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Abstract

In an energy-dependent phase-shift analysis of all low-energy np scattering
data below Tlab = 30 MeV we reach χ2/NDF = 1.1, where NDF is the number
of degrees of freedom. In our fit we determine the S-matrix elements in the
coupled 3S1 + 3D1 channels, which allows us to compute the residue at the
deuteron pole. Expressed in terms of the deuteron parameters, we find for the
asymptotic normalization of the 3S1 state AS = 0.8838(4) fm−1/2 and for the
asymptotic D/S ratio η = 0.027 12(22). Compared with other determinations,
there seems to be some indication for the presence of closed isobar channels
and/or energy-dependent potentials in the deuteron system.
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For several years now there has been a renewed interest in the precise determination
of the deuteron parameters. These serve as an important constraint on the description of
the np interaction. Special attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] has been given to
the asymptotic D-to-S-state ratio η and, more recently, to the asymptotic normalization
AS of the S state [13, 14]. Most of the determinations of these two quantities come from
analyses of either pd elastic scattering or (d, p) stripping reactions and (p, d) pickup reactions
on various nuclei. Some discrepancies between the various determinations have shown up,
especially for the value of η.

In this Letter we present a very accurate determination of η and AS with the help of
an energy-dependent phase-shift analysis of all np scattering data below Tlab = 30 MeV.
In this way the values for AS and η are obtained purely from the two-body np scattering
data, thereby circumventing the typical many-body problems arising in many of the other
analyses.

In our phase-shift analysis the scattering matrix S and the K matrix are determined,
where S = (1 + iK)(1 − iK)−1. To study the deuteron, special attention is given to the
coupled 3S1 + 3D1 channels. Time-reversal invariance allows us to choose the relative phases
between the 3S1 and 3D1 channel such that the S and K matrices are symmetric above as
well as below the threshold E = 0, with

E = (k2 + M2
p )1/2 + (k2 + M2

n)1/2 − (Mp + Mn)

the c.m. energy, k the relative c.m. momentum, and Mp and Mn the proton and neutron
mass, respectively.

Unitarity requires that above the threshold (E > 0, k > 0) the S matrix is unitary, and
therefore the K matrix Hermitean. Below the threshold (E < 0), the S matrix is real and
the K matrix purely imaginary. The S and K matrices can be diagonalized simultaneously
by a real, orthogonal matrix

U =
(

cos ε − sin ε
sin ε cos ε

)

,

where ε is the Blatt and Biedenharn [15] mixing parameter. The eigenvalues of S and K
are Sλ = exp(2iδλ) and Kλ = tan δλ with λ = 0 or 2, and δλ the Blatt and Biedenharn
eigenphase shifts. Next we introduce the projection operators Pλ = P 2

λ on the scattering
eigenstates, where P0 + P2 = 11 and

P0 =
(

cos2 ε cos ε sin ε
cos ε sin ε sin2 ε

)

. (1)

This allows us to write S =
∑

λ SλPλ and K =
∑

λ KλPλ.
The existence of the deuteron at [16] E = −B = −2.224 575(9) MeV means that in the

complex momentum plane the eigenvalue S0 has a pole at k = iα, and so at this position
one has K0 = −i. Here α is given by the relativistic deuteron radius (or decay length)
R = 1/α = 4.318 963 fm. In the neighborhood of this deuteron pole the S matrix can be
written as a pole part plus a regular function:

S = N2
p P0/(α + ik) + reg. fn. , (2)
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with

N2
p = −2/(∂K0/∂k)k=iα . (3)

When one has a parametrization of the S and K matrices valid in the neighborhood of this
deuteron pole, then one can easily obtain the following deuteron parameters: the binding
energy B as the energy where K0 = −i, the mixing parameter ε by diagonalization of the
K matrix at this energy, and N2

p by use of Eq. (3). The asymptotic normalizations AS,p of
the S state and AD,p of the D state, and the asymptotic D/S ratio ηp, are then given by

ηp = − tan ε , AS,p = Np/(1 + η2
p)

1/2 ,
AD,p = ηpAS,p ,

(4)

where the subscript p indicates that the quantities are determined from the residue at the
deuteron pole.

Let us next consider the deuteron wave function. We assume the simplest model with
only NN channels and no admixture of other channels like ∆∆, NN∗ (Roper), six-quark
states, etc. The radial wave functions u(r) in the 3S1 channel and w(r) in the 3D1 channel
are normalized such that

∫∞
0 dr(u2 + w2) = 1. For r →∞ one has the asymptotic behavior

u ∼ AS,de−r/R , w ∼ AD,de−r/R(1 + 3R/r + 3R2/r2) .

Now the deuteron normalization Nd and the asymptotic D/S ratio ηd are given by

ηd = AD,d/AS,d , N2
d = A2

S,d + A2
D,d , (5)

where the subscript d indicates that the quantities are determined from the wave functions.
When we assume moreover that the interaction is described by a local potential, then the
deuteron parameters (with subscript p) as defined via the residue are equal to the analogous
parameters (with subscript d) as defined via the wave functions. This is also the case if the
potential contains a momentum dependence ∆φ(r) + φ(r)∆, where ∆ is the Laplacian. In
the presence of explicitly energy-dependent potentials V (r, E), however, Np 6= Nd, because
then

N2
d = N2

p

[

1− 2Mred

h̄2

∫ ∞

0
drψ̃d

(

∂V
∂k2

)

k2=−α2

ψd

]

, (6)

where ψ̃d = (u,w) is the transpose of the radial deuteron wave function and Mred is the
reduced mass. Similarly, if the deuteron system contains closed isobar channels, then again
Np 6= Nd. We would like to stress therefore that for theoretical models one should not
only compute the deuteron parameters via the deuteron wave function, but one should also
compute the residue at the deuteron pole.

From an energy-dependent phase-shift analysis of all np scattering data below Tlab = 30
MeV one obtains a parametrization of the S and K matrices valid in the c.m. energy interval
0 ≤ E ≤ 14.95 MeV. To get the K matrix in the neighborhood of the deuteron pole one
must extrapolate from the scattering region E > 0 to E = −B = −2.224 575 MeV. One way
to do such an extrapolation is to take the effective-range expansion of the effective-range
function
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F (k2) = k2l+1 cot δ = −1/a + 1
2rk

2 + . . .

The effective-range function F is a real, analytic function of k2 which is regular in the
neighborhood of E = 0 and has left-hand cuts due to one-pion exchange (OPE) starting at
E0 = −4.9 MeV and E+ = −5.2 MeV. The presence of these nearby OPE singularities raises
questions about the accuracy of the approximation over the whole energy range and also
about the validity of the extrapolation to the deuteron pole. It is exactly for these reasons
that we do not use effective-range expansions in our analysis, but prefer to use the P matrix
in which these cuts can be removed explicitly.

In our analysis the coupled 3S1 + 3D1 channels are parametrized by the P matrix at
r = b = 1.4 fm. This P matrix is the logarithmic derivative of the wave-function matrix
at r = b: P (E) = b[(∂ψ/∂r)ψ−1]r=b. For r > b we take the OPE potential into account
exactly. This implies that P (E) is a real analytic function in the complex energy plane,
regular in the neighborhood of the scattering region. The nearest left-hand singularity in
P (E) is now due to two-pion exchange and is a cut starting at EL = −19.5 MeV. P (E) has
also right-hand cuts (due to pion production) starting at ER = 132.7 MeV.

In the c.m. energy region 0 < E < 15 MeV where we analyzed the experimental data,
this P matrix is sufficiently well parametrized by three parameters; for the diagonal element
in the 3S1 channel we use two parameters, for the off-diagonal element one parameter, and
for the diagonal element in the 3D1 channel we take the free P -matrix value at Tlab = 0
MeV [17]: l + 1 = 3. The other lower partial waves (l ≤ 2) are either parametrized in a
similar way or the phase shifts are, after adapting them to np scattering [18], taken from
our analysis of the low-energy pp data [17]. The higher partial waves with l ≥ 3 are taken
to be pure OPE.

In our phase-shift analysis we have a total number of 478 degrees of freedom and seven
model parameters. We therefore expect 〈χ2

min〉 = 478 ± 31. Data that were more than 3
standard deviations off are rejected, decreasing the expected 〈χ2

min〉 by an additional 13.
In our analysis we actually reach χ2 = 527.3. The errors are found by the variation of all
parameters in such a way that χ2 does not rise by more than 1, so the quoted errors are
purely statistical. A more complete discussion of the phase-shift analysis will be given in a
forthcoming paper.

To check our ability to extrapolate from the scattering region to the deuteron pole, we
decided first to predict the location of the deuteron pole and its residue from the scattering
data alone. We found

B=2.211± 0.011 MeV , 103N2
p =777.1± 3.6 fm−1 ,

103ηp =27.12± 0.15 , 103AS,p =881.2± 2.0 fm−1/2 .

We see that the predicted binding energy of the deuteron is a little more than 1 standard
deviation off. The values for N2

p and AS,p are dependent on the binding energy of the bound
state. Therefore, the values of N2

p and AS,p will not be totally accurate. A better procedure
will be to predict the effective range ρ0(−B,−B) at the bound state for the eigenphase shift
δ0 from (for definitions of the various effective ranges see Hulthén and Sugawara [19])

ρ0(−B,−B) = R(B)− 2/N2
p . (7)
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We then find ρ0(−B,−B) = 1.7591±0.0025 fm. Using this value of ρ0(−B,−B), the correct
binding energy, and Eq. (7), we predict

103N2
p =781.3± 0.8 fm−1 ,

103AS,p =883.5± 0.5 fm−1/2 .

In the next step of our analysis the deuteron binding energy of Ref. [16] is included with
its error and the P -matrix parameters are redetermined. The changes in the parameters are
only small and χ2 rises to 528.9. The residue at the deuteron pole is calculated again and
we obtain

103ηp =27.12± 0.22 ,
103N2

p =781.6± 0.7 fm−1 .

This implies then

103AS,p =883.8± 0.4 fm−1/2 ,
103AD,p =24.0± 0.2 fm−1/2 ,
ρ0(−B,−B)=1.7602± 0.0023 fm .

We have also made an effective-range expansion for the 3S1 channel. For the scattering
length at we find at = 5.4193(20) fm and for the effective range rt we find rt = ρ0(0, 0) =
1.7571(27) fm. This results in ρ0(0,−B) = 2R(1−R/at) = 1.7539(25) fm.

Let us now compare our results with other determinations. The quantity AS,p can be
determined by the analysis of nd (Ref. [13]) or pd (Refs. [13] and [14]) unpolarized differential
cross sections. In this way Berthold and Zankel [13] find 103AS,p = 884.7 ± 32.6 fm−1/2,
whereas Borbély et al. [14] find the value 103AS,p = 878.1 ± 4.4 fm−1/2. Kermode and
co-workers [20, 21] make use of the effective-range expansion and some model input and
obtain the value 103AS,p = 888.3 ± 4.4 fm−1/2. Comparing our value of AS,p with these
determinations we note a close agreement, where our result is the most accurate.

After observing in various potential models a linear relation between AS (presumably
AS,d) and the deuteron radius rd, Ericson [22] used the experimental values of rd to predict
AS,d. Taking a weighted average of the rd meaurements [23, 24], he recommends 103AS,d =
880.2± 2.0 fm−1/2. Recently, Klarsfeld et al. [25] made a much more careful determination
of rd and they conclude that 103AS,d = 875.1 ± 1.7 fm−1/2. When we compare this value
of AS,d with our determination of AS,p we see that these values are significantly different.
This presumably indicates the admixture of channels other than NN in the deuteron and/or
energy-dependent potentials.

The direct experimental determination of η can be classified into three methods. The
first method is based on the extraction of ηp from an angular extrapolation of the tensor
polarized cross section σT22 in (d, p) elastic scattering to the neutron-exchange pole [1, 2].
The extrapolation is beset with difficulties because there is a nearby singularity due to the
Coulomb interaction. A number of groups have made use of this method, the difference
mainly lying in the way they do the extrapolation. We mention here the determination of
Londergan, Price, and Stephenson [4] with 103ηp = 26.7 ± 1.4, of Horáček et al. [5] with
103ηp = 27.0± 0.6, and of Borbély et al. [6] with 103ηp = 26.7± 0.4.
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In the second method, the same technique is used as in the first method, but now
applied only to the 2H(d, p)3H data. The difficulties with the extrapolation procedure are
now no longer present. This method has been used by Borbély et al. [6, 7], leading to
103ηp = 27.2± 0.3.

The third method is based on the fact that the distorted-wave Born-approximation cal-
culations for the tensor analyzing powers T20, T21, and T22 of (d, p) sub-Coulomb stripping
reactions 208Pb(d, p)209Pb turn out to have a strong dependence on η [8, 9]. We think these
experiments measure ηd. From these tensor analyzing powers one can determine [8] the pa-
rameter D2, which can be approximated very well by D2 ≈ ηdR2. This results [8, 10, 11] in
103ηd = 27.1±0.8. A more recent analysis [12], using lower energy 208Pb data and including
136Xe data, quotes 103ηd = 25.6± 0.4.

For the quantity η there are some indirect determinations, too. These theoretical esti-
mates are based on the relation between ηd and the rms radius and the quadrupole moment,
and on the assumption of a strong OPE dominance. Klarsfeld, Martorell, and Sprung [26, 27]
arrive this way at 103ηd = 26.8 ± 0.7. On the other hand, Ericson and Rosa-Clot [28]
claim that ηd can be determined to a high accuracy and nearly model independently as
103ηd = 26.33± 0.35.

When we compare the results for ηp with our value we observe a good agreement, where
our result is the most accurate. However, the determinations of ηd lead to values that are
somewhat lower than our value of ηp. Especially the very accurate result for ηd given by
Rodning and Knutson [12] is significantly different from our value for ηp. We are not aware
of any simple mechanism that makes ηp different from ηd. We checked explicitly that, with
energy-dependent potentials and also with closed isobar channels, we still have ηp = ηd.

In summary, in an np phase-shift analysis of the scattering data below Tlab = 30 MeV
the deuteron binding energy B was included as a datum. The residue of S at the deuteron
pole was calculated, leading to 103AS,p = 883.8 ± 0.4 fm−1/2 and 103ηp = 27.12 ± 0.22, in
close agreement with other determinations of these pole observables, but our determination
is more accurate. We note a difference with the value of AS,d as determined by Klarsfeld
et al. This difference is an indication either for energy-dependent potentials, or that the
picture of the deuteron as a pure NN state is too simple and that one must allow for the
admixture in the deuteron of closed isobar channels. There is also a difference between the
value for ηd as determined by Rodning and Knutson and our value for ηp.

One of the authors (J.J. de S.) would like to thank Professor W. Grüebler and Mr. B.
Vuaridel for discussions and some comments on the manuscript. We would also like to thank
Professor D. Sprung for his comments.
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