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Abstract

The results of the Nijmegen soft-core potential model are presented for the
low energy Y N -interactions. The Y N -version of the model is obtained by a
straightforward extension of the NN -model through the application of SU(3).
The potentials are due to the dominant parts of the π, η, η′, ρ, ω, φ, δ, ε, and S?

Regge trajectories. This gives the traditional One-Boson-Exchange potentials.
In addition to these, the J = 0 contributions from the tensor f, f ′, A2 and
pomeron trajectories are included in the potentials. The latter give potentials
of the gaussian-type. Also the form factors from Regge poles are gaussian,
which guarantees that the potentials have a soft behavior near the origin.
The multichannel Schrödinger equation is solved in configuration space for
the (partially) nonlocal potentials. We work on the particle basis and include
the Coulomb interaction exactly. The meson-baryon coupling constants are
calculated via SU(3), using the coupling constants of the NN -analysis as
input. Charge Symmetry Breaking in the Λp and Λn channels is included. An
excellent description is achieved of the available low-energy data (χ2/d.o.f. ≈
0.58 for 35 Y N -data). In particular, we were able to fit the inelastic capture
ratio at rest perfectly. We have rR = 0.471, where experimentally the average
value is rR = 0.468 ± 0.010. The obtained values for the adjustable mixing
angles and F/(F + D)-ratio’s agree very well with the literature. We find
αPV = 0.355 and αm

V = 0.275. For the scalar-meson mixing-angle we obtain
θS = 40.895 0, which lies in between the ideal mixing-angles for the scalar
q2q̄2- and qq̄-states. In the Λp-system we find a cusp at the Σ+n-threshold,
but there is on the second Riemann sheet no pole in the vincinity causing this
cusp. The predictions of the total cross sections up to the pion production
threshold are given and compared to the experimental data.
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I. INTRODUCTION

For Nucleon-Nucleon NN scattering we have shown (Ref. [1], henceforth referred to as
I) that a soft-core One-Boson-Exchange OBE model, based on Regge-pole theory, gives an
excellent description of the wealthy and precise NN -data. In I only 13 free parameters
were used. Moreover most of these parameters are coupling constants, mixing angles or
F/(F + D)-ratio’s and hence rather physical parameters, for which the fitted values can
be checked against those found in other reactions. The Nucleon-Nucleon soft-core model
of I can be fully derived in the context of the analytical S-matrix theory (Ref. [2]). In
this framework the consequences of the Regge poles for low energy scattering and the cor-
responding (relativistic) Lippmann-Schwinger equations can be worked out in a consistent
manner. The derivation of the Lippmann-Schwinger equation in this approach has been
carried out recently in full detail also for the unequal mass case (Ref. [3]). This is useful
in extending the model to Baryon-Baryon scattering. In this paper we describe the model
for Hyperon-Nucleon Y N -scattering and discuss the results. Because of the composite na-
ture of the mesons in QCD, the proper description of the OBE-potentials is in principle in
terms of Regge-trajectories. The large N-expansion in QCD strongly supports this view-
point (Ref. [4]). This is also the case in the Bethe-Salpeter approach to the QQ̄-system,
where any reasonable interaction leads to Regge poles. Therefore, in I and in this paper the
OBE-potentials are treated as the dominant parts of the meson Regge trajectories. This
includes also the J = 0 contributions from the tensor trajectories (f ,f ′ and A2). In elastic
scattering however, the most important exchange at higher energies is pomeron-exchange.
Therefore in I the traditional OBE-model was extended by including the pomeron. An ex-
cellent agreement was found between the pomeron parameters determined from the high
energy and the low energy NN -data.

The reasons for a combined study of the NN - and Y N -interactions are the same as that
for our former hard-core model description of the NN - and Y N -data (Refs. [5, 6, 7]):

• To test the assumption of SU(3)-symmetry. For example we want to investigate the
properties of the scalar mesons (ε(760), S?(975), δ(980), κ(1000)). Furthermore we
want to check whether in a combined NN - and Y N - analysis the contribution to the
interaction from the J = 0 components of the pomeron, f , f ′, and A2 can be included.

• The determination of the F/(F + D)-ratio’s.

• To extract, in spite of the scarce experimental Y N -data, information about scattering
lengths, effective ranges, the existence of resonances etc.

This program appears to be feasible, because a good theoretical description of the Y N -
interactions can indeed be given by using SU(3) and the meson-nucleon coupling constants
from the NN -analysis.

The interactions in the model are described in terms of the following exchanges:

1. The pseudoscalar-meson nonet π, η, η′, K with the η − η′ mixing angle θP = −23.00

from the Gell-Mann-Okubo mass formula.

2. The vector-meson nonet ρ, φ, K?, ω with the φ− ω ideal mixing angle θV = 37.560.
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3. The scalar-meson nonet δ, S?, κ, ε with a free S?− ε mixing angle θS to be determined
in a fit to the Y N -data.

4. The ‘diffractive’ contribution from the pomeron P, f , f ′, and A2. These interactions
will give repulsive contributions to the potentials in all channels of a gaussian type
and can perhaps partly justify the use of hard-cores in our earlier work.

The Baryon-Baryon-Meson vertices are described by coupling constants and form factors,
which correspond to the Regge residues. The form factors are taken to be of the gaussian-
type, like the residue functions in many Regge pole models for high energy scattering.
Note that also in nonrelativistic quark models a gaussian behavior of the form factors is
most natural. These form factors evidently guarantee a soft behavior of the potentials in
configuration space at small distances.

The physical nature of pomeron-exchange can be understood in the framework of QCD
as a two-gluon (or multigluon) exchange effect. Low and Nussinov (Ref. [8]) have shown
that at high energies pomeron-exchange and two-gluon-exchange are equivalent. In Ref. [9]
it has been demonstrated that this particular QCD-picture of the pomeron leads to a good
description of the various diffractive processes. By extrapolating from the higher energies to
low energies, using a Regge-pole model, the (multi-) gluon-exchange potential between two
baryons was found in Ref. [2]. In NN the inclusion of the pomeron improved in particular the
electric ω-coupling considerably (Ref. [1]). The role of the pomeron for low energy πN - and
KN -scattering has been demonstrated convincingly using finite-energy sum rules (FESR)
(Ref. [10]). In fact, it has been shown that the background amplitude, which remains after
the subtraction of the known resonances, produces the pomeron contribution at high energies
via FESR (Ref. [11]).

In this work we check whether a strong repulsion from the pomeron and the tensor
mesons together with gaussian form factors can give also a high quality description of the
Y N -data. By high quality we understand here a Y N -fit with low χ2 and such that, while
keeping the constraints forced on the potentials by the NN -fit, the free parameters with
a clear physical significance, like e.g. the F/(F + D)-ratio’s αPV and αm

V , assume realistic
values.

In this paper we treat in detail the following Y N -reactions:

(i) The coupled channels Λp → Λp, Σ+n, Σ0p;

(ii) The coupled channels Σ−p → Σ−p, Σ0n, Λn;

(iii) The single channel Σ+p → Σ+p.

It turns out that starting from the soft-core OBE-model of Ref. [1], we are indeed able
to achieve a very good description of the Y N -data and at the same time maintain values
for the free parameters which are very consistent with other findings. As an application
of the obtained potentials, the properties of the hyperfragments might be predicted. The
determined value for the F/(F + D)-ratio αPV for the pseudoscalar mesons is the same as
that found in the weak interactions (Refs. [12, 13]). Also the value obtained for the magnetic
ratio of the vector mesons is in perfect agreement with non-static SU(6) (Ref. [14]). Like in
previous work of the Nijmegen group on Y N (e.g. Refs. [6, 7]), we use SU(3)-symmetry for
the coupling constants. SU(3)-breaking is introduced by
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• using the physical masses of the mesons and baryons in the potentials and Schrödinger
equation (see Refs. [6, 7, 15]),

• allowing for meson-mixing within a nonet (η − η′, ω − φ, ε− S?),

• including Charge Symmetry Breaking (CSB) (Ref. [16]) due to ΛΣ-mixing, which for
example introduces a One-Pion-Exchange potential in the ΛN channel,

• taking into account the Coulomb-interaction.

In order to include the Coulomb interaction exactly, and to account as much as possible for
the mass differences between the baryons, we solve the multichannel Schrödinger equation
on the physical particle basis. However, the nuclear potentials are calculated on the isospin
basis, in order to limit the number of different form factors (see section 7).

In NN we have fitted all partial waves with only one form factor parameter. For Y N
it appears to be impossible to use only one form factor for all channels. This would either
introduce unobserved bound states in the model or make a fit to the Y N -data impossible.
Therefore we have to use several ones. (Note however that for avoiding unobserved bound
states, the freedom to adjust form factors is much less powerful than the freedom of changing
hard cores. For instance, changing the form factors does not change the volume integral of
the potentials). In our approach, we have introduced the form factors per channel. For
several reasons we did not choose to differentiate between the different kind of mesons w.r.t.
the form factor. First, that would introduce more parameters in the model for both NN and
Y N . Secondly, it is believed that the nature of the short range potentials is at present, at
least quantitatively, poorly understood. Probably any OBE-model includes effectively also
forces which are not of the OBE-type. It is clearly allowed to parameterize these unknown
short range forces for the different Y N -channels independently.

The contents of this paper are as follows. In section 2 we define the OBE-potentials for
the Lippmann-Schwinger equation. In section 3 the OBE-potentials in momentum space for
pseudo-scalar, vector, scalar, and diffractive exchanges are given and discussed. In section
4 we systematically describe the Fourier transformation to configuration space for the po-
tentials of section 3. In section 5 we outline the treatment of the multichannel Schrödinger
equation with the nonlocal central potentials derived in section 3. In section 6 we discuss
the form factor assignments in the context of SU(3). In section 7 the results for the cou-
pling constants, F/(F + D)-ratio’s, and mixing angles are discussed and compared with the
literature and the nonrelativistic quark model. In section 8 we present the results of the fit
to the Y N -data. Here the results for the Λp-, Σ−p-, and Σ+p-data are shown and discussed
in detail. At several points in sections 7 and 8 the results are compared with the former
hard-core models for Y N -scattering of the Nijmegen group, Refs. [6, 7].

II. DEFINITION OF THE POTENTIALS FOR THE LIPPMANN-SCHWINGER
EQUATION

We consider the hyperon-nucleon reactions

Y (p1, s1) + N(p2, s2) → Y ′(p′1, s
′
1) + N ′(p′2, s

′
2) . (1)
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Like in Ref. [6], whose conventions we will follow in this paper, we will also refer to Y and Y ′

as particles 1 and 3 and to N and N ′ as particles 2 and 4. The four momentum of particle i
is pi = (Ei,pi) where Ei =

√

p2
i + M2

i and Mi is the mass. The transition amplitude matrix
M is related to the S-matrix via

〈f |S|i〉 = 〈f |i〉 − i(2π)4δ4(Pf − Pi)〈f |M |i〉 , (2)

where Pi = p1 + p2 and Pf = p′1 + p′2 represent the total four momentum for the initial state
|i〉 and the final state |f〉. The latter refer to the two-particle states, which we normalize in
the following way

〈p′1,p′2|p1,p2〉 = (2π)32E(p1)δ
3(p′1 − p1) · (2π)32E(p2)δ

3(p′2 − p2) . (3)

Three-dimensional integral equations for the amplitudes 〈f |M |i〉 can be derived in various
ways. See for example Refs. [6, 17, 18, 19, 20]. In Ref. [3] is given a derivation based on two-
particle unitarity and the analyticity properties of the amplitudes, using the N/D-formalism.
The equation obtained with this method is

Mfi(qf ,qi; s) = Wfi(qf ,qi; s) +

1
(2π)3

∑

n

∫

d3knWfn(qf ,kn; s)G0(kn, s)Mni(kn,qi; s) , (4)

where qi and qf denote the initial and final state momenta, and

G0(k; s) =
1
2
E1(k) + E2(k)
E1(k)E2(k)

[

s− (E1(k) + E2(k))2 + iε)
]−1

, (5)

with s = (E1(p) + E2(p))2. This follows from Eq.(4.27) in Ref. [3]. This same equation
has been derived by Gersten, Verhoeven, and de Swart (Ref. [17]) in the context of an
approach which uses the Bethe-Salpeter equation. Also in Ref. [3] it is shown that the
pseudopotential 〈f |W |i〉 corresponds in the pole-approximation to the Feynman-amplitudes
for OBE-exchanges with form factors at the BBM -vertices. In order to arrive at a
Lippmann-Schwinger equation, we choose a new Green-function g(k; s) which satisfies a
dispersion relation in p2(s) rather than in s. Then we get, like in Refs. [3, 6, 20],

g(kn; s) =
−1

2[E1(kn) + E2(kn)]
(k2

n − q2
n − iε)−1 , (6)

where qn is the on-energy-shell momentum. This Green-function is eventually used in the
integral equation Eq.(4) instead of G0(kn; s). So the corrections to 〈f |W |i〉 due to the trans-
formation of the Green-functions are neglected. They are of higher order in the couplings
and are usually discarded in an OBE-approach. With the substitution of g for G, Eq.(5)
becomes identical to Eq.(2.19) of Ref. [6]. From now on we follow section II of Ref. [6] in
detail. The transformation to the non-relativistic normalization of the two-particle states
leads to states with
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(p′1, s
′
1;p

′
2, s

′
2|p1, s1;p2, s2) = (2π)6δ3(p′1 − p1)δ

3(p′2 − p2)δs′1,s1δs′2,s1 . (7)

For these states we define the T -matrix by

(f |T |i) = {4M34(E3 + E4)}−
1
2 〈f |M |i〉{4M12(E1 + E2)}−

1
2 , (8)

and get from Eq. (4) the Lippmann-Schwinger equation

(3, 4|T |1, 2) = (3, 4|V |1, 2)+

1
(2π)3

∑

n

∫

d3kn(3, 4|V |n1, n2)
2Mn1,n2

q2
n − k2

n + iε
(n1, n2|T |1, 2) ,

(9)

and where analogously to Eq. (8) the potential V is defined as

(f |V |i) = {4M34(E3 + E4)}−
1
2 〈f |W |i〉{4M12(E1 + E2)}−

1
2 . (10)

Using rotational invariance and parity conservation we expand the T -matrix, which is a 4×4-
matrix in Pauli-spinor space, into a complete set of Pauli-spinor invariants (Refs. [6, 15])

T =
8

∑

i=1
Ti(q2

f ,q
2
i ,qi.qf )Pi . (11)

Introducing

q =
1
2
(qf + qi), k = qf − qi, n = qi × qf = q× k (12)

we choose for the operators Pi in spin-space

P1 = 1 P2 = σ1 · σ2

P3 = (σ1 · k)(σ2 · k)− 1
3(σ1 · σ2)k2 P4 = i

2(σ1 + σ2) · n
P5 = (σ1 · n)(σ2 · n) P6 = i

2(σ1 − σ2) · n
P7 = (σ1 · q)(σ2 · k) + (σ1 · k)(σ2 · q)
P8 = (σ1 · q)(σ2 · k)− (σ1 · k)(σ2 · q)

(13)

Here we follow Refs. [6, 15], except that we have chosen here P3 to be a purely ‘tensor-force’
operator.

In the OBEP-approximation we consider only second-order irreducible diagrams con-
tributing to the kernel i.e. W = M irr(2). Similarly to Eq. (11) we expand the potentials V .
Again following Ref. [6], we neglect the potential forms P7 and P8, and also the dependence
of the potentials on k · q . Consequently the potentials can be expanded as follows

V =
6

∑

i=1
Vi(k 2,q 2)Pi . (14)

In the following we will exploit this decomposition extensively.
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III. ONE-BOSON-EXCHANGE POTENTIALS IN MOMENTUM SPACE

In this section we extend the NN -potentials given in Ref. [1] to the Y N -channels. The
local interaction Hamilton densities for the different couplings are
a) Pseudoscalar-meson exchange

HPV = i
fP

mπ+
ψ̄γµγ5ψ∂µφP , (15)

b) Vector-meson exchange

HV = igV ψ̄γµψφµ
V +

fV

4M
ψ̄σµνψ(∂µφν

V − ∂νφµ
V ) , (16)

c) Scalar-meson exchange

HS = gSψ̄ψφS , (17)

where σµν = [γµ, γν ]/2i and mπ+ and M are scaling masses, chosen to be the charged pion
and the proton mass, respectively. Note that the vertices for ‘diffractive’-exchange have the
same Lorentz structure as those for scalar-meson-exchange.

Including form factors f(x′ − x) , the interaction densities are modified to

HX(x) =
∫

d3x′ f(x′ − x)HX(x′) , (18)

where X = PV, V , or S. Because of this ‘convolutive’ form, the potentials in momentum
space are the same as for point interactions, except that the coupling constants are multiplied
by the Fourier tranform of the form factors.

In the derivation of the Vi we use the following approximations, which can be justified
for low energy scattering.

1. We make the expansion E(p) ≈
[

k2/4 + q2 + M2
] 1

2 ≈ M +k2/8M +q2/2M and keep
only terms up to first order in k2/M and q2/M . This except for the form factors where
the full k2-dependence is kept throughout the calculations. Notice that the gaussian
form factors suppress the high k2-contributions strongly.

2. In the meson propagators ((p1 − p3)2 + m2) ≈ (k2 + m2) .

3. When two different hyperons are involved at a BBM -vertex (e.g. Λ and Σ) their
average mass is used in the potentials and the non-zero component of the momentum
transfer is accounted for by using an effective mass in the meson propagator (for details
see Ref. [21] and Ref. [15]).

Due to the approximations we get only a linear dependence on q2 for V1. In the following,
we write

V1(k2,q2) = V1a(k2) + V1b(k2)q2 . (19)
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The OBE-potentials are now obtained in the standard way (see e.g. Refs. [1, 6]) by eval-
uating the Y N -interaction in Born-approximation. We write the potentials Vi of Eqs. (14)
and (19) in the form

Vi(k 2,q 2) =
∑

X

Ω(X)
i (k 2) ·∆(X)(k2,m2, Λ2) , (20)

where X = P, V, S, and D (P = pseudo-scalar, V = vector, S = scalar, and D =
diffractive). Furthermore

∆(X)(k2,m2, Λ2) =
1

k2 + m2
· e−k

2
/Λ2

(21)

for X = P, V, S, and

∆(D)(k2,m2, Λ2) =
1
M2 e−k

2
/(4m2

P ) (22)

for X = D. In the latter expressionM is a universal scaling mass, which is again taken to be
the proton mass. The mass parameter mP controls the k2-dependence of the pomeron-, f -,
f ′-, A2-, and K??-potentials. For the non-strange mesons we find, using the approximations
(1-5), the following contributions to the different Ω(X)

i :

a) pseudoscalar-meson exchange:

Ω(P )
2 = gP

13g
P
24

(

k2

12MY MN

)

Ω(P )
3 = −gP

13g
P
24

(

1
4MY MN

)

(23)

b) vector-meson exchange:
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Ω(V )
1a =

{

gV
13g

V
24

(

1− k2

8MY MN

)

− gV
13f

V
24

k2

4MMN

−fV
13g

V
24

k2

4MMY
+ fV

13f
V
24

k4

16M2MY MN

}

Ω(V )
1b = gV

13g
V
24

(

3
2MY MN

)

Ω(V )
2 = −2

3k2 Ω(V )
3

Ω(V )
3 =

{

(gV
13 + fV

13
MY
M )(gV

24 + fV
24

MN
M )− fV

13f
V
24

k2

8M2

}

/(4MY MN)

Ω(V )
4 = −

{

12gV
13g

V
24 + 8(gV

13f
V
24 + fV

13g
V
24)
√

MY MN
M

−fV
13f

V
24

3k2

M2

}

/(8MY MN)

Ω(V )
5 = −

{

gV
13g

V
24 + 4(gV

13f
V
24 + fV

13g
V
24)
√

MY MN
M

+8fV
13f

V
24

MY MN
M2

}

/(16M2
Y M2

N)

Ω(V )
6 = −

{

(gV
13g

V
24 + fV

13f
V
24

k2

4M2 )(M2
N −M2

Y )
4M2

Y M2
N

−(gV
13f

V
24 − fV

13g
V
24)

1√
M2MY MN

}

(24)

c) scalar-meson exchange:

Ω(S)
1a = −gS

13g
S
24

(

1 + k2

8MY MN

)

Ω(S)
1b = gS

13g
S
24

1
2MY MN

Ω(S)
4 = −gS

13g
S
24

1
2MY MN

Ω(S)
5 = gS

13g
S
24

1
16M2

Y M2
N

Ω(S)
6 = −gS

13g
S
24

(M2
N −M2

Y )
4MY MN

(25)
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d) ‘diffractive-exchange’ (pomeron, f, f ′, A2):
The ΩD

i are the same as for scalar-meson-exchange Eq.(25), but with ±gS
13g

S
24 replaced

by ∓gD
13g

D
24.

In the expressions for ΩP , ΩV , and ΩS given above, MY and MN denote the mean hyperon
and nucleon mass, respectively MY = (M1 +M3)/2 and MN = (M2 +M4)/2, and m denotes
the mass of the exchanged meson. The form factor mass Λ will be discussed in section VI.

In deriving these formulae for the Ω′s we used 1/M2
N + 1/M2

Y ≈ 2/MNMY , which holds
to a good approximation since the mass differences between the baryons are not large.

For the strangeness carrying exchanges (K,K?, κ, K??) we have a complete symmetric
appearance of MY and MN and an additional minus sign. (For the details see Ref. [6].)
Therefore the resulting potentials can be obtained from those given in Eqs.(23), (24), and
(25), by replacing both MY and MN by (MY MN)

1
2 and adding a minus sign. Furthermore

we get non-neglegible contributions from the second part of the vector-meson propagator
(kµkν/m2) of the K? meson giving

− V K?

i = V (V )
i − (M3 −M1)(M4 −M2)

m2 V (S)
i , (26)

where in V (S)
i the vector meson coupling constants have to be used, and MY and MN have

to be replaced by (MY MN)
1
2 .

IV. ONE-BOSON-EXCHANGE POTENTIALS IN CONFIGURATION SPACE

In configuration space we describe the Y N -interactions by potentials of the general form

V = {VC(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VSO(r)L · S + VQ(r)Q12

+VASO(r)
1
2
(σ1 − σ2) · L−

1
2
(∇2φ(r) + φ(r)∇2)} · P (27)

where

S12 = 3
(σ1 · r)(σ2 · r)

r2 − (σ1 · σ2) (28)

Q12 =
1
2
{(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)} (29)

The exchange operator P = 1 for hypercharge Y = 0 exchange and P = −PxPσ for Y 6= 0
exchange (K, K?, κ, K??) where Px and Pσ are the space and spin exchange operators (for
a discussion see Ref. [6]). The Fourier transformation of the nonlocal operators having a
linear q2-dependence is given in Ref. [1], Eqs. (10) and (11).

The potentials in Eq. (27) are related to those in Eqs.(20-25), by the Fourier-Bessel
transforms
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VC(r) = (1/2π2)
∫

dk k2j0(kr){V1a(k2)− 1
4k

2V1b(k2)}
Vσ(r) = (1/2π2)

∫

dk k2j0(kr)V2(k2)

VT (r) = −(1/6π2)
∫

dk k4j2(kr)V3(k2)

VSO(r) = (1/2π2r)
∫

dk k3j1(kr)V4(k2)

VQ(r) = −(1/2π2r2)
∫

dk k4j2(kr)V5(k2)

VASO(r) = (1/2π2r)
∫

dk k3j1(kr)V6(k2)

φ(r) = (1/2π2)
∫

dk k2j0(kr)V1b(k2)

(30)

where k runs from 0 to ∞ and the jl are the spherical Bessel functions of the first kind
(Ref. [22]). In the above form the relation between the potentials in momentum and con-
figuration space is explicit and the behavior of the potentials at r = 0 is clearly exhibited.
Due to the gaussian form factors the k-integrals exist for all r.

With the momentum space potentials of section 3, these Fourier transforms can be carried
out analytically (Ref. [1]). For this we use the φ-functions of Ref. [1], Eqs. (12) etc., which are
defined in terms of the integrals (30) by taking Vi = exp(−k2/Λ2)/(k2+m2) = ∆(k2,m2, Λ2)
which gives

m
4π (−m2)nφn

C(r) = (1/2π2)
∫

dk k2j0(kr)(k2)n∆(k2,m2, Λ2)

−m3

4π (−m2)nφn
T (r) = −(1/6π2)

∫

dk k4j2(kr)(k2)n∆(k2,m2, Λ2)

m3

4π (−m2)nφn
SO(r) = (1/2π2r)

∫

dk k3j1(kr)(k2)n∆(k2,m2, Λ2)
(31)

Introducing the auxiliary functions ∆n
X(Λ, r) by

m
4π (−m2)n+1∆n+1

C (Λ, r) = (1/2π2)
∫

dk k2j0(kr)(k2)nexp(−k2/Λ2)

−m3

4π (−m2)n+1∆n+1
T (Λ, r) = −(1/6π2)

∫

dk k4j2(kr)(k2)nexp(−k2/Λ2)

m3

4π (−m2)n+1∆n+1
SO (Λ, r) = (1/2π2r)

∫

dk k3j1(kr)(k2)nexp(−k2/Λ2)
(32)

one can readily show, by making the substitution k2 → (k2 + m2)−m2 , that

φn+1
X (r) = φn

X(r) + ∆n+1
X (Λ, r) (33)

for X = C, T , and SO. Also one has

∆n+1
X (Λ, r) = −1

2
(
Λ
m

)2(Λ
d

dΛ
)∆n

X(Λ, r) . (34)

The functions φ0
C(r), φ0

T (r), and φ0
SO(r) are given in Ref. [1], Eqs.(13),(17), and (20).

They read
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φ0
C(r) = exp(m2/Λ2)

[

e−mrerfc (−Λr
2

+
m
Λ

)− emrerfc (
Λr
2

+
m
Λ

)
]

/2mr

φ0
T (r) =

{

exp(m2/Λ2)
[

[1 + mr +
1
3
(mr)2]e−mrerfc (−Λr

2
+

m
Λ

)

−[1−mr +
1
3
(mr)2]emrerfc(

Λr
2

+
m
Λ

)
]

− 4√
π

(
Λr
2

)
[

1 +
2
3
(
Λr
2

)2
]

exp
[

−
(Λr

2

)2]}

/2(mr)3 (35)

φ0
SO(r) =

{

exp(m2/Λ2)
[

(1 + mr)e−mrerfc(−Λr
2

+
m
Λ

)

−(1−mr)emrerfc(
Λr
2

+
m
Λ

)
]

− 4√
π

(
Λr
2

)exp
[

−
(Λr

2

)2]}

/2(mr)3 .

For ∆1
C(Λ, r), ∆1

T (Λ, r), and ∆1
SO(Λ, r) we have (compare Ref. [1], Eqs. (14),(18), and (21))

1.

∆1
C(Λ, r) = − 1

2
√

π

(

Λ
m

)3
exp

[

−
(

Λr
2

)2
]

∆1
T (Λ, r) = − 1

6
√

π

(

Λ
m

)5
exp

[

−
(

Λr
2

)2
]

(

Λr
2

)2

∆1
SO(Λ, r) = − 1

4
√

π

(

Λ
m

)5
exp

[

−
(

Λr
2

)2
]

(36)

It is clear from Eq.(30) that for Vσ(r) and φ(r) the basic integrals needed for the Fourier
transformation are the same as for VC(r), i.e. φn

C(r). Similarly the basic integrals for VASO(r)
and VQ(r) are readily given in terms of φn

SO(r) and φn
T (r), respectively. For instance, Eq. (22)

of Ref. [1] concerning the Fourier transformation of the quadratic spin-orbit potential can
readily be obtained from the formulae given in this paper.

For the ‘diffractive’ exchanges, only gaussian integrals occur in the course of the Fourier
transformation and they can be evaluated in terms of the ∆n

X-functions or directly (see
Ref. [1], Eqs.(25-28)).

Using these Fourier-Bessel transforms one can perform the Fourier transformation in a
straightforward manner. The results are

a) pseudoscalar-meson exchange

VPS(r) = m
4π(gP

13g
P
24

m2

4MY MN

{

1
3(σ1 · σ2)φ1

C + S12φ0
T

})P . (37)

1Note that in Eq.(15) of Ref. [1], there is an erroneous m2 in front of φ1
C .
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b) vector-meson exchange

VV (r) = m
4π(

{

gV
13g

V
24

[

φ0
C + m2

2MY MN
φ1

C − 3
4MY MN

(∇2φ0
C + φ0

C∇2)
]

+
[

gV
13f

V
24

m2

4MMN
+ fV

13g
V
24

m2

4MMY

]

φ1
C + fV

13f
V
24

m4

16M2MY
φ2

C

}

+ m2

4MY MN

{[

(gV
13 + fV

13
MY
M ) + (gV

24 + fV
24

MN
M )

]

φ1
C

+ fV
13f

V
24

m2

8M2φ2
C

}

2
3(σ1 · σ2)

− m2

4MY MN

{[

(gV
13 + fV

13
MY
M ) + (gV

24 + fV
24

MN
M )

]

φ0
T

+fV
13f

V
24

m2

8M2φ1
T

}

S12

− m2

MY MN

{[

3
2gV

13g
V
24 + (gV

13f
V
24 + fV

13g
V
24)
√

MY MN
M

]

φ0
SO

+ 3
8fV

13f
V
24

m2

M2φ1
SO

}

L · S

+ m4

16M2
Y M2

N

{[

gV
13g

V
24 + 4(gV

13f
V
24 + fV

13g
V
24)
√

MY MN
M

+8fV
13f

V
24

MY MN
M2

]}

3
(mr)2

φ0
T Q12

− m2

MY MN

{[

(gV
13g

V
24 − fV

13f
V
24

m2

M2 )(M2
N −M2

Y )
4MY MN

−(gV
13f

V
24 − fV

13g
V
24)
√

MY MN
M

]

φ0
SO

}

· 1
2(σ1 − σ2) · L)P .

(38)

c) scalar-meson exchange

VS(r) = −m
4π

(

gS
13g

S
24

{

(φ0
C − m2

4MY MN
φ1

C)

+ m2

2MY MN
φ0

SOL · S + m4

16M2
Y M2

N

3
(mr)2

φ0
T Q12

+ m2

MY MN

[

(M2
N −M2

Y )
4MY MN

]

φ0
SO · 1

2(σ1 − σ2) · L

+ 1
4MY MN

(∇2φ0
C + φ0

C∇2)
})

P .

(39)
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d) diffractive exchange

VD(r) = mP
4π (gD

13g
D
24

4√
π

m2
P

M2 ·
{[

1 + m2
P

2MY MN
(3− 2m2

P r2)

+ m2
P

MY MN
L · S +

( mP
2MY MN

)2
Q12

+ m2
P

MY MN

[

(M2
N −M2

Y )
4MY MN

]

· 1
2(σ1 − σ2) · L

]

e−m2
P r2

+ 1
4MY MN

(∇2e−m2
P r2

+ e−m2
P r2

∇2)
})P .

(40)

In these formulae m is the average mass in the meson isospin-multiplet.

V. MULTICHANNEL SCHRÖDINGER EQUATION

We have to solve the Lippmann-Schwinger for the Y N -reactions:

Σ+p → Σ+p (I)
(Λp, Σ+n, Σ0p) → (Λp, Σ+n, Σ0p) (II)
(Λn, Σ0n, Σ−p) → (Λn, Σ0n, Σ−p) (III)

(41)

So, reaction (I) involves only a single two-particle channel, but for (II) and (III) the state
vectors |ψ) are three component vectors and the potentials V are 3 × 3 matrices in the
two-particle channel space. For system (II) we have on the physical particle basis

|ψ)II =







|ψ)Λp

|ψ)Σ+n

|ψ)Σ0p





 , VII =







VΛΛ VΛΣ+ VΛΣ0

VΣ+Λ VΣ+Σ+ VΣ+Σ0

VΣ0Λ VΣ0Σ+ VΣ0Σ0





 (42)

and likewise for system (III) we have

|ψ)III =







|ψ)Λn

|ψ)Σ0n

|ψ)Σ−p





 , VIII =







VΛΛ VΛΣ0 VΛΣ−

VΣ0Λ VΣ0Σ0 VΣ0Σ−

VΣ−Λ VΣ−Σ0 VΣ−Σ−





 (43)

where VΛΣ+ = (Λp|V |Σ+n), etc.
In the case of exact isospin symmetry of the potential the matrices VII and VIII are

connected by an isospin rotation.
Expressing the potentials on the physical particle basis in the potential matrix elements

on the isospin basis, we find for (II)

VII =











VΛΛ

√

2
3VΛΣ −

√

1
3VΛΣ

√

2
3VΛΣ

1
3(2VΣΣ(1

2) + VΣΣ(3
2))

√
2

3 (−VΣΣ(1
2) + VΣΣ(3

2))

−
√

1
3VΛΣ

√
2

3 (−VΣΣ(1
2) + VΣΣ(3

2))
1
3(VΣΣ(1

2) + 2VΣΣ(3
2))











(44)
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and for (III)

VIII =











VΛΛ

√

1
3VΛΣ −

√

2
3VΛΣ

√

1
3VΛΣ

1
3(VΣΣ(1

2) + 2VΣΣ(3
2))

√
2

3 (−VΣΣ(1
2) + VΣΣ(3

2))

−
√

2
3VΛΣ

√
2

3 (−VΣΣ(1
2) + VΣΣ(3

2))
1
3(2VΣΣ(1

2) + VΣΣ(3
2))











(45)

In Table I we give the channels and states relevant to this work and in anticipation to
the further discusions, we also give here the SU(3)-contents of the potentials on the isospin
basis.

The multi-channel Lippmann-Schwinger equation for the components of the state vector
ψ̃i(qi) corresponding to Eq.(9) reads

ψ̃i(qi) = φ̃i(qi) + 2Mn1,n2

∑

n

∫ d3kn

(2π)3
1

q2
n − k2

n + iε
(i1, i2|V |n1, n2)ψ̃n(qn) (46)

The multi-channel Schrödinger equation in configuration space is derived from the
Lippmann-Schwinger equation through the standard Fourier transformation (see for example
Ref. [1]). We find

∑

j

[

(−2µi)−1δi,j∇2 + Vi,j(r)− {∇2φi,j(r) + φi,j(r)∇2}

+Miδi,j] ψj(r) = Eiψi(r) . (47)

Here µi stands for the reduced mass in channel i, i.e. Mi,j = µiδi,j, Mi = Mi1 + Mi2 is
the total rest mass for channel i, and E is the total energy in the center of mass. By Vi,j(r)
is meant the local part of the potentials, i.e. all terms in Eq.(27) but the last one.

We make the partial wave projection of Eq.(27) and write for the partial wave ψLSJ
i (r) =

(ul,i/r) · Y l
m. Introducing the center of mass momentum k2

i = 2µi(E −M)i, and defining
fi,j(r) = µi,iφi,j(r), we get from Eq.(47) for the radial Schrödinger equation

(δi,j + 2fi,j)
[

u′′l,j −
l(l + 1)

r2 ul,j

]

+ 2f ′i,ju
′
l,i

+
[

k2
i δi,j − (2µiVi,j + f ′′i,j)

]

ul,j = 0 (48)

which we put into the form

N
[

u′′ − l(l + 1)
r2 u

]

+ N ′u′ + Au +
1
2
N ′′u = 0 . (49)

We now transform away the u′-term in the standard way, by writing

u = Tv , (50)

where the transformation matrix T satisfies the differential equation

2NT ′ + N ′T = 0 , (51)
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with the boundary condition: T → 1 for r →∞. As a result v(r) satisfies an ordinary local
multi-channel Schrödinger equation

v
′′

l +
[

k2 − 2MredW − l(l + 1)
r2

]

vl = 0 , (52)

where the ‘potential’ W in this equation is given by

2MredW = (NT )−1(2MredV )T +
1
2
(NT )−1(N ′T ′)− [(NT )−1k2T − k2] (53)

and (Mred)i,j = µiδi,j. This is the multi-channel analogon of Eq.(39) of Ref. [1].
The differential equation for the transformation T has to be solved numerically. After T

is computed we can solve the coupled-channel Schrödinger equation. For further details of
handling the Schrödinger equation for coupled channels we refer to Refs. [15, 23].

VI. FORM FACTORS AND SU(3)

The states and SU(3)-irreps for the NN -channels and in particular the Y N -channels,
are displayed in Table II. The partial connection between the Y N - and NN -channels via
SU(3) is evident from this table.

We assume that SU(3) symmetry is broken only kinematically, i.e. via the physical masses
of the mesons and baryons. In Ref. [7] the SU(3)-irreps in the BB-channels form the basis
for the parametrization of the short-range interaction with ‘hard cores’. The same scheme
we follow here except that the role of the ‘hard cores’ is taken over by the form factors. The
behavior of these form factors is controlled by Λ, the so-called cut-off mass (see Eq.(21)).
Thus for the S-waves the cut-off masses of the {27} and the {10?} are in principle fixed in
the NN -fit. In Y N we then have as free form factor parameters the {8s}-, {8a}-, and the
{10}-cut-off masses. However, because of the various SU(3)-symmetry-breaking mechanisms
included in the model, we are forced to calculate the nuclear potentials on the isospin basis.
On this level, we not only have to deal with states belonging to a single SU(3)-irrep, but
also with states belonging to a combination of two irreps (see Table II). In the latter case,
we then allow for a separate form factor. Altogether, this would imply four different form
factors to be used:

• Λ27 for 1S0(ΣN ; I = 3/2)

• Λ10 for 3S1(ΣN ; I = 3/2)

• Λ27+8s for 1S0(ΛN, ΣN ; I = 1/2)

• Λ10?+8a for 3S1(ΛN, ΣN ; I = 1/2).

Note that in the ΛN - and ΣN isospin I = 1
2 channels the SU(3)-irreps have different weigths

(see Table I). Therefore it is justified to use different form factor masses for these cases.
However, in order to obtain a good fit this was unnecessary.

The S-waves are by far the dominant waves for fitting the low energy Y N -data, which
are mainly total cross sections. The P -waves are not very important for the latter and so
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from these data the experimental P -wave information is meagre. Also from the measured
low energy differential cross sections there is no evidence for large P -waves. It appeared that
we could use the same form factor for states with different L, but in isomorphic SU(3)-irreps,
without giving any problems with the data at higher energies.

It turned out that imposing a form factor assignment on the basis of strict SU(3)-
symmetry leads to a certain friction between the Σ+p and the Σ−p channels for the 3S1-wave.
The capture ratio at rest and the Σ−p cross sections are very sensitive to the potential in
the {10}. In order to fit these data we would have to allow for a cut-off mass Λ in the {10}
such that the model would produce an unobserved bound state in the 3S1 Σ+p state. To
avoid this, we take a separate form factor for the 3S1 Σ+p and 3S1 Σ−p I = 3

2 states. This
means that we introduce an SU(2)-breaking for the irrep {10} . This breaking could not
be explained by refining our CSB treatment, i.e. by including the π − η and ρ− ω mixing.
These effects turned out to be very small. Also, introducing a breaking of the π0-coupling
[24] could not solve this.

The amount of SU(2)-breaking needed could be varied also by allowing a medium strong
SU(3)-breaking in the {27}-form factor, i.e. not taking the value of Λ27 as found in NN .
This could be justified by arguing that in the Y N -channels Y 6= 0 exchange occurs, which
introduces some medium strong SU(3)-breaking effects also in the form factor masses. How-
ever this way we can not eliminate the SU(2)-breaking completely. The Σ−p-data force the
Λ10 in a region where the 3S1 is very sensitive to a possible SU(2)-breaking. We now have
two choices: (i) we make the SU(2)-breaking in the {10} as small as possible at the cost of
an SU(3)-breaking for Λ27, or (ii) we keep strict SU(3) for Λ27 and introduce a larger SU(2)-
breaking for the Λ10. In principle we have no clear reason to prefer (i) or (ii). The model
(coupling constant’s etc.) and the fit to the data do not depend on the choice made here.
In the following we will work with choice (i). The results for choice (ii) are very similar.
Although (ii) would be more appealing (one parameter less and strict SU(3) in the Λ27), it
appears that then the 3S1 -wave in the Σ+p becomes more repulsive and this seems to be
unfavorable for the Σ-hyperfragments (Ref. [25]).

In Table III we finally summarize the form factor prescription as used in the calculations
(choice (i), see above) and give the form factor masses which have emerged from the Y N -fit.
As one sees from the table, our form factor scheme is finally very simple: (i) for Σ+p a 1S0 -
and a 3S1 -form factor, (ii) for ΛN − ΣN a 1S0 - and a 3S1 -form factor.

VII. COUPLING CONSTANTS, F/(F + D) RATIO’S, AND MIXING ANGLES

The OBE-coupling constants we employ here for the description of the Y N -channels
are obtained from the NN -analysis of Ref. [1] using SU(3) relations. The SU(3) relations
are assumed to hold for the pseudo-vector couplings of the pseudo-scalar mesons, for the
Pauli-Dirac couplings of the vector mesons, for the coupling of the scalar mesons, and for the
pomeron and tensor meson contributions. We have analysed the low energy Y N -data (see
e.g. Refs. [6, 7, 15, 23] for a description) for all Y N - channels simultaneously. An excellent
solution was found which appears qualitatively even better than the Nijmegen hard-core
potentials, Refs. [6, 7]. The handling of SU(3) for the pseudoscalar and vector mesons has
been discussed in Refs. [7, 13]. Here we discuss briefly the treatment of the scalar mesons
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and the ‘diffractive’ exchange.
In the scalar meson nonet the physical ε- and S?-meson are described in terms of the

SU(3)-singlet ε0 and -octet state S?
0 using a single mixing angle θS

|ε〉 = cos θS|S?
0〉 − sin θS|ε0〉

|S?〉 = sin θS|S?
0〉+ cos θS|ε0〉

(54)

With this convention, the ideal mixing angle for the scalar mesons in the q2q̄2-picture
(Ref. [26]) is θS = 35.30, and in the qq̄-picture is θS = 54.70 (Ref. [27]). The conven-
tion Eq. (54) differs from that in Ref. [7]. There the same convention is used as for the
vector and pseudo-scalar mesons (for definitions see Refs. [5, 6]). For the vector and pseudo-
scalar mesons we stick to the conventions used in Refs. [5, 6]. Using these expressions for
meson-mixing the couplings can readily be expressed in terms of the singlet coupling g1, the
octet coupling g8, the F/(F + D)-ratio αS, and the mixing angle θS.

For the ‘diffractive’ exchanges we take the ‘bare’ pomeron as an SU(3)-singlet. The
tensor nonet contains the f0 and the f ′0 which are, respectively, the SU(3)-singlet and octet
state. Exact SU(3) and unitarity cause a strong mixing between the ‘bare’ pomeron and
f0. We describe this system by P0, which is obviously a SU(3)-singlet. Medium strong
SU(3)-breaking then gives mixing of P0 and f ′0, leading to the physical pomeron P and f .
In the NN -analysis the combination

g2
P = g2

PNN + g2
fNN = g2

1 +
1
3
(4αD − 1)2g2

8 (55)

and also g8 = gA2NN has been fixed. From the expression for g2
P one sees that g1 and αD

can be written in terms of gP , gA2NN and an angle that we call ψD. One has

g1 = cos(ψD)gP , (4αD − 1)/
√

3 = sin(ψD)gP /gA2NN (56)

So, in the Y N -analysis we have for the diffractive contributions one extra free parameter,
the angle ψD. Another possible relevant free parameter would be θD, but since we have
used the same mass mP for all diffractive exchanges, we have no SU(3)-breaking due to
these exchanges and so the results are independent of θD. In Ref. [3] a natural kinematical
SU(3)-breaking is suggested in ∆(k2,m2) by using in Eq.(22) MY MN instead of M2 in the
denominator. However, a recent analysis of the pomeron-couplings (Ref. [28]) suggests that
there is almost no SU(3)-breaking of this kind.

In Tables IV and V we have listed the coupling constants. All figures refer to rationalized
couplings i.e. they should be understood as g/

√
4π. Furthermore ‘CSB’ refers to the cou-

plings due to charge-symmetry-breaking and are given by gΛΛM(CSB) = −0.0271gNNMgΛΣM .
The value found for αPV agrees very well with the determination in weak interactions

(Refs. [12, 13]). The advantage of our combined NN - and Y N -analysis, in contrast to most
other analyses, is that αPV enters in many coupling constants simultaneously (NNη8, ΣΣπ,
ΛΣπ, ΛNK, ΣNK, ΛΛη8, ΣΣη8) and is vital to several measured cross sections and ratio’s.
Also, the value obtained for αm

V is in full accordance with relativistic SU(6) (Ref. [14]). Note
that here αe

V has not been fitted, but is theoretical input. Another important free parameter
is the scalar mixing angle θS. The fit appears to be rather sensitive to this parameter, but
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there is still some room for variation by making at the same time adjustments for ψD and
Λ10. We obtained θS ≈ 40.90, a value in between ideal mixing for the scalar q2q̄2- and the
scalar qq̄-states. In the region where the data can be fitted successfully the Σ−p elastic and
inelastic cross sections depend rather steeply on θS. A recent determination of θS (Ref. [29]),
based on a study of Γ(S? → ππ), gave θS = 320. For the angle ψD we obtained the value
15.50, which means that the pomeron is dominantly an SU(3)-singlet as is also found in high
energy scattering.

The singlet couplings g1 can readily be calculated using the values of the tables and the
formulas (this paper and Refs. [5, 6]) for the meson mixings.

In Table VI we give the singlet and octet coupling constants, mixing angles and
F/(F + D)-ratio’s.

For a discussion of the NNM -coupling constants we refer to Ref. [1]. In the discus-
sion of the Y Y M - and Y NM -coupling constants we shall restrict ourselves mainly to the
pseudo-scalar mesons, because there is independent information on them available from the
application of the Goldberger-Treiman relation and the analysis of KN -scattering. We com-
pare in the following our values with those in the literature, i.e. as given in the compilations
of coupling constants, Refs. [12, 13].

In Refs. [12, 13] are given g2
ΣΣπ/4π = 13± 2 and g2

ΛΣπ/4π = 11± 1. We have g2
ΣΣπ/4π =

11.09 and g2
ΛΣπ/4π = 11.42, which agree very well with those from the literature. To a

certain extend, this is no surprise because (i) we have used SU(3) for the PV-coupling, and
(ii) we found a perfect F/(F + D)-ratio. Pilkuhn showed (Ref. [30]) using the Goldberger-
Treiman relation in combination with superconvergence that one can expect that only the
pseudo-vector couplings satisfy SU(3) very well.

From K±N forward dispersion relations one has determined the Y NK-coupling con-
stants. Typically one finds (Ref. [12]) g2

ΛNK/4π = 13.9 ± 2.6 and g2
ΣNK/4π = 0.9 ± 0.4.

We have g2
ΛNK/4π = 16.0 and g2

ΣNK/4π = 1.44, again in good agreement. These val-
ues are also perfectly compatible with the determinations of the effective coupling g2

Y ≡
(g2

ΛNK + 0.84g2
ΣNK)/4π. In Ref. [12], for example, one quotes g2

Y = 16.6± 0.7, which is also
close to our determination g2

Y = 17.2. The conclusion we draw from this comparison is that
the use of SU(3) for the PV-coupling has led to a seemingly perfect realistic description of
the pseudo-scalar meson exchange in the present model.

We close this section by making some remarks on the couplings of the vector mesons
in the context of the naive nonrelativistic quark model (henceforth referred to as QM). For
similar observations pertinent to model D (Ref. [6]) and F (Ref. [7]) see Ref. [31]. Because
gNNφ/

√
4π = −0.31 is fairly small and since we use ideal mixing, it is clear that the QM

relations

gΣΣω = gΛΛω = (2/3)gNNω, gΣΣφ = gΛΛφ, gNNφ = 0 (57)

are indeed satisfied approximately in Table IV. To illustrate further how close we obey
QM-relations for the electric couplings we look at

gNNφ = − sin θV g1 + cos θV (4αe
V − 1)g8/

√
3. (58)

Imposing the QM restriction gNNφ = 0 one gets that
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g1

g8
√

6

√
2 tan θV = 1. (59)

From Table VI we find for this combination 1.26, which is rather close to the QM-value.
Model D and F give here 2.34 and 1.75, respectively (Ref. [31]).

For the magnetic couplings Gm = (f + g) one would have αm
V = 2/5 following static

SU(6), whereas we have the relativistic SU(6)-value (Ref. [14]). The QM would require,
using αm

V = 2/5, that Gm
1 /Gm

8

√
6 = 1/5 and we have for this combination 0.308. Models D

and F give here, respectively, 0.423 and 0.255.
Usually OBE-models have larger relative strengths for the tensor couplings of vector

mesons than the QM (see e.g. Refs. [12, 13]). In this respect the present soft-core model
is closer to the QM than other models. Note that (f/g)NNρ = 4.2, where the QM predicts
for this ratio 3.7. For the other ratio’s we have (f/g)NNω = 0.31, (f/g)ΛNK? = 2.2, and
(f/g)ΣNK? = −1.9. These values are closer to the QM than those for the models D and F.

VIII. RESULTS OF THE CALCULATIONS

A. Determination of the free parameters

The values for the eight free parameters in the soft-core model are determined in the Y N -
analysis in a parameter search to a selected set of 35 best low-energy Y N -data (Table VII,
the data are from Refs. [32]–[37]). The fitted parameters and the values obtained are given
in Tables IV and V.

The lowest total χ2 = 15.7 reached for the 35 data and 8 free parameters i.e.
χ2/d.o.f. = 0.58. In Table VII we compare the calculated model values with the experi-
mental ones. In calculating the cross sections the P -wave contributions have been included.
(Note here that the 1P1− 3P1 transitions are not included in our calculations.) In counting
the number of free parameters we could have been less conservative and say that αPV and
αm

V are fixed during the search. After that we noticed that we could fix these parameters on
the ‘theoretical’ ideal values, we did not allow them to vary. So actually we have effectively
6 free parameters. The potentials in the different SU(3)-irreps are shown in Fig. 1. Com-
bining these figures with Table I gives a qualitative picture of the potentials in the different
isospin channels.

B. Σ+p, Σ−n scattering

The Σ+p ‘total’ cross sections [35] (for the definition see Ref. [23]) are compared with the
experimental values in Table VII and Fig 2.

The calculated cross sections agree very well with the experimental data. The angular
distribution at pΣ+ = 170 MeV/c is shown in Fig. 3. This distribution has χ2 = 5.0 for seven
data points. The spin singlet Coulomb interference is about three times larger in magnitude
than the triplet Coulomb interference, giving in total a destructive Coulomb-interference
result. In the overall result for the angular distribution this is partially compensated by the
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1S0 -1P1 interference term. The scattering lengths and effective ranges in the S and P waves
are given in Table VIII. The 1S0 scattering lengths and effective ranges are similar to those
of model D (Ref. [6]) and model F (Ref. [7]). The 3S1 low energy parameters are similar
to those of model D. In model F there is more repulsion. It was found by Yamamoto and
Bando (Ref. [25]) and by Dover and Gal (Ref. [31]) that model D is favored over model F
as far as the ΣN potential well depths are concerned. So the present soft-core model seems
to meet the requirements from the potential well depths calculations.

In Table IX the nuclear bar phase shifts for Σ+p are listed. We note the great difference
between the 3S1 -phases from the soft-core model and the models D and F. This difference
is caused by the attraction in the potential for r < 0.5 fm for the {10} (cfr. Fig. 2). In
D and F this attraction was masked by the hard cores and so only the medium and long
range repulsion was visible. Changing the cut-off Λ in the {10} from 1230.0 MeV/c to
1000.0 MeV/c the scattering length at (3S1 ) ranges from 0.31 fm to 0.70 fm. This way
the sign-change in the 3S1 phase shift could be shifted to higher energies, while keeping a
good fit to the Σ+p total cross sections through an adjustment of the cut-off in the {27}.
However, then the fit to the Σ−p cross sections tends to deteriorate, in particular if we make
Λ10 too small. Note that in this case the 3S1 -wave is more repulsive and this makes this
solution perhaps less attractive for the calculation of the Σ-hyperfragments (Ref. [25]).

The P -waves are not fitted in the soft-core model to the angular distributions, they are
straightforward predictions. This in contrast to the P -waves in model D and F. The triplet
P -waves are similar to those from D and F, which is not surprising because all models fit
the NN phase shifts and both the NN and the ΣN triplet P -waves are in the {27} . The
1P1 phase shifts are rather moderate. This in contrast to the behavior of the 1P1 in D and
F.

C. ΛN scattering

The low-energy parameters of the S-waves are given in Table X. In the soft-core model
we have clearly |as| > |at|. Compared to models D and F |as| and |at| have become larger,
respectively, smaller. The effective range rs is reduced whereas rt is about the same. The con-
sequences of this for the hypertriton 3

ΛH are unclear. The effects of the changes in the scat-
tering lengths and effective ranges can compensate each other to certain extend (Ref. [38]).
Note that in our ΛN calculations we get different values for the low energy parameters in
the charge +1 and 0 states, notably because of the inclusion of charge-symmetry-breaking
potentials.

The fit to the low-energy Λp data is even better than in models D and F. In Table VII it
is shown that the 6 Rehovoth-Heidelberg data have χ2 = 1.0 and the 6 Maryland data have
χ2 = 2.6.

In Fig. 4 the Λp elastic total cross sections up to pΛ = 1 GeV/c are drawn for the
experimental data and the fit with the soft-core model (pΛ < 0.4 GeV), respectively, soft-
core model predictions (pΛ > 0.4 GeV). The calculated elastic cross sections above 0.6 GeV/c
are very well compatible with the Berkeley-71 data (Ref. [40]).

In Table XI the Λp nuclear bar phase shifts are given and in Table XII we show the
elastic and inelastic Λp cross sections for pΛ from 650 MeV/c to 1 GeV/c.

21



The large cusp of 42.5 mb at the Σ+n threshold in Fig. 4 is due to the enhancement in
the 3S1 waves which is caused by the coupling of the ΛN and ΣN channels and the rather
strong interaction in the 3S1 -wave ΣN channel. This cusp is also seen in Ref. [41] and [42]
where a large peak was found in the ΛN invariant mass at Ec.m. = 2128.7 ± 0.2 MeV, and
2129.0 ± 0.4 MeV, the Σ+n threshold being located at 2128.97 MeV. To analyze this cusp
we made, like in Ref. [7], a multichannel effective range approximation (ERA) around the
Σ0p threshold i.e.

pL+1/2(K̄J)−1pL+1/2 = −A−1 +
1
2
(p2 − p2

0)
1/2R(p2 − p2

0)
1/2 . (60)

Here K̄J is the mutilated KJ matrix, where as before (Refs. [7, 23]) we cut out the 3D1 ΣN
waves, A−1 is the inverse scattering length matrix, R the effective range matrix, pL+1/2 and
(p2−p2

0)
1/2 are diagonal matrices with elements pL+1/2

i and (p2
i −p2

0)
1/2, where p0i denotes the

momentum at the Σ0p threshold energy. In Table XIII we give the results for the effective
range approximation.

The radius of convergence of ERA is 5 MeV, as determined by the pion-exchange cut.
We did not find any poles within this region on the second Riemann sheet. We see that the
situation in the soft-core model is quite different from for example model F, where we found
poles at E = 2131.77± i 2.39 MeV on the 2nd sheet, which again indicates that we now have
a weaker interaction in the 3S1 waves.

The ΛN P -wave scattering lengths and effective ranges are given in Table X. Comparing
these values and the P -wave phase shifts in Table XI with those of the D and F model, it
appears that these are qualitatively similar to those of model F and not like in model D.
This seems favorable for Λ−N well depths calculations (Ref. [43]).

D. Σ−p scattering

1. Σ−p → Σ−p

The fit to the total cross sections (see for the precise definition e.g. Ref. [23]) of the Heidelberg
group (Ref. [35]) is given in Table VII and shown in Fig. 5. The data are well described
(χ2 = 2.6 for six data points).

In Fig. 6 we compare the predicted angular distribution at pΣ− = 160 MeV/c with
the Heidelberg data (Ref. [35]). The curve of the soft-core model for this distribution is
intermediate to the ones obtained for model D and F.

In Table XIV we give the total nuclear cross sections for Σ−p elastic scattering up to
pΣ− = 600 MeV/c. Here also like in D and F the scattering is mainly given by the 3S1 -wave
for pΣ− ≤ 300 MeV/c. At the higher energies the P -waves dominate the total nuclear cross
sections. The contributions of the higher L waves are always very small.

2. Σ−p → Σ0n

The calculated total cross sections are compared to the measurents of the Heidelberg group
(Ref. [32]) in Table VII and Figure 7.
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The result fits the data excellently, this of course with the exception of the datum at
pΣ− = 110 MeV/c.

In Table XIV we give the total nuclear cross sections for Σ−p → Σ0n up to pΣ− = 600
MeV/c. Here also like in D and F the scattering is dominated by the 3S1 wave for pΣ− ≤ 250
MeV/c. At the higher energies the P -waves dominate the total nuclear cross sections.
The contributions of the higher L-waves are always very small. In Fig. 8 we compare the
calculated total cross sections in the momentum region 150 ≤ pΣ− ≤ 600 MeV/c with the
unpublished data of the Massachusetts group (Ref. [37]). In contrast to the result of model
D the soft-core model prediction agrees very well with these data.

3. Σ−p → Λn

In Table VII and Fig. 9 we compare the calculated total cross sections with the measured
values of the Heidelberg group (Ref. [32]). A good fit is obtained which is comparable to
that for model D and much better than for model F.

In Fig. 10 we compare the calculated angular distribution for pΣ− = 160 MeV/c with
the Heidelberg data (Ref. [32]). The curve is rather flat, showing a rather small forward-
backward ratio. This is like in model F, whereas the data tend to indicate a greater forward-
backward ratio.

In Table XIV we give the total nuclear cross sections for Σ−p → Λn up to
pΣ− = 600 MeV/c. Below pΣ− ' 200 MeV/c is for 65% provided by the 3S1 − 3S1 tran-
sition and for 25% by the 3S1 − 3D1 transition. For pΣ− ≥ 350 MeV/c these transitions
account for 60% of the total cross sections. The other half is provided essentially by the
P -waves.

In Fig. 11 we compare the calculated total cross sections in the momentum region 150 ≤
pΣ− ≤ 600 MeV/c with the unpublished data of the Massachusetts group (Ref. [37]). In
contrast to the result of model D the soft-core model prediction agrees rather well with these
data.

Finally we mention the excellent value that we were able to reach for the inelastic capture
ratio at rest rR = 0.471 (cfr. Table VII) which is almost equal to the averaged experimental
value (Refs. [15, 36, 37]).
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TABLES

Space-spin antisymmetric states 1S0, 3P, 1D2, ...
NN → NN I = 1 VNN (I = 1) = V27

ΛN → ΛN VΛΛ

(

I = 1
2

)

= (9V27 + V8s) /10

ΛN → ΣN I = 1
2 VΛΣ

(

I = 1
2

)

= (−3V27 + 3V8s) /10

ΣN → ΣN VΣΣ

(

I = 1
2

)

= (V27 + 9V8s) /10

ΣN → ΣN I = 3
2 VΣΣ

(

I = 3
2

)

= V27

Space-spin symmetric states 3S1, 1P1, 3D, ...
NN → NN I = 0 VNN (I = 0) = V10?

ΛN → ΛN VΛΛ

(

I = 1
2

)

= (V10? + V8a) /2

ΛN → ΣN I = 1
2 VΛΣ

(

I = 1
2

)

= (V10? − V8a) /2

ΣN → ΣN VΣΣ

(

I = 1
2

)

= (V10? + V8a) /2

ΣN → ΣN I = 3
2 VΣΣ

(

I = 3
2

)

= V10

TABLE I. SU(3)-contents of the various potentials on the isospin basis.

Y I Channels States SU(3) irreps
1 1S0, 3P, 1D2, ... {27}

2 NN
0 3S1, 1P1, 3D, ... {10?}
1
2

1S0, 3P, 1D2, ... {27} ⊕{8s}
ΛN,ΣN

3S1, 1P1, 3D, ... {10?} ⊕{8a}
1

3
2

1S0, 3P, 1D2, ... {27}
ΣN

3S1, 1P1, 3D, ... {10}

TABLE II. Channels, states and SU(3) irreps in Y = 1 and Y = 2 Baryon-Baryon scattering.

1S0 Σ+p {27} Λ27 = 1020.0 MeV
3S1 Σ+p {10} Λ10 = 1230.0 MeV

Σ−p {10} Λ′10 = 1270.5 MeV
1S0 ΛN,ΣN {27}+ {8s} Λ27+8s = 820.0 MeV
3S1 ΛN, ΣN {10?}+ {8a} Λ10?+8a = 1270.5 MeV

TABLE III. S-wave form factor masses used in this work.

26



M NNM ΛΛM ΛΣM ΣΣM ΛNM ΣNM
π g 3.69822 CSB 3.38318 3.32840 — —

f 0.27204 CSB 0.20261 0.19315 — —
η g 1.80574 -1.84905 — 4.45648 — —
η
′

g 1.95894 4.02537 — 1.56718 — —
K g — — — — -3.98122 1.20749

f — — — — -0.96466 0.28336
ρ g 0.89147 CSB — 1.78295 — —

f 3.76255 CSB 3.14985 2.06940 — —
φ g -0.31477 -1.53976 — -1.53976 — —

f -0.42414 -3.09542 — 1.90246 — —
ω g 2.94663 2.00666 — 2.00666 — —

f 0.90959 -1.14016 — 2.69485 — —
K? g — — — — -1.54408 -0.89147

f — — — — -3.36708 1.69315

TABLE IV. Coupling constants for pseudo-scalar and vector meson Y = 0 and Y = ±1
exchanges.

M NNM ΛΛM ΛΣM ΣΣM ΛNM ΣNM
δ g 1.27734 CSB -0.42116 3.28416 — —
S? g -0.83894 -2.56308 — -3.11453 — —
ε g 4.76773 2.77698 — 2.14025 — —
κ g — — — — -2.63359 -2.00682
A2 g 0.44372 CSB -0.01427 1.15196 — —
f ′ g -1.10989 -2.05561 — -2.21779 — —
P

⊕

f g 2.74708 2.70161 — 2.86606 — —
K?? g — — — — -0.81469 -0.51408

TABLE V. Coupling constants for scalar meson and ‘diffractive’ Y = 0 and Y = ±1 exchanges.

mesons {1} {8} F/(F + D) angles
pseudoscalar f 0.18455 0.27204 αPV = 0.355?) θP = −23.000

vector g 2.52934 0.89147 αe
V = 1.0 θV = 37.500

f 0.97982 3.76255 αm
V = 0.275?)

scalar g 3.75548 1.27734 αS = 1.28555 θS = 40.8950 ?)

diffractive g 2.85507 0.44372 αD = 1.02267 ψD = 15.500 ?)

TABLE VI. Coupling constants, F/(F + D)-ratio’s, mixing angles etc. The values with ?)
have been determined in the fit to the Y N -data. The other parameters are theoretical input or
determined by the fitted parameters and the constraint from the NN -analysis.
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Λp → Λp χ2 = 1.0 Λp → Λp χ2 = 2.6
pΛ σRH

exp σth pΛ σM
exp σth

145 180±22 192.8 135 209.0±58 209.2
185 130±17 138.8 165 177.0±38 163.6
210 118±16 113.2 195 153.0±27 127.9
230 101±12 96.4 225 111.0±18 100.4
250 83± 9 82.4 255 87.0±13 79.2
290 57± 9 60.8 300 46.0±11 56.6

Σ+p → Σ+p χ2 = 0.2 Σ−p → Σ−p χ2 = 2.6
pΣ+ σexp σth pΣ− σexp σth

145 123±62 107.3 142.5 152±38 137.4
155 104±30 99.0 147.5 146±30 135.5
165 92±18 91.4 152.5 142±25 133.9
175 81±12 84.3 157.5 164±32 132.4

162.5 138±19 131.0
167.5 113±16 129.8

Σ−p → Σ0n χ2 = 6.5 Σ−p → Λn χ2 = 2.7
pΣ+ σexp σth pΣ− σexp σth

110 396±91 178.3 110 174±47 219.1
120 159±43 157.5 120 178±39 191.7
130 157±34 140.5 130 140±28 169.6
140 125±25 126.3 140 164±25 151.4
150 111±19 114.2 150 147±19 136.2
160 115±16 103.8 160 124±14 123.4
rexp
R = 0.468± 0.010 rth

R = 0.471 χ2 = 0.1

TABLE VII. Comparison of the calculated and experimental values for the 35 Y N -data that
were included in the fit. The superscipts RH and M denote, respectively, the Rehovoth-Heidelberg
(Ref. [33]) and Maryland data (Ref. [34]). The laboratory momenta are in MeV/c, and the total
cross sections in mb.

1S0
3S1

3P0
3P1

3P2
1P1

aC -3.63 0.305 -2.33 1.63 -0.099 -0.97
rC 3.27 -20.15 4.77 -7.66 10.60 13.74
a -4.71 0.247 -2.12 1.49 -0.101 -0.88
r 3.36 -26.86 4.93 -8.33 26.30 14.56

TABLE VIII. Σ+p and Σ−n S- and P -wave effective range parameters in units of fm. The
superscript C denotes the presence of the Coulomb interaction.
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pΣ+(MeV/c) 200 400 600 800 1000
Tlab(MeV) 16.7 65.5 142.8 244.0 364.5

1S0 36.63 27.13 12.82 -10.05 -13.59
3S1 -7.95 -10.46 6.51 40.70 51.17
ε1 -1.83 -4.24 -2.31 3.74 5.80

3P0 4.42 7.53 0.80 -10.31 -22.35
1P1 1.71 4.27 4.10 1.06 -3.61
3P1 -3.14 -10.40 -18.46 -26.86 -34.90
3P2 0.54 3.14 6.61 10.81 15.91
ε2 -0.35 -1.80 -2.90 -2.85 -1.67

3D1 0.27 1.14 0.81 -1.67 -7.25
1D2 0.28 1.64 3.93 6.59 8.52
3D2 -.43 -2.43 1.08 1.10 0.21
3D3 0.03 0.46 -5.11 -8.57 -12.91

TABLE IX. Σ+p nuclear bar phase shifts in degrees.

1S0
3S1

3P0
3P1

3P2
1P1

Λp a -2.73 -1.48 -0.033 0.016 -0.200 0.088
r 2.87 3.04 -154 2887 11.62 -38.5

ΛN a -2.78 -1.41 -0.096 0.061 -0.20 0.062
r 2.88 3.11 72.3 40.86 10.44 32.7

Λn a -2.86 -1.24 -0.156 0.108 -0.199 0.037
r 2.91 3.33 62.6 -42.1 9.62 388

TABLE X. Λp and Λn S- and P -wave effective range parameters in units of fm.
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pΛ(MeV/c) 100 200 300 400 500 600 633.4
Tlab(MeV) 4.5 17.8 39.6 69.5 106.9 151.1 167.3

1S0 27.43 33.47 30.13 23.78 16.61 9.47 7.21
3S1 17.08 24.78 26.07 25.32 25.68 33.36 51.97
ε1 0.20 1.15 2.91 5.61 9.83 18.31 27.78

3P0 0.03 0.12 -0.09 -1.30 -3.79 -7.30 -8.56
1P1 -0.06 -0.40 -1.25 -2.70 -4.70 -6.59 -7.74
3P1 -0.02 -0.26 -1.03 -2.47 -4.49 -6.69 -7.20
3P2 0.14 0.95 2.61 4.78 6.99 8.99 9.61
ε2 0.00 -0.01 -0.07 -0.24 -0.50 -0.83 -0.98

3D1 0.00 0.05 0.31 1.06 2.79 6.69 8.51
1D2 0.00 0.04 0.28 0.90 1.93 3.27 3.76
3D2 0.00 0.07 0.38 1.10 2.29 3.89 4.51
3D3 0.00 0.03 0.19 0.57 1.18 1.92 2.18

TABLE XI. Λp nuclear bar fase shifts in degrees below the ΣN tresholds.

pΛ(MeV/c) Tlab(MeV) Λp → Λp Λp → Σ+n Λp → Σ0p
650 175.5 26.20 6.29 2.49
700 201.4 17.02 7.94 4.18
750 228.7 14.48 8.37 4.27
800 257.2 13.56 8.21 4.11
850 286.9 13.32 7.82 3.88
900 317.8 13.40 7.36 3.64
950 349.7 13.62 6.90 3.40
1000 382.6 13.92 6.47 3.19

TABLE XII. Λp → Λp,Σ+n,Σ0p total cross sections in mb above the ΣN tresholds.
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Λp → Σ0p Λn → Σ−p (Λn → Σ−p)C

A−1 R A−1 R A−1 R
11 12.33 57.22 9.73 35.00 9.74 35.16
12 -31.88 -95.73 -26.03 -53.15 -26.38 -54.82
13 -1.45 -6.29 -0.83 -3.57 -0.73 -2.64
14 1.07 3.92 1.00 2.18 1.11 2.92
22 92.20 112.86 80.85 37.96 82.52 41.66
23 1.08 15.04 0.16 8.50 -0.09 6.89
24 -0.83 -9.35 0.20 -7.06 -0.04 -8.75
33 0.24 -0.62 -0.34 -2.77 -0.27 -2.45
34 -0.78 -3.81 -0.74 -3.29 -0.69 -2.97
44 -0.27 -3.53 0.23 -1.04 -0.39 -0.71

TABLE XIII. Inverse-scattering-length and effective-range matrices at the Σ0p and Σ−p tresh-
olds. The order of the states (1-4) reads Λp(3S1), Λp(3D1), Σ+n(3S1), Σ0p(3S1), respectively,
Λn(3S1), Λn(3D1), Σ0n(3S1), Σ−p(3S1). The dimensions of the matrix elements are in fm−1−l−l′

(A−1) and fm1−l−l′ (R). The subscript C denotes the presence of the Coulomb interaction in the
Σ−p channel.

pΣ−(MeV/c) Tlab(MeV) Σ−p → Σ−p Σ−p → Σ0n Σ−p → Λn
50 1.0 547.9 575.1 757.3
100 4.2 176.5 207.6 254.4
150 9.4 138.1 116.7 136.1
200 16.6 123.6 74.9 87.5
250 25.8 108.6 51.1 62.2
300 37.0 91.0 37.2 47.1
350 50.1 74.0 29.0 37.3
400 65.0 59.7 23.9 30.4
450 81.8 48.7 20.3 25.3
500 100.2 40.4 17.5 21.5
550 120.3 33.9 15.3 18.5
600 141.9 29.1 13.5 16.1

TABLE XIV. Σ−p → Σ−p, Σ0n, Λn total cross sections in mb above the ΣN tresholds.
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FIGURES

FIG. 1. Potentials for channels in definite SU(3)-irrep.

FIG. 2. Calculated Σ+p ‘total’ cross sections compared with experimental values of Ref. [35].

FIG. 3. Calculated Σ+p differential cross sections compared with experimental values of
Ref. [35].

FIG. 4. Calculated Λp elastic total cross sections compared with the Rehovoth-Heidelberg
(Ref. [33]), Maryland (Ref. [34]), and Berkeley (Refs. [39, 40]) data.

FIG. 5. Calculated Σ−p elastic ‘total’ cross sections compared with the experimental data
(Ref. [35]).

FIG. 6. Calculated Σ−p differential cross sections compared with the experimental data
(Ref. [35]).

FIG. 7. Calculated Σ−p → Σ0n total cross sections compared with the experimental data
(Ref. [32]).

FIG. 8. Calculated Σ−p → Σ0n total cross sections compared with the Massachusetts data
(Ref. [37]).

FIG. 9. Calculated Σ−p → Λn total cross sections compared with the experimental data
(Ref. [32]).

FIG. 10. Calculated Σ−p → Λn differential cross sections compared with the experimental data
(Ref. [32]).

FIG. 11. Calculated Σ−p → Λn total cross sections compared with the experimental data of
the Massachusetts group (Ref. [37]).
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