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Abstract

We present some recent results of the Nijmegen partial-wave analysis of all
NN scattering data below Tlab = 350 MeV. We compare the predictions of
various NN potential models with the NN scattering data and with the phase
parameters at 50 MeV.
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I. INTRODUCTION

For many years, the Nijmegen group has been investigating the baryon-baryon interac-
tion. After the construction of several hard-core nucleon-nucleon and hyperon-nucleon po-
tentials, this culminated in 1978 in the construction of the soft-core NN potential [1]. This
was, and still is, one of the best NN potentials presently available. There is a coordinate-
space version [1] and a momentum-space version [2], which are totally equivalent; they
produce exactly the same phase parameters at all energies. In order to improve this poten-
tial, we needed to get both a better understanding of the underlying theory and a better
knowledge of the experimental data. For that purpose we started to develop theoretical and
computational tools to perform phase-shift (or rather partial-wave) analyses of the NN scat-
tering data. The first major step, the analysis of the pp scattering data, has been published
several years ago [3, 4].

At present we have obtained also fits (still preliminary) with the np scattering data
and with the combined pp and np scattering data. In this talk we discuss some of the
features of our way of analyzing the data. In order to present the results of our analyses,
we will discuss some special topics. In Sec. 3 we will discuss our determination of the
NNπ coupling constants. We consider this determination one of the nicest results of our
partial-wave analyses. Because we have obtained a good knowledge of the experimental
data and because we can compute the experimental observables properly, in Sec. 4 we make
comparisons of various NN potential models with the NN data. This is repeated in Sec. 5,
where we now compare the potential predictions with the phase parameters at 50 MeV. Our
important conclusion is that our value for the mixing parameter ε1 is in perfect agreement
with modern potential predictions.

II. PARTIAL-WAVE ANALYSIS

The first main problem in doing partial-wave analyses is: How to calculate the scattering
amplitudes in terms of phase shifts (and mixing parameters)? We want to stress that this
is a non-trivial problem, because the proper treatment of the electromagnetic part of the
interaction and its effect on the phase shifts and the scattering amplitude is very important
and at the same time rather complicated. For example, in the case of pp scattering the one-
pion-exchange (OPE) amplitude has to be calculated properly, including its distortion by
the Coulomb interaction. This means that the analytical expression for the OPE scattering
amplitude cannot be used. Here also lie some of the differences between the various partial-
wave analyses that have appeared in the literature: In the Nijmegen [4], VPI&SU [5], and
Saclay [6] analyses, the higher partial waves and Coulomb distortion effects are treated
differently.

The second main problem is: What is a good parametrization for the energy dependence
of the phase parameters? This is important when doing multi-energy (m.e.) partial-wave
analyses. The basis of any partial-wave analysis (PWA) is a good m.e. analysis. In such
a m.e. PWA all experimental data at all energies are used. Such an analysis should be
compared with several single-energy (s.e.) PWAs, in which the data in some energy interval
are used in determining the phase parameters at one single energy. This energy usually
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corresponds to the middle of that energy interval; however, this is not strictly necessary. In
s.e. PWAs at several energies we determine the phase parameters and their errors. These s.e.
values for the phase parameters should scatter statistically around the curve representing
the phase parameters as determined in the m.e. PWA.

We think that our analyses, and especially our energy dependence of the phase param-
eters, is of such quality that the situation sketched above is correct. Therefore, we believe
that for the Nijmegen analyses the ‘best’ value for a particular phase parameter is the value
as obtained in the m.e. analysis, rather than the value as obtained in the s.e. analysis.

As an example, consider the 3S1-3D1 mixing parameter ε1 in np scattering around 100
MeV. In a s.e. analysis at 100 MeV, ε1 is not accurately known due to the absence of spin-
correlation data. This is shown in Fig. 1, where our s.e. results are represented by the
black dots. At the adjoining energies at 50 and 150 MeV the available spin-correlation data
provide for an accurate determination of ε1. These data, and the data at lower and higher
energies make that ε1 is fixed rather well in the m.e. analysis, represented by the solid line.
This means that also at 100 MeV, ε1 is in fact much more accurately determined by the data
than the s.e. result would suggest. The example demonstrates that a s.e. analysis without
an accompanying m.e. analysis is not very useful for making statements with regard to the
accuracy with which the phase parameters are determined.

The energy dependence of the lower partial waves in our analyses is determined as fol-
lows. In our analysis we divide the interaction into two parts: a long-range part VL which is
well known and essentially model independent, and a short-range part VS which is treated
phenomenologically. The long-range part VL = VEM +VNUC consists of the complete electro-
magnetic interaction VEM and the tail of the nuclear potential VNUC . The electromagnetic
potential contains the non-static Coulomb potential [7] (including relativistic corrections
and two-photon-exchange corrections), the magnetic-moment interaction [8], and the vac-
uum polarization interaction [9]. The tail of the nuclear potential is dominated by the
one-pion-exchange (OPE) potential, but contains also contributions of shorter range due to
multi-pion exchange or the exchange of heavier bosons (like ρ, ω, η). For these shorter-range
contributions we use the Nijmegen potential [1]: Nijm78. However, because we only need
the tail of the potential (outside r = 1.4 fm), any decent potential would have sufficed here.

Using this long-range potential VL, the radial Schrödinger equation

(∆ + k2)ψ = 2MredVLψ (1)

is solved for r > b = 1.4 fm. Relativistic effects are taken into account via the potential and
by using the relativistic expression for the c.m. energy

E =
√

m2
1 + k2 +

√

m2
2 + k2 − (m1 + m2) . (2)

The presence of the centrifugal barrier makes that the Schrödinger equation need only be
solved for a small number of lower partial waves. Still, the equation has to be solved for all
energies at which experimental data have been measured. The phenomenology, necessary
to describe the short-range interaction is represented by a boundary condition at r = b.
The boundary condition for each of the lower partial waves is parametrized by a square well
potential of range r = b. The depth VS of this potential is independent of r, but is allowed
to be energy dependent and different in the different partial waves. It can be shown that
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VS is an analytic function of the energy. Inclusion of a certain interaction in the long-range
potential tail VL implies that the corresponding left-hand singularities in VS are removed.
In our analyses the nearest left-hand singularity in VS is a cut starting at Tlab = −40 MeV
and is due to two-pion exchange. The nearest right-hand cut lies at Tlab = 280 MeV and
is due to inelasticities of the pion production threshold. Fortunately, at energies below 400
MeV inelasticities are still very small, so in our analyses we extend the energy range to be
considered to 350 MeV. Because VS is an analytic function of k2, regular in the cut plane
between Tlab = −40 MeV and Tlab = 280 MeV, we can parametrize it conveniently as a power
series in k2. This analytic parametrization guarantees a pretty good energy dependence of
our phase parameters.

A major problem in doing np analyses is that the np data base is not rich and accurate
enough to determine both I = 0 and I = 1 partial waves. Therefore, in our analysis the
I = 0 lower partial waves are searched for, whereas the np I = 1 partial waves (except the
1S0 np phase shift) are obtained from the corresponding pp partial waves, after correcting
them for Coulomb distortion and mass difference effects, and charge-independence breaking
of the pion-nucleon coupling constants [10]. At present (June 1991) our data base contains
4208 NN scattering data (1766 pp scattering data and 2442 np scattering data). A large
number of data have been removed from the data base because they are of poor quality
(more than 3 standard deviations off). We need 51 parameters to parametrize the lower
partial waves up to J = 4 and we reach χ2

min = 4186.3 which is less than 1 per data point.
From the fact that we need about 50 parameters to obtain a satisfactory description of

the scattering data, we tentatively conclude that any potential will need about the same
number of parameters for a good description of the NN scattering data. This explains why
recent ‘good’ potential models (such as Nijm78 [1], Paris80 [11], Bonn87 [12]) only arrive
at a χ2/Ndata in the order of 2: they use only about 13 parameters. In this context it is
interesting to remark that the latest Nijmegen Reidlike pp potential (see Sec. 4), which fits
the pp data as well as (and even slightly better than) our m.e. PWA, has exactly the same
number of parameters as this PWA.

III. DETERMINATION OF THE NNπ COUPLING CONSTANTS

One of the important results of our new partial-wave analysis is the accurate determi-
nations of the various NNπ coupling constants at the pion pole. Let us sketch the present
situation.

In the construction of the various Nijmegen NN potentials [13, 1], the NNπ coupling
constant was determined by fitting to the NN data of pre-1969 using the Livermore phase-
shift analyses [14]. In 1975 the rather successful hard-core potential model D used f2 =
0.074, while the soft-core potential Nijm78 used the value f 2 = 0.077 at the pion pole. A
few years later, in a phase-shift analysis of the low-energy pp scattering data, the tensor
combination of the triplet P waves indicated that the ppπ0 coupling constant should be
small. At that time, a value of f 2

p ≈ 0.075 was suggested by us [15]. Again, some years
later, in a preliminary PWA of the pp scattering data below Tlab = 350 MeV [16], we
found f2

p = 0.0725(6). This preliminary version did not contain the magnetic-moment
interaction [8] and it used a much smaller data base than presently available. The newer,
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updated value [4] is f2
p = 0.0749(7). These values are significantly smaller than the at that

time accepted value for the charged-pion coupling constant f2
c = 0.079(1), as determined

from πN scattering [17].
In 1987 it was clear to us that there was a large discrepancy between the value for the

ppπ0 coupling constant as determined from the pp scattering data [16] and the value for the
charged-pion coupling constant as determined from the πN scattering data. Because there
was no obvious reason to doubt either one of these determinations, it was concluded [16]
that there apparently is a large breaking of charge independence in the coupling constants.
However, subsequent theoretical model calculations have not been able to explain such a
large breaking. The differences were always found to be rather small and in most models
the charged-pion coupling was found to be smaller than the ppπ0 coupling (see, e.g., Refs. [18,
19]). If we are to believe the theoretical model calculations which rule out a large charge-
independence breaking, we can only come to the conclusion that the determination of at
least one of these two coupling constants should be incorrect.

We are confident of our value for f 2
p extracted from the pp scattering data. We therefore

believe that the previously accepted high value for f 2
c as determined in πN scattering can no

longer be taken for granted. Recent determinations of this coupling constant in the VPI&SU
analyses of the πN scattering data by Arndt and co-workers [20] resulted in f 2

c = 0.0735(15).
The value for f 2

c could also be determined in an analysis of the data on the charge-exchange
reaction pp → nn below plab = 950 MeV/c, which resulted in [21] f 2

c = 0.0751(17). Both
results are within one standard deviation from the value for f 2

p determined in the Nijmegen
pp analysis [4], so large charge-independence-breaking effects need no longer be invoked.

This result is also supported by the preliminary result of our NN partial-wave analysis,
which now also includes the np scattering data. Introducing the three relevant coupling
constants

f2
p ≡ fppπ0fppπ0 for pp → pp ,

f 2
0 ≡ −fnnπ0fppπ0 for np → np ,

2f2
c ≡ fnpπ−fpnπ+ for np → pn .

(3)

we find at the pion pole

f2
p = 0.0751(6) , f 2

0 = 0.0752(8) , f 2
c = 0.0741(5) , (4)

which implies a value for the nnπ0 coupling constant of f2
n = 0.075(2). Assuming that charge

independence between the coupling constants holds, we have also performed a combined
analysis where we use one coupling constant only, i.e., f 2 ≡ f 2

p = f 2
n = f 2

c . We then find

f 2 = 0.0749(4) , (5)

and χ2
min rises with 6.8. Comparing with the result (4) shows that there apparently is no sig-

nificant charge-independence breaking in the NNπ coupling constants. This corroborates the
results of various theoretical model calculations [18, 19] which find that charge-independence-
breaking effects are small.

There are several ways for demonstrating that what we determine is indeed the strength
of the OPE potential, where we here mention the possibility to extract the corresponding
pion mass. We find mπ0 = 135.6±1.3 MeV, to be compared with the experimental value [22]
of mπ0 = 134.9739(6) MeV, and mπ+ = 139.4 ± 1.0 MeV, also in excellent agreement with
the experimental value [22] mπ+ = 139.5675(4) MeV.
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IV. QUALITY OF NN POTENTIALS

Another result of a complete PWA is that a good knowledge of the data is available.
This can then be used to see how well the various potential models fit the experimental
data. The s.e. analyses at a number of different energy bins provide us with error matrices
for the lower partial-wave phase parameters. Because our combined analysis of the pp and
np data is not in a final stage yet, we here focus mainly on the pp analysis. The s.e. analyses
provide us with ten error matrices En. The error matrix is the inverse of half the second
derivative matrix of the χ2 hypersurface with respect to the phase parameters. Denoting the
deviation of some model phase parameters from the s.e. phase parameters in each energy
bin by d, the χ2 of the model can now be written as a sum of the s.e. contributions χ2

se,n
and the contributions from the representation matrices χ2

rep,n, i.e.,

χ2(mod) =
∑

n

(

χ2
se,n + χ2

rep,n

)

= χ2
se +

∑

n
dT E−1

n d . (6)

Although the error matrices En give a pretty good representation of the χ2-surface within a
certain energy bin, one should note that it is not an exact representation for several reasons.
First of all, the higher partial-wave phase parameters and the normalization constants are
fixed at their s.e. values. Furthermore, the data have been clustered at some central energy
within an energy bin using the results of the m.e. fit, and next to that we have used the
approximation that the χ2 hypersurface is quadratic in the neighborhood of the minimum.
The advantage of using this approximate method is that the phase parameters of a potential
model to be tested need only be calculated at a small number (10) of energies. This saves
a lot of computer time, while the results are more than sufficient for their purpose.

The quality of the representation of our χ2-surface was tested in two ways. First, we
used our m.e. phase parameters as model phase parameters and calculated the corresponding
χ2-contribution. The difference between χ2(mod) given by Eq. (6) and the χ2

min reached in
our m.e. analysis is only 0.35. This means that the χ2 as calculated directly on the data and
the χ2 calculated via Eq. (6) only differ by 0.02%. This shows that the approximation that
the χ2 hypersurface of the s.e. analyses is quadratic up to the χ2

min of the m.e. analysis, is
actually very good. As a second test we used the Nijm78 soft-core potential [1] to compare
the χ2-value obtained using Eq. (6) with the χ2-value obtained from a direct comparison
with the data. We are now farther away from the minimum χ2. The difference is now about
2%, which is satisfactory. It allows us to use Eq (6) to make statements with regard to the
quality of some potential model.

We have compared a number of different NN potential models which have appeared in
the literature with the pp scattering data. However, in order to make a fair comparison
possible, we only consider the 3–350 MeV region. The reason is that the 1S0 phase shift
values at the interference minimum (0.38254 MeV) and at 1.0 MeV are very accurately
known. So if the 1S0 of a potential model is a little bit off, the χ2 contribution can be
enormous. For example, the Paris potential [11] gives a χ2 contribution of more than 4500
on these two energy bins alone, whereas at the other energy bins between 3 and 350 MeV
the quality of the potential is very satisfactory.

Still, even in the 3–350 MeV region the quality of most potential models is very poor. This
is partly due to the following. In our analysis (and also in the VPI&SU analysis [5]), there is
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a difference between the pp 1S0 and the np 1S0 phase shifts of about 2◦. At low energies the
difference is even larger (about 5◦ at 10 MeV). Such a difference cannot be obtained using
a nuclear potential model where one only includes the electromagnetic interaction. Indeed,
adding the electromagnetic interaction to the Argonne v14 potential [23] which was fitted to
the np data, we arrive at a χ2/Ndata of more than 7 for the pp data. This large value is for a
part due to an incorrect pp 1S0 phase shift. When we give the Argonne v14 potential perfect
pp 1S0 phase shifts, the χ2/Ndata on the pp data drops to about 4.3. For the Nijm78 [1] and
Paris80 [11] potentials such a situation does not apply, since these models were explicitly
fitted to the np as well as the pp scattering data.

Therefore, in the following we will focus on 4 potential models which were constructed
to explicitly fit the pp data: the Nijm78 soft-core potential [1], the parametrized Paris80
potential [11], an update of the Bonn potential especially fitted to the pp scattering data [24]
(denoted by Bonn89), and a Reidlike Nijmegen potential [10] NijmRdl 91, where each partial
wave is fitted separately to the pp scattering data. The Reidlike potential is constructed in
order to have a phenomenological potential model which reproduces the phase parameters
of our partial-wave analysis. It provides a very good representation of this analysis. The
results are shown in Table I. We note that the old Nijm78 and Paris80 potentials, and the
new Bonn89 potential are roughly of the same quality: χ2/Ndata ≈ 2. The new NijmRdl 91
potential fits the data much better and is as good as (and even a little bit better than) the
m.e. analysis: χ2/Ndata = 1.0.

At this point it is perhaps good to clarify a question which was raised at the Elba
Conference. There somebody tried to imply that there is something wrong with the Nijmegen
data base. We have compared our data base and our predictions with the VPI&SU analyses
using the SAID 1989 solution. This concerns NN data in the 8–325 MeV energy range. The
data bases contain

1113 pp data and 2265 np data = 3378 NN data in SAID 89,
1382 pp data and 2274 np data = 3656 NN data in Nijmegen PWA.

From these numbers it appears definitely not true that we reject more data than VPI&SU.
We have compared the Paris80 potential directly (not using Eq. (6)) with these two data
sets. The χ2/Ndata of the Paris80 potential on the interval 8–325 MeV yields

pp data : χ2/Ndata = 2.27 in SAID 89
= 2.15 in Nijmegen PWA;

np data : χ2/Ndata = 3.31 in SAID 89
= 3.28 in Nijmegen PWA;

NN data : χ2/Ndata = 2.96 in SAID 89
= 2.85 in Nijmegen PWA.

The differences between these two comparisons with the data are: SAID 89 contains phase
parameters slightly different from the phase parameters calculated by us using the Paris80
potential, the inclusion of the Coulomb interaction in the pp analyses is definitely a source of
difference, different NNπ coupling constants are perhaps used, etc. We make the observation
that for np the analyses agree very well, while also for pp the agreement is reasonable. We
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would like to stress here that in the Paris80 potential it is possible to calculate the pp phase
parameters as well as the np phase parameters. When one has only np phase parameyters
available and one tries to compare with the pp data, one should not complain when the
results are shown to be incorrect.

It is also very instructive to see how the different partial waves contribute to the total
χ2. For that purpose we start with the m.e. phase shifts and substitute the 1S0 phase shift
of the different potential models. We then calculate the difference ∆χ2 between this χ2 and
the χ2 of the m.e. analysis. This is also done for the 1D2, the triplet P and the triplet F
phase shifts. These four separate contributions can then be summed and compared with
the χ2 as obtained when we take all the potential phase shifts together. The results are
presented in Table II.

The agreement between the sum of the ∆χ2-contributions substituting the potential
model phase shifts one at a time, and the ∆χ2-contribution using all potential model phase
shifts simultaneously is satisfactory for the old Nijm78 potential and the new NijmRdl 91
potential. For the Nijm78 potential the ∆χ2-contributions are about the same for each of
the separate contributions. On the other hand, for the Paris80 potential the 1S0 phase
shift is rather good, whereas the 3P (and less the 1D2) phase shifts are not. Similarly, for
the Bonn89 potential both the 1S0 and the 3P phase shifts are not very good. Moreover,
for both the Paris80 and Bonn89 potentials, the last column in Table II (the sum of the
separate contributions) is substantially higher than the second column (using all potential
phase shifts together). This means that the correlation between the various phase shifts in
these models is very important. This is not a rather nice feature.

V. ANALYSES AT 50 MEV

Recently, a very accurate pp analyzing power experiment at 50.04 MeV [25] and a mea-
surement of the spin-correlation parameter Azz in np scattering at 67.5 MeV [26] were
reported. These experiments, together with the other pp and np scattering data already
present in the 50 MeV region, provide us with a fairly complete set of NN scattering data
around 50 MeV. This makes that the phase parameters at 50 MeV can now be determined
rather accurately. It will be interesting to see how the results of the various potential models
compare with these phase parameters.

In Table III we present the pp phase shifts at 50 MeV. The first column gives the phase
shifts as determined in the Nijmegen partial-wave analysis. In the following columns we
give the pp phase shifts of the different potential models where in square brackets we give
the difference with the PWA in standard deviations. For example, the 3P 0 phase shift in
the PWA is 11.36 ± 0.12◦. The Nijm78 potential predicts 11.80◦ for this phase shift. The
difference with the PWA value is 0.44◦ which amounts to 4 standard deviations. Important to
note is that the new Bonn89 potential has a 3P 0 phase shift which is 11 standard deviations
too large and a 3P 2 phase shift which is 14 standard deviations too low. These are indications
for the fact that this new Bonn89 pp potential has a tensor potential which is too strong,
whereas its spin-orbit potential is too weak. We would like to point to the very good
performance of the NijmRdl 91 potential for these I = 1 phase parameters.

In Table IV we present some of the I = 0 phase parameters at 50 MeV. The numbers
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between square brackets again denote the difference with the PWA in standard deviations.
For the Bonn potential we have now given the results of the full Bonn87 potential [12]. From
Table IV we can draw the conclusion that the NijmRdl 91 potential again gives an excellent
fit, while the other potentials give roughly similar predictions. Important is our conclusion
that the ε1 mixing parameter at 50 MeV is ε1 = 2.16 ± 0.48◦. This is substantially lower
than the result of the analysis by the Basel group [26] of ε1 = 2.9± 0.3◦, shown as an open
circle in Fig. 1. We want to stress here again that the data base for both analyses are similar.
Only the conclusions differ. Our value for ε1 is in perfect agreement with the modern NN
potentials.

VI. CONCLUSIONS

The Nijmegen partial-wave analyses of all NN scattering data below Tlab = 350 MeV has
a χ2/Ndata = 1.00. This is a very satisfactory result. Because we have Ndf = 3850 degrees
of freedom we would expect 〈χ2

min〉 = 3850 ± 90. We find χ2
min = 4171. This means that

there is still room for improvement of our analysis of ∆χ2 ≈ 320, provided that the data
form a statistical data set. This possibility for improvement can be used as a powerful tool
to check theoretical improvements.

The analysis can also be used to test the quality of potential models. We can calculate
the potential phase shifts and make a direct comparison with the data. But we can also
include the tail of a potential model in the long-range part VL which enters the analysis
via the Schrödinger equation (1). Performing a m.e. analysis using this potential tail then
provides information on its quality.

In our analysis we use the heavier-boson exchanges of some potential model (in the
present analysis we use the Nijmegen soft-core potential [1]) to give a non-OPE contribution
to the intermediate partial waves with 5 ≤ J ≤ 8. This also provides us with a test for the
quality of the non-OPE part of a particular potential model.

Our way of analyzing the data by using a potential tail allows us to determine the NNπ
coupling constants. Perhaps in a later stage we will also be able to determine, e.g., the ω
and ρ coupling constants.

Finally, we can study charge-independence-breaking effects between the pp and np 1S0

phase shifts and the triplet P waves.
Part of this work was included in the research program of the Stichting voor Fundamen-

teel Onderzoek der Materie (FOM) with financial support from the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO).
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TABLES

TABLE I. χ2 values at the 8 single energies between 3 and 350 MeV of the four potential
models mentioned in the text and the pp partial-wave analysis. For the total χ2 one has to add
the χ2

se = 1510.5 of the s.e. analyses as in Eq. (6).

energy Nijm78 Paris80 Bonn89 NijmRdl 91 PWA91

5 52.2 18.4 8.6 15.1 17.7
10 76.4 33.2 46.0 13.8 18.8
25 66.2 12.0 20.0 3.2 0.9
50 531.2 347.7 333.2 9.7 16.4

100 131.1 42.0 56.0 23.0 20.4
150 206.1 419.5 306.0 20.6 21.8
215 198.0 170.3 312.0 11.9 15.2
320 425.5 572.1 518.9 7.1 3.3

3–350 1686.7 1615.2 1600.6 104.3 114.5
χ2/Ndata 2.0 2.0 2.0 1.0 1.0

TABLE II. The difference ∆χ2 (see text) in the 3–350 MeV energy range of various potential
models using all potential phase shifts, or using one particular phase shift only.

Model All Only one phase shift
phases 1S0

3P 1D2
3F Sum

Nijm78 1572.2 302.0 462.8 403.6 442.1 1610.5
Paris80 1500.7 137.2 835.0 637.0 459.6 2068.8

Bonn89 1486.1 630.5 743.4 341.4 193.8 1909.1
NijmRdl 91 –10.2 5.6 0.0 –12.0 1.1 –5.3

TABLE III. pp phase shifts in degrees at 50 MeV of the partial-wave analysis and of various
potential models. The numbers between square brackets denote the difference with the partial-wave
analysis in standard deviations.

phase PWA Nijm78 Paris80 Bonn89 NijmRdl 91
1S0 39.14±0.09 39.58[5] 38.75[4] 38.25[10] 38.82[4]
1D2 1.70±0.01 1.63[7] 1.80[10] 1.68[2] 1.70[0]
3P 0 11.36±0.12 11.80[4] 11.81[4] 12.66[11] 11.43[1]
3P 1 –8.26±0.04 –8.36[2] –8.41[4] –8.34[2] –8.28[0]
3P 2 5.84±0.02 5.78[3] 5.72[2] 5.56[14] 5.80[2]
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TABLE IV. np I = 0 phase parameters in degrees at 50 MeV of the partial-wave analysis and
of various potential models. The numbers between square brackets denote the difference with the
partial-wave analysis in standard deviations.

phase PWA Nijm78 Paris80 Bonn87 NijmRdl 91
1P 1 –9.83±0.24 –8.64[5] –10.94[5] –10.48[3] –9.78[0]
3S1 62.70±0.50 60.40[5] 62.30[1] 62.20[1] 62.50[1]
3D1 –6.43±0.08 –6.60[2] –6.77[4] –6.98[7] –6.44[0]
ε1 2.16±0.48 2.27[0] 1.89[1] 2.08[0] 2.15[0]
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FIGURES

FIG. 1. Mixing parameter ε1 in degrees versus Tlab in MeV. •: s.e. result; ◦: result Basel
group [26]; solid curve: m.e. result; dash-dotted curve: Nijmegen potential; dotted curve: Paris
potential; dashed curve: Bonn potential.
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