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Abstract

Two-pion-exchange nucleon-nucleon potentials are derived for one or two
∆-isobars in the intermediate states. Strong dynamical pair suppression is
assumed. At the NNπ and the N∆π vertices Gaussian form factors are incor-
porated into the relativistic two-body framework by using a dispersion repre-
sentation for the one-pion-exchange amplitudes. The Fourier transformations
are performed using factorization techniques for the energy denominators, tak-
ing into account the mass difference between the nucleon and the ∆-isobar.
Analytic expressions for the TPE potentials are obtained, which contain at
most one-dimensional integrals. The TPE potentials are first calculated up to
orders (fNNπfN∆π)2 and f4

N∆π. These come from the adiabatic contributions
of all planar and crossed three-dimensional momentum-space TPE diagrams.
We also give the contributions of the OPE iteration, which can be subtracted
or not, depending on whether one performs a coupled-channel calculation
for, e.g., the NN,N∆-system, or a single NN -channel calculation. Next, we
calculate the (mπ/M)-corrections. These are due to the 1/M -terms in the
pion-nucleon vertices, and the 1/M -terms in the non-adiabatic expansion of
the nucleon energies in the intermediate states.

PACS numbers: 13.75.Cs, 21.30.+y, 12.40.Qq

Typeset using REVTEX

∗Published in Phys. Rev. C 46, 73 (1992).

1



I. INTRODUCTION

Recently, we have developed techniques to calculate the two-pion-exchange (TPE)
nucleon-nucleon (NN) potentials for Gaussian form factors in an elegant fashion [1]. This
makes it possible to study TPE in NN in the same approach and using the same type of
parameters as in the Nijmegen soft-core OBE model [2, 3]. In this paper we extend the work
of [1] to include the first ∆-isobar and we calculate the 2π-exchange potentials (TPEP’s)
due to one and two ∆-isobars in the intermediate states. Below we give a brief account of
our approach and refer the interested reader for more of the relevant background to [1]. In
the companion paper [4] we calculate the πρ-exchange potential.

The investigation of the role of the ∆33-isobar in the nucleon-nucleon interaction and
nuclear matter dates back to the 1960s and early 1970s. We limit our brief discussion
to the potential-model approaches, since this provides the proper context for this paper.
The early work involved the evaluation of NN ↔ N∆, ∆∆ transitions and TPEP’s in both
configuration space and momentum space. Here we mention the work of Sugawara and
von Hippel [5], Green and Haapakoski [6], Smith and Pandharipande [7], and a review
on the early work on transition potentials [8]. For the dispersion relation approach of
the Copenhagen, Paris, and Stony Brook groups, see Refs. [9, 10, 11]. From this work
it was concluded that the N∆ mass difference cannot be neglected. The incorporation of
this and other features can easily be achieved by working in momentum space. Extensive
work in momentum space has been done by the Bonn group, and for references and a
review we refer to Ref. [12]. Also, the behavior of nucleons and ∆-isobars in nuclear matter
has been discussed by Malfliet and ter Haar [13] in the context of the Dirac-Brueckner
theory. For a study of the role of the ∆-isobar in the NN interaction using the Bethe-
Salpeter equation, see the paper by van Faassen and Tjon [14]. A recent treatment using
phenomenological transition and TPE potentials, with an emphasis on the inelastic region
was done by Lomon [15].

Although the momentum-space techniques have the advantage that the energy depen-
dence can be handled without making certain approximations, we consider a configuration-
space treatment useful and to a certain extend complementary. In configuration space the
Coulomb interaction and many other electromagnetic effects can be included easily in an
accurate way. Furthermore, the physical interpretation of the effects on wave functions,
phase parameters, etc., in terms of central, spin-spin, tensor, and spin-orbit potentials is
very instructive. In this paper we show how to incorporate the N∆ mass difference prop-
erly in the configuration-space calculation. Also, the energy dependence is included in our
treatment of the once-iterated graphs and the second-order Born terms.

We start the derivation of the TPEP from the relativistic coupled-channel two-body
equations [16, 17, 18], where the interaction kernel is given by the two-baryon-irreducible
Feynman diagrams. These are the diagrams with at most two pions in the intermediate
states. The channel space includes the NN -, the N∆-, and the ∆∆-channel. So, in prin-
ciple, with our techniques we could calculate the TPEP’s for such a complicated system.
We will not carry through such a complete treatment in this paper, but will restrict our-
selves to the TPEP in the NN sector. After that, the derivation of the TPEP for the
complete coupled-channel system will be obvious to the reader. To proceed from the four-
dimensional relativistic equations to the three-dimensional equations, we apply the proce-
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dure of Salpeter [19] to the relativistic two-body (two-nucleon) equation by performing the
energy integrations. Completely analogous to Ref. [1] this leads to the three-dimensional
integral equation of Thompson [20], a definition of the interaction kernel, and a definition
of the wave function.

In general, of course, one is unable to perform the energy integrations needed to derive
the three-dimensional equations, and certain approximations are necessary. The particular
approach we used in this matter [1], was given by Klein [21]. Actually, in the derivation of
the TPEP’s we may restrict ourselves to reproduce the Feynman graphs up to second order
in the exchange and so we need in reality the Klein Ansatz only to the free two-body wave
function, where this is easily seen to be correct. In [1] we have shown that in this way we
arrive at the ”old-fashioned perturbation” diagrams in a straigthforward and unambiguous
way.

The procedure to include the Gaussian form factors is exactly the same as in [1]. We
generalize the results for pointlike vertices for the presence of the Gaussian form factors by
employing the Lehmann spectral representation of the one-pion-exchange (OPE) amplitude.
Then the generalization from the point coupling to the coupling with a form factor down to
the level of the ”old-fashioned perturbation” diagrams is easily derived.

To perform the analytic derivation of our formulas, we extend the technique used by
us in [1] to account for the mass difference between the nucleon and the ∆-isobar. This is
particularly important for the treatment of the denominators coming from the intermedi-
ate states. Remarkably, also here it appeared to be feasible to carry through a complete
factorization of the two-pion exchanges, albeit in most cases at the cost of one-dimensional
integrals. This enables us to express the potentials in terms of one-dimensional integrals
over products of the OPE functions already given in Ref. [2].

The diagrams which we calculate are: (i) the parallel and crossed TPE diagrams of
the type that were calculated by Brueckner and Watson for nucleons in the intermediate
states [22]; and (ii) the iterated OPE diagrams of the type that were calculated by Taketani,
Machida, and Ohnuma for nucleons in the intermediate states [23]. Although these calcu-
lations were generalized in Ref. [1] using Gaussian form factors at the vertices instead of
point couplings, we still referred to the potentials as the BW and TMO potentials. As this
distinction was convenient as a means to denote the different contributions, we will adopt
this nomenclature also in this paper.

As in Ref. [1], we adopt the working hypothesis that in nature there is a ”strong pair
suppression” (see, e.g., Ref. [24]). In fact, we simply neglect the transitions from positive-
energy to negative-energy states completely. One might assume that there exists a covariant
phenomenological prescription to implement such strong suppression arbitrarily close. Al-
though pair diagrams are totally absent in this work due to our assumption, our techniques
are, as will be clear from the sequel, fully adequate to treat also the pair diagrams and there
technically is no impediment to include these diagrams.

The paper is organized as follows. In Sec. II the general approach within the framework
of relativistic quantum mechanics is presented. Here the multi-channel approach is pre-
sented and the decomposition of the Feynman propagator in positive- and negative-energy
poles is given. In Sec. III the connection between the relativistic two-body equation de-
scription and that of the three-dimensional formalism is reviewed. In Sec. IV we derive
the two-pion-exchange kernels for point interactions, which are then implemented with the
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various different form factors that occur. The definition of the TPEP for the Lippmann-
Schwinger equation is given and the adiabatic expansion of the energy denominators from
the intermediate states is discussed.

In the next section, using Appendices B and C, the TPEP’s for the BW graphs and
the TMO graphs are derived for the N∆ and ∆∆ intermediate states. The TPE potentials
are calculated up to orders (fNNπfN∆π)2 and f 4

N∆π. We also present the once-iterated OPE
kernels for the N∆ and ∆∆ graphs. These can be subtracted or not, depending on whether
one performs a coupled-channel calculation for, e.g., the NN, N∆-system, or a single NN -
channel calculation. In Sec. VI, (mπ/M)-corrections due to the 1/M -terms in the pion-
nucleon vertices and the 1/M -terms in the non-adiabatic expansion of the nucleon energies
in the intermediate states are evaluated. Finally, in Sec. VII the results are shown and
discussed.

In carrying through the calculations, we have ignored purely off-energy-shell contribu-
tions to the potentials. In principle these could be included as well, but this would make
the algebra more cumbersome. Moreover, we do not distinguish between the different nu-
cleon masses (collectively denoted by M) or between the different pion masses and coupling
constants, hence our results are SU(2)-symmetric. The (average) pion-mass is denoted by
mπ.

In Appendix A the treatment of the energy denominator of the intermediate state of
the TMO graphs is discussed. In Appendix B the procedure to include the Gaussian form
factor is described and demonstrated. In particular, here the factorization technique for the
energy denominators is extended to include the mass difference between the nucleon and
the ∆-isobar. In Appendix C we indicate how the different characteristic potential forms
emerge and we introduce a notation which makes it possible to present our results in a
succinct manner.

II. RELATIVISTIC TWO-BODY EQUATIONS

We consider the coupled NN -, N∆-, and ∆∆-channels

Na(pa, sa) + Nb(pb, sb) ←→ Na′(pa′ , sa′) + Nb′(pb′ , sb′)
←→ Na′(pa′ , sa′) + ∆b′(pb′ , sb′)
←→ ∆a′(pa′ , sa′) + ∆b′(pb′ , sb′).

Introducing the total and relative four-momentum for the initial and final states

P = pa + pb , p = 1
2(pa − pb) ,

P ′ = pa′ + pb′ , p′ = 1
2(pa′ − pb′) , (2.1)

we have in the center-of-mass system (c.m. system) for a and b on-mass-shell

P = (W,0) , p = (0,p) , p′ = (0,p′) . (2.2)

In general, the particles are off-mass-shell in the Green’s functions. In the following, the
on-mass-shell momenta for the initial and final states are denoted by pi and pf , respectively.
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Hence, p0
a = Ea(pi) = (p2

i + M2
a )1/2 and p0

a′ = Ea′(pf ) = (p2
f + M2

a′)
1/2, and similarly for b

and b′. Due to translation invariance, P = P ′ and

W = W ′ = Ea(pi) + Eb(pi) = Ea′(pf ) + Eb′(pf ) .

The relativistic two-body scattering equation reads

ψ(p, P ) = ψ0(p, P ) + G(p; P )
∫

d4p′ I(p, p′)ψ(p′, P ) , (2.3)

where ψ(p, P ) is a 4×4-matrix in Dirac-space, and a three-dimensional column in channel-
space. The interaction kernel I and the two-particle Green’s function G are 3×3-matrices
in channel-space. We describe here the ∆-isobar as a particle with a fixed mass using the
Rarita-Schwinger formalism (see, e.g., Ref. [25]). Therefore, in the channels with a ∆ there
will be extra Lorentz indices, which will occasionally be suppressed in order not to have
to distinguish the different two-particle channels explicitly. The contributions to the kernel
I(p, p′) come from the two-baryon irreducible Feynman diagrams. In writing Eq. (2.3) we
have taken out an overall δ-function which signals the total four-momentum conservation.

The two-particle Green’s function G(p; P ) in Eq. (2.3) is simply the product of the free
propagators for the baryons of line (a) and (b). The nucleon and the ∆-isobar Feynman
propagators are given by the well-known formula

G(s)
{µ},{ν}(p) =

∫

d4x 〈0|T (ψ(s)
{µ}(x)ψ(s)

{ν}(0))|0〉 eip·x

=
Πs(p)

p2 −M2 + iδ
, (2.4)

where ψ(s)
{µ} are the free Rarita-Schwinger fields which describe the s = 1

2 and s = 3
2 baryons

(see, e.g., Ref. [26]). For the nucleon {µ} = ∅, while for the ∆-isobar {µ} = µ. In terms of
these one-particle Green’s functions the two-particle Green’s function in Eq. (2.3) reads

G(p; P ) =
i

(2π)4

[

Π(sa)(1
2P + p)

(1
2P + p)2 −M2

a + iδ

](a)

×
[

Π(sb)(1
2P − p)

(1
2P − p)2 −M2

b + iδ

](b)

. (2.5)

Using now a complete set of on-mass-shell spin-s states in the first line of Eq. (2.4), one
finds that the Feynman propagator of a spin-s baryon off-mass-shell can be written as

Π(s)(p)
p2 −M2 + iδ

=
M

E(p)

×





Λ(s)
+ (p)

p0 − E(p) + iδ
− Λ(s)

− (−p)
p0 + E(p)− iδ



 . (2.6)

where E(p) = (p2 + M2)1/2 with M the nucleon or the ∆-isobar mass. Λ(s)
+ (p) and Λ(s)

− (p)
with s = 1

2 or 3
2 are the on-mass-shell projection operators on the positive- and negative-

energy states. For the nucleon and for the ∆-isobar they are respectively [27]
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Λ(1/2)
+ (p) =

+1/2
∑

σ=−1/2

u(p, σ)⊗ ū(p, σ) ,

Λ(1/2)
− (p) = −

+1/2
∑

σ=−1/2

v(p, σ)⊗ v̄(p, σ) ,

Λ(3/2)
+ (p) =

+3/2
∑

σ=−3/2

uµ(p, σ)⊗ ūν(p, σ) ,

Λ(3/2)
− (p) = −

+3/2
∑

σ=−3/2

vµ(p, σ)⊗ v̄ν(p, σ) , (2.7)

where uµ and vµ denote the Rarita-Schwinger spinors for spin-3
2 particles. Therefore, in the

c.m. system, where P = 0 and P0 = W , the Green’s function can be written as

G(p; W ) =
i

(2π)4

(

Ma

Ea(p)

)





Λ(sa)
+ (p)

1
2W + p0 − Ea(p) + iδ

− Λ(sa)
− (−p)

1
2W + p0 + Ea(p)− iδ





×
(

Mb

Eb(p)

)





Λ(sb)
+ (−p)

1
2W − p0 − Eb(p) + iδ

− Λ(sb)
− (p)

1
2W − p0 + Eb(p)− iδ



 . (2.8)

Performing the multiplication in Eq. (2.8), we write the ensuing terms in shorthand notation
as

G(p; W ) = G++(p; W ) + G+−(p; W )
+ G−+(p; W ) + G−−(p; W ) ,

where, e.g., G++ corresponds to the term with Λsa
+ Λsb

+ . Introducing the wave functions (see
Ref. [19])

ψrs(p′) = Λsa
r Λsb

s ψ(p′) , (r, s = +,−) , (2.9)

the two-body equation (2.3) for ψ++ can be written as

ψ++(p) = ψ0
++(p) + G++(p; W )

×
∫

d4p′
∑

r,s
I(p, p′)++,rsψrs(p′) , (2.10)

and similar equations for ψ+−, ψ−+, and ψ−−.
Invoking ”dynamical pair suppression”, as discussed in Ref. [1], Eq. (2.10) reduces to a

four-dimensional equation for ψ++, i.e.

ψ++(p) = ψ0
++(p) + G++(p; W )

×
∫

d4p′ I(p, p′)++,++ψ++(p′) , (2.11)

with the Green’s function
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G++(p; W )β,α =
iδβ,α

(2π)4

[

MaMb

Ea(p)Eb(p)

]

Λsa
+ (p)Λsb

+ (−p)

×
[

1
2W + p0 − Ea(p) + iδ

]−1

×
[

1
2W − p0 − Eb(p) + iδ

]−1
, (2.12)

where α and β are channel indices.

III. MULTI-CHANNEL THREE-DIMENSIONAL
INTEGRAL EQUATIONS

Following the same procedures as in Ref. [1], we introduce the three-dimensional multi-
channel wave function according to Salpeter [19] by

φ(p) =

√

Ea(p)Eb(p)
MaMb

∫ ∞

−∞
ψ(pµ)dp0 . (3.1)

Using the approach of Klein [21], we make the Ansatz

ψ(p′µ) =

√

MaMb

Ea(p′)Eb(p′)
AW (p′µ)φ(p′) ,

AW (p′µ) = − 1
2πi

W −W(p′)

F (a)
W (p′, p′0)F

(b)
W (−p′,−p′0)

.

Here we used the notations

FW (p, p0) = 1
2W + p0 − E(p) + iδ ,

W(p) = Ea(p) + Eb(p) .

Then, after performing the p0- and p′0-integration in Eq. (2.11) one arrives at the multi-
channel Thompson equation [20]

φ++(p′) = φ(0)
++(p′) + E(+)

2 (p′; W )

×
∫

d3pK irr(p′,p|W ) φ++(p) , (3.2)

where now the Green’s function is

E(+)
2 (p′; W )β,α =

δβ,α

(2π)3

Λa
+(p′)Λb

+(−p′)
(W −W(p′) + iδ)

, (3.3)

and where again α and β are channel indices. The kernel is given by

K irr(p′,p|W ) = − 1
(2π)2

√

MaMb

Ea(p′)Eb(p′)
(W −W(p′)) (W −W(p))

√

MaMb

Ea(p)Eb(p)

×
∫ +∞

−∞
dp′0

∫ +∞

−∞
dp0

{

[

F (a)
W (p′, p′0)F

(b)
W (−p′,−p′0)

]−1

× [I(p′0,p
′; p0,p)]++,++

[

F (a)
W (p, p0)F

(b)
W (−p,−p0)

]−1
}

. (3.4)
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The M/E-factors in Eq. (3.4) are due to the difference between the relativistic and the
non-relativistic normalization of the two-particle states. In the following we simply put
M/E(p) = 1 in the kernel. The corrections to this approximation would give (mπ/M)2-
corrections to the potentials, which we neglect.

The contributions to the two-particle irreducible kernel K irr up to second order in the
meson exchange are given by single- and double-meson exchange. For the definition of the
TPE potential in the Lippmann-Schwinger equation we shall need the complete fourth-order
kernel for the Thompson equation (3.2). In operator notation, we have from Eq. (3.2)

φ++ = φ(0)
++ + E(+)

2 K irr φ++

= φ(0)
++ + E(+)

2

(

K irr + K irr E(+)
2 K irr + . . .

)

φ(0)
++

≡
(

1 + E(+)
2 K

)

φ(0)
++ , (3.5)

which implies for the complete kernel K the integral equation

K(p′,p|W ) = K irr(p′,p|W ) +
∫

d3p′′K irr(p′,p′′|W )

×E(+)
2 (p′′; W )K(p′′,p|W ) . (3.6)

Note that diagram (a) of Fig. 1 is generated from the iterated one-pion exchange in Eq. (3.6),
albeit with the Thompson two-particle propagator of Eq. (3.3).

IV. NUCLEON-NUCLEON
TWO-MESON EXCHANGE

In the first part of this section we calculate the complete kernel K(p′,p; W ) for the
nucleon-nucleon sector only. In the second part we define the potential V (p′,p; W ) such
that up to second-order meson exchange the Thompson amplitude is recovered completely
when using this potential in the Lippmann-Schwinger equation. Although we deal with 2π-
exchange only in this paper, we keep the discussion partly general such as to apply also to
πρ-exchange, which will be dealt with in the companion paper [4].

A. The Nucleon-Nucleon Kernel

For convenience, we multiply each baryon-baryon-meson (BBM) vertex by a factor λ,
which in the end will be set equal to one. In the calculation of the interaction kernel, we
restrict ourselves to terms up to and including the fourth order in λ. Writing the wave
function as a series in λ, and the interaction kernel as a sum of the second- and the fourth-
order term, we have

φ++(p′) = φ(0)
++(p′) + λ2φ(2)

++(p′) + λ4φ(4)
++(p′) + . . .

K(p′,p|W ) = λ2K(2)(p′,p|W ) + λ4K(4)(p′,p|W ) .

From Eq. (3.6) one sees that, written in operator notation,
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K(2) = K irr(2) ,
K(4) = K irr(4) + K irr(2) E(+)

2 K irr(2) ,

and so the K(2)-term corresponds to the OPE Feynman diagram, whereas the K(4)-term
corresponds to the graphs in Fig. 1. From Eq. (3.5) we then find for the wave function

φ(2)
++ = E(+)

2 K irr(2)φ(0)
++ ,

φ(4)
++ = E(+)

2

[

K irr(2) E(+)
2 K irr(2) + K irr(4)

]

φ(0)
++ .

In this paper we exclusively deal with the fourth-order λ terms, which correspond to the
Feynman diagrams of Fig. 1. These fourth-order Feynman diagrams, the so-called planar-
box and crossed-box diagram, lead to the following expression for the fourth-order kernel

K(4)(p′,p|W )a′b′;ab = −(2π)−2 (W −W(p′)) (W −W(p))
∑

a′′,b′′

∫

dp′0
∫

dp0

∫

dk0

∫

dk′0
∫

dk
∫

dk′i(2π)−4δ4(p− p′ − k − k′)

× [k′2 −m2 + iδ]−1
[

F (a′)
W (p′, p′0)F

(b′)
W (−p′,−p′0)

]−1

× {[Γj F−1
W (p− k, p0 − k0) Γi](a

′′)[Γj F−1
W (−p + k,−p0 + k0) Γi](b

′′)

+ [Γj F−1
W (p− k, p0 − k0) Γi](a

′′)[Γi F−1
W (−p′ − k,−p′0 − k0) Γj](b

′′)}
×

[

F (a)
W (p, p0)F

(b)
W (−p,−p0)

]−1
[k2 −m2 + iδ]−1 . (4.1)

Here a, a′, a′′ = N, ∆ and b, b′, b′′ = N, ∆, where a′′ and b′′ denote the baryons of the
intermediate state. The initial baryons a, b and the final baryons a′, b′ depend, of course, on
the particular transition. We have indicated the c.m. momenta for the planar and crossed
diagram in Fig. 2. Note that the first term between the curly brackets corresponds to the
planar-box diagram (a) and the second term to the crossed-box diagram (b) in Fig. 1. In
Eq. (4.1), Γi and Γj denote the BBM vertices. They follow from the interaction Lagrangians.
The expression between curly brackets is the fourth-order contribution in λ to the kernel
I(p′; p)++,++. In the latter we use the N∆ or the ∆∆ Green’s function (2.12) for the
intermediate states. Also we have put here M/E = 1.

So far our discussion has been quite general. From now on we restrict ourselves to the
nucleon-nucleon sector and henceforth specialize to the TPE potentials which are actually
derived in this paper. From the explicit expression in Eq. (4.1) it is clear that one can
perform the integration over the energy variables p′0, p0, and k0. The execution of these
integrations is quite similar to those worked out explicitly in [1], as are the results. To
illustrate the results we restrict ourselves to the graphs of Figs. 3–5. Those for the mirror
graphs can be readily obtained by inspection of these graphs. The results for the planar-
and crossed-box diagram are as follows:
(i) The planar-box diagram : Here we encounter the integral

I//(p′,p|W ) = (W −W(p′)) (W −W(p))
∫

dp′0
∫

dp0

∫

dk0

× [(p− p′ − k)2 −m2 + iδ]−1
[

F (a′)
W (p′, p′0)F

(b′)
W (−p′,−p′0)

]−1
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×
[

F (a′′)
W (p− k, p0 − k0)F

(b′′)
W (−p + k,−p0 + k0)

]−1

×
[

F (a)
W (p, p0)F

(b)
W (−p,−p0)

]−1
[k2 −m2 + iδ]−1 , (4.2)

which is treated in Ref. [1], to which we refer for details. There appear two contributions.
For the N∆ intermediate state, the first corresponds to the planar BW diagrams of Fig. 3
and the second to the TMO diagrams of Fig. 5. Their contributions to the interaction kernel
are

K(3a)
BW//

(p′,p|W ) = − 1
(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓjΛ+(−p + k)Γi](b)

[Ep′ + Ep−k −W + ωk′ ]

× 1
[Ep + Ep′ −W + ωk + ωk′ ]

, (4.3)

K(5a)
TMO(p′,p|W ) = − 1

(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓjΛ+(−p + k)Γi](b)

[Ep′ + Ep−k −W + ωk′ ]

× 1
[Ep−k + Ep−k −W ]

, (4.4a)

K(5b)
TMO(p′,p|W ) = − 1

(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓjΛ+(−p + k)Γi](b)

[Ep−k + Ep′ −W + ωk′ ]

× 1
[Ep−k + Ep−k −W ]

, (4.4b)

where ω =
√

k2 + m2 and ω′ =
√

k′2 + m2 with k′ ≡ p − p′ − k. Also, we have denoted
the energies of the nucleons by E and the energies of the ∆-isobar by E . Here we have to
add the kernels of the graphs (a′) and (b′), and all mirror graphs. They merely contribute
a total factor of four when we evaluate the potentials.
(ii) The crossed-box diagram : Here the integral to be performed is essentially

IX(p′,p|W ) = (W −W(p′)) (W −W(p))
∫

dp′0
∫

dp0

∫

dk0

× [(p− p′ − k)2 −m2 + iδ]−1
[

F (a′)
W (p′, p′0)F

(b′)
W (−p′,−p′0)

]−1

×
[

F (a′′)
W (p− k, p0 − k0)F

(b′′)
W (−p′ − k,−p′0 − k0)

]−1

×
[

F (a)
W (p, p0)F

(b)
W (−p,−p0)

]−1
[k2 −m2 + iδ]−1 , (4.5)

where for details we refer again to Ref. [1]. The results correspond to the crossed BW
diagrams of Fig. 4, and the corresponding interaction kernels are

K(4a)
BWX

(p′,p|W ) = − 1
(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓiΛ+(−p′ − k)Γj](b)

[Ep′ + Ep′+k −W + ωk]

× 1
[Ep + Ep′ −W + ωk + ωk′ ]

, (4.6a)
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K(4b)
BWX

(p′,p|W ) = − 1
(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓiΛ+(−p′ − k)Γj](b)

[Ep′ + Ep′+k −W + ωk]

× 1
[Ep−k + Ep′+k −W + ωk + ωk′ ]

, (4.6b)

K(4c)
BWX

(p′,p|W ) = − 1
(2π)3

∫ d3k
4ωkωk′

[ΓjΛ+(p− k)Γi](a)

[Ep−k + Ep −W + ωk]
[ΓiΛ+(−p′ − k)Γj](b)

[Ep−k + Ep′ −W + ωk′ ]

× 1
[Ep−k + Ep′+k −W + ωk + ωk′ ]

. (4.6c)

Here also we have to add the kernels from the graphs (a′), (b′), and (c′), and all their mirror
graphs, which again merely gives rise to a factor of four when we evaluate the potentials.

The particular vertices we need for the TPEP in the nucleon-nucleon sector are the NNπ
and the N∆π vertex. Explicitly, for point couplings the relevant Lagrangians are

LNNπ =
(

fNNπ

mπ

)

ψγ5γµτψ · ∂µφ ,

LN∆π =
(

fN∆π

mπ

)

ψTψµ · ∂µφ + h.c. ,

where T is the isospin-1
2 isospin-3

2 transition operator. In momentum space this gives for
the NNπ-vertex:

ū(p′)Γ(a)u(p) = i
(

fNNπ

mπ

)

ū(p′)γ5γ · (p − p′)u(p) ,

and for the N∆π-vertex:

ū(p′)Γ(a)uµ(p) = i
(

fN∆π

mπ

)

ū(p′)uµ(p) · (p − p′)µ .

The generalization of the interaction kernels given above to the case with Gaussian form
factors has been treated and explained in [1]. The same procedure can be used here and
we will indicate only the minor changes in Eq. (4.1). For each OPE line in the Feynman
propagator, we make the substitution

[k2 −m2 + iδ]−1 −→
∫ ∞

0
dµ2 ρ(µ2)

k2 − µ2 + iδ
, (4.7)

where in the right-hand side ρ(µ2) is the spectral function, representing the form factors
involved in OPE. In principle, ρ(µ2) depends on whether we have an NN → N∆ transition
or an NN → ∆∆ transition.

At low and medium energy, we have to a very good approximation t = k2 ≈ −k2 < 0, and
so for spacelike momentum transfers we can use Gaussian form factors F (k2) = exp(−k2/Λ2)
where Λ denotes the cut-off mass. Having Gaussian form factors, we make the substitution

∫ ∞

0
dµ2 ρ(µ2)

k2 + µ2 −→
F (k2)

k2 + m2 . (4.8)

11



Since by exploiting our separation techniques in handling the k- and k′-dependence, the
substitution (4.8) is an adequate recipe for the inclusion of the Gaussian (or any other) form
factor in all cases.

Differentiating between an NNπ-vertex and an N∆π-vertex by using

FNNπ(k2) = e−k2/2Λ2
NNπ , FN∆π(k2) = e−k2/2Λ2

N∆π ,

we get for an NN → N∆-transition in Eq. (4.8)

F (k2) = FNNπ(k2)FN∆π(k2), Λ−2 = (Λ−2
NN + Λ−2

N∆)/2 ,

whereas for an NN → ∆∆-transition we have

F (k2) = F 2
N∆π(k2), Λ = ΛN∆ .

B. The Nucleon-Nucleon Potential

The multi-channel Lippmann-Schwinger equation is given by

φα = φ(0)
α + gα,β Vβ,γ φγ , (4.9)

with the Green’s function gα,β given by

g(p; W )α,β =
δα,β

(2π)3 Λa
+(p)Λb

+(−p)
M

p2
i − p2 + iδ

. (4.10)

The multi-channel potential V , up to fourth order in λ, is defined such that to that order
the wave function and the T matrix are the same as that generated by the multi-channel
Thompson equation. This implies for the potential V

V (2) = K(2), V (4) = K(4) −K(2)g K(2) . (4.11)

These equations have to be taken, where the initial and final states are on the energy-shell.
The second-order potential V (2) is given by one-meson exchange taken on energy-shell, which
is then equivalent to the potential diagram (a) in Fig. 9. The fourth-order potential V (4)

consists of two parts. The first part is represented by the fourth-order planar- and crossed-
box BW diagrams. The second part is represented by the TMO diagrams, from which we
have to subtract the once-iterated meson-exchange contribution, so

VTMO = KTMO −K(2)g K(2) , (4.12)

which will be henceforth referred to as the TMO contribution, in analogy with the definition
in Ref. [1]. The second (Born) term is pictured in diagram (a) in Fig. 9.

So much for the general multi-channel approach. As already stated before, in this paper
we will largely restrict ourselves to the nucleon-nucleon sector. In that sector the initial and
final states are restricted to two-nucleon states. Furthermore, in this paper we focus on the
contributions to the NN potential due to the ∆33-isobar up to λ4. This means that the only
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contributions to be considered are the planar- and crossed-box diagrams with at least one
∆-isobar in the intermediate state. When the Lippmann-Schwinger equation is solved in the
nucleon-nucleon sector only, the subtraction of the iterated-meson exchange does not apply
and so V (4) = K(4). For that purpose, in Sec. VC we give the once-iterated pion-exchange
kernels. These should be added to the TMO potential of Eq. (4.12) in order to compensate
for the subtraction.

For Eq. (4.9) the transition from Dirac-spinors to Pauli-spinors is given in Appendix C
of Ref. [1]. There we derived the Lippmann-Schwinger equation

χ(p′) = χ(0)(p′) + g̃(p′)
∫

d3p V(p′,p)χ(p) , (4.13)

for the Pauli-spinor wave functions χ(p). The wave function χ(p) and the potential V(p′,p)
in the Pauli-spinor space are defined by

φ(p) =
∑

σa,σb

χσaσb(p) ua(p, σa)ub(−p, σb) , (4.14)

χ(a)†
σ′a

χ(b)†
σ′b

V χ(a)
σa

χ(b)
σb

= ūa(p′, σ′a)ūb(−p′, σ′b)V (p′,p)

× ua(p, σa)ub(−p, σb) . (4.15)

Like in the derivation of the OBE-potentials [2, 3], we make the approximation

E(p) = (p2 + M2)1/2 ≈ M + p2/2M

everywhere in the interaction kernels of Sec. V, which of course is fully justified for low
energies only. As a consequence, we have a similar expansion of the on-shell energy

W = 2(p2
i + M2)1/2 ≈ 2M + p2

i /M .

In contrast to these kind of approximations, the full k2-dependence of the form factors is
kept throughout the derivation of the TPEP. Note that the Gaussian form factors strongly
suppress the high-momentum transfers. This means that the contribution to the potentials
from intermediate states which are far off-energy-shell cannot be very large.

For the reduction of the TPEP from Dirac-spinor space to Pauli-spinor space, we use
Eq. (2.7) for the Λ+-operators, which leads to matrix elements of the vertex operators
between positive-energy Dirac-spinors. Using the aforementioned energy approximation,
the vertex operators in Pauli-spinor space up to order 1/M read
(i) NNπ-vertices:

ū(p′)Γ(a)(p′,p)u(p) = +i
(

fNNπ

mπ

)

×
[

σ1 · k∓
ω

2MN
σ1 · (p′ + p)

]

,

ū(−p′)Γ(b)(p′,p)u(−p) = −i
(

fNNπ

mπ

)

×
[

σ2 · k∓
ω

2MN
σ2 · (p′ + p)

]

, (4.16)
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(ii) N∆π-vertices:

ū(p′)Γ(a)(p′,p)uµ(p) = −i
(

fN∆π

mπ

)

Σ†
1 · k ,

ū(−p′)Γ(b)(p′,p)uµ(−p) = +i
(

fN∆π

mπ

)

Σ†
2 · k , (4.17)

where always k ≡ p − p′. For the Γ-matrix elements in Eq. (4.16) the upper sign applies
for the creation and the lower sign for the absorption of the pion at the vertex. Note that
for line (a) and line (b) we have used the subscript 1 and 2 for the σ and the Σ operators,
respectively.

The Σ operators are the spin-1
2 spin-3

2 transition operators (see, e.g., Refs. [26, 28]).
Useful for the evaluation of the second-order diagrams are the relations

σjσi = δij + iεjikσk ,

Σj|σ〉〈σ|Σ†
i = 2

3δij − i
3εjikσk . (4.18)

Products of this type will occur for each baryon line. Identical formulas hold for the isospin
operators τ i and Ti, respectively, where Ti(i = 1, 2, 3) are the components of the isospin-1

2
isospin-3

2 transition operator [26]. Using Eq. (4.18) for the latter, the isospin factors for the
planar and the crossed TPE diagram can readily be evaluated. One finds for one ∆-isobar
in the intermediate state for the planar (//) and the crossed (X) graph [28]

C(//)
N∆ (I) = 2 + 2

3τ 1 · τ 2, C(X)
N∆ (I) = 2− 2

3τ 1 · τ 2 , (4.19)

where I denotes the total isospin of the NN state. For two ∆-isobars in the intermediate
state one gets for the planar and the crossed graphs

C(//)
∆∆ (I) = 4

3 −
2
9τ 1 · τ 2, C(X)

∆∆ (I) = 4
3 + 2

9τ 1 · τ 2 . (4.20)

For the definition of the Fourier transformations to configuration space, we introduce
Q = 1

2(p + p′) and will occasionally exploit the relation p − p′ = k + k′ before doing the
Fourier transformations.

In the next section, we calculate the TPE contribution to VC , Vσ, VT , and VSO, which
refer to the central, the spin-spin, the tensor, and the spin-orbit potential, respectively. In
Sec. V, we give the so-called adiabatic contributions (see, e.g., Ref. [29] for the definition).
In the adiabatic approximation we expand the energy denominators in the expressions for
the planar- and the crossed-box diagram in powers of 1/MN and keep only the leading term,
order O(1). For example

1
Ep + Ep−k −W + ω

≈ 1
ω + a

, (4.21)

where a = M∆−MN . In the evaluation of the TMO graphs, we encounter the intermediate-
state energy denominator [Ep−k + Ep−k − W ]−1, the treatment of which is explained in
Appendix A. Since the leading term of the TMO graphs is cancelled by the once-iterated
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OPE term [see Eq. (4.12)], the contribution of the TMO graphs has to be evaluated up to
order O(1/M).

The next to leading contributions to Eq. (4.21), are referred to as ”non-adiabatic” and will
be given in Sec. VI. There we also give the (ω/MN) contributions due to the pseudovector
nature of the NNπ vertex (4.16). They obviously only contribute in the N∆ graphs. In
Sec. VI we only include the first-order recoil corrections. This means that for the TMO
potential we do not include the non-adiabatic contribution, which is order O(1/M2). In
the following sections we work out the various contributions to the TPEP. To distinguish
between the different contributions we employ the notations as listed below

Sec. type N∆ ∆∆

V adiabatic V (0)
N∆(α) V (0)

∆∆(α)
VIA (1/M)-adiabatic V (1)

N∆(α) −
VIB (1/M)-nonadiabatic V (2)

N∆(α) V (2)
∆∆(α)

Here α refers to the different class of potentials BW//, BWX , TMO, and the once-iterated
OPE contribution.

V. TWO-PION-EXCHANGE POTENTIAL

A. N∆ Graphs

The parallel BW graph (a) of Fig. 3 corresponds to the expression K(3a)
// of Eq. (4.3).

The crossed BW graphs (a)–(c) of Fig. 4 corresponds to the expressions KX of Eqs. (4.6a)–
(4.6c). The TMO graphs (a) and (b) of Fig. 5 correspond to the expressions of Eqs. (4.4a)
and (4.4b).

The TPEP’s from the graphs of Figs. 3, 4, and 5 can be written as [30]

V (0)
N∆(α) = −C(α)

N∆(I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·r F (k2
1)F (k2

2)

× O(α)
N∆(k1,k2)D(1)

α (ω1, ω2) , (5.1)

where I denotes the total isospin of the NN channel (I = 0, 1) and α refers to the different
class of graphs BW//, BWX , and TMO. The isospin factor CN∆ is given in Eq. (4.19). The
operator O(α)(k1,k2) contains the vertex operators, given in Eqs. (4.16) and (4.17), and the
explicit expressions for each case α are given in Table I. In all expressions we have made use
of the symmetry k1 ↔ k2 to discard the antisymmetric terms. From Table I we can define
factors γ1,i, which are the rational numbers in front of the momentum operators. These
enable us to write the expressions for the potentials in a concise form. To be explicit, we
have

γ(//)
1,C = 2

3 , γ(//)
1,σ = γ(//)

1,T = 1
3

γ(X)
1,C = 2

3 , γ(X)
1,σ = γ(X)

1,T = −1
3 , (5.2)
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where C, σ, T refer to the central, spin-spin, and tensor parts of the potential.
The energy denominators D(1)

α of the TPE process are calculated in the adiabatic ap-
proximation, i.e., E(p) ≈ MN and E(p) ≈ M∆. The appropriate expressions in terms of
ωi = ω(ki), including the contributions from all graphs, are given in the upper half of Ta-
ble II. The latter also contains the 1/

√
2ω factors from the pion field at each vertex. Note

that for the TMO graphs we have expanded up to order O(1/M) and already subtracted
the once-iterated OPE contribution, in accordance with Eq. (4.12). The intermediate-state
energy denominator Ep−k1 + Ep−k1 −W is approximated by (a− β1) with β1 = k1 · k2/M ,
and M = (M∆ + MN)/2 (see also Sec. VIB).

The evaluation of the momentum integrations is readily performed using the formulas
given in Appendix B. Since in Appendix B it is shown that the separation of the k1 and k2

variables can be achieved in all cases, we can use the same procedure as given in Ref. [1].
We write

ei(k1+k2)·r = lim
r1,r2→r

eik1·r1eik2·r2 , (5.3)

and take the limit operation before the momentum integrations. Next, we replace all mo-
menta occurring in the numerator by ∇1 and ∇2 operations, which are the ∇ operations
w.r.t. r1 and r2, respectively, and take these in front of the momentum integrations. After
the momentum integrations we perform the differentiations and take the limit. The struc-
ture of the potentials which will appear in the course of this calculation are explained in
Appendix C. There we introduce the ⊗ operation, which allows us to write the expressions
for the potentials in a succinct form. The results we obtain are

(i) BW-parallel graphs: Application of Eqs. (B9) and (B11), together with the definitions
(C6) and (C7) leads to the expressions for the potentials given in this item. The other
expressions of this and the following sections can be derived similarly. We find

V (0)
N∆,i(BW//) = −C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

γ(//)
1,i

×
[a
2
(G2,1 ⊗G2,1)i(r)−

1
a
(G1,1 ⊗G1,1)i(r)

+
2
π

∫ ∞

0

dλ
a2 + λ2 (F ⊗ F )i(λ, r)

]

, (5.4)

where i = C, σ, T , and

F (λ, r) = I2(
√

m2
π + λ2, r) exp

(

−λ2/Λ2
)

.

The functions I2(mπ, r), G1,1(a, r) and G2,1(a, r) are defined in Eqs. (B4), (B14) and (B16)
of Appendix B, respectively.

(ii) BW-crossed graphs:

V (0)
N∆,i(BWX) = −C(X)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

γ(X)
1,i

×
[

−a(G2,1 ⊗G2,1)i(r) +
1
a
(G1,1 ⊗G1,1)i(r)
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+2(I2 ⊗G2,1)i(r)−
2
π

∫ ∞

0

dλ
a2 + λ2 (F ⊗ F )i(λ, r)

]

.

(5.5)

(iii) TMO graphs:

V (0)
N∆,i(TMO) = −C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

γ(//)
1,i {a

∫ ∞

0
dze−z(a− 1

2Tlab)

×1
2 [(I3 ⊗G1,1)i(z; r) + (I2 ⊗G1,2)i(z; r) + (G1,1 ⊗G1,2)i(z; r) + (I2 ⊗ I3)i(z; r)]

−1
2 [(I3 ⊗G1,1)i(r) + (I2 ⊗G1,2)i(r) + (G1,1 ⊗G1,2)i(r) + (I2 ⊗ I3)i(r)]} , (5.6)

where the separation into the two contributions between square brackets is explained in
Appendix A.

B. ∆∆ Graphs

The parallel BW graph of Fig. 6 corresponds to the expression K(3a)
// of Eq. (4.3), substi-

tuting Ep−k → Ep−k. The TMO graphs in Fig. 8 correspond to the expressions in Eqs. (4.4a)
and (4.4b) using the same substitution. The crossed BW graphs of Fig. 7 correspond to the
expressions in Eqs. (4.6a)–(4.6c), substituting Ep′+k → Ep′+k.

The TPEP’s from these graphs with two ∆-isobars in the intermediate states can be
evaluated completely analogous to the one-∆ graphs. The result can be written as

V (0)
∆∆(α) = −C(α)

∆∆(I)
(

fN∆π

mπ

)4∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·r

× O(α)
∆∆(k1,k2)F (k2

1)F (k2
2)D

(2)
α (ω1, ω2) , (5.7)

where α again refers to the different class of graphs BW//, BWX , and TMO. The isospin
factors C∆∆ are given in Eq. (4.20). For the different cases α we have given the explicit
expressions for O∆∆(k1,k2) in Table I. Similarly as for the N∆ case, we define factors γ2,i

which are now found to be

γ(//)
2,C = 4

9 , γ(//)
2,σ = γ(//)

2,T = −1
9

γ(X)
2,C = 4

9 , γ(X)
2,σ = γ(X)

2,T = 1
9 . (5.8)

The energy denominators D(2)
α are given in the lower half of Table II, where again the adia-

batic approximation is made. In the TMO graphs the intermediate-state energy denominator
Ep−k1 + Ep−k1 −W is approximated by (2a − β2) with now β2 = k1 · k2/M∆. In Table II,
the expression in square brackets for D(2)

X can be written as

D(2)
X = −2

d
da

[

a
(ω1 + a)(ω2 + a)(ω1 + ω2)

+
1

(ω1 + a)(ω2 + a)

]

. (5.9)
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In this form, the Fourier transformation to configuration space can be carried through im-
mediately using the results given in Appendix B.

The momentum integrations can be carried out similarly to those in the foregoing section.
We find

(i) BW-parallel graphs:

V (0)
∆∆,i(BW//) = −C(//)

∆∆ (I)
(

fN∆π

mπ

)4

γ(//)
2,i

×
{

1
π

∫ ∞

0

dλ
a2 + λ2 (F ⊗ F )i (λ, r)

− 1
2a

(G1,1 ⊗G1,1)i (r)
}

. (5.10)

(ii) BW-crossed graphs:

V (0)
∆∆,i(BWX) = −C(X)

∆∆ (I)
(

fN∆π

mπ

)4

γ(X)
2,i

× 1
π

∫ ∞

0
dλ

a2 − λ2

(a2 + λ2)2 (F ⊗ F )i (r) . (5.11)

(iii) TMO graphs:

V (0)
∆∆,i(TMO) = −C(//)

∆∆ (I)
(

fN∆π

mπ

)4

γ(//)
2,i

×{a
∫ ∞

0
dze−z(2a− 1

2Tlab)(G1,1 ⊗G1,2)i(z; r)

−1
2(G1,1 ⊗G1,2)i(r)} . (5.12)

C. Iterated One-Pion Exchange

Our definition of the TMO potential, Eq. (4.12), explicitly includes the subtraction of the
once-iterated OPE. However, in case of a single-channel Lippmann-Schwinger or Schrödinger
calculation for the NN channel, one should include only the pure TMO diagrams (next to the
BW diagrams, of course). This can simply be achieved by adding to the TMO potentials of
Eqs. (5.6) and (5.12) the second-order Born approximation to the interaction kernels. These
are given by

(i) N∆ graphs: The N∆ graph of Fig. 9 gives the kernel

K(4)
Born(r) = −C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·rF (k2
1) F (k2

2)

×O(//)
N∆ (k1,k2)D

(1)
Born(ω1, ω2) , (5.13)
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where D(1)
Born can be found in Table II. Our treatment of the intermediate-state energy

denominator (a− β1) is explained in Appendix A. The resulting potential reads

V (4)
N∆,i(Born) = −C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

γ(//)
1,i

×1
2

∫ ∞

0
dze−z(a− 1

2Tlab) [2(I2 ⊗G1,1)i(z; r)

+(G1,1 ⊗G1,1)i(z; r) + (I2 ⊗ I2)i(z; r)] . (5.14)

(ii) ∆∆ graphs: The ∆∆-graph of Fig. 9 gives the kernel

K(4)
Born(r) = −C(//)

∆∆ (I)
(

fN∆π

mπ

)4

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·rF (k2
1) F (k2

2)

×O(//)
∆∆ (k1,k2)D

(2)
Born(ω1, ω2) , (5.15)

where D(2)
Born is given in Table II. The corresponding potential reads

V (4)
∆∆,i(Born) = −C(//)

∆∆ (I)
(

fN∆π

mπ

)4

γ(//)
2,i

×
∫ ∞

0
dze−z(2a− 1

2Tlab) (G1,1 ⊗G1,1)i(z; r) . (5.16)

So, for an (NN,N∆) → (NN, N∆) coupled-channel calculation the potential of Eq. (5.16)
should be added to the TMO potential of Eq. (5.12) in order to compensate for the subtrac-
tion of the iterated OPE with two ∆-isobars in the intermediate states. For a single-channel
NN calculation one has to add the potentials of both Eqs. (5.14) and (5.16) to the TMO
potentials of Eqs. (5.6) and (5.12), respectively.

VI. 1/M CORRECTIONS

A. Corrections from pseudovector vertex

The adiabatic (1/M) corrections originate from the ω/MN terms of the NNπ vertex of
Eq. (4.16). These terms are typical for the pseudovector coupling of the pseudoscalars and
in particular will give a spin-orbit potential V (1)

N∆,SO(α) L ·S. The different contributions can
be written as

V (1)
N∆(α) = −C(α)

N∆(I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 1
MN

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·rF (k2
1) F (k2

2)

× O(α)′
N∆ (ω1,k1; ω2,k2)D′

α(ω1, ω2) . (6.1)
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For the different cases α, the explicit expressions for O′
N∆(k1,k2) and D′

α are given in
Tables III and IV, respectively. There, BWX,a refers to graphs (a) and (a′) of Fig. 4, and
BWX,b refers to graphs (b), (b′), (c), and (c′). Note that the Born and TMO graphs give
rise to the same pseudovector vertex corrections, so they do not contribute in what we refer
to as the TMO potential, which includes the Born subtraction. Again, the isospin factors
CN∆(I) are those of Eq. (4.19).

In order to be able to evaluate the integrals in an easy way, we define for the planar
graphs

˜O±
//(k1,k2) = ±1

3

[

(k1 · k2) (k2
1 ± k2

2)

+2i(k1 · k2) (k1 ± k2)×Q · S
−i(k1 × k2) · S (k1 ∓ k2) ·Q] , (6.2)

and for the crossed graphs

˜O±
X(k1,k2) = ±1

3

[

−(k1 · k2) (k2
1 ± k2

2)

−2i(k1 · k2) (k1 ± k2)×Q · S
−i(k1 × k2) · S (k1 ∓ k2) ·Q] . (6.3)

The operators O(α)′
N∆ of Table III can then be written successively as

(ω1 − ω2) ˜O+
//(k1,k2) + (ω1 + ω2) ˜O−

//(k1,k2) ,

(ω1 − ω2) ˜O+
X(k1,k2) + (ω1 + ω2) ˜O−

X(k1,k2) ,
(ω1 + ω2) ˜O+

X(k1,k2) + (ω1 − ω2) ˜O−
X(k1,k2) ,

(ω1 − ω2) ˜O+
//(k1,k2) + (ω1 + ω2) ˜O−

//(k1,k2) ,

(ω1 + ω2) ˜O+
//(k1,k2) + (ω1 − ω2) ˜O−

//(k1,k2) . (6.4)

The potentials (6.1) can now be written in general as

V (1)
N∆(α) = −C(α)

N∆(I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 1
MN

∑

s=+,−

× lim
r1→r2

˜Os
α(−i∇1,−i∇2) As

α(r1, r2) , (6.5)

where the A±
α (r1, r2) denote the Fourier transforms of the energy-denominator combinations

that occur. They read

A−
BW//

(r1, r2)=
a
4

[G1,1(r1)G2,1(r2)−G2,1(r1)G1,1(r2)] ,

A+
BW//

(r1, r2)=
a
4

[G1,1(r1)G2,1(r2) + G2,1(r1)G1,1(r2)

− 4H1,1(r1, r2)] . (6.6)

A−
BWX

(r1, r2) = 0 ,
A+

BWX
(r1, r2) = G1,1(r1)G1,1(r2) + aH1,1(r1, r2) . (6.7)
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A−
Born(r1, r2) = −a2

4

∫ ∞

0
dze−z(a− 1

2Tlab)

× [G1,1(r1)G2,1(r2)−G2,1(r1)G1,1(r2)] ,

A+
Born(r1, r2) = −a

∫ ∞

0
dze−z(a− 1

2Tlab) {G1,1(r1)G1,1(r2)

+
a
4

[G1,1(r1)G2,1(r2) + G2,1(r1)G1,1(r2)]
}

. (6.8)

The functions G1,1(r), G2,1(r), and H1,1(r1, r2) are defined in Eqs. (B14) and (B16) of Ap-
pendix B, respectively.

In Appendix C, we introduce various � operations, working on functions F (r) and G(r).
It will be convenient to define the central and spin-orbit combinations

(F � G)C = (F � G)+
C − (F � G)−C ,

(F �G)SO// = −2(F �G)+
1 + (F �G)+

2

+2(F �G)−1 − (F �G)−2 ,
(F �G)SOX = −2(F �G)+

1 − (F �G)+
2

+2(F �G)−1 + (F �G)−2 . (6.9)

The explicit results can then be written as
(i) BW-parallel graphs:

V (1)
N∆,i(BW//) = −C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 a
3MN

×
[1
2
(G1,1 �G2,1)i(r) +

1
a
(G1,1 �G1,1)i(r)

− 2
π

∫ ∞

0

dλ
a2 + λ2 (F � F )i(λ, r)

]

, (6.10)

where i = C, SO//.
(i) BW-crossed graphs:

V (1)
N∆,i(BWX) = −C(X)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 a
3MN

×
[

− 2
π

∫ ∞

0

dλ
a2 + λ2 (F � F )i(λ, r)

]

, (6.11)

where i = C, SOX .
(iii) Born graphs:

V (1)
N∆,i(Born) = +C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 a
3MN

×
∫ ∞

0
dze−z(a− 1

2Tlab)
[a
2

(G1,1 �G2,1)i (z; r)

+ (G1,1 �G1,1)i (z; r)
]

, (6.12)

where i = C, SO//.
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B. Non-adiabatic corrections

In the following we will use an average-mass approximation for the N∆-graphs. With
M = (M∆ + MN)/2, we have MN = M − a/2 and M∆ = M + a/2. Therefore

1
MN

≈ 1
M

(

1 +
a

4M

)

≈ 1
M

,

1
M∆

≈ 1
M

(

1− a
4M

)

≈ 1
M

.

In order to obtain all contributions to the potentials up to order (mπ/M), we expand the
three energy denominators in the expressions for the planar- and the crossed-box diagrams
(see Sec. V) in 1/M . Then, we get for example

1
Ep + Ep−k −W + ω

=
1

ω + a

×
[

1− −2p · k + k2

2M(ω + a)
+ . . .

]

, (6.13)

where we neglected the purely off-energy-shell contribution p2−p2
i , with pi the initial-state

momentum. This also implies, for example, that

− 2p · k1 + k2
1 ≈ −Q · (k1 − k2)− k1 · k2

2p′ · k1 + k2
1 ≈ +Q · (k1 − k2)− k1 · k2

−2p · k2 + k2
2 ≈ +Q · (k1 − k2)− k1 · k2 . (6.14)

Upon integration over k1 and k2 the Q · (k1− k2) terms vanish because of the symmetry of
the remainder of the integrands. Hence, all left-hand sides in Eq. (6.14) are equal effectively.
Identifying the terms of order O(1/M), we find the following non-adiabatic corrections:

(i) N∆ graphs:

V (2)
N∆(α) = −C(α)

N∆(I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·rF (k2
1)F (k2

2)

×
(

k1 · k2

2M

)

O(α)
N∆(k1,k2)D(1)′′

α (ω1, ω2) , (6.15)

where O(α)
N∆ can be found in Table I. The energy denominators D(1)′′ are given in the first part

of Table V. There we have introduced the splittings D′′
X = D′′

X,a+D′′
X,b+D′′

X,c for the crossed
BW graphs in order to distinguish the various contributions. The TMO contributions are
not given, since they are O(1/M2).

In order to evaluate the potentials, it is more convenient to rewrite the expressions for
the energy denominators D(1)′′ in a form such that the results of Appendices B and C can
be applied to do the integrations in Eq. (6.15). We find
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D′′
// =

1
2ω1ω2

[

1
(ω1 + a)2ω2

2
+

1
ω2

1(ω2 + a)2 +
a

ω1(ω1 + a)2

1
ω2(ω2 + a)

+
1

ω1(ω1 + a)
a

ω2(ω2 + a)2 − a
d
da

a
(

1
ω1(ω1 + a)ω2

2(ω2 + a)
+

1
ω2

1(ω1 + a)ω2(ω2 + a)
− 1

ω1ω2(ω1 + a)(ω2 + a)
2

ω1 + ω2

)]

, (6.16)

D′′
X,a =

1
2ω3

1ω3
2

ω2
1 + ω2

2 − ω1ω2 + a(ω1 + ω2)
(ω1 + a)(ω2 + a)

− a
ω2

1ω2
2(ω1 + a)(ω2 + a)(ω1 + ω2)

− d
da

{

ω1 + ω2 + a
2ω2

1ω2
2(ω1 + a)(ω2 + a)

}

+
d
da

{

1
ω1ω2(ω1 + a)(ω2 + a)(ω1 + ω2)

}

,

(6.17)

D′′
X,b + D′′

X,c =
1

ω2
1(ω1 + a)

1
ω2

2(ω2 + a)
+

1
2ω1(ω1 + a)ω2

2(ω2 + a)2 +
1

2ω2
1ω3

2(ω2 + a)

+
1

2ω2
1(ω1 + a)2ω2(ω2 + a)

+
1

2ω3
1(ω1 + a)ω2

2
. (6.18)

Note that all denominators with ω1 + ω2 + a have cancelled against similar factors in the
numerators. Using these expressions, the integrals are easy to do. We find

V (2)
N∆(BW//) = +C(//)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 1
2M

× lim
r1→r2

(∇1 ·∇2)O
(//)
N∆ (−i∇1,−i∇2)

× B1(r1, r2) , (6.19)

where

B1(r1, r2)= G1,2(r1)I3(r2) + aG2,2(r1)G2,1(r2)

+a
d
da

a [H2,2(r1, r2)−G2,1(r1)G3,1(r2)] , (6.20)

where we have made use of the symmetry r1 ↔ r2 to write Eq. (6.20) in a concise form. Here,
we have also suppressed the a-dependence of Gn,m and Hn,m for notational reasons. The
differentiations and limits can be worked out using Eqs. (C11) and (C12) in a straightforward
manner, which comes down to inserting the � operation defined in Appendix C between the
r1- and r2-dependent functions in B1(r1, r2). This is completely analogous to the evaluation
of Eq. (6.5) to, e.g., Eq. (6.10) as discussed in Sec. VIA.

In a similar way, for the crossed BW graphs we find

V (2)
N∆(BWX) = +C(X)

N∆ (I)
(

fN∆π

mπ

)2 (

fNNπ

mπ

)2 1
2M

× lim
r1→r2

(∇1 ·∇2)O
(X)
N∆ (−i∇1,−i∇2)

× B2(r1, r2) , (6.21)
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with

B2(r1, r2) = a [G2,1(r1)G3,1(r2)−H2,2(r1, r2)]

− d
da

[

G1,1(r1)G2,1(r2) +
a
2
G2,1(r1)G2,1(r2)−H1,1(r1, r2)

]

+ G1,1(r1)G3,1(r2) + 1
2G2,1(r1)G2,1(r2) + G1,1(r1)G2,2(r2) + G3,1(r1)I2(r2) .

(6.22)

(ii) ∆∆ graphs:

V (2)
∆∆(α) = −C(α)

∆∆(I)
(

fN∆π

mπ

)4

×
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·rF (k2
1)F (k2

2)

×
(

k1 · k2

2M∆

)

O(α)
∆∆(k1,k2)D(2)′′

α (ω1, ω2) , (6.23)

where O(α)
∆∆ can be found in Table I. The energy denominators D(2)′′ are given in the second

part of Table V, where we have already used a little algebra to bring the contributions from
the crossed graphs in a convenient form. Note that again all denominators with ω1 +ω2 +2a
are cancelled against similar factors in the numerators. Evaluating the integrals, we find for
the planar BW graph

V (2)
∆∆(BW//) = +C(//)

∆∆ (I)
(

fN∆π

mπ

)4 1
2M∆

× lim
r1→r2

(∇1 ·∇2)O
(//)
∆∆ (−i∇1,−i∇2)

× C1(r1, r2) , (6.24)

where

C1(r1, r2) = −1
2

d
da

H1,1(r1, r2) . (6.25)

Similarly, for the crossed BW graphs

V (2)
∆∆(BWX) = +C(X)

∆∆ (I)
(

fN∆π

mπ

)4 1
2M∆

× lim
r1→r2

(∇1 ·∇2)O
(X)
∆∆(−i∇1,−i∇2)

× C2(r1, r2) . (6.26)

where

C2(r1, r2) =
1
2

d2

da2 [G1,1(r1)G1,1(r2) + aH1,1(r1, r2)] . (6.27)

All differentiations and limits can be easily worked out again using Eqs. (C11) and (C12).
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VII. RESULTS AND DISCUSSION

The complete TPEP for the N∆ and ∆∆ graphs for a single-channel calculation for the
NN system can be written as

V (TPE) =
2

∑

i=0
V (i)(BW) + V (i)(TMO) + V (i)(Born) , (7.1)

where BW contains the planar- and crossed-box contributions, and each potential consists
of a central, spin-spin, tensor, and spin-orbit part. The relevant expressions can be found
in Sec. V for V (0), in Sec. VIA for V (1), and in Sec. VIB for V (2). The inclusion of the
Born term V (i)(Born) is due to our special definition of the TMO potential, Eq. (4.12),
which explicitly includes the subtraction of the once-iterated OPE. For a coupled-channel
calculation this Born term should be left out.

In Figs. 10–15 the results for the several potentials and several of the different contribu-
tions are shown. In these numerical results we have evaluated the TPEP for f 2

NNπ/4π = 0.075
from the Nijmegen partial-wave analysis [32], f2

N∆π/4π = 0.35 from the ∆33-isobar decay
width, and Λ = 664.52 MeV. Of course, due to the Gaussian form factors all potentials are
finite at r = 0 and rather soft. When not stated explicitly otherwise, we have evaluated the
potentials for Tlab = 150 MeV. We have also tacitly assumed that the strong form factor for
the nucleon and the ∆33-isobar are the same, which need not be the case, of course.

In Fig. 10 a-d we show the total ∆-isobar contributions, due to the N∆ and the ∆∆
intermediate states, the contributions from the NN intermediate states, and the total TPEP.
This for the central, spin-spin, and tensor potentials. Noteworthy is the strong cancellation
between the isobar and the non-isobar potentials for I = 0. Tuning for example the N∆π
coupling constant could make these cancellations almost complete. For I = 1, on the other
hand, the isobar and non-isobar contributions reinforce each other. The total potentials
resemble a mixture of about 70% iso-scalar and 30% iso-vector exchange.

In Fig. 11 a-d the N∆ and ∆∆ intermediate-state contributions to the central, spin-
spin, and tensor potentials are shown. In the central potential, the ∆∆ contribution is
important, in particular for the I = 0 case. The total central potential has an iso-scalar
exchange character. The spin-spin and the tensor potentials are dominated by the N∆
contribution and are dominantly iso-vector exchange.

In Fig. 12 a-b the BW, the TMO, and the Born contributions are compared. The
I = 0 channel is strongly dominated by the BW graphs. This is natural since only the ∆∆
intermediate state can contribute for TMO and Born. In the I = 1 channel this is no longer
the case. As far as the short range part concerns, there appear large cancellations between
the TMO and the Born contributions below r = 1 fm.

In Fig. 13 a-b the V (0), V (1), and V (2) potentials are compared. For r ≥ 1 fm, V (0) clearly
dominates. This is also the case at very short range. In I = 1 there are large cancellations
between the N∆ and the ∆∆ contributions for the spin-spin and the tensor potentials, which
result in extremely small contributions.

In Fig. 14 a-b the spin-orbit potentials are shown. The tail of the spin-orbit potential from
the 1/M -term in the pseudovector vertex is positive and much larger than for the TPEP
from the NN intermediate states [1]. It is also stronger than that from the heavy-boson
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exchange (HBE) (see [1]). Moreover, this spin-orbit is not like that from scalar exchange.
As can be seen from the figures, the central potentials are dominantly I = 0 exchange,
whereas the spin-spin and the tensor potentials are dominantly I = 1 exchange. Therefore,
the central potential could be described by the exchange of an effective scalar meson. The
corresponding spin-orbit potential, which is purely the Thomas term [31], can be obtained
from the formula

VSO(r) ≈ − 1
2M2

N

1
r

d
dr

V (0)
C (r) , (7.2)

where we have included only the dominant contribution to VC . In Fig. 14 both the Thomas
and the pseudovector-correction contributions are shown together with their sum. Beyond
r = 1 fm there is virtually a complete cancellation of the spin-orbit contributions.

In Fig. 15 a-b the energy dependence of the once-iterated Born term contributions are
shown. We give the curves for Tlab = 0, 150, 350 MeV, respectively. As can be seen from
these curves, the energy dependence is very mild. The TMO potentials show a similar
behavior.

The actual choice we made for Λ in Figs. 10 to 15 is not totally arbitrary. First of all,
it has the same value as used in the figures of [1]. Furthermore, a low value for the NNπ
form factor (Λ ≈ 770 MeV) seems to be preferred with regard to the Goldberger-Treiman
relation and some recent NN and NN partial-wave analyses [32, 33]. Here we only consider
it as an effective parameter, which in a later stage should be determined by a confrontation
with the data. In Fig 16 we show the effect of the form factor. The value Λ = 964.52 MeV
is the value found in Ref. [2] in a fit to the NN data. One sees that the tail of the I = 1
potential starts at r ≈ 1.5 fm. The same is true for the I = 0 potential.

As compared to the isobar TPEP’s in the literature, the tail of our potentials are roughly
the same as those of Chemtob et al. [9]. Of course, the intermediate and inner region are
very different because they do not include any form factors. The differences between [9] and
this paper can be seen clearly by comparing the results for the NN -box diagrams. In [9] the
NNπ pseudoscalar (ps) coupling was used in contrast to the pseudovector (pv) coupling in
the present paper. Moreover, we neglect the pv-pair terms which are an order of magnitude
smaller than those from the ps coupling. So the differences between [9] and our work are
mainly due to the pair terms. Indeed, the latter explain the different tails completely. This
is demonstrated in Fig. 17 for the TPEP with NN intermediate states. The curve labeled
”no-pair” (corresponding to the ps-pv theory) represents our γµγ5-theory, assuming strong
pair suppression. Adding the dashed curve labeled ”pairs”, which represents the pair terms
of the γ5-theory [34], results in the solid curve of the ps-ps theory. A similar behavior is
shown when we include the pair terms of the TPEP with N∆ and ∆∆ intermediate states.
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APPENDIX A: TREATMENT TMO AND
BORN ITERATION

The NN - and N∆-threshold difference causes special problems in the treatment of the
TMO-graphs and the Born-iteration. Making the non-adiabatic expansion of the energy
denominator for the N∆ intermediate state in the kernels (4.4a) and (4.4b), one gets

(Ep−k1 + Ep−k1 −W )−1 ≈ (a− β1)
−1 , (A1)

with a = M∆ −MN and β1 = k1 · k2/M , where M = (M∆ + MN)/2. In order not to limit
the applicability of our formulas to the very low energy region, we avoid the expansion of
the denominator (A1) as a power series in β1. Restricting ourselves to energies below the
N∆-threshold (so a− β1 > 0), we write

1
a− β1

=
∫ ∞

0
dze−z(a−β1) . (A2)

Using

β1 =
k1 · k2

M
=

1
2M

(

k2 − k2
1 − k2

2

)

, (A3)

we get in combination with the Gaussian form factors

F1(k2
1)F2(k2

2)
(a− β1)

=
∫ ∞

0
dz exp[−z(a− k2/2M)]

× exp
[

−k2
1/Λ

2
1(z)

]

exp
[

−k2
2/Λ

2
2(z)

]

. (A4)

Here

Λ(z) = Λ
(

1 + Λ2

2M
z
)−1/2

. (A5)

In making the non-adiabatic expansion in the other energy denominators in the kernels
(4.4a) and (4.4b) for the TMO graphs, and after subtracting the OPE iteration, we obtain
terms of the form β1/(a− β1), which we write as

β1

a− β1
= −1 +

a
a− β1

.

The term on the right-hand side in the limit a → 0 corresponds to TMO potentials with
NN intermediate states [1]. This contribution will therefore be included in V (0)

TMO.
To the second term on the right-hand side we apply the procedure described in the

following. The contribution to the nucleon-nucleon potential will essentially be of the general
form [cf. Eq. (A4)]

V (r) =
∫ ∫ d3k1d3k2

(2π)6 ei(k1+k2)·r

× a
∫ ∞

0
dze−z(a−k2/2M)F (z;k2

1)G(z;k2
2)

= a
∫ ∞

0
dze−z(a+∆/2M)V (z; r) , (A6)
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where the Laplacian ∆ operates on V (z; r) only. Operating with V (r) on the NN wave
function ψ(r) gives

V (r)ψ(r) = a
∫ ∞

0
dze−z(a+∆/2M)V (z; r)ψ(r)

≈ a
∫ ∞

0
dze−z(a− 1

2Tlab)
˜V (z; r)ψ(r) , (A7)

where

˜V (z; r) = e−z∆/2MV (z; r)ez∆/2M

= V (z; r) + z
[

V (z; r),
∆

2M

]

+ . . .

≈ V (z; r) . (A8)

Moreover, in Eq.(A7) we used the Schrödinger equation (−∆/M + VNN)ψ ≈ Tlabψ and
neglected the NN potential VNN . We believe this is a reasonable approximation since the
total potential is in general rather weak. The alternative would be to use some average
potential. In Eq. (A7), the integrand clearly shows that our formulas are limited to the
region below the N∆ threshold. This occurs at Tlab = 2a ≈ 600 MeV.

The treatment of the ∆∆ intermediate state is similar to that for the N∆ intermediate
states described above, except that a is to be replaced by 2a and β1 by β2 = k1 · k2/M∆.

APPENDIX B: INTEGRAL REPRESENTATIONS

We give a catalog of integral representations for the energy denominators which occur
in the potentials in momentum space. The techniques used are similar to those given in
Appendix B of Ref. [1]. We start from the basic representations (a > 0)

1
ω

=
2
π

∫ ∞

0

dλ
ω2 + λ2 , (B1a)

1
ω + a

=
2
π

∫ ∞

0

λ2 dλ
(ω2 + λ2)(a2 + λ2)

, (B1b)

where ω = ω(k) =
√

k2 + µ2, and derive from these the following formulas by simple fraction
splitting and/or differentiation

1
ω

1
ω + a

=
2a
π

∫ ∞

0

dλ
(ω2 + λ2)(a2 + λ2)

,

1
(ω + a)2 =

4a
π

∫ ∞

0

λ2dλ
(ω2 + λ2)(a2 + λ2)2 ,

1
ω2

1
(ω + a)

=
1
a

(

1
ω2 −

2a
π

∫ ∞

0

dλ
(ω2 + λ2)(a2 + λ2)

)

,

1
ω

1
(ω + a)2 =

2
π

∫ ∞

0
dλ

(a2 − λ2)
(ω2 + λ2)(a2 + λ2)2 . (B2)
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The basic Fourier transformation for OPE with a Gaussian form factor is

I2(m, r) ≡ (2π)−3
∫

d3k eik·r Ĩ2(k2) ,

Ĩ2(k2) =
∫ ∞

0
dµ2 ρ(µ2)

k2 + µ2 '
e−k2/Λ2

k2 + m2 , (B3)

where in the last equation we used the substitution (4.8). In terms of the error functions [35],
this transformation has been given explicitly in Ref. [2] and it reads

I2(m, r) =
m
4π

φ0
C(m, r) ,

φ0
C(m, r) = em2/Λ2

[

e−mrerfc (−Λr
2

+
m
Λ

)

−emrerfc (
Λr
2

+
m
Λ

)
] 1

2mr
. (B4)

The derivatives are easy to obtain and we list

d
dr

φ0
C(m, r) = −m2rφ0

SO(m, r) ,

d2

dr2φ0
C(m, r) = m2φ1

C(m, r) + 2m2φ0
SO(m, r) ,

d3

dr3φ0
C(m, r) = −m4rφ1

SO(m, r)− 6m2

r
φ0

T (m, r) ,

where φn
X can be found in Refs. [2, 3]. Above, we have written all the occurring forms of

energy denominators in such a way that the Fourier transformation of Eq. (B3) given in
Eq. (B4) is sufficient to handle all cases that we will encounter in this paper. For example,
the Fourier transformation of Eq. (B1b) is, using Eqs. (B4) and (4.8),

I1(a; r) =
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

I2(
√

m2 + λ2, r)e−λ2/Λ2
. (B5)

The Fourier transformation of Eq. (B1a) is obviously I1(r) ≡ I1(0; r), while for the higher
powers (ω +a)−n we find In(a; r) = −(d/da)In−1(a; r). In the formulas for the potentials we
sometimes use for brevity the notation

e−λ2/Λ2
I2(
√

m2 + λ2, r) ≡ F (λ, r) . (B6)

The double Fourier transformations can be carried through without difficulty once the
dependence on k1 and k2 is factorized directly or under a λ-integral. This can always be
achieved by using the identities given above. (Compare with the procedures as described
in Appendix B of Ref. [1].) Also the application of the above formulas in the presence of
(Gaussian) form factors is completely analogous to the TPEP derivation in the case of two
nucleons in the intermediate states (a = 0) as given in Ref. [1]. To illustrate the method in
more detail, we consider as an example the following typical integral
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J̃1(k1,k2) =
∫ ∞

0
dµ2

1

∫ ∞

0
dµ2

2
ρ(µ2

1)ρ(µ2
2)

[ω(k1) + ω(k2)]

× 1
[ω(k1) + a][ω(k2) + a]

, (B7)

which is the analog of the expression (B.10) of Ref. [1]. Here, we can use also the trick of
Lévy [36] by writing

1
(ω1 + a)(ω2 + a)

1
ω1 + ω2

=
1

ω2
1 − ω2

2

×
( 1

ω2 + a
− 1

ω1 + a

)

. (B8)

Then, with Eq. (B1b) we find the important result

1
(ω1 + a)(ω2 + a)

1
ω1 + ω2

=
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

× 1
(ω2

1 + λ2)(ω2
2 + λ2)

, (B9)

which is the very cornerstone for achieving the separation of the ω1 and ω2 dependence
and which enables us to do the momentum integrations in an elegant manner. Substituting
Eq. (B9) into Eq. (B7) we obtain a factorization of k1 and k2 under the λ-integral:

J̃1(k1,k2) =
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

[

∫ ∞

0
dµ2

1
ρ(µ2

1)
ω(k1)2 + λ2

]

×
[

∫ ∞

0
dµ2

2
ρ(µ2

2)
ω(k2)2 + λ2

]

,

where ω(k1) =
√

k2
1 + µ2

1 and ω(k2) =
√

k2
2 + µ2

2. Using the substitution (4.8), we get

J̃1(k1,k2) =
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

[

e−(k2
1+λ2)/Λ2

k2
1 + m2 + λ2

]

×
[

e−(k2
2+λ2)/Λ2

k2
2 + m2 + λ2

]

.

For the latter expression, the Fourier transformation can readily be performed and yields

J1(a; r) =
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

e−2λ2/Λ2
[

I2(
√

m2 + λ2, r)
]2

. (B10)

All Fourier integrals appearing in the course of the calculation of the TPE potentials can
be treated similarly. Note that the tricks, employed here, also work in the case of the
two-meson-exchange potentials, where in general the mesons have different masses.

Next we indicate briefly how to use the results of this Appendix to perform the momen-
tum integrations. To evaluate the Fourier transformations of the different graphs given in
Sec. V we use the following identities
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(i) N∆ graphs : For the evaluation of the contribution due to D(1)
// we use

[

1
ω1

1
(ω2 + a)

+
1
ω2

1
(ω1 + a)

]

1
(ω1 + ω2)

=

=
1

(ω1 + a)(ω2 + a)

( 2
ω1 + ω2

+
a

ω1ω2

)

.

(B11)

The Fourier transformation of this expression follows from the application of Eqs. (B9)
and (B2). The other expressions appearing in the energy denominators can be handled by
application of the formulas listed in Eq. (B2).

(ii) ∆∆ graphs : The contribution due to D(2)
// is the same as Eq. (B11). The expression

for D(2)
X is seen from Eq. (5.9) to be of the form

d
da

(

a
ω1ω2(ω1 + a)(ω2 + a)(ω1 + ω2)

+
1

ω1ω2(ω1 + a)(ω2 + a)

)

. (B12)

Within parentheses there have appeared the by now already familiar expressions discussed
in this Appendix. Interchanging the Fourier transformation and the differentiation w.r.t. the
variable a, the evaluation of the corresponding potentials in configuration space is, although
a little tedious, straightforward. The evaluation of the various other D(2) expressions poses
no problem.

We finally summarize the results of this Appendix by giving a list of the Fourier trans-
forms for the expressions in Eqs. (B2) and (B9). In order to be able to report our results in
a somewhat concise form we introduce some convenient notations. First we define

G̃n,m(a, ω) =
1
ωn

1
(ω + a)m . (B13)

From Eq. (B2) the Fourier transforms are seen to be

G1,0(a, r) =
2
π

∫ ∞

0
dλ F (λ, r) ,

G0,1(a, r) =
2
π

∫ ∞

0

λ2dλ
(a2 + λ2)

F (λ, r) ,

G1,1(a, r) =
2a
π

∫ ∞

0

dλ
(a2 + λ2)

F (λ, r) ,

G2,1(a, r) =
1
a

[I2(m; r)−G1,1(a, r)] , (B14)

where F (λ, r) was defined in Eq. (B6), and for m > 0, Gn,m+1(a, r) = −(d/da)Gn,m(a, r).
Next we define

H̃n,m(a, ω1, ω2) =
1

ωn
1 ωm

2

1
(ω1 + a)(ω2 + a)

1
ω1 + ω2

. (B15)
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From Eqs.(B9) and (B10) one easily sees that the various Fourier transforms read

H0,0(a, r1, r2) =
2
π

∫ ∞

0

λ2dλ
a2 + λ2 F (λ, r1)F (λ, r2) ,

H1,1(a, r1, r2) =
2
π

∫ ∞

0

dλ
a2 + λ2F (λ, r1)F (λ, r2)

−1
a
G1,1(a, r1)G1,1(a, r2) ,

H2,2(a, r1, r2) =
2
π

∫ ∞

0

dλ
λ2(a2 + λ2)

[I2(m, r1)− F (λ, r1)]

× [I2(m, r2)− F (λ, r2)] . (B16)

APPENDIX C: CHARACTERISTIC
POTENTIAL FORMS

The momentum integrations are carried out as described in Ref. [1]. We write

ei(k1+k2)·r = lim
r1,r2→r

eik1·r1eik2·r2 , (C1)

and take the limit operation before the momentum integrations. Then, we replace all mo-
menta occurring in the numerator by ∇1 and ∇2 operations, which are the ∇ operations
w.r.t. r1 and r2, and take these in front of the momentum integrations. This procedure leads
to the following typical forms

lim
r1→r2

(∇1 ·∇2)2F (r1)G(r2) = [∇i∇jF (r)] [∇i∇jG(r)] , (C2)

lim
r1→r2

(σ1 ·∇1 ×∇2)(σ2 ·∇1 ×∇2)F (r1)G(r2) = σ1iσ2j εiklεjmn [∇k∇mF (r)] [∇l∇nG(r)] ,

(C3)

where, as usual, we use in this Appendix the convention that repeated indices are summed
over. In Eq. (C3) the differentiations work only within the square brackets. For functions
depending on r only one has

∇i∇j = O(1)
ij

(

1
r

d
dr

)

+ O(2)
ij

(

d2

dr2

)

,

O(1)
ij = δij −

xixj

r2 , O(2)
ij =

xixj

r2 . (C4)

The tensors O(1) and O(2) satisfy the rules

O(1)
ij O(1)

ij = 2, O(1)
imO(1)

jm = O(1)
ij ,

O(1)
ij O(2)

ij = 0, O(1)
imO(2)

jm = 0 ,

O(2)
ij O(2)

ij = 1, O(2)
imO(2)

jm = O(2)
ij . (C5)

32



From these rules it is easy to calculate Eqs. (C2) and (C3). Furthermore, one finds

(i) lim
r1→r2

(∇1 ·∇2)2F (r1)G(r2) ≡ (F ⊗G)C (r) =
2
r2F ′(r)G′(r) + F ′′(r)G′′(r) ,

(C6)
(ii) lim

r1→r2
(σ1 ·∇1 ×∇2)(σ2 ·∇1 ×∇2)F (r1)G(r2) ≡

≡ (F ⊗G)σ (r)(σ1 · σ2) + (F ⊗G)T (r)S12 =

=
2
3

[ 1
r2 F ′(r)G′(r) +

1
r
F ′(r)G′′(r) +

1
r
F ′′(r)G′(r)

]

(σ1 · σ2)

+
1
3

[(1
r
F ′(r)− F ′′(r)

) 1
r
G′(r) +

1
r
F ′(r)

(1
r
G′(r)−G′′(r)

)]

S12 , (C7)

(iii) lim
r1→r2

(∇1 ·∇2)(∇2
1 ±∇2

2)F (r1)G(r2) ≡ (F �G)±C (r) = [(∆F )′(r)G′(r)± F ′(r)(∆G)′(r)] ,

(C8)
(iv) lim

r1→r2
(∇1 ·∇2)(∇1 ±∇2)×Q · SF (r1)G(r2) ≡ (F �G)±1 (r)L · S =

=
1
r

[F ′′(r)G′(r)± F ′(r)G′′(r)]L · S , (C9)

(v) lim
r1→r2

(∇1 ×∇2) · S(∇1 ∓∇2) ·Q F (r1)G(r2) ≡ (F �G)±2 (r)L · S =

= −1± 1
r2 F ′(r)G′(r)L · S . (C10)

The product combinations (F ⊗G)C (r), (F ⊗ G)σ(r), and (F ⊗ G)T (r) introduced above,
are used in Sec. V. The product combinations (F �G)C (r), (F �G)1(r), and (F �G)2(r)
are used in Sec. VIA.

For the computation of the non-adiabatic corrections of Sec. VIB we need also the higher
derivatives. We easily derive (see also Ref. [1], Appendix D)

(vi) lim
r1→r2

(∇1 ·∇2)3F (r1)G(r2) ≡ (F �G)C (r) =

=
6
r2

(1
r
F ′(r)− F ′′(r)

) (1
r
G′(r)−G′′(r)

)

+ F ′′′(r)G′′′(r) , (C11)

(vii) lim
r1→r2

(∇1 ·∇2)(σ1 ·∇1 ×∇2)(σ2 ·∇1 ×∇2)F (r1)G(r2) ≡

≡ (F �G)σ (r)(σ1 · σ2) + (F �G)T (r)S12 =

−2
3

[ 1
r2

(1
r
F ′(r)− F ′′(r) + rF ′′′(r)

) (1
r
G′(r)−G′′(r) + rG′′′(r)

)

− F ′′′(r)G′′′(r)
]

(σ1 · σ2)

+
1
3

[ 1
r2

(2
r
F ′(r)− 2F ′′(r) +

r
2
F ′′′(r)

) (2
r
G′(r)− 2G′′(r) +

r
2
G′′′(r)

)

− 1
4
F ′′′(r)G′′′(r)

]

S12 .

(C12)

33



REFERENCES

[1] Th.A. Rijken, Ann. Phys. (N.Y.) 208, 253 (1991).
[2] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 17, 768 (1978).
[3] P.M.M. Maessen, Th.A. Rijken, and J.J. de Swart, Phys. Rev. C 40, 2226 (1989).
[4] Th.A. Rijken and V.G.J. Stoks, Phys. Rev. 46, 102 (1992), the following paper.
[5] H. Sugawara and F. von Hippel, Phys. Rev. 172, 1764 (1968); ibid. 185, 2046(E) (1969).
[6] A.M. Green and P. Haapakoski, Nucl. Phys. A221, 429 (1974).
[7] R.A. Smith and V.R. Pandharipande, Nucl. Phys. A256, 327 (1976).
[8] A.M. Green, Rep. Prog. Phys. 39, 1109 (1976).
[9] M. Chemtob, J.W. Durso, and D.O. Riska, Nucl. Phys. B38, 141 (1972).
[10] W.N. Cottingham, M. Lacombe, B. Loiseau, J.M. Richard, and R. Vinh Mau, Phys.
Rev. D 8, 800 (1973).

[11] J.W. Durso, M. Saarela, G.E. Brown, and A.D. Jackson, Nucl. Phys. A278, 445 (1977).
[12] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).
[13] R. Malfliet and B. ter Haar, Phys. Rep. 149, 207 (1987).
[14] E.E. van Faassen and J.A. Tjon, Phys. Rev. C 28, 2354 (1983).
[15] E.L. Lomon, Phys. Rev. D 26, 576 (1982); P. González and E.L. Lomon, ibid. 34, 1351
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TABLES

TABLE I. Momentum operators O(α)(k1,k2) of the planar (BW// and TMO) and crossed
(BWX) graphs for the N∆ and the ∆∆ intermediate states.

α O(α)
N∆(k1,k2)

BW//, TMO 2
3(k1 · k2)2 + 1

3(σ1 · k1 × k2)(σ2 · k1 × k2)

BWX
2
3(k1 · k2)2 − 1

3(σ1 · k1 × k2)(σ2 · k1 × k2)

α O(α)
∆∆(k1,k2)

BW//, TMO 4
9(k1 · k2)2 − 1

9(σ1 · k1 × k2)(σ2 · k1 × k2)

BWX
4
9(k1 · k2)2 + 1

9(σ1 · k1 × k2)(σ2 · k1 × k2)
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TABLE II. Adiabatic approximation of the energy denominators D(1)
α for N∆ and D(2)

α for ∆∆
intermediate states. Here β1 = k1 · k2/M and β2 = k1 · k2/M∆.

α D(1)
α (ω1, ω2)

BW//
1

2ω1ω2

[

1
(ω1 + a)ω2

+
1

ω1(ω2 + a)

]

1
(ω1 + ω2)

BWX
1

2ω1ω2

{[

1
(ω1 + a)ω1

+
1

(ω2 + a)ω2

] (

1
ω1 + ω2

+
1

ω1 + ω2 + a

)

+
[

1
(ω1 + a)(ω2 + a)

+
1

ω1ω2

]

1
ω1 + ω2 + a

}

TMO
1

4ω1ω2

[

1
(ω1 + a)ω2

(

1
ω1 + a

+
1
ω2

)

+
1

ω1(ω2 + a)

(

1
ω2 + a

+
1
ω1

)

+
1

ω1ω2

(

1
ω1

+
1
ω2

)

+
1

(ω1 + a)(ω2 + a)

(

1
ω1 + a

+
1

ω2 + a

)]

β1

a− β1

Born
1

2ω1ω2

[

1
(ω1 + a)ω2

+
1

ω1(ω2 + a)
+

1
(ω1 + a)(ω2 + a)

+
1

ω1ω2

]

1
a− β1

α D(2)
α (ω1, ω2)

BW//
1

2ω1ω2

[

1
(ω1 + a)(ω2 + a)

1
(ω1 + ω2)

]

BWX
1

4ω1ω2

[(

1
(ω1 + a)2

+
1

(ω2 + a)2

)

1
(ω1 + ω2)

+
(

1
(ω1 + a)2

+
1

(ω2 + a)2
+

2
(ω1 + a)(ω2 + a)

)

1
(ω1 + ω2 + 2a)

]

TMO
1

4ω1ω2

[

1
(ω1 + a)2(ω2 + a)

+
1

(ω1 + a)(ω2 + a)2

]

β2

2a− β2

Born
1

ω1ω2

[

1
(ω1 + a)(ω2 + a)

]

1
2a− β2
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TABLE III. Momentum operators O′(k1,k2) for the adiabatic (mπ/M)-corrections of the
BW//-, the BWX -, and the Born-graphs for N∆ intermediate states.

α O′(α)
N∆ (ω1,k1;ω2,k2)

BW//
2
3 [(k1 · k2)(ω1k2

2 − ω2k2
1) + i(k1 · k2)(ω1k2 − ω2k1)×Q · (σ1 + σ2)

+ i
2(σ1 + σ2) · k1 × k2 (ω1k2 + ω2k1) ·Q]

BWX,a
2
3 [−(k1 · k2)(ω1k2

2 − ω2k2
1)− i(k1 · k2)(ω1k2 − ω2k1)×Q · (σ1 + σ2)

+ i
2(σ1 + σ2) · k1 × k2 (ω1k2 + ω2k1) ·Q]

BWX,b
2
3 [−(k1 · k2)(ω1k2

2 + ω2k2
1)− i(k1 · k2)(ω1k2 + ω2k1)×Q · (σ1 + σ2)

+ i
2(σ1 + σ2) · k1 × k2 (ω1k2 − ω2k1) ·Q]

Born,a 2
3 [(k1 · k2)(ω1k2

2 − ω2k2
1) + i(k1 · k2)(ω1k2 − ω2k1)×Q · (σ1 + σ2)

+ i
2(σ1 + σ2) · k1 × k2 (ω1k2 + ω2k1) ·Q]

Born,b 2
3 [(k1 · k2)(ω1k2

2 + ω2k2
1) + i(k1 · k2)(ω1k2 + ω2k1)×Q · (σ1 + σ2)

+ i
2(σ1 + σ2) · k1 × k2 (ω1k2 − ω2k1) ·Q]

TABLE IV. Adiabatic approximation of the energy denominators D′
α for contributions from

(mπ/M)-corrections of the NNπ-vertex for the BW//-, the BWX -, and the Born-graphs for N∆
intermediate states; β1 = k1 · k2/M .

α D′
α(ω1, ω2)

BW//
1

4ω1ω2

[

1
(ω1 + a)ω2

− 1
ω1(ω2 + a)

]

1
(ω1 + ω2)

BWX,a
1

4ω1ω2

[

1
(ω1 + a)ω1

− 1
(ω2 + a)ω2

]

1
(ω1 + ω2)

BWX,b
1

4ω2
1ω

2
2

[

1
(ω1 + a)

+
1

(ω2 + a)
− a

(ω1 + a)(ω2 + a)

]

Born,a
1

4ω1ω2

[

1
(ω1 + a)ω2

− 1
ω1(ω2 + a)

]

1
a− β1

Born,b
1

4ω1ω2

[

1
(ω1 + a)(ω2 + a)

− 1
ω1ω2

]

1
a− β1
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TABLE V. Non-adiabatic approximation of the energy denominators D(1)′′
α for N∆ and D(2)′′

α

for ∆∆ intermediate states.

α D(1)′′
α (ω1, ω2)

BW//
1

2ω1ω2

[

1
(ω1 + a)2

1
ω2

+
1
ω1

1
(ω2 + a)2

+
1

(ω1 + a)
1
ω2

2
+

1
ω2

1

1
(ω2 + a)

]

1
(ω1 + ω2)

BWX,a
1

2ω1ω2

[

1
(ω1 + a)2

1
ω1

+
1
ω2

1
(ω2 + a)2

+
1

(ω1 + a)
1
ω2

1
+

1
ω2

2

1
(ω2 + a)

]

1
(ω1 + ω2)

BWX,b
1

2ω1ω2

[{

1
(ω1 + a)2

1
ω1

+
1
ω2

1
(ω2 + a)2

+
1

(ω1 + a)
1
ω2

1
+

1
ω2

2

1
(ω2 + a)

}

1
(ω1 + ω2 + a)

+
{

1
(ω1 + a)

1
ω1

+
1
ω2

1
(ω2 + a)

}

2
(ω1 + ω2 + a)2

]

BWX,c
1

2ω1ω2

[{

1
ω2

1ω2
+

1
ω1ω2

2
+

1
(ω1 + a)2(ω2 + a)

+
1

(ω1 + a)(ω2 + a)2

}

1
(ω1 + ω2 + a)

+
{

1
ω1ω2

+
1

(ω1 + a)(ω2 + a)

}

2
(ω1 + ω2 + a)2

]

α D(2)′′
α (ω1, ω2)

BW// − 1
2ω1ω2

d
da

[

1
(ω1 + a)(ω2 + a)

1
ω1 + ω2

]

BWX
1

2ω1ω2

d2

da2

[

1
(ω1 + a)(ω2 + a)

+
a

(ω1 + a)(ω2 + a)
1

ω1 + ω2

]
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FIGURES

FIG. 1. Feynman diagrams for two-pion exchange with (a) one or (b) two ∆33-isobars in the
intermediate states.

FIG. 2. Definition of momentum vectors in second-order (a) planar and (b) crossed graphs.

FIG. 3. Planar BW two-pion-exchange potential graphs with one ∆33-isobar in the intermediate
state.

FIG. 4. Crossed BW two-pion-exchange potential graphs with one ∆33-isobar in the interme-
diate state.

FIG. 5. TMO two-pion-exchange potential graphs with one ∆33-isobar in the intermediate state.

FIG. 6. Planar BW two-pion-exchange potential graphs with two ∆33-isobars in the interme-
diate state.

FIG. 7. Crossed BW two-pion-exchange potential graphs with two ∆33-isobars in the interme-
diate state.

FIG. 8. TMO two-pion-exchange potential graphs with two ∆33-isobars in the intermediate
state.

FIG. 9. Second-order potential scattering diagrams with (a) one or (b) two ∆33-isobars in the
intermediate state.

FIG. 10. TPEP central, spin-spin, and tensor contributions due to NN , or N∆ and ∆∆ in-
termediate states. The total contribution is also shown. (a) I = 0 and r ≤ 1 fm; (b) I = 0 and
1 ≤ r ≤ 2 fm; (c) I = 1 and r ≤ 1 fm; (d) I = 1 and 1 ≤ r ≤ 2 fm.

FIG. 11. Separate TPEP central, spin-spin, and tensor contributions due to N∆ and ∆∆
intermediate states for I = 0 and I = 1. Contributions (a)–(d) as in Fig. 10.

FIG. 12. Isobar TPE central, spin-spin, and tensor contributions to the potential tail of the
BW, TMO, and Born diagrams for (a) I = 0 and (b) I = 1.

FIG. 13. The V (0), V (1), and V (2) contributions of the isobar TPE central, spin-spin, and tensor
potential tails for (a) I = 0 and (b) I = 1.
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FIG. 14. Spin-orbit potential contributions to the isobar TPE potentials for (a) r ≤ 1 fm and
(b) 1 ≤ r ≤ 2 fm.

FIG. 15. Energy dependence of the once-iterated Born diagrams to the short- and intermedi-
ate-range isobar central, spin-spin, and tensor TPEP’s for (a) I = 0 and (b) I = 1.

FIG. 16. Dependence of the tail of the central, spin-spin, and tensor potential on the value of
the cutoff mass Λ for I = 1.

FIG. 17. Influence of the pair terms on the tail of the TPEP with NN intermediate states for
(a) I = 0 and (b) I = 1.

41


	Introduction
	Relativistic two-body equations
	Multi-channel three-dimensional integral equations
	Nucleon-nucleon two-meson exchange
	The nucleon-nucleon kernel
	The nucleon-nucleon potential
	Two-pion-exchange potential
	N-Delta graphs
	Delta-Delta graphs
	Iterated one-pion exchange
	1/M corrections
	Corrections from pseudovector vertex
	Non-adiabatic corrections
	Results and discussion
	Treatment TMO and Born iteration
	Integral representations
	Characteristic potential forms

