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Abstract

The Nijmegen group has now completed the phase-shift analysis of all pp
scattering data below Tlab = 350 MeV. This is a continuation of the Nijmegen
0–30 MeV analysis, Both in the pp and np analysis, a low value for the πNN
coupling constant g2

0 was found, indicating a large charge-independence break-
ing. In this contribution we report on the present status of the Nijmegen
phase-shift analysis. The incorporation of the magnetic-moment interaction
proved to be important and changed the numerical results. We find now for
the ppπ0 coupling constant g2

0 = 13.53 ± 0.14. Some comments are made on
the possible CIB sources.

PACS numbers: 13.75.Cs, 11.80.Et, 21.30.+y

Typeset using REVTEX

∗Invited talk by T.A. Rijken at the XIIth International Conference on Few-Body Problems in
Physics, Vancouver, Canada, 1-8 July, 1989. Published in the proceedings: Nucl. Phys. A508,
173c – 184c (1990).

1



I. INTRODUCTION

The Nijmegen group has now completed the multienergy (ME) phase-shift analysis (PSA)
of all pp scattering data below Tlab = 350 MeV [1]. This is a continuation of the Nijmegen
0–30 MeV pp analysis [2]. Results of the phase-shift analysis of all published nucleon-
nucleon (NN) scattering data for 0–30 MeV have already been published [2, 3, 4]. In the
pp analysis a low value for the πNN coupling constant g2

0 was found [5], indicating a large
charge-independence Breaking (CIB) in the NN interaction. Subsequently, this CIB was
investigated in an np and a combined np and pp analysis for Tlab = 0 − 30 MeV [4]. Here
this large CIB was confirmed. Because of the current interest in this particular result,
we will restrict ourselves mainly to the CIB in this contribution. We review the phase-
shift analysis, the potential tail used, the results, and briefly make some comments on the
theoretical aspects of CIB.

In the most recent phase-shift analysis of the pp data for Tlab = 0 − 350 MeV [1] the
magnetic-moment interaction has been incorporated. In contrast to earlier reports in the lit-
erature, where effects on the analysis for a single energy or for a restricted energy range were
studied (see, e.g., Refs. [6, 7]), the inclusion of the magnetic-moment interaction proved to
be rather relevant in pp. Because of its long range it influences the value of g2

0. Another, but
less important, difference with the analysis of Ref. [5] is a slightly different parametrization,
resulting in a drop in χ2. Also, the pp dataset has been updated a little. These last two
modifications hardly changed g2

0. With the magnetic-moment interaction the obtained value
for the ppπ0 coupling constant is g2

0 ≡ g2
ppπ0 = 13.53±0.14 or f 2

0 ≡ f2
ppπ0 = (74.8±0.8)×10−3,

where f2
0 = (mc/2Mp)2g2

0. Here mc is the charged-pion mass. The new value for g2
0, though

higher than the earlier reported value of g2
0 = 13.1±0.1 [5], still means a rather large CIB in

the NN interaction. The new value of (g2
0 is about four standard deviations smaller than the

charged-pion coupling constant g2
c ≡ g(pnπ+)g(npπ−)/2 = 14.3 ± 0.8 [8], which means an

unexpected large CIB. For excellent reviews on charge independence and charge symmetry
see, e.g., Ref. [9].

The ME fit to the pp data, using 28 parameters, reached χ2 = 1561.80 for Ndf = 1394.
If we compare this to the ME analysis without the magnetic-moment interaction, where we
find g2

0 = 13.18 ± 0.14 and χ2 = 1578.97, one sees a clear effect of the magnetic-moment
interaction both on the ppπ0 coupling constant and on χ2.

There are no new results on the low-energy and deuteron parameters. Therefore, we do
not discuss these here, but refer to the papers of the Nijmegen group, quoted above.

II. THE NIJMEGEN PHASE-SHIFT ANALYSIS

In the Nijmegen phase-shift analysis the present knowledge of the nucleon-nucleon inter-
action is exploited as much as possible. For large distances, the electromagnetic interactions
(Coulomb, vacuum polarization, and magnetic moments) are well known and can be incorpo-
rated in a model-independent way in the phase-shift analysis. The same holds for the OPE
part of the nuclear interaction. Although this cannot be said for the intermediate-range
part of the nuclear interaction, different potential models like in Refs. [10, 11] fortunately
do agree very well for r ≥ 1.4 fm. This rather remarkable feature allows the use of such a
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potential for r ≥ 1.4 fm without introducing to much model dependence. The short-range
part of the nuclear interaction (r < 1 fm), however, is largely unknown, which is reflected
in large differences between potential models.

The Nijmegen phase-shift analysis is a multienergy (ME) analysis. In distinction to other
ME phase-shift analyses [12, 13, 14, 15], in the Nijmegen ME analysis the energy dependence
of the phase shifts is described via a (simple) parametrization of the P matrix. The details of
this procedure have been described in Refs. [2, 16, 17]. The unknown short-range interaction
is described phenomenologically for each partial wave, by parametrizing a P matrix

P (b; k2) = b
(

dχ
dr

χ−1

)

r=b

, (1)

which is a boundary condition for the radial wave function χ(r) at r = b, where 1 fm < b < 2
fm. The energy dependence of the P matrix is indicated by k, the relativistic momentum
in the center of mass (c.m.) system. This boundary condition implements the connection
between the unknown inner region and the outer region. The interactions in the latter
region are incorporated by solving the Schrödinger equation for the potential tail outside
r = b. In that case, the electromagnetic and OPE potential tails are taken into account
exactly. For the realistic intermediate-range forces different NN models (e.g., [10, 11]) have
been analyzed. The higher partial waves (J ≥ 3 for 0–30 MeV analysis, J ≥ 5 for 0–350
MeV analysis) are either given by the OPE phase parameters alone, or by adding for the
intermediate partial waves (5 ≤ J ≤ 8) the non-OPE contributions due to the heavy-boson
exchanges (HBE) of the Nijmegen [10] or Paris [11] potential. For J ≥ 9 the OPE amplitudes
are calculated in CDWBA.

The optimal-polynomial-theory (OPT) predictions for the non-OPE contributions to
some of the intermediate partial-wave parameters were studied [18], but with only a few
lower waves as input, some of the predictions for the intermediate partial waves (5 ≤ J ≤ 8)
were not successful. This was in particular the case for the mixing parameters εJ and some
coupled waves.

III. THE POTENTIAL TAIL

The potential tail plays a prominent role in the PSA, and since the pp analysis is at
present the most important source of information for the determination of g2

0, we review this
part of the interaction for pp here. The potential tail VL, which describes the long-range
interactions used in the PSA, is

VL = VNUC + VEM , (2)

where VNUC contains as its longest-range part the OPE potential. The electromagnetic
potential VEM contains the Coulomb interaction with relativistic corrections ṼC [19], the
vacuum polarization [20], and recently also the magnetic part VMM of the photon-exchange
potential [21], derived in [19]. So,

VEM = ṼC + VMM + VV P , (3)
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with

ṼC =
α′

r
− 1

2M2
p

[

(

∆ + k2
) α

r
+

α
r

(

∆ + k2
)

]

,

VMM = − α
4M2

p r3

[

µ2
pS12 + (6 + 8κ)L · S

]

, (4)

where α′ = 2kη′/Mp with η′ = α/vlab, µp = 2.7928 is the proton magnetic moment, and κ the
anomalous magnetic moment. The contribution of VMM to the scattering amplitude is cal-
culated in CDWBA by regularizing the 1/r3 dependence with the standard electromagnetic
dipole form factor.

The longest-range part of the nuclear interaction, one-pion exchange (OPE), is included
in the form

VOPE =
1
3

fppπ0

4π
Mp

E

( m
mc

)2 e−mr

r

×
[

(σ1 · σ2) + S12

(

1 +
3

(mr)
+

3
(mr)2

)]

, (5)

where m is the π0 mass and mc is a scaling mass (introduced to make fppπ0 dimensionless)
chosen to be the charged-pion mass [8]. E =

√

k2 + M2
p , with k the relativistic c.m. momen-

tum. No form factor is included here. The latter represents a short-range effect (r ≤ 1.4
fm). The coupling constant f2

0 ≡ f 2
ppπ0 is the important free parameter to be determined in

the PSA. Notice that in the analysis described here, the pion-nucleon coupling is determined
at the one-pion pole.

With VNUC = VOPE for b = 1.8 fm a reasonable fit was reached. Introducing besides
OPE also intermediate-range forces, a better fit to the data was achieved for b = 1.4 fm. In
that case the non-OPE (HBE) contributions of modern potential models [10, 11] were used.
In order to allow for an adjustment of the HBE potential of the used model, to remedy
possible imperfections of the intermediate forces, factors f singlet

med and f triplet
med , respectively, for

the spin-singlet and spin-triplet waves were introduced. So,

VL = VEM + VOPE + V N
HBE(f singlet/triplet

med ) , (6)

where V N
HBE is the Nijmegen soft-core potential from the heavier bosons. Similarly, the

parametrized Paris potential [11] was used in the analysis, but this gave a slightly higher
χ2. This way also different potential tails from (other) good NN potential models can be
tested.

IV. THE G(ppπ0) DETERMINATION

The coupling of the neutral pion to the proton can be described by either the pseudoscalar
(PS) or the pseudovector (PV) phenomenological Lagrangians LPS or LPV , where LPS =
g0(4π)1/2(ψ̄iγ5ψ)φ and LPV = (f0/mc)(4π)1/2(ψ̄iγµγ5ψ)∂µφ. The couplings PV and PS lead
to the same OPE potential for pp, provided that g2

0 = (2Mp/mc)2f 2
0 = 180.78f2

0 , where Mp
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denotes the proton mass. As is well known, the PV and PS couplings are not equivalent in
higher order. For instance, the so-called pair terms are in the PV coupling stronly suppressed
w.r.t. those generated by the PS coupling. This makes the PV coupling more likely in the
quark model [22]. Also, the PV coupling is more natural from the chiral symmetry point
of view [23]. Fortunately, the determination of the pion-nucleon coupling constant in the
Nijmegen pp phase-shift analysis is not liable to higher-order corrections. It is only the
lowest-order OPE which determines the f2

0 value.
The coupling of the charged pions to the nucleons is described by the charged-pion

coupling constant fc, where f 2
c ≡ f(pnπ+)f(npπ−)/2. For charge independence (i.e., SU(2)-

isospin symmetry) of the pion-nucleon interaction f 2
0 = f 2

c . The charged-pion coupling
constant fc is determined with rather high accuracy in πN scattering, where the consensus
seems to be f 2

c = (79± 1)× 10−3 [8]. On the other hand, the neutral-pion coupling f0 was
not known with the same precision and varies from analysis to analysis (see Table I for a
list of determinations of f0).

The Nijmegen group has succeeded in the determination of the ppπ0 coupling f0, with
an accuracy which is as good as that which has been achieved for the charged-pion coupling.
This accurate determination has been done primarily in the pp phase-shift analysis [5].
Lateron the consequences of the value found for f0 have been studied for the np phase-
shift analysis [4]. Because of its importance, we will first briefly review the pp phase-shift
analysis determination. The long-range pp interaction depends strongly on f0. For the
intermediate-range forces r ≥ b, we studied the forces from the heavier and/or higher-order
boson exchanges (HBE) for some modern potential models. The various choices considered
are

(i) VNUC = VOPE. The change in VOPE due to a form factor as in the Nijmegen poten-
tial [10] has no influence (here we used b = 1.8 fm).

(ii) VNUC = VOPE + V N
HBE, where V N

HBE is the non-OPE part of the Nijmegen poten-
tial [10].

(iii) VNUC = V s
OPE + V N

HBE, where V s
OPE is the static OPE potential.

(iv) VNUC = VOPE + V P
HBE, where V P

HBE is the non-OPE part of the Paris potential [11].
This defines the different potential tails that were studied.
For each potential, the P matrix parameters and f 2

0 , where the latter affects all partial
waves, have been fitted to the data. The results found in [5] are shown in Table II. For tail
(i) b = 1.4 fm appeared not reasonable, so the HBE forces are not negligible outside 1.4 fm.
Here b = 1.8 fm was used and also one extra P -matrix parameter was necessary. For the
tails with the HBE forces, a lower χ2 was obtained. Static or non-static OPE does not make
a difference in the result.

To show the sensitivity of the pp data for the pion, also the pion mass has been determined
as well as the coupling constant. The result found was m = 134.7 ± 2.1 MeV [5], which is
in complete agreement with the value given by [28]. In Fig. 1 the χ2 surface is shown as a
function of m and f 2

0 . It shows a strong correlation and supports the value found for f 2
0 . To

check further the consistency of the pp analysis and the f0 determination, we also studied
whether indeed all partial waves need to have a value for the ppπ0 coupling as required by
the overall fit. The following results were found for VNUC = VOPE + V N

HBE [5]:
(i) Introducing a different coupling for the spin singlets fS and the spin triplets fT , one

obtained f2
S = (74± 2)× 10−3 and f2

T = (72.5± 0.6)× 10−3, which indicates the particular
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importance of the triplet waves.
(ii) Introducing a different coupling for the 3P waves f(3P ) and in all other partial waves

f(rest), one found f2(rest)= (73.8± 0.9)× 10−3 and f 2(3P ) = (72.2± 0.6)× 10−3.
Similar results were also found for the other potential tails.
The results for f2

0 are in reasonable agreement with earlier (less accurate) determinations,
except the value obtained by Kroll [27]. They deviate significantly from the value f 2

c =
(79±1)×10−3 or g2

c = 14.3±0.2 for the charged-pion coupling. So, a large SU(2)-symmetry
breaking has been indicated by the pp phase-shift analysis discussed above.

In the introduction we have described the new features of the most recent pp analysis
of the Nijmegen group. The most important being the inclusion of the magnetic-moment
interaction. In this new phase-shift analysis of all pp scattering data below Tlab = 350
MeV [1] we found

f2
0 = (74.83± 0.77)× 10−3 or g2

0 = 13.53± 0.14 . (7)

The recommended value for the charged-pion coupling, on the other hand, is [8]

f 2
c = (79± 1)× 10−3 or g2

c = 14.3± 0.2 , (8)

where g2
c = [(Mp + Mn)/mc]2f 2

c . Consequently, one observes here a CIB in the pion-nucleon
coupling constants ∆g2 ≡ g2

c −g2
0 = 0.8±0.2, which is smaller than that found in the earlier

analysis [4] which implied ∆g2 = 1.2± 0.2. In general, the errors on the parameters in the
0–350 MeV energy range are smaller than for the more limited 0–30 MeV energy range.
However, one cannot point to a well-defined subset, or type of data, as being in particular
responsible for the low value of g2

0. It rather appears that the data as a whole require a low
pion-nucleon coupling constant.

V. NEUTRON-PROTON ANALYSIS
0–30 MEV DATA

Additional information on CIB can be expected from a phase-shift analysis of the np
data, since here both g2

0 and g2
c occur in the OPE potential. The effect of a large breaking of

charge independence for np scattering can best be understood as follows. The OPE potential
for pp scattering can be written as

VOPE(pp) = g2
0Vπ(m0) , (9)

where m0 denotes the neutral-pion mass. The OPE potential for np scattering in the I = 1
states can then be written as

VOPE(np) = −g2
0Vπ(m0) + 2g2

cVπ(mc) . (10)

(Note that we assume that charge symmetry in the pion-nucleon coupling is still valid, which
implies that gppπ0 = −gnnπ0 = g0.)

Neglecting for a moment all effects due to mass differences, we can also write

VOPE(np) = VOPE(pp) + 2∆g2Vπ . (11)
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With the aforementioned values of g2
0 and g2

c , VOPE(np) in the I = 1 states is found to be
stronger than VOPE(pp).

We have performed an ME phase-shift analysis of all np scattering data below Tlab = 30
MeV. The starting point here is a new 0–30 MeV pp phase-shift analysis derived from the 0–
350 MeV analysis. This analysis differs from the previously published 0–30 MeV analysis [2]
in the following respects. There are added some data which were found to be missing
in the previously used dataset and, more importantly, the magnetic-moment interaction is
included for consistency reasons (the latter interaction makes no difference for the reached χ2

minimum). The I = 1 lower partial waves (3P J and 1D2) from this analysis were then used
in our np analysis, after correcting them not only for electromagnetic and mass-difference
effects, but we also allow for a difference between g2

0 and g2
c . These phase shifts are therefore

essentially parametrized by the amount of CIB in the coupling constants through Eq. (11).
The I = 0 partial waves up to J = 2 and the 1S0 phase shift (in order to arrive at the
correct np scattering lengths) are parametrized with an energy-dependent P matrix. All
higher partial waves (J > 2) for both I = 0 and I = 1 are taken to be pure OPE, including
the explicit ∆g2 = g2

c − g2
0 and mass-difference effects.

If we take ∆g2 = 0 with g2
0 = g2

c = 14.3, we obtain χ2 = 454.1 for Ndat = 478 (Ndf = 425).
However, if we have ∆g2 as a free parameter, χ2 drops to χ2 = 439.2 and we find

∆g2 = 0.61± 0.14 , (12)

which is in reasonable agreement with g2
c = 14.3 ± 0.2 and g2

0 = 13.53 ± 0.14 of the new
0–350 MeV analysis. This is smaller than the previous result [4] of ∆g2 = 1.28±0.12, which
was based on pp and np analyses without the magnetic-moment interaction. The drop in
χ2 is mainly due to a better description of the polarization data. The polarization in this
energy range can be approximated by

σ(θ)Ay(θ) =
3
k2 sin2 δ(3S1)∆

p
LS sin θ . (13)

The reason for the drop in χ2 is primarily due to the fact that a better description of the spin-
orbit combination ∆p

LS has been attained. The OPE potential does not contain a spin-orbit
interaction and hence the improvement is due to a second-order effect in the pion-nucleon
coupling constants. (The different central and tensor phase shifts, which are first order in
∆g2 give only minor improvements in the description of the data.)

Whereas the magnetic-moment interaction for the Tlab = 0− 30 MeV pp analysis is not
visible in χ2, its inclusion is necessary for a proper description of the low-energy np data.
Especially the description of the very accurate analyzing-power measurements of Holslin et
al. [29] (10.03 MeV), Tornow et al. [30] (16.9 MeV), and Sromicki et al. [31] (25.0 MeV), is
improved significantly, as shown in Table III.

VI. DISCUSSION

Theoretically, the large CIB has not found an explanation. It is generally believed that
the charge-independence breaking (CIB) is rather small (see, e.g., [9]). For example, the
electromagnetic breaking by radiative corrections is rather small. Typically |f0 − fc|/fc ≈
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0.5% [32]. Moreover, this correction is in the “wrong” direction. Recently, Henley and Zhang
have estimated the effects of the mass difference between the u and the d quark [33]. They
use a nonrelativistic quark model (masses ≈ 300 MeV) with md −mu = 6 MeV. The pion-
nucleon coupling in their model originates from a bremsstrahlung gluon, which produces a
virtual quark-antiquark pair that, after a rearrangement of quarks, leads to an amplitude
for the formation of a pion (hereafter called 3S1 model). Their results show a breaking of
the pion-nucleon coupling constant of 0.1 − 1.0% and again into the wrong direction. (In
Ref. [5] it was prematurely concluded from [34] that the 3S1 model supported the large CIB.)
The CIB due to π0 − η mixing is small and again in the “wrong” direction [35]. Similar
results are obtained in [36] using a Nambu and Jona-Lasinio model [37] for calculation of
the pion and nucleon states. Also, ρ0 − ω mixing gives a small CIB. In a cloudy bag model
calculation [38], one obtained that gnnπ0 is about 0.4% bigger than gppπ0 , which is again
much smaller than one expects from the Nijmegen phase-shift analysis. However, another
bag model calculation [39], which used the MIT bag model [40] wave functions, reported a
small CIB into the other direction.

Finally, we will discuss CIB in the context of the 3P 0 model [41, 42, 43]. The results of
this model are rather similar to those of [33]. However, in contrast to the gluon model, the
interaction Lagrangian, which is akin to mass terms, breaks chiral symmetry. Since the 3P 0

model links the hadron couplings to the physical vacuum, it suggests the possibility to relate
the CIB in the pion-nucleon coupling to the CIB of the vacuum. However, we noticed that
the pion-nucleon coupling in the 3P 0 model is rather sensitive to the radii of the pions and
the nucleons. (This was claimed not to be so for the 3S1 model, but we found this rather
to depend on the gluon propagator used [44].) Ignoring this dependence for a moment, we
make an estimation of the CIB in the 3P 0 model pair-creation constant γ, which would be
needed if the CIB was entirely to be explained this way.

The creation of the quark-antiquark pair is described by the interaction Lagrangian
density

L(3P0) = [q̄i(x)(Oq̄q)i,jqj(x)]N.V. , (14)

where the subscript N.V. means that the operator does not work on the valence quarks. So,
this interaction either creates a q̄q pair from the vacuum or destroys such a pair. The matrix
O is a matrix in quark-flavor space and it is here supposed not to give quark mixing. However,
we will allow for SU(3)-symmetry breaking and hence, we give it the form (Oq̄q)i,j = γiδij

(i, j = u, d, s). In this paper we will be concerned with the up and down quark only, and
so we can restrict ourselves to the upper 2 × 2 matrix. Introducing the I = 0 and I = 1
components of the 3P 0 pair by the combination

γ0 = 1
2(γu + γd) , and γ1 = −1

2(γu − γd) , (15)

it is now straightforward to calculate the different πN coupling constants by working out
the matrix elements 〈N2π|H(3P0)|N1〉. Here we include into the constants γi (i = u, d) the
overlap integrals, assuming these to be independent of the particular pion and nucleons. We
then find the following results

gppπ0 = g0 gpnπ+/
√

2 = g0 + 3
2∆g

−gnnπ0 = g0 + 2∆g gnpπ−/
√

2 = g0 + 1
2∆g

, (16)
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which implies that gc − g0 ≈ ∆g = 4
9
√

3
γ1. Using the result from [5], we get γ1/γ0 = 4.6%.

On the other hand, for the new analysis [1], with the magnetic-moment interaction included,
we get γ1/γ0 = 3.0%.

Coming back to the dependence on the pion radius, one would expect that Rπ± > Rπ0 ,
due to the Coulomb interaction between the quarks. It appears in the (naive) 3P 0 model
that Rπ± − Rπ0 ≈ 0.05 fm would be sufficient to explain the CIB we found. However, it
must be stressed that we do not know much about the difference between the pion radii.
Even the definition of the radius that would be operative here, is rather unclear. Therefore,
how much of the CIB is due to the internal structure of, e.g., the pions and how much there
has to be explained for example as an effect of a genuine CIB of the vacuum, is at present
obscure.

To summarize, we have discussed briefly various theoretical possibilities for the origin of
CIB. However, for most of them it has already been demonstrated in the literature that they
are unable to produce sizable effects. Therefore, we conclude that more effort is needed, both
experimentally and theoretically, to settle the size of the CIB. We expect to gain further
information from the 0–350 MeV np phase-shift analysis.
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TABLES

TABLE I. Determionation of the neutral-pion coupling constant 103× f2
0 . (a) and (b) indicate

different data sets (from [5]).

Bugg [24] 75.2±3.9
MacGregor, Arndt, Wright [25] 81.4±4.6
Breit et al. [26] 73.1–81.8
Bugg et al. [15] 77.8±3.6
Kroll [27] 80.3±2.2
Bergevoet et al. [2] 80.2±6.6 (a)

74.1±5.5 (b)

TABLE II. Results pp phase-shift analysis for f2
0 for different potential tails (from [5]).

VNUC b[fm] χ2
min 103 × f2

0

VOPE 1.8 1288.9 71.9±0.8
VOPE + V N

HBE 1.4 1266.7 72.6±0.6
V s

OPE + V N
HBE 1.4 1265.9 72.5±0.6

VOPE + V P
HBE 1.4 1273.3 74.6±0.6

TABLE III. The change in χ2 due to the inclusion of the magnetic-moment interaction for the
recent low-energy polarization data.

Holslin et al. [29] 10.03 MeV 12 data χ2 = 17.1 → 10.3
Tornow et al. [30] 16.9 MeV 15 data χ2 = 19.6 → 16.4
Sromicki et al. [31] 25.0 MeV 16 data χ2 = 29.2 → 18.1
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FIGURES

FIG. 1. Ellipses of constant χ2 in the (m, f2) plane, for optimal adjustment of the P -matrix pa-
rameters. Solid ellipse: 69% CL region (∆χ2 = 2.4). Dashed ellipse: 95.5% CL region (∆χ2 = 6.2).
Filled circle with vertical bar: value and error for m with free f2

0 . Open circle with horizontal bar:
value and error for f2

c from πN scattering (from [8]).

13


	INTRODUCTION
	THE NIJMEGEN PHASE-SHIFT ANALYSIS
	THE POTENTIAL TAIL
	THE g_{pp-pi0} DETERMINATION
	NEUTRON-PROTON ANALYSIS; 0-30 MEV DATA
	DISCUSSION

