number of parameters: Ndf = Ndat −Nfp.

If the conditions for a least squares fit are fulfilled, one can show that the obtained
minimum χ2 has the expectation value 〈χ2

min〉 = Ndf. However, the uncertainty in this
prediction depends on the shape of the probability distribution functions of the individual
measurements. In the following we will assume, if necessary, that these are Gaussian. In
the Appendix this assumption is tested and there it is shown that the χ2 distribution of the
experiments agrees very well with the expectation for Gaussian data. For scattering data
one certainly expects this, because the Gaussian is the limiting form for large numbers of
the Poisson distribution, that would emerge from event counting. With this assumption one
can assign a probability distribution function to χ2

min

P (χ2
min) = PNdf

(χ2
min) , (67)

where

Pν(t) =
1

Γ
(
ν
2

)
2ν/2

t(ν/2)−1 e−t/2 (68)
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is the χ2 distribution for ν degrees of freedom. It has expectation value ν and variance 2ν.
This leads for χ2

min to the expectation value

〈χ2
min〉 = Ndf ±

√
2Ndf . (69)

One often defines the χ2 per degree of freedom, χ2/Ndf or M -value, for which one expects

〈χ2/Ndf〉 = 1±
√

2/Ndf . (70)

We now look at the contribution to χ2 of one data point, denoted by χ2
A,i. This is one

individual term in χ2 of Eq. (66). For a moment assume that no normalization parameters
have to be fitted and that the model has no parameters (or all parameters are fixed at their
true values). The assumption of Gaussian measurements then gives us for each squared
term in χ2 a probability distribution function P1(χ2

A,i) of Eq. (68). Since this probability
distribution function has expectation value 1, the expectation value of the total χ2 will
be the number of these squared terms. In the case where Npar model parameters and Nn

normalization parameters are fitted, we know that the Ndat terms lead to an expectation
value Ndf. Therefore it seems reasonable to assume that a somewhat narrower probability
distribution function for each term results, due to the fitting of these parameters, e.g.

P (χ2
A,i) = α−1P1(α−1χ2

A,i) , (71)

with α = Ndf/Ndat. In our final m.e. fit α = 343/389. In the Appendix this probability
distribution function is compared with the experimental distribution of our final fit, and an
excellent agreement is found.

One can also look at the χ2-contribution of a group within a large data set. Again we
start assuming that there are no model parameters. A group of NA measurements with a
fixed normalization will then have for its contribution to χ2, χ2

A, a χ2 distribution for NA

degrees of freedom. For a group of relative measurements this reduces to NA−1 degrees
of freedom after the normalization is fitted. If a group contains a normalization datum
(νA = 1 ± εA,0), it actually consists of NA + 1 data, but after the norm is fitted, the
probability distribution function for its contribution to χ2 will again be a χ2 distribution
for NA degrees of freedom. Adding the expectation values of all groups, we now reach
Nobs − (Nn −Nne) as the expectation value of the total χ2. If model parameters are fitted,
this has to be reduced to the expected Ndf. We again assume that the distributions for each
group are narrowed, due to the fitting of the model parameters

Pgroup(χ2
A) = β−1PN ′A

(β−1χ2
A) , (72)

with N ′A = NA − 1 for groups of relative measurements, and N ′A = NA otherwise. In both
cases β = Ndf/(Ndf +Npar). In our final m.e. fit
β = 343/355.

Serious deviations from the behavior expressed in Eqs. (67,71,72) are an indication that
the conditions for a least squares fit are violated. Therefore the above probability distribution
functions can be used to construct rejection criteria.
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5. Rejection criteria

There are two ways in which a measurement can fail to satisfy condition (iii) of Sec. V A 3.
The errors εA,i could be specified incorrectly (too small or too large), or there may be
systematic errors present. If the errors are overestimated, there is of course no reason to
reject these data. In the case of too small errors, the data pretend to give more information
than they actually do, which can lead to erroneous results. Systematic errors are errors that
are in some way correlated for all measurements within a group. If they are specified clearly,
systematic errors can be dealt with, as in the case of normalization errors. Often this is
not the case, and statistical and systematic errors are somehow combined to so-called total
errors. The following example shows how systematic errors can lead to wrong results.

Suppose that in a group of N measurements of the same quantity the error is purely
systematic. This means that N times the result T + S is obtained, where T is the true
value. The experimentalist does not know S, but he has only some expectation value for it,
say S. Each measurement now has the total error εi = S. A least squares fit to determine
T would result in the value T +S, with error S/

√
N , which is not correct. Of course in this

case the systematic nature of the errors is clearly visible. As a more general example we
look at a group of N measurements of an angle-dependent observable at a number of angles.
Again we assume that the errors are purely systematic and again the number S is a measure
for the magnitude of the systematic errors. The measurements result in Ei = Ti + S · fi,
where the fi allow for an angle-dependent systematic error and are normalized such that∑
f 2
i = N . The experimentalist gives for each measurement an error εi = S, the estimated

magnitude of S. If this group is analyzed in a single group fit, it is possible that a fitted
parameter pα can compensate for the effect of S. In that case a χ2 � Ndf will be obtained.
So it appears that a systematic error can sometimes be detected from a very low χ2 in a
single group fit. One will also get a value for the parameter pα with a deviation from the
true value proportional to S, independent of N . The fit, however, will give an estimate
for the accuracy of this parameter that is proportional to S/

√
N . The group pretends to

determine this parameter more accurately than is actually the case.
If the same group is analyzed in a m.e. fit as part of a large data set, it might be detected

in another way. Let us assume that the parameters are practically fixed to the true values
by the rest of the data set. Then the χ2

A of the group in question will not have the usual
probability distribution function of Eq. (72), since only one single parameter S is responsible
for its errors. If one assigns a Gaussian probability distribution function to S one can show
that the probability distribution function for χ2

A will be N−1P1(χ2
A/N). In any case we

expect a probability distribution function which is not as sharply peaked around N , so very
high and very low values of χ2

A are more likely to occur. Therefore they can serve as an
indication for systematic errors.

Finally we mention the problem of outliers, individual data points with a very high χ2
A,i.

These can be viewed as resulting from a faint, but very broad background added to the
probability distribution function of the data. It can be shown that, if a background exists,
rejection of outliers will lead to more accurate values for the parameters (having smaller
variance). Different methods exist to reject outliers. We use the 3σ criterium, as explained
below.

In this analysis we reject groups of measurements if there is strong evidence against
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them. Only conditions that would have a very small chance to occur for a correct data set
serve as rejection criteria.

We now list our rejection criteria:

1. Any measurement EA,i with χ2
A,i > 9 is rejected as an outlier. This corresponds to the

3σ criterium, since a χ2
A,i of 9 means a misfit of 3 times the experimental error. For

Gaussian data and a parameter free model there would be a chance of only 0.27% for
a measurement to be rejected. Due to the effect of fitting, we expect an even smaller
chance; Eq. (71) leads to 0.14%.

2. To reject data with systematic errors, we leave out groups of which the single group fit
disagrees too much with the m.e. fit. We use an analogy of the 3σ criterium. The group
is rejected if the parameter values in the m.e. and single group fits show a difference of
more than 3 times the accuracy with which this parameter is determined in the single
group fit. In the case of a 1 parameter single group fit χ2

A is not allowed to drop by
more than 9 below χ2

A of this group in the m.e. fit. For an n parameter single group
fit, this is generalized to a maximum χ2

A drop by χ2
high(n) of Table II. This criterium

is tailored in such a way that the chance that a group of correct Gaussian data will be
rejected is 0.27%, if the effect of fitting the m.e. parameters is neglected. In fact also
here the chance is even smaller.

3. As another means against systematic errors, a group is rejected if its χ2
A is less than

χ2
low(Ndf) in a single group fit with Ndf degrees of freedom. The values of χ2

low, listed
in Table II, are calculated to give again a chance of 0.27% for a correct group to be
rejected. A group is also rejected, if its m.e. χ2

A is already too low. We do not use this
criterium if Ndf ≤ 3, because then a small χ2

A is no longer highly improbable.

4. Finally we leave out a group if its χ2
A in the m.e. fit exceeds

β ·χ2
high(NA), where β is as specified below Eq. (72). From Eq. (72) it can be seen that

this gives again the 0.27% chance to reject correct data. For a group of NA relative
measurements, the upper limit becomes β · χ2

high(NA−1).

By construction all these criteria should almost never come into action in the case of
correct data. If they do reject a considerable fraction of the data set, one should be sus-
picious, because those criteria that reject data for their high contribution to χ2 can also
indicate that the model does not have enough freedom. In this analysis the only sets of data
rejected for their large contribution to χ2 consist of the 50 Berkeley68 [68] cross sections (all
rejected data are discussed in Sec. V B). In that case however, there are enough comparable
measurements, and therefore one can see that the Berkeley68 data clearly contradict the
other data (see also Ref. [12]). Therefore it is very likely that something is wrong with these
data.

The criteria are meant to avoid unwanted effects, like systematic errors and underesti-
mated errors, because they can lead to less accuracy in the parameters than the obtained
error matrix suggests. Instead of rejecting data, this might also be remedied by enlarging
by hand the errors of suspect measurements. With which factor the errors should be en-
larged would have to be guessed from the amount of systematic error one sees in the data.
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Incorporating data with enlarged errors has the disadvantage that the above expectations

for χ2 (e.g. χ2/Ndf = 1 ±
√

2/Ndf) are not valid anymore. The Wisconsin66 1–3 MeV

cross section data [69] form an example of the above situation. Before the publication of
the Zürich78 data [3], the Wisconsin66 data were the only cross sections below 5 MeV and
away from the interference minimum that were incorporated in analyses. The errors, how-
ever, contained a large systematic component. Therefore, before 1978 one could not reject
the Wisconsin66 data without throwing away valuable information, but one should have
enlarged the errors. Nowadays the importance of the Wisconsin66 data has faded, since one
has the Zürich78 data [3]. Therefore we do not include the Wisconsin66 data in our data
set. The Wisconsin66 data are not in disagreement with our multi-energy fit, since they give
χ2 ≈ 15 (for 50 data).

B. The data

The latest 0–30 MeV pp analysis [1,2] incorporated 253 measurements. Since then a lot
of new data have been published. An analysis of all
0–3 MeV data has been performed recently by van der Sanden et al. [17]. At these very low
energies only differential cross section data are available. Earlier analyses had only available
the 5 Los Alamos64 data [70] around the interference minimum, measured by Brolley et al.,
and the 51 Wisconsin66 1–3 MeV data [69] of Knecht et al. The 9 Basel73 data [4,5] below
2 MeV have not been included in the earlier analyses. It has been known for a long time
that the Wisconsin66 data have errors with a large systematic component (see also van
der Sanden et al. [17] or SSH [12].) In SSH [12] a normalization error can be found which
incorporates systematic errors that are constant with angle. However, a large systematic
component remains, as the bulk of the systematic errors were angle-dependent. Therefore
the publication of the 174 Zürich78 differential cross section data below 1 MeV by Thomann
et al. [3] meant a tremendous addition to the very low energy data.

At about 5 and 10 MeV Barker et al. recently reported the 26 Wisconsin82 high precision
analyzing power (polarization) data [6,7]. Bittner et al. [9] published 6 Erlangen82 analyzing
power data at about 6 MeV. An Erlangen80 measurement of the spin correlation parameter
Ayy (CNN) at about 10 MeV was published by Obermeyer et al. [10]. Another addition
to the data is formed by the 13 Los Alamos76 cross sections around 20 MeV measured by
Jarmie et al. [8].

Most of the low energy data are differential cross section data. Such data primarily
determine the 1S0 phase shift and the central combination of P -wave phase shifts ∆C . The
importance of polarization measurements lies in the fact that they allow a determination
of the tensor and spin-orbit combinations of P -wave phase shifts ∆T and ∆LS. Therefore
especially the Wisconsin82 [6,7] data, that are much more precise than the older Wiscon-
sin75 [71] data, mean an important addition to the low energy data. The above-mentioned
P -wave combinations are defined in Eq. (19).

Our initial set of data consisted of all pp scattering measurements for Tlab
<∼ 30 MeV

published in a regular physics journal after approximately 1955 (because of the relative
precision of the newer measurements). A detailed list of the major part of the data can be
found in the Nucleon-Nucleon Scattering Data Tables of Bystricky and Lehar [72,73].
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Unfortunately enough, there exist a lot of data [29–33], that have not been published or
that have only been reported in conference proceedings. We believe it is a good policy to
omit unpublished data in an analysis, although we realize that a lot of effort has been made
to take these measurements and that perhaps nothing is wrong with these data, except that
they lack the detailed scrutiny they would have had when prepared for a formal publication.
These unpublished data are: 117 Minnesota77 differential cross section measurements of
Hegland et al. [29,30] from 6 to 20 MeV, 9 Los Alamos76 analyzing power data at 16 MeV
of Lovoi et al. [31,32] and, somewhat less recent, 8 Grenoble70 polarizations at 30 MeV of
Arvieux et al. [33]. The new Erlangen86 analyzing power data at 12 MeV of Kretschmer
et al. [74] had only appeared in a conference proceeding before this analysis was finished
and are therefore not included. We find that there is friction between these data [74] and
the Wisconsin82 [6,7] data.

Had we included the unpublished data, our results surely would have changed. Apart
from the fact that with the Los Alamos76 analyzing power data one can give s.e. phase shifts
at 16 MeV, the most important change in our results would arise from the inclusion of the
Minnesota77 dσ/dΩ data. Of these, the group at 13.6 MeV would not have survived our
rejection criteria, but the remaining 100 data are almost as restrictive to the phase shifts
as the 124 dσ/dΩ measurements we have in our final data set (see below) between 5 and
20 MeV. Therefore in the discussion of the results (Sec. VI A) we will describe the changes
in the results, that would arise from inclusion of the Minnesota77 and Los Alamos76 data.

A list of all groups of published data is given in the Data Reference Table, Table A,
see at the end of this section. As the 0–3 MeV data have been analyzed recently by van
der Sanden et al. [17], we accept of his results the rejection of the Basel73 [4,5] and the
Wisconsin66 [69] data.

As a first step, the values of our 10 P -matrix parameters for the lower partial waves
(Eqs. (16,20,21,23)) are adjusted to this initial set of data (fit1), where we keep the remaining
parameters of the model fixed at the reasonable values: g2

ppπ0/4π = 14.4 and b = 1.8 fm.
The 16 old Berkeley67 polarization data [75] between 10 and 20 MeV, the 17 Berkeley68

differential cross sections [68] at 9.918 MeV, 3 differential cross section data points from dif-
ferent groups [70,76,77], and 1 normalization datum [77] appear to be inconsistent (criteria 4
and 1 of Sec. V A 5) with fit1 and are therefore rejected. None of these rejections is surpris-
ing, compared with other analyses, except perhaps the rejection of the normalization datum
of the Los Alamos70 [77] differential cross sections at 9.69 MeV. The Los Alamos70 cross
sections [77] at 9.69 and 9.918 MeV are the reanalyzed data of an earlier publication [78].
The reanalysis of the data was done, since the phase shift analysis of Holdeman et al. [79]
showed discrepancies in the data around 10 MeV. The reanalyzed data [78] are about 2%
larger than the original. For the 9.918 MeV data this new normalization is in accordance
with our results. For the 9.69 MeV data we found a norm of 0.9826, so about 2% less.
Naisse [2] finds about the same normalization, but he enlarges the normalization error artifi-
cially, since in his analysis [2] the 9.69 MeV data of Los Alamos70 [77] and Minnesota59a [80]
are treated as one group with a common normalization datum.

In the second step, the 10 P -matrix parameters are tuned (fit2) to fit the remaining
(i.e. initial minus rejected) data. Since fit2 already results in χ2/Ndf < 1, we accept fit2
as having determined the phase shifts well enough to serve in the single group analyses.
In these single group analyses, we adjust the ‘important’ phase shifts to fit one group of
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data. The ‘important’ phase shifts are the ones that are best determined by the specific
type of experiment. For differential cross sections we fit δ(1S0) and ∆C , for other types
of observables we fit ∆T and ∆LS, if possible. All other phase shifts are preserved at the
fit2-values. For groups consisting of data at different energies, we want to vary at these
energies an ‘important’ phase shift with only one parameter. Therefore we fit a constant to
be added to the energy-dependent P -matrix of fit2. For low energies this procedure is better
than fitting a constant to be added to the phase shift, since it ensures the proper threshold
behavior.

These single group analyses result in the χ2 values and values and errors for the ‘im-
portant’ phase shifts in the columns labeled ‘χ2

s.g.’ and ‘s.g. phases’ of the Data Reference
Table. The single group phases of some groups deviate too much (criterion 2) from the fit2
values and are therefore rejected. These are the 2 groups of Berkeley68 differential cross
sections [68] (17 data at 6.141 MeV and 16 data at 8.097 MeV). Some groups have an im-
probably low value of χ2 (criterion 3) in fit2 or in the single group fit and are therefore
rejected. These are 2 groups of polarizations [9,81] (in total 14 data) and 2 groups of dif-
ferential cross sections [82,83] (in total 40 data). Except for the Erlangen79 polarizations
at 6.141 MeV [9], the low χ2 of these groups of data has been known already from earlier
analyses.

From the single group fits one can judge the importance of groups of data in the deter-
mination of the phase shifts. In Sec. VI C, that deals with the s.e. results, some remarks are
made about specific groups of data in our final data set.

After these rejections, we have arrived at our final set of data, comprising 360 observables
in 30 groups, of which 5 have a free norm. We believe that it contains no data contradicting
each other too much and no data of which the errors can be seen to contain a too large
systematic component.

As a third step, the final m.e. fit and all s.e. fits can be done with this final set of data.
Also the single group fits for the remaining groups have to be redone, but the difference with
the previous single group fits is very small. The results of these fits are discussed in Sec. VI.

VI. RESULTS

A. Multi-energy results

Having defined our final set of data (Sec. V B), we fit the 10 P -matrix parameters for the
lower partial waves (Sec. II B) and the ppπ0-coupling constant, that affects all partial waves,
for various values of the P -matrix radius b. For b between 1.1 fm and 1.7 fm we achieve a
fit in which χ2 deviates no more than 1 from the minimum. This rather weak dependence,
with an optimum for a reasonable value of b, is satisfying. It is clear that a totally correct
potential tail would have allowed smaller values for the P -matrix matching radius. Therefore
one can see here that for r <∼ 1 fm nuclear forces other than OPE are present. As explained
in Sec. II B, larger values of b shift the pole positions of the P -matrix to lower energies. Since
our parametrizations allow for a limited structure, the upper limit on b can be understood.
We choose to give our results for b = 1.4 fm, which is approximately the best value. We
reached χ2 = 343.2 for 343 degrees of freedom, or χ2/Ndf = 1.00. Theoretically one expects
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χ2/Ndf = 1, with an error
√

2/Ndf = 0.076. The χ2 distribution over the individual points
agrees very well with the expected statistical distribution, as is shown in the Appendix.

The values and errors for the parameters in the multi-energy fit can be found in Table IV.
The errors are square roots of the diagonal elements of the 11× 11 error matrix.

The not very strong result for the ppπ0-coupling constant g2
ppπ0/4π = 14.5 ± 1.2 is in

agreement with other determinations [84]. The higher partial waves (J ≥ 3) give almost
no restriction on the pion-coupling constant. Of the lower partial waves, the 1S0 gives as
much information on g2

ppπ0 as the other partial waves. That the 3P2 P -matrix parameters are
determined more precisely than the P -matrix parameters for the 3P0 and 3P1 stems from the
fact that OPE produces only a small part of the 3P2 phase shift. Some reservations have to
be made with respect to the results in Table IV, since the P -matrix parameters are of course
model-dependent. First of all, it should be noted, that the values and errors of Table IV are
evaluated for a fixed b. For other values of b, the P -matrix parameters to describe the same
phase shifts will be different. The changes in the results that would have occurred if we
had included the important unpublished data, is discussed below. Another reservation that
could be made, is that perhaps very different P -matrix parameters would have resulted, if
we had chosen a different external potential (e.g. including higher mass mesons). To judge
the model-dependence due to the potential tail, we added to our potential tail the Nijmegen
one-boson-exchange potential (N78) [27] for r > 1.4 fm, except for its OPE-part. With
this different potential tail, an equally good fit to the data is achieved. With this better
potential tail χ2

min is even slightly worse, it rises by 0.23. The phase shifts remain essentially
unchanged (compared with the accuracy with which they are determined). Satisfying is
that even the pion-coupling constant arrived at in this way (g2

ppπ0/4π = 14.2 ± 1.3) does
not deviate much from the value found in the m.e. fit. The resulting P -matrix parameters,
especially for the 1S0 and 3P2, are quite different, from which one can see that they must be
regarded as model-dependent quantities.

Table V presents in sufficient detail the m.e. phase shifts and mixing parameters of the
‘bar’ decomposition of the total S-matrix (Sec. IV). Linear interpolation in Tlab of the phase
shifts reproduces the m.e. phase shifts at every energy with an error less than the neighboring
s.e. error bar, except for δ(1S0) at very low energies. The accuracy of linear interpolation
of the 1S0 phase shift from the table below 2 MeV is only about 10−2 deg. For δ(1S0) it
is much better of course to interpolate the correct effective range function FEM(k2) (see
Sec. VI B), since the effective range function is developed to give a smooth parametrization
for the very non-smooth 1S0 phase shift. But the interpolation of FEM(k2) requires the use
of nontrivial functions. A very accurate and simple way to reproduce our m.e. 1S0 phase
shift at all energies is to interpolate linearly in Tlab (or k2) the function

F = C2
0(η′)k cot(δ0 − ∆̃0) + 2kη′h(η′) , (73)

with the 1S0 phase shift δ0 and the improved Coulomb Foldy correction ∆̃0 (Sec. IV B) as
given in Table V, and then to interpolate ∆̃0 linearly to get δ0 at the required energy. The
standard functions C2

0(η′) and h(η′) in Eq. (73) are as given in Eq. (10). The accuracy with
which our m.e. 1S0 phase shift is thus reproduced is about 10−4 deg. below 2 MeV. That
Eq. (73) supplies an accurate way to interpolate the 1S0 phase shift, is easily understood,
since the improved Coulomb Foldy correction ∆̃0 can be used to remove approximately
vacuum polarization and improved Coulomb effects from the phase shift δ0.
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The phase shifts in the higher partial waves, not given in this table were taken to be
improved Coulomb plus vacuum polarization plus OPE phase shifts, computed in Coulomb-
distorted-wave Born approximation. Also the 3F2 phase shift is not given in the table, since
it surpasses the ṼC +VV P +VOPE value at 25 MeV only by 1.5×10−3 deg., and the difference
is less at lower energies. The ε2 mixing parameter, which has been tabulated, is about 3%
more negative than the C̃+VP+OPE value. Some phase shifts at the precise energies of the
experimental data can be found in the Data Reference Table, in the column labeled ‘m.e.
phases’.

Next to the m.e. phase shifts, one can also find in Table V the quantities that can be
used to compare our phase shifts with those of models that do not incorporate vacuum
polarization and/or improved Coulomb. These are: τ`, the vacuum polarization phase shift,
ρ`, the phase shift of the VC2 part of the improved Coulomb potential, and furthermore
the Foldy correction ∆0 and the improved Coulomb Foldy correction ∆̃0 both calculated
for the Nijmegen potential [27]. To compare our 1S0 phase shift, that is the phase shift
(δC
C̃+V P+OPE

)0 with respect to Coulomb functions (see Sec. IV), with phase shifts (δCC+N)0 of

models that incorporate neither improved Coulomb nor vacuum polarization, but only the
Coulomb potential VC1 (Eq. (25)) and a nuclear potential, one should use the relation

(δCC+N)0 = (δC
C̃+V P+N

)0 − ∆̃0 . (74)

An example: the Nijmegen potential [27] gives at 25 MeV (δCC+N)0 = 49.28 deg. With ∆̃0(25
MeV) = −0.036 deg. from Table V one obtains for the Nijmegen potential (δC

C̃+V P+N
)0 =

49.244 deg., which is 3.3 s.e. error bars larger than our s.e. value, as can be seen from
Table IX and verified in Fig. 5. For a model that incorporates vacuum polarization but not
improved Coulomb, and of which the phase shift is given with respect to vacuum polarization
functions, one can use

τ0 + (δC+V P
C+V P+N)0 = (δC

C̃+V P+N
)0 − ∆̃0 + ∆0 . (75)

For partial waves with ` > 0 one does not need a table of Foldy corrections, since for
reasonable nuclear potential models one has accurately enough ∆` ≈ τ` and ∆̃` ≈ τ` + ρ`.
For ` > 0 ρ` has not been tabulated, since in good enough approximation ρ1 ≈ 1.4 × 10−3

deg. and ρ2 ≈ 9 × 10−4 deg. between 0.1 and 30 MeV. From the smallness of these phase
shifts ρ1 and ρ2 one should not conclude that the VC2 part of the improved Coulomb potential
is unimportant, because a lot of partial waves contribute due to the very long range of VC2.

One can see in Table V, that for low enough energy the 1D2 phase shift almost equals
τ2, but the P -wave phase shifts already deviate from τ1 at the lowest experimental energies.
This difference is due to the threshold behavior of the nuclear phase shifts. The drastic fall-
off of the VP phase shift is only seen below about 0.1 MeV. One can also see the accidental
crossing at Tlab ≈ 30 MeV of ∆0 and τ0 and at Tlab ≈ 18 MeV of ∆̃0 and τ0. For most
purposes it might be accurate enough to approximate above 30 MeV ∆0 and ∆̃0 by τ0.

The m.e. phase shifts (labeled ‘M’) are also shown in Figs. 4–7. For the 1S0 the direct
plot of the phase shift (Fig. 4) can hardly show the fantastic accuracy with which the 1S0

is determined. Therefore in Figs. 5–6 the shape SEM(Tlab) is displayed. The shape is the
deviation of the effective range function FEM (Sec. VI B) from the straight line:
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SEM = FEM −
(
− 1
aEM

+ 1
2
rEMk

2
)
, where the effective range parameters aEM and rEM are

determined from the 1S0 phase shift of the m.e. fit.
The effect of our rejection of the unpublished Minnesota77 [29,30] and Los Alamos76

[31,32] data can be seen in the lines labeled ‘HL’. These would be the result of the m.e. fit
if we included these important unpublished data [29–32]. Since the group of Minnesota77
differential cross sections at 13.6 MeV would not have survived our rejection criteria, these
data have not been included here. Whether deviations are of significance can be seen by
comparing them with our s.e. error bars ( |2 ). The most important of the differences between
the ‘M’ and ‘HL’ lines, due to the Minnesota77 [29,30] data, are found for δ(1S0), ∆C , and
δ(1D2) for energies Tlab > 10 MeV. Including the Minnesota77 [29,30] data furthermore
would result in a pion-coupling constant g2

ppπ0/4π that is about one standard deviation
smaller (13.4 ± 1.0). Preliminary analysis indicates that inclusion of data around Tlab = 50
MeV shows the same trends as inclusion of the Minnesota77 [29,30] data.

The abovementioned differences between the phase shifts of these modified analyses and
our m.e. analysis are 1–2 standard deviations (s.d.). Since these modified analyses show the
same trends, we are led to the belief that e.g. the pion-coupling constant is more likely to
be smaller than 14.5, the value found in the m.e. fit. For δ(1S0), ∆C , and δ(1D2), we have
analogous beliefs. Probably these problems arise because of the rather small number of data
available at the end of our energy range. Further analysis up to higher energies will have
to show whether these beliefs are well-founded. The situation could also be clarified by new
differential cross section experiments above about 15 MeV. Other types of experiments could
also greatly improve the data set above about 15 MeV. For the pion-coupling constant the
results from a 0–350 MeV analysis have already been reported [85], giving indeed a lower
value (g2

ppπ0/4π = 13.1± 0.1) than this analysis.
Phase shifts calculated with the OPE (‘π’), the Nijmegen (‘N78’) [27] and the Paris

(‘P80’) [28] potential are also shown in the figures. To these nuclear potentials we added
the electromagnetic potential: improved Coulomb and vacuum polarization. We do not
compare with other nucleon-nucleon potential results, since unfortunately enough we do not
have a computer code to calculate the Funabashi potentials [86–88], and the Bonn [89–91]
and Argonne [92] potentials are neutron-proton potentials. As for the 1S0 in Figs. 5–6,
one can see that for very low energies the Paris (P80) [28] potential is very much in error,
since its δ(1S0) is 0.14 deg. (57 s.d.) too large at the interference minimum and 0.24
deg. (26 s.d.) too large at 1 MeV, but above about 3 MeV it is somewhat better than the
Nijmegen (N78) [27] potential. If one would add only the standard Coulomb and the vacuum
polarization potential to the Paris potential, and not the improved Coulomb potential, the
difference with our analysis would be slightly (0.01–0.02 deg.) less at these energies. That
the Paris potential [28] gives wrong values for the 1S0 scattering length aC and effective
range rC was already noted by Piepke [93]. We obtain the same values. We have included
in the Paris potential the proper electromagnetic potential. Contrary to the explanation
accepted by Piepke [93], inclusion of vacuum polarization in the Paris potential for the
1S0 can accurately be approximated by the Foldy correction ∆0. Perhaps the easiest way to
ensure a reasonable low energy behavior of potential models is to fit the 1S0 phase shift at the
interference minimum and at 1 MeV. This is easier than fitting effective range parameters.
The comparison of the 1S0 results with those of earlier low energy analyses is made in terms
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of effective range parameters in Sec. VI B. No comparison is made there with the series
of analyses of Arndt et al. [34–37], since these are not intended to be detailed low energy
analyses, but aim primarily at the higher energies. This can be seen in several ways. First
of all, below 25 MeV Arndt et al. [36] do not give a s.e. δ(1S0); at 25 MeV their s.e. δ(1S0)
is in accordance with ours (Sec. VI B) but their m.e. δ(1S0) is 0.7 deg. (3.2 s.d) lower than
their own s.e. δ(1S0) and 0.9 deg. (8 s.d.) lower than our s.e. δ(1S0). Thus probably their
parametrization of the phase shifts as a function of the energy is not good enough. At 10
MeV the difference between their m.e. δ(1S0) and ours is about the same as at 25 MeV.
Furthermore, Arndt et al. do not give error bars for the combinations of P -wave phase shifts
∆C , ∆T , and ∆LS. In their latest analyses [37] dramatic changes in the 10, 25 and 50 MeV
np s.e. phase shifts (up to 9 s.d.) are left undiscussed.

For the 3P -waves, in Figs. 7a–c, one can see that the Nijmegen (N78) [27] and Paris
(P80) [28] potentials predict a too large δ(3P0) around 10 MeV. It is more instructive to look
at the combinations of 3P -wave phase shifts ∆C , ∆T , and ∆LS in Figs. 7d–f, since in Born
approximation the central, tensor, and spin-orbit parts of the potentials are responsible for
these combinations. One can see that the central P -wave combination ∆C of this analysis
above 20 MeV is substantially larger than those of the older analyses of SSH [12] and
Bohannon et al. [40]. As mentioned above, inclusion of unpublished data and a preliminary
analysis of higher energy data up to about 50 MeV both give also a somewhat smaller ∆C .
Whether or not our high ∆C around 25 MeV should be viewed as a statistical fluctuation that
has a large effect since it occurs at the end of our energy range, will become clearer when we
finish the analysis up to higher energies. For ∆T and ∆LS the most important features are:
(i) Our s.e. error bars at 5 and 10 MeV are much smaller than those of previous analyses, due
to the new Wisconsin82 [6,7] analyzing power data. In the same publication [6,7], Barker
et al. reported also an analysis, which however was in error, giving a ∆T deviating more
than 3 s.d. from what we find for their data. (ii) Both the Nijmegen (N78) [27] and the
Paris (P80) [28] potential give a too large ∆T and a too small ∆LS at 10 MeV. This has
already been discussed elsewhere [94]. Probably this shows a flaw in the treatment of the
medium range forces in these potential models. As one can see in Fig. 7f OPE gives only a
very small ∆LS (in Born approximation ∆LS(OPE) = 0), and therefore in ∆LS interactions
of shorter range (e.g. two-pion-exchange or ε-exchange) are visible.

B. Effective range parameters

In the low energy domain, results of an analysis are often presented in terms of effective
range (ER) parameters [15,12,16,2,17]. In order to make a comparison with those analyses,
we give the values that can be deduced from the behavior near k2 = 0 of our multi-energy
phase shifts. The error on the ER parameters is the maximum deviation possible without
raising χ2 by more than 1, in varying the 10 P -matrix parameters and the pion-coupling
constant. For the 1S0 phase shift we used the ER function for δEM0 as given by v.d. Sanden
et al. [17]

FEM(k2) = C2
0(η′)k

(1 + χ0) cot δEM0 − tan τ0

(1 + A1)(1− χ0)
+ (1− A2)2η′kh(η′) +
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+k2d
[
C4

0(η′)− 1
]

+ 2η′k`0 =

=
−1

aEM
+

1

2
rEMk

2 +O(k4). (76)

The definitions of χ0 and `0 can be found in Ref. [19], those of d, A1 and A2 in Ref. [17].
If one ignores the relativistic correction VC2 to the static Coulomb potential VC1 = α′/r, i.e.
taking d, A1 and A2 equal to zero, one gets back the ER function of Heller [19]. Ignoring
this correction in an analysis results in a value for aEM that is about 0.009 fm more negative
and about the same value for rEM [17]. Since Naisse [2] uses the ER function for δC , the
coulomb corrections in the 1S0 partial wave are treated in a model-dependent manner in
that analysis. We have used the improved Coulomb Foldy correction ∆̃0 (Sec. IV B and
Sec. VI A) to compute the values of our multi-energy δC in order to compare with his
results (aC and rC). It should be emphasised here again that ∆̃0 corrects only for vacuum
polarization and improved Coulomb (see also Sec. IV B), where the protons are treated as
point charges. Ideally one would have an ‘electromagnetic Foldy correction’ that corrects
for all electromagnetic effects, except for the point Coulomb interaction VC1. The most
important electromagnetic effect not included in our improved Coulomb Foldy correction
is the change in the Coulomb potential due to the spatial extension of the charges. It is
not necessary to incorporate that in our potential tail, since it is of short range and can
therefore be absorbed in the P -matrix. But it will be the major error made if one adjusts
the parameters of a nuclear potential plus VC1 to fit our values of aC and rC. The elimination
of this error is under study [67] with the Nijmegen potential [27] as the nuclear potential.
Preliminary results are that elimination of this error makes aC about 0.0075 fm more negative
and rC about 0.002 fm less positive.

The region of convergence of the ER series of Eq. (76) is determined by the logarithmic
singularity of OPE: Tlab < 9.81 MeV. It has been shown [17,14], that the CFS approximation
as used by Noyes [11], Naisse [2] and Mathelitsch et al. [18] is not accurate enough (see
Sec. II). Values and errors for the 1S0 ER parameters are given in Table VI, where they can
be compared with earlier analyses. One can see that the (new) Zürich78 data [3] make the
determination of the ER parameters more precise, and that there is a very good agreement
with the analyses of Noyes [11] and Gursky and Heller [15].

The difference between our results for the 1S0 ER parameters and those of van der Sanden
et al. [17] are primarily due to the difference in higher energy data. Van der Sanden et al.
use the 0–3 MeV data and the restriction δ(1S0) = 0 at Tlab = 253 MeV, whereas we
use the data up to 30 MeV. Inclusion of the unpublished Minnesota77 [29,30] differential
cross sections would have shifted our results for the 1S0 ER parameters somewhat (0.6 s.d.)
towards those of van der Sanden et al. [17]. The low energy data determine δ(1S0) very
precisely at the interference minimum (Tlab ≈ 0.38254 MeV) and at 1 MeV. Due to the m.e.
parametrization, the ER parameters (determined at Tlab = 0) are sensitive to the higher
energy data. Due to this uncertainty it is probably best to recommend values for the 1S0

ER parameters that are in good accordance with the 0–3 MeV as well as with the 0–30 MeV
analysis: aEM = −7.804± 0.004 fm and rEM = 2.784± 0.020 fm.

For the 3P -waves we used ER functions for δC1J analogous to those of Heller [19]. (For
` 6= 0 δEM`J ≈ δC`J , see Sec. IV.) These ER functions (FC)1J and their corresponding
expansions are
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(FC)1J = (1 + η′2)k2
[
C2

0(η′)k cot(δC1J) + 2η′kh(η′)
]

=

=
−1

a1J

+
1

2
r1Jk

2 +O(k4) for J = 0, 1

(FC)12 = (1 + η′2)k2
[
C2

0(η′)k cot(δC12 − δC12(OPE)) + 2η′kh(η′)
]

=

=
−1

a12

+
1

2
r12k

2 +O(k4) , (77)

where in the 3P2 ER function the Coulomb plus OPE 3P2 phase shift is subtracted. The
latter phase shift of course depends on the pion-coupling constant. The results for the
deduced 3P -wave ER parameters can be found in Table VII, where they can be compared
with earlier analyses. Especially the (new) Wisconsin82 [6,7] polarization data make the
determination of the parameters more precise. Our values agree with those of SSH [12],
except for the 3P0 with Naisse’s SSH/SC values [2], and except for the 3P2 effective range
with the van der Sanden 1982 analysis [84]. All our values except for the 3P2 scattering
length are in disagreement with the analysis of Mathelitsch et al. [18]. We see no valid
reason why Mathelitsch et al. [18] could get such small errors for their ER parameters.

If we had included the unpublished Minnesota77 differential cross sections [29,30] and
the Los Alamos76 polarizations [31,32], the 3P1 scattering length would have been lowered
by 0.052 fm3 (1.2 s.d.) and the 3P0 scattering length would have become 0.09 fm3 (1 s.d.)
less negative. All other ER parameters would have changed by 0.4–0.7 s.d.

C. Single-energy results

If one wants to adjust the parameters of a model to the data, one needs single-energy
phases and error matrices (see Sec. V). We denote the deviation of the model phase shifts

from the s.e. phases by ~d, the errormatrix by E, and the minimum χ2 arrived at in the s.e.
analysis by χ2

s.e.. Then if the model phase shifts are not too far away from the analysis phase
shifts, one can compute the model χ2 approximately as

χ2 = χ2
s.e. + ~dTE−1~d . (78)

It should be noted that this representation of the χ2 hypersurface is not an exact represen-
tation for several reasons. First of all, higher ` phase shifts (pion-coupling constant) have
been fixed. Furthermore, the data have been clustered at the central energies with help of
the multi-energy fit results, and next to that the χ2 hypersurface is only quadratic in the
neighborhood of the minimum. Still, this representation is much better than giving only
phase shifts and errors.

To make such a representation of the χ2 hypersurface, we divided the data into clusters
around 0.38254 MeV (the interference minimum), 1 MeV, 5 MeV, 10 MeV and 25 MeV.
We had to split one group [95], because it contained data from 11 to 26 MeV. From these
clusters we determined the single-energy phases and inverse error matrices of Table IX in
the same way as we determined single-group phases for groups with data points at different
energies (Sec. V B). So for each phase shift searched for, we fitted a constant to be added
to the energy-dependent P -matrix of the multi-energy fit. As this appeared to work not
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too well for the ε2, we fitted here a constant to be added to the multi-energy ε2 mixing
parameter.

Around the interference minimum and at 1 MeV only cross section data are available.
The more important groups are 5 (of the 7) new Zürich78 [3] groups of Thomann et al.
and the Los Alamos64 [70] data of Brolley et al. These data pin down the 1S0 phase shift
very precisely, as is explained very nicely in the excellent 1964 analysis of the Los Alamos
data by Gursky and Heller [15]. From these cross sections only the 1S0 phase shift and the
3P -phase shift combination ∆C (Eq. (19)) can be determined. We varied ∆C by varying all
3PJ P -matrices, with fixed ∆T and ∆LS.

Around 5 and 10 MeV the new Wisconsin82 [6,7] polarization data of Barker et al. allow
a very precise determination of ∆T and ∆LS. The only cross section data in the 5 MeV
cluster are two (out of three) Kyoto75 groups of Imai et al. [96]. Around 10 MeV one has
more cross section data, and from different experimental groups. Both Kyoto75 groups [96]
prefer a 1S0 phase shift that is 2 s.d. smaller than our m.e. δ(1S0). This is the reason for
the difference between the s.e. and m.e. δ(1S0). As one can see in the Data Reference Table,
there is also friction in ∆C between all three Kyoto75 groups [96] and the other differential
cross section data around 10 MeV [80,78,77]. The Kyoto75 [96] data prefer ∆C to be 0.02–
0.03 deg. larger than the m.e. fit, which is 1.5–2 single group standard deviations. The other
cross section data prefer ∆C to be 0.05–0.09 deg. smaller than the m.e. fit, which is 1–2.7
single group standard deviations.

At 5 MeV as well as at 10 MeV the clusters determine δ(1S0), δ(3P0), δ(3P1), δ(3P2),
and δ(1D2). But the optimum values for these phase shifts depend slightly on the ε2 mixing
parameter. The value of ε2 can not be determined from these data, as the χ2 reached in the
s.e. fits is virtually the same for ε2 deviating up to 20% from the Coulomb plus OPE value.

Therefore we give at 5 and at 10 MeV the inverse error matrix (E−1
ij = 1

2

d2χ2

dδidδj
) as an almost

degenerate 6× 6 matrix. As errors for the phase shifts we give the values for ε2 fixed at the
m.e. value, so the values computed from the 5× 5 submatrix.

At 25 MeV the cluster is rather small, though it consists of data between 18 and 30 MeV.
The only new (post 1975) group in this cluster is the Los Alamos76 [8] 19.7 MeV group of
cross sections. More partial waves are important at this energy. The observables in this
cluster are quite insensitive to F -waves deviating up to 10% from Coulomb plus OPE. We
do find a minimum in χ2 with respect to variations in δ(1S0), δ(3P0), δ(3P1), δ(3P2), δ(1D2)
and the ε2 mixing parameter, but the value of ε2 then reached is 0.27 deg. lower than the
m.e. fit, which is 3 s.e. standard deviations. As the ε2 value of Arndt et al. [36,37] does
not deviate much from OPE, we do not (at least until we have analyzed higher energy
data) believe the 25 MeV cluster in its determination of ε2. (In Sec. VI A we already
discussed the δ(1S0) and ∆C values of the 25 MeV cluster.) Therefore, we give in Table IX
the values of S, P , and D-wave phase shifts for ε2 fixed at the m.e. value. Of course we
also give the 6 × 6 inverse error matrix at the minimum of χ2 with respect to variations
in δ(1S0), δ(3P0), δ(3P1), δ(3P2), δ(1D2), and the ε2 mixing parameter, which does give
correctly the dependence of χ2 on the phase shifts for this cluster.

We have examined the quality of this description of the χ2 hypersurface by computing χ2

for the Nijmegen potential [27] (with the electromagnetic potential (Sec. III) added) in two
ways: (i) exact: by direct comparison with the data and (ii) with the inverse error matrices
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of Table IX. The error matrices gave χ2 = 666 (χ2/Ndf ≈ 1.9), where as the data gave χ2

= 607 (χ2/Ndf ≈ 1.8).

SUMMARY OF CONCLUSIONS

In this analysis the pion-coupling constant can be determined from the low energy data
without model-dependent errors, which is an important improvement over previous analyses.
We find g2

ppπ0/4π = 14.5± 1.2, but the inclusion of unpublished data or higher energy data
reduces the value by about one standard deviation (13.4 ± 1.0). A table of multi-energy
phase shifts is given, which makes it easy to compute the phase shifts at every desired energy
between 0 and 30 MeV. With the Foldy corrections listed in the table one can include vacuum
polarization and improved Coulomb in nuclear potential models, if the 1S0 phase shift of the
potential is computed with as only electromagnetic interaction the standard point-Coulomb
interaction. Flaws in the Paris [28] and Nijmegen [27] potential are noticed. In order to
compare with previous analyses, effective range parameters derived from the multi-energy
phases are given. The single-energy phase shifts and error matrices, to be used if one adjusts
model parameters to the 0–30 MeV pp scattering data, have been tested for the Nijmegen
potential to give a χ2/Ndf accurate up to 0.1.
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APPENDIX A: HOW NON-STATISTICAL ARE THE DATA?

In this appendix we want to see how the data spread around the model values. The
theoretical framework has already been presented in Sec. V A. The total χ2 (χ2

tot) is in our
case surely compatible with the data being drawn around the model values (Eq. (69)). Here
we want to say more about the distribution of the contributions to χ2, i.e. of the Ndat squared
terms in Eq. (66). The distribution we find in the m.e. fit we denote by P1,analysis(χ

2). It is
given by

P1,analysis(χ
2) =

1

Ndat

Ndat∑
i=1

δ(χ2 − χ2
i ) . (A1)

This distribution has to be compared with the theoretical probability distribution function
the χ2 distribution for 1 degree of freedom P1(χ2) of Eq. (68). This comparison is made in a
histogram in Fig. 8, but it is difficult to judge the agreement between the distributions from
such a figure. We believe it is better to give the moments of the distributions, because errors
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can be given for these moments. The moments µ′n of a distribution P (t) (with t ∈ (0,∞))
are given by

µ′n =
∫ ∞

0
dt P (t)tn , (A2)

and the central moments µn are given by

µn =
∫ ∞

0
dt P (t)(t− µ′1)n . (A3)

The error in µ′n from a draw of N out of P (t) can then be evaluated as

σµ′n =

(
µ′2n − (µ′n)2

N

)1/2

, (A4)

and analogous for σµn .
There are two flaws in P1(χ2) as a comparison for P1,analysis(χ

2). First of all, as also
discussed in Sec. V A, ∫ ∞

0
dt P1,analysis(t)t = χ2

tot/Ndat , (A5)

where as ∫ ∞
0

dt P1(t)t = 1 . (A6)

The expectation value 〈χ2
tot〉 = Ndf = 343, but Ndat = 389, because the normalizations (17

overall norms plus 12 angle-dependent normalization factors) contribute to χ2, we use 12
model parameters and there are 5 unnormed groups of data. Therefore, a better probability
distribution function to compare P1,analysis(χ

2) with is the somewhat narrowed probability
distribution function of Eq. (71) with α = 343/389. Secondly, we have rejected all data with
χ2
i > 9, which influences of course primarily the higher moments. Therefore, we believe it is

best to compare the moments of P1,analysis(χ
2) with those of

P1,σ,cut(χ
2) =

[
σ
√

2 γ(
1

2
,
9

2
σ−2)

]−1

e−χ
2/2σ2

(χ2)−1/2θ(9− χ2) , (A7)

with γ(α, z) the incomplete gamma function and σ chosen in order to have 〈χ2〉 = 343/389,
thus σ = 0.89677. This P1,σ,cut(χ

2) still has a flaw as a comparison probability distribution
function for P1,analysis(χ

2), since measurements of different groups are treated in the same
way.

The lower moments of P1(χ2), of P1,σ,cut(χ
2), and of P1,analysis(χ

2) are given in Table X
together with their errors. All of the four lower moments of P1,analysis(χ

2) agree (almost too
good) with those of P1,σ,cut(χ

2), so the distribution of the contributions to χ2 is very near
to what one would expect for statistical data. In the histogram (Fig. 8) where the above
probability distribution functions are displayed, one can see that to the eye both probability
distribution functions agree with the experimental distribution P1,analysis(χ

2).
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TABLES

C+OPE BA CDWBA
δ(3F3) −0.3424 −0.3583 −0.3463
δ(3F4) 0.0266 0.0254 0.0243
ε4 −0.0775 −0.0797 −0.0774

δ(1G4) 0.0619 0.0637 0.0618

TABLE I. 3F3, 3F4, and 1G4 phase shifts and ε4 mixing parameter (in deg.) at Tlab = 30
MeV of the potential VC1 + VOPE (Eqs. (25, 28)), with a form factor continuation for r < 1.4 fm
and g2

ppπ0/4π = 14.4. BA and CDWBA: Born approximation and Coulomb-distorted wave Born
approximation to the C+OPE values.

N 1 2 3 4 5 7 10 15 20 25 30
χ2

high(n) 9.0 11.8 14.2 16.3 18.2 22. 27. 35. 42. 49. 56.
χ2

low(n) — — — 0.15 0.31 0.81 1.8 4.1 6.8 9.8 13.

TABLE II. Values of χ2 used in the rejection criteria (see text).
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Comments to Table A:

a) Unless all data are deleted, the number of data does not include deleted data. Exper-
imentally determined normalizations are also not counted.

b) Predicted norm: ν−1
A arrived at in the m.e. fit, with which the experimental values

should be multiplied before comparison with the theoretical values (Eq. (66)).

c) 2 extra angle-dependent normalizations included (Ref. [3], page 464).

d) Individual data points rejected as χ2 > 9. Whole group of data rejected as χ2 > βχ2
high

(see rejection criteria).

e) Relatively unrestrictive to the 1S0 phase shift.

f) Rejected as a result of the analysis of van der Sanden et al. [17] of the 0–3 MeV data.

g) Old polarization data. P as determined by all data is much smaller than these groups
values and errors.

h) Group rejected as χ2 < χ2
low (see rejection criteria).

i) We used the BGS-data [68].

j) ∆χ2 between m.e. fit and s.g. fit too large, arising from a deviation of ∆C .

k) Probable errors changed to standard errors (σ ≈ 1.48 p.e.).

l) 1 point of this group (then at 9.68 MeV) was published in Ref. [103].

m) In the s.e. analysis this group was split. The 11.4 MeV data then were taken with the
free norm, the other data with a fixed norm.

n) Belongs to a group of data with points for Tlab > 30 MeV.

o) Datum as renormalized by Jarvis and Rose [105].
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partial wave parameter fitted value ‘free’ value

- g2
ppπ0/4π 14.5 ±1.2 -

1S0 c0 0.230±0.013 1
r0 1.58 ±0.86 2
k2

0 3.3 ±1.5 5.0

3P0 c10 3.39 ±0.77 2
d10 −2.9 ±1.5 −0.4

3P1 c11 1.70 ±0.48 2
d11 −0.25 ±0.86 −0.39

3P2-ε2-3F2 c12 1.355±0.030 2
d12 −0.20 ±0.16 −0.39

1D2 c2 1.01 ±0.31 3

TABLE IV. Values and errors (for b = 1.4 fm) for the parameters. For the definition of the
partial wave parameters, see Sec. II B. For comparison, the corresponding values for the free
P -matrix are also given. All values are in appropriate powers of fm.
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analysis scattering length effective range
(fm) (fm)

aEM = −7.8063±0.0026 rEM = 2.794±0.014
Present work (aE = −7.8153±0.0026) (rE = 2.794±0.014)

(aC = −7.8196±0.0026) (rC = 2.790±0.014)

v.d. Sanden aEM = −7.8016±0.0029 rEM = 2.773±0.014
et al. [17] (aE = −7.8106±0.0029) (rE = 2.773±0.014)

Gursky and aE = −7.815 ±0.008 rE = 2.795±0.025
Heller [15]

Noyes and aE = −7.8146±0.0054 rE = 2.795±0.008
Lipinski [11]

SSH [12] aE = −7.821 ±0.004 rE = 2.830±0.017

Naisse [2] aC = −7.828 ±0.008 rC = 2.80 ±0.02

TABLE VI. protect 1S0 scattering length and effective range (as defined in Sec. V I B) of
this and earlier analyses. For van der Sanden et al. [17] we give their values determined by the
Zürich78 [3] data. Values between parentheses give information identical to that of the line above.

present work a10 =−3.03±0.11 a11 = 2.013±0.053 a12 =−0.306± 0.015
r10 = 4.22±0.11 r11 =−7.92 ±0.17 r12 = 4.2 ± 1.6

v.d. Sanden a10 =−2.71±0.34 a11 = 1.97 ±0.09 a12 =−0.316± 0.016
et al. [84] r10 = 3.8 ±1.1 r11 =−8.27 ±0.37 r12 = 7.8 ± 2.0
SSH [12] a10 =−2.6 ±2.0 a11 = 2.8 ±1.3 a12 =−0.45 ± 0.28

r10 = 4.3 ±2.0 r11 =−9.0 ±1.0 r12 = 15. ±10.
Naisse [2] a10 =−4.3 ±0.6 a11 = 2.2 ±0.5 a12 =−0.30 ± 0.01

r10 = 5.32±0.10 r11 =−8.0 ±0.2 r12 = 5.5 ± 0.9
Mathelitsch a10 =−2.84±0.02 a11 = 1.90 ±0.01 a12 =−0.31 ± 0.01
et al. [18] r10 = 4.45±0.05 r11 =−7.56 ±0.05 r12 = 7.59 ± 0.28

TABLE VII. Effective range parameters of the 3P -waves (in appropriate powers of fm) of this
and earlier analyses. SSH [12] give 3P -wave parameters for three different data sets. We give here
their results excluding all Wisconsin66 [69] and Berkeley68 [68] data, since we reject these data.
Naisse [2] discusses different models, that give rather different results. We quote here his SSH/SC
results.
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0.38254 MeV
groups Nobs Ndf χ2

s.e.

6 122 118 132.77
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 14.5096 14.5094 0.0025 −0.1013 −0.1814
∆C −0.0559 −0.0601 0.0018 −0.0547

inverse error matrix (E−1):
0.1683×106

0.4750×105 0.3164×106

1. MeV
groups Nobs Ndf χ2

s.e.

2 57 55 38.75
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 32.5864 32.6006 0.0094 −0.0872 −0.1925
∆C −0.0561 −0.0599 0.0035 −0.0503

inverse error matrix (E−1):
0.1214×105

0.7999×104 0.8799×105

5. MeV
groups Nobs Ndf χ2

s.e.

3 45 40 31.45
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 54.707 54.515 0.087 −0.058 −0.093
3P0 1.441 1.527 0.091 −0.037
3P1 −0.945 −0.932 0.027 −0.037
3P2 0.183 0.183 0.015 −0.037
1D2 0.0186 0.0118 0.0097 −0.0282
ε2 −0.0562 −0.0562 - -

inverse error matrix (E−1):
0.1521×103

0.3289×102 0.3537×103

0.5127×102 0.8088×103 0.3266×104

0.8064×102 0.7872×103 0.1333×104 0.7128×104

0.3454×103 −.1269×104 −.3424×104 −.6101×104 0.1918×105

0.7319×101 −.1021×103 0.3528×100 −.1034×104 0.1472×104 0.2159×103

phase m.e. s.e. error(s.e.) τ` + ρ`
∆C −0.053 −0.039 0.010 −0.037
∆T −0.410 −0.419 0.017 0
∆LS 0.072 0.055 0.015 0

TABLE VIII. (continued).
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10. MeV
groups Nobs Ndf χ2

s.e.

9 95 88 82.37
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 55.121 55.108 0.068 −0.047 −0.061
3P0 3.430 3.353 0.073 −0.032
3P1 −2.063 −2.078 0.026 −0.032
3P2 0.639 0.636 0.019 −0.032
1D2 0.155 0.162 0.011 −0.025
ε2 −0.215 −0.215 - -

inverse error matrix (E−1):
0.2212×103

−.4250×101 0.2505×103

−.2964×102 −.1407×103 0.1902×104

−.3282×102 0.9332×102 0.7443×103 0.3549×104

0.1936×103 −.6144×103 −.1656×104 −.3194×104 0.1294×105

0.5738×102 −.3889×103 −.3278×102 −.6286×103 0.2668×104 0.9236×103

phase m.e. s.e. error(s.e.) τ` + ρ`
∆C 0.048 0.033 0.017 −0.032
∆T −0.9505 −0.9427 0.0099 0
∆LS 0.210 0.226 0.018 0

25. MeV
groups Nobs Ndf χ2

s.e.

10 41 34 22.95
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 48.77 49.02 0.13 −0.04 −0.04
3P0 8.61 8.20 0.37 −0.03
3P1 −4.57 −4.33 0.15 −0.03
3P2 2.53 2.37 0.12 −0.03
1D2 0.771 0.904 0.057 −0.021
ε2 −0.873 −1.147 0.091 0

inverse error matrix (E−1):
0.1224×103

0.1339×102 0.2571×102

−.7481×102 0.1332×101 0.1460×103

−.2327×102 0.6303×102 0.1143×103 0.3357×103

−.6827×102 −.1379×103 −.8105×102 −.5034×103 0.1538×104

−.3166×102 −.1301×103 −.2323×102 −.4264×103 0.1078×104 0.1008×104

phase m.e. s.e. error(s.e.) τ` + ρ`
∆C 0.839 0.788 0.054 −0.027
∆T −2.324 −2.206 0.060 0
∆LS 0.76 0.71 0.11 0

TABLE VIII. (continued).
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If ε2 is fixed at the m.e. value:
25. MeV
groups Nobs Ndf χ2

s.e.

10 41 35 32.00
phase m.e. s.e. error(s.e.) τ` + ρ` ∆̃0

1S0 48.77 48.87 0.12 −0.04 −0.04
3P0 8.61 8.65 0.35 −0.03
3P1 −4.57 −4.52 0.13 −0.03
3P2 2.53 2.52 0.11 −0.03
1D2 0.771 0.775 0.039 −0.021

∆C 0.839 0.859 0.051 −0.027
∆T −2.324 −2.319 0.044 0.0
∆LS 0.76 0.74 0.11 0.0

TABLE IX. Single-energy results at Tlab = 0.38254, 1, 5, 10, and 25 MeV.
groups: number of groups of data in this cluster.
Nobs: number of scattering observables in this cluster.
Ndf: number of degrees of freedom, which is Nobs minus the number of fitted phase shifts minus
the number of groups of relative measurements (see Sec. V ).
The phase shifts are from the ‘bar’ decomposition of the total S-matrix (Eq. (43)), in degrees. The
lower triangular part of the inverse error matrix (deg.−2) is given, which is 1/2 times the second
derivative matrix. For comparison with our m.e. results, the corresponding m.e. phase shifts are
also given. To enable the conversion to other types of phase shifts (Sec. IV B), we also give τ` + ρ`
(see Eq. (53)). For ` = 0 also ∆̃0 is given, the improved Coulomb Foldy correction (see Eq. (61))
of the Nijmegen potential [27].

P1(χ2) P1,σ,cut(χ2) P1,analysis(χ2)

µ′1 1.000± 0.072 0.882± 0.061 0.883
µ′2 3.000± 0.050 2.24 ± 0.32 2.24
µ′3 15.0 ± 5.1 8.8 ± 2.0 8.5
µ′4 105. ±72. 44. ±14. 40.
µ2 2.00 ± 0.38 1.46 ± 0.23 1.46
µ3 8.0 ± 3.9 4.3 ± 1.3 3.9
µ4 60. ±55. 21.9 ± 8.7 18.3

TABLE X. Moments µ′n and central moments µn for our analysis of the data and the moments
of two comparison probability distribution functions. Errors are given for a draw of 389 points.
In the moments given for our analysis, contributions of normalization data are included. For
definitions, see the Appendix.
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FIGURES

FIG. 1. a: cut-structure of the S-matrix in the complex Tlab-plane. b: cut-structure of the
P -matrix, for the potential tail that we use, in the complex Tlab-plane.

FIG. 2. 3P2 effective range function F12 (Eqs. (17, 18)) vs. Tlab for the Nijmegen78 potential
[27]. BA: with the Born approximation to its δOPE12 and Coulomb penetration factor. CDWBA:
with the Coulomb distorted wave BA to its δOPE12 .

FIG. 3. Different approximations to the 1D2 phase shift of the OPE part of the Nijmegen78
potential (Eq. (31) of Ref. [27]), divided by the 1D2 phase shift of the Nijmegen78 potential. BA:
Born approximation. BA-PF: BA with Coulomb penetration factor. CDWBA: Coulomb distorted
wave BA.

FIG. 4. 1S0 phase shift δ0 in degrees vs. Tlab. |2 : single-energy analyses. M: multi-energy
analysis. P80: Paris potential [28]. N78: Nijmegen potential [27].

FIG. 5. The shape SEM vs. Tlab. SEM is defined in Eqs. (12, 76), using aEM and rEM of our
m.e. fit. Apart from the contents of Fig. 4 we also include here single-group results ( |◦ ). The
points marked with |∗ are the single-group results of the (unpublished) Minnesota77 [29, 30] data.
The dashed line (HL) displays the m.e. fit if the Minnesota77 and the Los Alamos76 [31,32] data
are included.

FIG. 6. Enlarged display of the shaded region of Fig. 5. The Paris potential can not be seen
in this figure, since its phase shift is too large at low energies.

FIG. 7. P - and D-wave phase shifts δ in degrees vs. Tlab. |2 : single-energy analyses.
M: multi-energy analysis. HL: m.e. fit with unpublished data [29–32] included. |◦ : Arndt

et al. [36]. |– : SSH [12]. |4 : Bohannon et al. [40]. N78: Nijmegen78 potential [27]. P80:
Paris80 potential [28]. π: One-pion-exchange.

FIG. 8. Probability distribution functions vs. χ2. The tail is enlarged by a factor of 10. The
histogram, of 389 data points, represents the experimental distribution in bins ∆χ2 = 0.1 (and
∆χ2 = 0.2 for the tail). - - - : P1(χ2), χ2 p.d.f. for 1 degree of freedom. — : P1,σ,cut(χ2), χ2 p.d.f.
if we take into account that 〈χ2〉 = 343/389 and that data points with χ2 > 9 have been rejected.
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