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Abstract

The recent work in Nijmegen on the determination of the NNπ-coupling
constants is discussed. No evidence for any charge dependence of these cou-
pling constants is found. The best value for the charge independent coupling
constant is

f2/4π = 0.075 ,

which is definitely a lot smaller than the commonly accepted value f2/4π =
0.079.
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INTRODUCTION

In this talk I will restrict myself mainly to the recent work in Nijmegen on the determi-
nation of the meson-nucleon coupling constants [1]-[4]. This work is part of a much larger
project of studying the baryon-baryon (BB) and the antibaryon-baryon (BB) interactions.
To put this work in the right perspective, we have to go back to the seventies, when we
tried to construct good BB-potentials [5]. This culminated in 1978 in the construction of
a soft-core, one-boson-exchange (OBE) NN-potential: Nijm78 [6], which was and still is,
one of the best NN-potentials available. We realized then, that if one wants to improve
significantly upon this potential, then one needs to have either a much better understanding
of the underlying theory or one must have a much better knowledge of the experimental
data. Of course, improvements on both sides are also possible and welcome. We decided to
spend a lot of time doing phase-shift analyses (PSA) or partial-wave analyses (PWA) of the
experimental NN scattering data in order to improve our knowledge of these data.

To understand another reason, why we look so closely at the experimental data, one
must again go back to the end of the seventies, when many new multiquark states, like
the Q6-dibaryon states [7] and the Q2Q2-baryonium states [8] were predicted and studied.
Around that time it became quite clear that quarks were not objects to be studied only by
high-energy physicists, but that quarks are, or at least should be, also important in nuclear
physics [9]. However, one of the amazing things was and still is:

‘Where are these quark effects in the NN-interaction?’

In the hope to find possible evidence for such quark effects we decided to study the
experimental data very carefully.

We started therefore with partial-wave analyses of the NN scattering data [10, 11]. At
present, about 10 years later, we have finally finished more or less the analyses [2] of the
proton-proton scattering data below Tlab = 350 MeV and we are now working on the analyses
of neutron-proton scattering data in the same energy range.

In our partial-wave analyses of the pp-data [1, 2, 12] with Tlab < 350 MeV we could
determine very accurately the ppπ0-coupling constant at the pion pole. We found

f2
ppπ0/4π = 0.0750(7) or g2

ppπ0/4π = 13.55(13) . (1)

This value of the ppπ0-coupling constant must be compared with the value of the NNπ-
coupling constant as determined in the analyses of the πN-scattering data. In such analyses
one determines the charged-pion-nucleon coupling constant at the pole. One found [13]

f 2
c /4π = 0.079(1) or g2

c/4π = 14.3(2) . (2)

When we compared the results in (1) and (2) we came to the conclusion that either there is
a large breaking of charge independence, or the result (2) is not correct.

We were at that time confident enough about our result (1), that this value was not
seriously questioned anymore by us. But we also had no reason to doubt seriously the value
(2), so we concluded that there must be a large breaking of charge independence for these
coupling constants. At that same moment we expected that quark model calculations would
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be able to explain such a surprisingly large breaking of charge independence in terms of
up-down quark mass differences and/or other effects [12]. In the meantime several quark
model calculations have been performed, all indicating that it is not so simple to obtain
large charge independence breaking effects. Therefore it has been slowly dawning on us that
perhaps the value (2) obtained from the πN-data is not correct. Several new determinations
of the charged-pion-nucleon coupling constant are now (almost) available [3, 4, 14]. These
new determinations are all consistent with f 2

c /4π = 0.075. There is therefore no evidence at
present for a breaking of charge independence in the values of the NNπ-coupling constants.

THE NIJMEGEN PARTIAL-WAVE ANALYSES

The experimental NN-scattering data are at each energy described by an infinite number
of phase-shifts, which are functions of the energy. Obviously there exists only a finite
amount of experimental data. This implies that partial-wave analyses are only possible with
a sufficient theoretical input.

Because the long-range interaction VL between nucleons is theoretically well-known one
can calculate reliably the higher ` phases. The unknown short-range interaction is in the
higher ` phases sufficiently screened by the large centrifugal barrier. This all means, that in
a partial-wave analysis one has to determine only a finite number of phases with low `.

Another very important ingredient in a multi-energy partial-wave analysis is the en-
ergy dependence of these low ` phases. The quality of the parametrization of this energy
dependence will to a large extent determine the quality of the phase-shift analyses.

In our PWA we solve for each partial-wave and each energy the relativistic wave equation
[9]

(∆ + p2)ψ = 2mV ψ , (3)

where p2 is the cm-momentum, which is related to the cm-energy E by

E =
√

p2 + m2
1 +

√

p2 + m2
2 − (m1 + m2) .

In order to obtain a solution of the radial wave equation in each partial-wave we assume
an energy-dependent boundary condition at r = b = 1.4 fm. At that point we specify the
P-matrix, which is the logarithmic derivative of the radial wave function [15]. For r > b we
take the potential equal to the theoretically well-known long-range interaction VL. These
ingredients (the energy dependent boundary condition, the well-known long range potential
VL, and the relativistic wave equation) guarantee us a realistic energy dependence of our
phase parameters.

The theoretically well-known long-range interaction VL for r > b we write as

VL = VEM + VOPE + VHBE , (4)

where VEM is the complete electromagnetic interaction [16], VOPE the one-pion-exchange
potential, and VHBE is a contribution of the heavier-boson exchanges. For this heavier-boson
exchange potential we normally take the Nijmegen potential Nijm78. The electromagnetic
interaction VEM we write as

3



VEM = VC1 + VC2 + VMM + VVP . (5)

Here VC1 = α′/r is the non-static Coulomb potential with

α′ = α
E1E2 + p2

m(E1 + E2)
≈ α(1 + 3Tlab/4M) .

VC2 is a rather unimportant relativistic correction, which is of order
α2/Mr2. The magnetic-moment interaction VMM is of the order α/M2r3. The vacuum-

polarization potential VVP is of the order α2e−2mer/r.
An important part of the long-range potential (4) is the one-pion-exchange potential

VOPE. This potential contains the NNπ-coupling constant. This constant can be determined
in the phase-shift analyses of the NN-data, because it is contained in the description of
every phase-shift. Somewhat later we will come back to this VOPE.

The importance of the inclusion of the best long-range potential is that its inclusion
improves very much the analyticity properties of the P-matrix in the complex energy plane.
Our P-matrix will not have any left-hand cuts or singularities due to the Coulomb interac-
tion, the vacuum polarization potential, or the OPEP [17]. The first left-hand singularity in
P appears at the start of the two-pion-exchange cut. This large region of analyticity for the
P-matrix makes the parametrization of the energy-dependence quite simple. This implies a
very realistic energy-dependence for our phase parameters. In our PWA [2] of the pp-data
with Tlab ≤ 350 MeV we fitted to Nd = 1766 scattering data which amounted to Ndf = 1586
degrees of freedom. We reached chi2min = 1760.7, which means χ2/Nd = 0.997.

QUALITY OF PP-POTENTIALS

When one has finished a PWA of all pp-data with Tlab < 350 MeV, then one has such
an understanding of these data, that it becomes rather easy to determine the quality of the
various pp-potentials. It is then relatively easy to see how well a certain potential fits the
experimental scattering data. The most direct way to answer this question is to compare
the predictions of the potential directly with all the experimental data. However, this is
an enormous job. At each experimental energy one needs to calculate a sufficient amount
of phases, such that the experimental observables (differential cross sections, polarizations)
can be calculated with sufficient accuracy. For this one needs fancy programs, that can
incorporate the more difficult to calculate electro-magnetic effects, like the magnetic moment
interaction and the vacuum polarization. The normalization constants for the different data
sets need to be determined in a direct comparison of the potential predictions with the
experimental data. To do this for only one potential requires already a lot of effort and
computer time.

A more practical way to go about it, is to use single energy phase-shift analyses in which
one has determined at several energies the best values for the phases, the corresponding
minimal χ2, the error matrix, and the normalization constants for the various data sets. This
way a quadratic χ2-surface for all experimental data has been constructed. When confronting
a potential with the experimental data one uses this χ2-surface. The normalization constants
are given the values as determined by the single energy partial-wave analyses. We have
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0− 350 3− 350 ref.
Phase shift analyses

0.95 0.96 Nijm. single-energy 90 [2]
1.00 1.01 Nijm. multi-energy 90 [2]

NN-potentials

10. 6.1 Hamada-Johnston 62 [19]
1.92 Nijmegen 78 [6]
4.4 2.0 Paris 80 [18]
2.3 Reid 68,82 [20]

7.2 Argonne 84 [21]
14. Bonn(r) 87 [22]
10. Bonn-A 89 [23]
9.2 Bonn-B 89 [23]

pp-potentials

1.89 Bonn(pp) 89 [24]
1.09 Nijmegen Rdl 90 [25]

TABLE I. The χ2/Nd with the pp-data for the various potentials. When there are no numbers
given in the column 0−350 MeV then this means that the potential was fitted to the np scattering
length and the number in this column is larger than 500.

checked the method for the Nijmegen [6] and for the Paris potential [18], where we calculated
the total χ2 both ways. The agreement between both methods was good.

In Table I we give for the different potentials the χ2/Nd with the pp-data. Because
several potentials do not fit the very low energy pp-data very well, we will for these cases
compare with the Nd = 1569 pp-data from 3 − 350 MeV instead of with the Nd = 1766
pp-data in the 0− 350 MeV range.

From Table I we note that apart from the very low energy region the Nijm78 potential [6]
and the Paris80 potential [18] give similar χ2-values. For the very low energy data, Tlab ≈ 1
MeV, the 1S0-phase of the Paris potential is in error.

Surprising is the poor quality of the recent Argonne84 [21] and the Bonn(r) potentials
[22, 23] of 1987 and 1989. They fit the pp-data worse than the old Hamada-Johnston
potential [19] of 1962. This is what one calls progress.

Recently the Bonn group constructed [24] a special pp-potential Bonn(pp)89. The fit
of this newest potential to the pp-data is of the same quality as the fits of the much older
Nijmegen and Paris potentials.

Also in Nijmegen we constructed new pp-potentials. We have several of them. The best
one at present is the Reidlike potential Nijmegen Rdl90 [25], which fits the pp-data with
χ2/Nd = 1.09, which is almost as good as the fit of the Nijmegen multi-energy phase-shift
analyses with χ2/Nd = 1.00. A much lower χ2 than the χ2 of the Nijmegen multi-energy
PSA is not possible.
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THE ONE-PION-EXCHANGE POTENTIAL

The NNπ-interaction is described by the phenomenological interaction Lagrangians LPS

or LPV, where

LPS = g(ψ̄2iγ5ψ1)φ and LPV = (f/ms)(ψ̄2iγµγ5ψ1)∂µφ .

The corresponding potentials VOPE are equivalent when

f/ms = g/(M1 + M2) .

The scaling mass ms is introduced in LPV in order to make the coupling constant f dimen-
sionless. Different choices for the scaling mass are possible. We feel that the best one is to
use ms = m+ the charged pion mass. Quark model calculations support this choice. In that
case charge independence of the PS-coupling constants g implies that for the PV-coupling
constants f charge independence is only slightly broken, due to the factor M1 + M2. How-
ever, this breaking is so small, that in this case charge independence for the g’s implies
charge independence for the f ’s and vice versa.

Another unfortunate choice sometimes made is to take ms = m, where m is the mass of
the exchanged pion. Because of the large mass difference between the π0 and the π+ charge
independence for the f ’s will mean a large breaking of charge independence for the g’s. In
order not to introduce an artificial breaking of charge independence it is better not to use
the choice ms = m, but to take always ms = m+.

Due to the spatial extension of the hadrons the coupling constant in momentum space
is not really a constant, but is modified by a form factor F (k2), where k2 is the momentum
transfer. Different functional forms and different normalizations are in use. We write

g2(k2) = g2 F (k2) .

When one normalizes the form factor such that F (−m2
π) = 1, then g2 will be the value of

the coupling constant at the pion pole. In order to demonstrate the effect of a form factor
we take

F (k2) = (Λ2 −m2)/(Λ2 + k2) ,

which is normalized at the pole. For scalar-meson exchange the potential V (k2) in momen-
tum space is then

V (k2) = −g2 Λ2 −m2

Λ2 + k2

1
k2 + m2 = −g2

{ 1
k2 + m2 −

1
k2 + Λ2

}

.

In coordinate space we get

V (r) = − g2

4π
e−mr

r

{

1− e−(Λ−m)r
}

.

We see clearly that for large values of r the second term inside parenthesis goes to zero
and the potential V (r) becomes the ordinary Yukawa-potential. The form factor modifies
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the potential in the inner region only. In our PWA we only use the OPE-potential outside
r = 1.4 fm. This means that we clearly determine the coupling constant at the pole. In
order to demonstrate very clearly that our value for f2/4π at the pion pole is practically
independent of the cutoff Λ we give in Table II the value for the ppπ0-coupling constant at
the pole as determined in our PWA using different values of Λ and gaussian form factors
F (k2) = exp(−(k2 + m2)/Λ2).

From our PWA of the pp-data we find

f2
ppπ0/4π = 0.0750(7) ,

where the quoted error is purely statistical. There could, of course, always be systematic
errors of unknown origin, but we feel quite confident about our value. This means that there
is either evidence for a large breaking of charge independence or the value of the charged
coupling constant as determined in πN scattering is incorrect.

Λ (MeV) ∞ 965 550 500
f2/4π 0.0750 0.0750 0.0751 0.0753

TABLE II. The value of the ppπ0-coupling constant at the pole as determined in pp-scattering
for different values of Λ. The statistical error is 0.0007.

THE CHARGED-PION-NUCLEON COUPLING CONSTANT

From past experiences in high energy physics and from recent quark model calculations
[26] it seems unlikely and also rather unbelievable, that there is such a large breaking of
charge independence. This then indicates that one must reconsider the present value for the
charged NNπ-coupling constant f 2

c /4π = 0.079(1).
This charged coupling constant can be seen in several different reactions. First of all in

elastic πN scattering. A recent analysis [14] of the πN-scattering data gives

f 2
c /4π = 0.0735(15) .

The cause for this new value is the many new scattering data that have recently become
available.

Charged-pion exchange is also possible and important in np-scattering, where this charge
exchange gives at intermediate and higher energies rise to a large peak in the backward
differential cross section. In a preliminary analysis [27] of the np-data with Tlab < 30 MeV
we found evidence for a sizable difference ∆f 2 = f 2

c − f2
0 . In a more extensive study we

discovered later several sources of systematic errors in the 0–30 MeV np-phase shift analyses.
These systematic errors did give rise to large effects. This caused us to abandone (at least
temporary) our PWA of the np-data with Tlab < 30 MeV and to concentrate on the analyses
of the data with Tlab < 350 MeV. This Nijmegen PWA [4] of the np-scattering data with
Tlab ≤ 350 MeV is still in a preliminary stage. In this analysis we find for the charged
coupling constant
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f2
c /4π = 0.0747(5) .

In Nijmegen we are also very busy with a PWA of the NN scattering data [3]. The
charged pion is also exchanged in the charge-exchange reaction

p + p → n + n .

In our analysis of this charge-exchange reaction we find

f 2
c /4π = 0.0751(17) .

When we look at all these various determinations of the charged pion-nucleon coupling
constant we come to the conclusion that we have at present no evidence for any breaking of
charge independence of the NNπ-coupling constants.

As value to use for the charge independent NNπ-coupling constant we recommend

f 2(−m2
π)/4π = 0.075 .

This is the value at the pion pole. Using a gaussian form factor with Λ = 615 MeV gives then
at k2 = 0 the value f 2(0)/4π = 0.07124, which is the value predicted by a naive application
of the Goldberger-Treiman relation.
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