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Abstract

In a phase shift analysis of all pp scattering data below Tlab = 350 MeV,
where χ2/d.o.f. = 1.07 is reached, the long and intermediate range pp interac-
tion has been studied. Using as intermediate range interaction the Nijmegen
potential, we find for the ppπ0-coupling constant f2

0 = (72.5 ± 0.6) · 10−3 or
g2
0 = 13.1 ± 0.1) and for the π0-mass 134.7 ± 2.1 MeV. Even when we take

account of the model dependence due to the potential tail, this value of f2
0

is significantly lower than the value of the charged coupling constant in πN
scattering, indicating a large breaking of charge independence.

Typeset using REVTEX

∗Published in Phys. Rev. Lett. 59, 2255–2258 (1987)

1



The coupling of the neutral pion fiels φ to the proton field ψ is described by either the
pseudoscalar (PS) or the pseudovector (PV) phenomenological vertex functions LPS or LPV,
where LPS = g0(4π)1/2(ψiγ5ψ)φ and LPV = (f0/m+)(4π)1/2(ψiγµγ5ψ)∂µφ. To make the PV
coupling constant f0 dimensionless it is customary[1] to introduce in LPV the charged-pion
mass m+. These different vertex functions give rise to the same one-pion-exchange (OPE)
potential between protons, provided that one has g2

0 = (2M/m+)2f 2
0 , where M is the proton

mass.
Differences between these two phenomenological vertex functions show up when one

looks at the vertex pp → π0. When one considers the underlying quark picture,[2] then it is
unbelievable that the vertices p → pπ0 and pp → π0 can both be described by these simple
vertec functions with the same g0 of f0, even if these couplings are modified by form factors
describing the spatial extension of the hadrons. Especially LPS is unbelievable because it
predicts a very strong pp → π0 vertex. That LPS is unbelievable does not mean that LPV is
correct. We think that both expressions are only valid approximations in a very restricted
kinematic domain.

The coupling of charged pions to the nucleons is described by the charged coupling
constant fc, where f(pnπ+)f(npπ−) = 2f2

c . When one assumes charge independence for the
pion-nucleon interaction, then one has f 2

0 = f 2
c . However, charge independence of the strong

interactions is only an approximate symmetry, because it is broken by the presence of the
electroweak interactions and by the mass difference of the up and down quarks. In the past
it was believed that this breaking of charge independence was small, because it was assumed
to be mainly of electromagnetic origin.[3] A recent calculation,[4] where one tries to include
also the quark mass difference, gives f2

0 smaller than f2
c by 7% to 10%.

The charged coupling constant fc is determined rather precisely in πN scattering, where
one seems to agree on f2

c = (79 ± 1) × 10−3.[1] The best place to determine the neutral
coupling constant f0 is probably in pp scattering. In Table different determinations of f 2

0
are listed.

The tensor character is an important feature of the OPE potential. In the phase shifts,
the long-range OPE tensor potential can best be seen from the tensor combination of the
triplet odd waves (3P ,3F )). The first indication for a very low value of the neutral coupling
constant g2

0 ≈ 13 or f2
0 ≈ 0.072 we[11] got from a single-energy phase-shift analysis of pp

analyzing power (polarization) data at 10 MeV.[12] These data give a much smaller tensor
combination ∆T of 3P phase shifts than the present best NN potentials, because all these
potentials have too large a value of f 2

0 . Later studies[13] showed that within a potential
model it is impossible to obtain such a small ∆T with reasonable values for the ρ- and ω-
coupling constants and f2

0 in the neighborhood of 0.079. Later, in a much more precise pp
analyzing-power experiment[14] at 9.85 MeV confirmed the low value of ∆T. This experiment
gives ∆T = −0.933±0.007 while the Nijmegen soft-core potential[15] gives ∆T = −0.98 and
the parametrized Paris potential[16] gives ∆T = −1.01.

The value of f2
0 presented here is a result of our phase-shift analysis of all pp data

with Tlab < 350 MeV.[17] It is a continuation of the lower-energy analyses performed by
our group.[10, 18] We use a method which is sensitive to the long and intermediate range
(r > b) of the pp interaction. This allows us to check in a quantitative way the long- and
intermediate-range parts of any pp potential. We used it to chec the OPE potential, to
determine the neutral-pion coupling constant, and to compare the long- and intermediate-
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range parts (r > 1.4 fm) of the soft-core Nijmegen potential and the parametrized Paris
potential.[16]

The data set for Tlab < 30 MeV is extensively discussed in Ref. [10]; that for Tlab > 30
MeV is roughly speaking, a combination of the data sets used in the analyses of Arndt
and co-worers[19] and the data lists published by Bystricky and Lehar,[20] whereof the data
with too high[10] χ2 values are rejected. This leaves us with 1234 scattering observables. Of
all groups of data, 26 have an experimentally undetermined normalization, so for a correct
model without any adjustable parameters one expects the χ2 value: 〈χ2〉 = 1208± 49.

The method of analysis is about the same as in our 0–30-MeV analysis.[10] The lower
partial waves (with J ≤ 4) are parametrized by means of an energydependent P matrix ar
r = b and for r > b a potential tail VL = Vem+Vnuc. Here Vem is the electromagnetic potential,
consisting of the modified relativistic Coulomb potential[21] and the vacuum polarixation
potential.[22] The longest-range part of Vnuc is the OPE potential

VOPE =
1
3
f2

0
M
E

(

m
m+

)2 e−mr

r

[

σ1 · σ2 + S12

(

1 +
3

mr
+

3
(mr)2

)]

(1)

wherem is the π0 mass and E = (M2 + k2)1/2 with k the c.m. relative momentum.
In the highest partial waves (J ≥ 10), which are very insensitive to the short-range

interaction, we use the phaseshifts due to the Vem and vOPE. A correction is determined
from the lower partial waves by optimal mapping techniques.[23]

Since the parametrization of the short-range interaction (r < b) is purely phenomenolog-
ical, the number of P -matrix parameters is determined by the criterion that the description
of the data does not improve significantly if one parameter is added. Counting also the pion
coupling constant, we need 28 parameters, which is not too different from the number of
parameters used in other multienergy phase-shift analyses[19, 24] in this energy range.

The long-range interaction depends on f 2
0 . In fact, it is this dependence which allows us

to determine f2
0 . All realistic models for the pp interaction include the OPE potential as

the longest-range part, but they differ in the description of the shorter-range forces which
are due to heavier and/or higher-order boson exchange (HBE). Therefore we have included
in Vnuc the HBE of some modern potentials. Our method of analysis is especially suited to
measurement of the quality of potential tails (r > 1.4 fm) via the attained minimal χ2 in
the analysis.

As possible choices for Vnuc we have considered the following: (i) Vnuc = VOPE. The
change in VOPE due to a form factor as in the Nijmegen soft-core potential[15] is of no
influence, since its effect is of short range. (ii) Vnuc = VOPE + V N

HBE, where V N
HBE is the

non-OPE part of the Nijmegen soft-core potential.[15] (iii) Vnuc = V s
OPE +V N

HBE, where V s
OPE

is the static OPE potential [leaving out the factor M/E in Eq. 1]. (iv) Vnuc = VOPE + V P
HBE,

where V P
HBE is the non-OPE part of the parametrized Paris potential.[16]

For each potential tail, the P -matrix parameters and f 2
0 , that affects all partial waves,

have been adjusted in a least-squares fit to the data. The results for χ2
min and f2

0 are given in
Table . For the cases (ii), (iii), and (iv) we used b = 1.4 fm. Taking only the OPE potential
tail in Vnuc appeared not to be reasonable for b = 1.4 fm. This indicates that HBE forces
are not negligable outside 1.4 fm. Therefore we used b = 1.8 fm in case (i) and also the
number of P -matrix parameters was increased by one to get a more reasonable fit to the
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data. Even then the description is the least good: The χ2
min remains about 20 higher than

with the other tails. The tail of the Nijmegen potential is seen to be somewhat ∆χ2 = 6.6)
better than the tail of the Paris potential. The value of f2

0 found with the Paris potential
deviates also (by about 3 standard deviations) from the others, which are very consistent.

The model dependence die to the chosen potential tail gives an estimate for the systematic
error in the determinations of f 2

0 . The energy at which the results for f 2
0 in cases (ii) and

(iii) imply the same OPE is about 9 MeV, indicating the importance of the analyzing-power
data around 10 MeV[12, 14] in this determination. This importance can more clearly be seen
from a fit to all data minus these analyzing-power data. This raises f 2

0 by about 1.4× 10−3

and enlarges the error in the determination of f2
0 by about 50%.

In order to show that we really look at the OPE potential, characterized by its exchanged
mass and its specific spin dependence, we have checked the consistency between different
subsets of all partial waves in the determination of f 2

0 and also determined the π0 mass in
the same way as we determined f2

0 .
To save computer time, the tests on the consistency between the partial waves have been

done with a matrix representation of the data. The results are for Vnuc = VOPE + V N
HBE.

Introducing different coupling constants for the spin-triplets fT and fot the spin-singlets
fS, we obtain f2

T = (72.5 ± 0.6) × 10−3 and f 2
S = (74 ± 2) × 10−3. This result indicates

the importance of the spin-triplet waves in the determination. When we next introduce
different coupling constants for the 3P waves f(3P ) and all other partial waves f(rest), we
find f 2(3P ) = (72.2±0.6)×10−3 f 2(rest) = (73.8±0.9)×10−3. Also, for the other potential
tails, the values from the different subsets of partial waves are rather consistent. We see
that the 3P waves are very important in the determination of f2

0 .
In our judgment the determination of the π0 mass from the pp scattering data is a crucial

test. The mass as well as the coupling can be determined from the potential tail, but only
the mass is accurately known. We find m = 134.7 ± 2.1 MeV, in complete agreement with
the more accurate value m0 = 134.9642± 0.0038 MeV.[25] In Fig. we sketch the χ2 surface
as a function of m and f2

0 . A strong correlation between f 2
0 and m is seen. Because of the

correlation, the correct value found for m supports the value found for f 2
0 .

Let us summarize and discuss our results. In our study of the long and intermediate range
of the pp interaction we find that the data, which are described with a χ2/Nd.o.f. ≈ 1.07,
favor the tail of the soft-core Nijmegen potential[15] over the tail of the parametrized Paris
potential[16] by 2.5 standard deviations. Using the tail of the Nijmegen potential for the
description of the forces with intermediate range, we find for the neutral pion-proton coupling
constant f 2

0 = (72.5±0.6)×10−3 or g2
0 = 13.1±0.1. We quote here the value for the fit with

the lowest χ2
min. The error given is purely statistical. From Table we get an impression of

the model dependence of our result, which gives then an estimate of a possible systematic
error. No other systematic errors have been found in this analysis, because the results
with the subsets of all partial waves are consistent and also the mass of the exchanged π0

is in excellent agreement with its rest mass. Our result for f2
0 is in fair agreement (see

Table ) with earlier determinations, except with the value quoted by Kroll,[9] who used
forward dispersion relations. Our value for f 2

0 is smaller and much more precise than these
earlier determinations. It deviates significantly[26] from the value f2

c = (79 ± 1) × 10−3

or g2
c = 14.3 ± 0.2 for the charged coupling constant. This indicates a large breaking of

the charge independence or SU(2)-isospin symmetry. This breaking is of the same order
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of magnitude as a very recent estimate in a simple quark model, where it is due to the
mass difference between the up and down quarks.[4] This large SU(2) symmetry breaking
of the pion-nucleon coupling constants leads to the expectation of even larger SU(3)-flavor
symmetry[27] breaking of the meson-baryon coupling constants.

We wish to thank B. J. VerWest for sending us the data set used in the analyses of
Arndt and coworkers.[19] Part of this work was included in the research program of the
Stichting voor Fundamenteel Onderzoek der Materie (FOM) with financial support from
the Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek (ZWO).
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TABLES

TABLE I. The neutral coupling constant 103 × f2
0 . (a) and (b) indicate different data sets

Bugga 75.2± 3.9
MacGregor, Arndt, and Wrightb 81.4± 4.6
Breit et al.c 73.1− 81.1
Bugg et al.d 77.8± 3.6
Krolle 80.3± 2.2
Bergervoet et al.f (a) 80.0± 6.6

(b) 74.1± 5.5
Present work 72.5± 0.6

aRef. [5]
bRef. [6]
cRef. [7]
dRef. [8]
eRef. [9]
fRef. [10]

TABLE II. Results for the different potential tails.

Vnuc χ2
min 103 × f2

0
VOPE 1288.9 71.9± 0.8
VOPE + V N

HBE 1266.7 72.6± 0.6
V s

OPE + V N
HBE 1265.9 72.5± 0.6

V s
OPE + V P

HBE 1273.3 74.6± 0.6
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FIGURES

FIG. 1. Ellipses of constant χ2 in the (m, f2) plane with optimal adjustment of the P -matrix
parameters. Solid ellipse: 69% confidence region (∆χ2 = 2.4). Dashed ellipse: 95.5% confidence
region (∆χ2 = 6.2). Filled circle with vertical bar: value and error bar for f2

0 (with m fixed). Open
circle with horizontal bar: value and error bar for m (with free f2

0 ). Open circle with vertical bar:
value and error bar for f2

c from πN scattering
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