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I. INTRODUCTION

Partial-wave analyses (PWAs) have a long history in the fields of πN and NN scattering.
Due to the poor quality of low-energy antiproton beams and the resulting absence of accurate
experimental data, analogous model-independent studies of the much more complex pp sys-
tem have in the past always been impossible. In recent years, however, experimental progress
has been very significant, in particular due to the coming in 1983 of the Low-Energy Antipro-
ton Ring (LEAR) facility at CERN. While in the pre-LEAR era spin-dependent observables
and charge-exchange (pp → nn) data were almost nonexistent, the situation between 400 and
925 MeV/c is now quite good: the LEAR collaborations PS172, PS173, PS198, and PS199
have measured a variety of observables with impressive accuracy. High-quality analyzing-
power data have been obtained for the elastic [1] and charge-exchange [2] reactions. Very
recently, even charge-exchange depolarization data have become available [3]. Unfortunately,
the practical difficulties involved in constructing a high-quality “cooled” antiproton beam of
lower momentum are large. Consequently, the pp database below about 400 MeV/c is still
by far not as good as one would like, in striking contrast to the pp case where very accurate
data exist as low as TL = 0.35 MeV (pL = 25 MeV/c). It also remains an outstanding
experimental challenge to construct a polarized antiproton beam to further probe the spin
structure of the interaction.

During the last 10 years a new method has been developed by the Nijmegen group to
perform PWAs of the abundant and accurate NN (pp and np) scattering data below TL = 350
MeV [4, 5]. With the now available high-quality data from LEAR and KEK, we have been
able to extend the methods used in these NN PWAs to perform an energy-dependent PWA
of all pp scattering data below pL = 925 MeV/c (TL = 379 MeV). This work was started
in 1987 [6] and has only recently been finished [7]. The same methods of PWA have also
been applied [8] to the strangeness-exchange reaction pp → ΛΛ, for which the PS185 group
at LEAR has obtained beautiful data. In the next section we review the theoretical ideas
behind these Nijmegen PWAs, and in section III we apply these ideas and methods to the
case of pp scattering. In section IV some results of this pp PWA are presented and discussed.

After almost a decade of LEAR, it is fair to say that in this field theory has some catching
up to do with respect to experiment. Since the partial-wave amplitudes or the phase-shift
parameters are in a sense the meeting ground between theory and experiment, the results
of the present PWA should be very useful in many ways. They can be used to improve
models [9, 10] for the NN interaction. Apart from the fact that this provides independent
and complementary [7] information about the spin- and isospin structure of the NN force,
the NN interaction is needed as input in many other pp subfields. Studies of for instance
protonium (the pp atom) or specific annihilation processes like pp → π+π−, K+K− require
a realistic treatment of the initial pp interaction. At the same time, this PWA could be
helpful in planning new experiments at LEAR, the future of which is of course crucial to
this field.
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II. METHODS OF PARTIAL-WAVE ANALYSIS

The hallmark of the Nijmegen energy-dependent PWAs is the sophisticated manner in
which the energy dependence of the partial-wave amplitudes is parametrized. At the basis
of the PWA is the trivial observation that in the low-energy region (long wave lengths) the
long-range interaction is very important. It is this long-range interaction that is responsible
for the rapid variations with energy of the scattering amplitudes. Short-range interactions
lead to much slower energy variations of the amplitudes. One usually looks for a function in
the problem that one can parametrize as easily as possible, i.e. one that does not contain the
contributions from these long-range processes. Because these long-range interactions are at
the same time model independent (in the sense that they are or at least should be the same
in all NN and NN models), they can then be taken into account separately and exactly.

It is, of course, not a good idea to try to parametrize the partial-wave S matrix itself, since
it does contain all of these long-range effects. As a function of complex energy, the S matrix
has a (kinematical) right-hand unitarity cut, other right-hand cuts due to the coupling to
inelastic channels, and (dynamical) left-hand cuts due to particle exchanges. The left-hand
cuts that are the closest to the origin TL = 0 correspond to the longest-range processes. The
left-hand cuts that start far away from the origin are due to the short-range interactions. For
instance, the infinite-range Coulomb potential (V ∼ 1/r) produces an essential singularity
and a branch point at TL = 0, vacuum polarization (V ∼ exp(−2mer)/r5/2) produces a cut
at TL = −0.6 keV, and one-pion exchange (V ∼ exp(−mπr)/r) leads to a cut starting at
TL = −9.7 MeV. One sees that the crux is to find a quantity in which the cuts nearest to the
origin are not present. This quantity then allows an analytical parametrization in energy or
k2 in an enlarged domain up to the next left- or right-hand cut present.

A familiar example of such a quantity with improved analyticity properties is the modified
effective-range function [4, 11]. The Coulomb-modified effective-range function for the pp
1S0 state was originally derived (in a rather intuitive way) by Landau and Smorodinsky [12].
When only the Coulomb potential is present the boundary condition for the radial wave
function Φ(0) = 0 is of course satisfied by F , the regular Coulomb wave function (for ` = 0).
Suppose that there is an additional short-range interaction. When the wave length is very
large (very low energy), one can take the limit in which the range of this additional (strong)
interaction goes to zero. Then its presence is only revealed by a modified boundary condition
at r = 0, which is now satisfied by a linear combination of F and G, the irregular Coulomb
wave function

Φ(r) = F (r) cot δ0 + G(r) , (1)

where δ0 is the nuclear phase shift in the presence of the Coulomb interaction (δ(1S0) =
δ0 + σ0), as can be seen from the asymptotic behavior of Φ. An equation for cot δ0 can then
be obtained by evaluating the logarithmic derivative of the wave function, which we call
P (k, r), for k → 0. In the np case this quantity P (k, 0) = k cot δ0 approaches a constant:

P (k, ε) =
(

dΦ
dr

/Φ
)

r=ε

→ −1
a

. (2)

In the pp case, the evaluation has to be done at r = ε because of a term ln ε that appears due
to the singular behavior of G. This term one absorbes in the constant −1/a, along with some
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further constant terms. Then one lets ε → 0 and immediately obtains the Coulomb-modified
(“zero-range”) effective-range function. It can be shown that after these manipulations the
resulting left-hand side of Eqn. (2) is an analytical (actually meromorphic) function of the
energy, so that the right-hand side can be written as a power series in k2 (this means dropping
the zero-range approximation).

The analytical expansion of the Coulomb-modified effective-range function breaks down
already at TL = −9.7 MeV, where the one-pion–exchange cut starts. It is possible to derive a
new “pion-modified” effective-range function from which also this cut has been removed [4].
Let the regular and irregular wave functions for the case where only the Coulomb and
pion-exchange potentials are present be called Fπ and Gπ. (For the purpose of the present
discussion, we ignore vacuum polarization.) The wave function can then be written as

Φ(r) = Fπ(r) cot δ0 + Gπ(r) , (3)

where δ0 is now the phase shift due to the short-range remainder of the strong interaction
(δ(1S0) = δ0 + π0 + σ0, where π0 is the one-pion–exchange phase shift in the presence of the
Coulomb potential). However, proceeding in similar fashion as above, one encounters an
important problem here. The evaluation of P (k, ε) has to be done numerically, since Fπ and
Gπ are not known in analytical form. Due to the singular behavior of Gπ when ε → 0, it
is very hard to maintain sufficient numerical accurary, especially for higher orbital angular
momenta.

At this point one has to realize that this numerical problem of the modified effective-
range function is really an artificial problem: it crops up due to the singular behavior of the
irregular function of the long-range potential near the origin. However, it is precisely this
short-range interaction that one wants to parametrize, since it is essentially unknown, very
complicated, and leads to only slow energy variations of the scattering amplitudes. Looking
at Eqn. (3), one observes that it is valid for any r, so why not evaluate P (k, r) at a finite
value r = b, instead of at r = ε?

This is essentially what is done in the Nijmegen PWAs. The wave functions are obtained
by solving the (relativistic) Schrödinger equation. Suppose one starts at a point r∞ where
only the Coulomb potential is present. Integrating inwards, one picks up sequentially the
contributions (varying rapidly with energy) from the electromagnetic potentials, one-pion
exchange, and contributions (varying slower with energy) from other meson exchanges. One
then stops at a point r = b. If there are no additional interactions for r < b, the boundary
condition P (k, b) at r = b is obviously satisfied by the regular wave function corresponding
to precisely this potential tail. For small enough b the model used for r > b will of course
not be correct, and the boundary condition has to be modified, as in the above examples. In
practice, it works the other way: one starts integrating at r = b and P (k, b) is parametrized
as a function of energy. Also the best value for b is determined by fitting the data. In general
multichannel problems P (k, b) becomes a matrix. This P matrix has the required improved
analyticity properties. When there are no nearby right-hand cuts, it is an analytical (again:
actually meromorphic) function of k2 in a domain bounded by the nearest left-hand cut not
removed by including (or including incorrectly) the corresponding exchange in the potential
tail for r > b. It can happen, of course, that short-range dynamics gives rise to a rapid
energy variation of the amplitudes, as in the case of a resonance. This would have to be
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taken into account in the P matrix, for instance by including a pole in the parametrization.
It is seen that the formalism used in the Nijmegen PWAs is similar to the boundary-condition
approach to the strong interactions that goes back to the work of Feshbach and Lomon [13]
and earlier. The philosophy, however, is very different. The term P matrix (for “pole”
matrix) was introduced by Jaffe and Low [14] in the framework of the bag model.

III. AN ANTIPROTON-PROTON PARTIAL-WAVE ANALYSIS

Let us now be more specific and apply the foregoing ideas to the case of pp scatter-
ing. In all the Nijmegen PWAs, the two-body scattering process is described with the
relativistic Schrödinger equation [15, 16], which is essentially a coordinate-space version of
the Blankenbecler-Sugar equation. It reads the same as the ordinary Schrödinger equation

(

∆ + k2 − 2mV
)

ψ(r) = 0 , (4)

except that the proper relativistic relation between energy and momentum is used. It is
well known how to derive the potentials for use in this equation [15, 16]. In this relativistic
framework, there is no known quantum-mechanical interpretation for the “wave function”
ψ(r). It is perhaps best to regard it as just a tool that allows one to compute the correct
relativistic scattering amplitude (e.g. the poles are the correct bound states). We solve
Eqn. (4) for the coupled pp and nn channels. The mass difference between proton and
neutron is included in order to account for the nn threshold at pL = 99 MeV/c.

The interaction in the region r > b is described by a theoretically well-founded NN
potential. This potential is given by

V = VC + VMM + VN , (5)

where VC and VMM are the relativistic Coulomb and magnetic-moment interaction respec-
tively. VN is the NN meson-exchange potential. It consists of one-pion exchange and the
(charge-conjugated) heavy-meson and pomeron exchanges from the 1978 Nijmegen NN po-
tential [17]. As argued in the previous section, the rapid energy variations of the amplitudes
due to the long-range electromagnetic interactions and one-pion exchange are now included
exactly.

Let us next turn to the parametrization of the short-range interactions for r < b by way of
the P -matrix boundary condition at r = b = 1.3 fm. Due to the coupling to the annihilation
channels, the S matrix has a right-hand cut starting already to the left of TL = 0. (In
the pp case this cut starts only at the pp → ppπ0 threshold at TL = 280 MeV.) As these
annihilation processes are of short range (and so give rise to slow energy variations of the
amplitudes), this right-hand cut has to be present in the P matrix, which we therefore take
to be complex. (Similarly, the effective-range parameters for the NN case are complex.)
The choice of the value for b is rather critical, more so than in the NN case (where it was
taken to be b = 1.4 fm). The best results are obtained for b = 1.3 fm. Since for r > b we use
only a real potential, the coupling to the annihilation channels is completely represented by
the boundary condition. We conclude therefore that the range of the annihilation process is
in fact about 1.3 fm [7].
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The electromagnetic interactions that we use are adapted from the improved Coulomb
potential [16]. This potential, designed specifically for use in the relativistic Schrödinger
equation, contains relativistic corrections to the static Coulomb potential and (in its off-
shell behavior) the main contributions from the two-photon–exchange diagrams. All these
effects are included in the Nijmegen pp PWA [4, 5], as well as the vacuum-polarization
potential. In our case it suffices to use the following spin-dependent one-photon–exchange
potentials

Vγ(r) = −α′

r
+

µ2
p

4M2
p

α
r3 S12 +

8µp − 2
4M2

p

α
r3 L · S for pp → pp , (6)

and

Vγ(r) =
µ2

n

4M2
n

α
r3 S12 for nn → nn . (7)

The magnetic moments of the proton and neutron are µp = 1 + κp = 2.793 and µn = κn =
−1.913, respectively. The use of α′ in the central potential for pp → pp takes care of the main
relativistic corrections to the Coulomb potential. It is given by α′/α = 2k/MvL where vL is
the velocity of the antiproton in the laboratory system. At 600 MeV/c one has for instance
vL = 0.54 and α′/α = 1.135, a correction of 13.5% to the static Coulomb potential. The
spin-orbit potential comes from the interaction of the magnetic moment of one particle with
the Coulomb field of the other particle (and is consequently absent in nn → nn). It includes
a relativistic correction due to the Thomas precession. The tensor potential comes from the
interaction of the two magnetic moments. Vacuum polarization and two-photon–exchange
effects are negligible in our case. The proper treatment of these electromagnetic effects in
the evaluation of the scattering amplitudes is a nontrivial matter [7]. The following simple
one-pion–exchange potential without a form factor is used

Vπ(r) = f 2
NNπ

M√
k2 + M2

m2

m2
π±

1
3

[

σ1 · σ2 + S12

(

1 +
3

(mr)
+

3
(mr)2

)]

e−mr

r
, (8)

where m is the mass of the pion and f2
NNπ = 0.0745 is the rationalized pion-nucleon coupling

constant [18]. The mass difference between the π0 and π± is included.
Let us finish this section with some more general remarks about PWAs. Even for the

pp case, where the database is of high quality and the observables are very well mapped
out, a PWA is impossible without a substantial amount of theoretical input or constraints.
For the np and pp PWAs, this is true a fortiori. For instance, one has to make some
assumptions about the validity of symmetries like charge independence or (as in our case)
charge conjugation. Obviously, one has to careful here: sometimes general physical principles
are inspired by local renormalizable field theories and not strictly valid for extended objects
like hadrons. A good example can be found in πN PWAs, where one usually implements full
Mandelstam analyticity [19]. The amplitudes are assumed to be analytic functions of the
two complex variables s and t except for singularities from the mass spectrum and unitarity.
These amplitudes then exhibit crossing symmetry. It is not clear at all to what extent
low-energy hadron dynamics actually satisfies this symmetry.
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Using strong and mostly model-independent theoretical constraints it has turned out to
be possible to perform an energy-dependent or multienergy PWA of the pp data. However,
it is quite a different ballgame to perform energy-independent or single-energy pp PWAs.
In a single-energy pp PWA one has to determine in principle 20 phase-shift parameters for
each J 6= 0 (8 for J = 0), which is four times as many as in a single-energy np PWA [7]!
Almost certainly the present pp database does not allow satisfactory energy-independent
PWAs. One has to realize, however, that even in the NN field the usefulness of energy-
independent PWAs is more limited than is perhaps generally thought. When one has a
good energy-dependent PWA, the best value for a phase shift (or the pion-nucleon coupling
constant!) is definitely the one determined in the energy-dependent PWA, and not the one
from an energy-independent PWA. One reason is that an energy-independent PWA contains
no information about the energy dependence of the amplitudes. This makes it for instance
less stable than an energy-dependent PWA with respect to the addition of new data to the
database. Also, a set of energy-independent PWAs is usually overparametrized compared to
a good energy-dependent PWA in the same energy region. It thus almost certainly contains
noise. For an extensive discussion of this important point, see Ref. [5].

IV. SOME RESULTS OF THE ANALYSIS

While in NN PWAs there is essentially agreement on the correct database (especially
for pp), we had to spend a lot of time and effort into collecting, scrutinizing, and cleaning
up the world set of pp scattering data, which contains a lot of flaws and contradictory data.
Exactly the same statistical arguments were used in this process as were used in the set-
up of the Nijmegen NN database [4, 5]. This means for instance that data with a very
improbable high or low χ2 are rejected on statistical grounds. The resulting Nijmegen 1993
pp database in the momentum interval 119–923 MeV/c is unique in the world and consists of
Ndata = 3646 pp data. It is extensively discussed in Ref. [7]. In the final fit to this database
we reach χ2 = 3801.0 or χ2/Ndata = 1.04. The number of boundary-condition parameters
needed is 30, which is a reasonable number, in view of the fact that 21 parameters were
needed in the Nijmegen pp PWA and an additional 18 in the np PWA. The total number of
degrees of freedom is Ndf = 3503, which means that χ2/Ndf = 1.09.

If the database is a correct statistical ensemble and if the theoretical model is correct,
one expects that 〈χ2〉 = Ndf = 3503 with an error of

√
2Ndf = 84. This means that in our

PWA we are 298 or only 3.5 standard deviations away from the expectation value for χ2. We
conclude that although there is still room for improvement, our energy-dependent solution is
essentially correct statistically. As a consequence, the values for the phase-shift parameters
(and also for the pion-nucleon coupling constant) and the statistical errors (obtained in the
standard manner from the error matrix) are essentially correct.

In our 1991 preliminary PWA [6] we were able to determine the charged-pion–nucleon
coupling constant f 2

c ≡ fpnπ+fnpπ−/2 from the data on the charge-exchange reaction pp →
nn, in which only isovector mesons can be exchanged. The result found was f 2

c = 0.0751(17),
at the pion pole. The error is purely statistical. In our final analysis, we have repeated the
determination of f2

c , but this time from the complete 1993 Nijmegen database. The coupling
constants of the neutral pion were kept at the value of f 2

ppπ0 = f2
nnπ0 = 0.0745 [18]. We now
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FIG. 1. Differential cross section at 693 MeV/c and analyzing power at 875 MeV/c for the
charge-exchange reaction pp → nn. The data are from PS199 [2]. The curves are from the
Nijmegen PWA [7].

find f 2
c = 0.0732(11), at the pion pole. This result supersedes our previous value from

Ref. [6]. Again, the error is of statistical origin only. In view of the enormous amount of
work involved, it is very hard to estimate possible systematic errors on this result. We have
checked that there are no systematic errors due to form-factor effects or due to uncertainties
in ρ±(770) exchange. In the Nijmegen pp PWA systematic errors could be more thoroughly
investigated and they were found to be small [18]. In our case the systematic errors are
probably larger than for the pp case, but it is very encouraging that the result for f2

c is
in good agreement with recent determinations f 2

c = 0.0735(15) from π±p [20] scattering
and f 2

ppπ0 = 0.0745(6) and f2
c = 0.0748(3) from NN scattering [18]. Very probably the

new LEAR experiment PS206 on pp → nn will further constrain the charged-pion–nucleon
coupling constant.

In Fig. 1 the differential cross section at 693 MeV/c and the analyzing power at 875
MeV/c are shown for pp → nn. The data are from PS199 [2]. One can see the truly
remarkable accuracy of the cross-section data and the analyzing-power data in the forward
region. The “dip-bump” structure in dσ/dΩ at forward angles is due to the interference of
one-pion exchange and a smooth background.

The fact that the available charge-exchange data already pin down the charged-pion
coupling constant with a remarkable small statistical error is only one example of how at
present quantitative information can be extracted from the pp system. We can mention
some subtle effects that are also visible in the data. The use of α′ instead of α, i.e. the
main relativistic correction to the static Coulomb potential, gives a drop of ∆χ2 = 30, or
5.5 standard deviations. The inclusion of the magnetic-moment interaction gives a drop of
∆χ2 = 14, or 3.7 standard deviations. Even the use of the correct pion masses instead of an
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average mass of 138 MeV is a 3 standard-deviation effect.
Since the present pp PWA is the first of its kind, we have also proposed a convention

for extracting phase-shift and inelasticity parameters from the S matrix. In the presence of
coupling to annihilation channels the S matrix describing NN scattering is only a submatrix
of the much larger multichannel S matrix. It is therefore still symmetric, but no longer
unitary. This doubles the number of parameters needed. For the partial waves with ` = J ,
s = 0, 1 one obviously writes S = η exp(2iδ). For the states with ` = J ± 1, s = 1, coupled
by the tensor force, six parameters are needed to parametrize the 2 × 2 S matrix. In this
case it is not so easy to think of a convenient parametrization which satisfies all constraints
from unitarity, is completely general, and free from nontrivial ambiguities. We have used
a generalization [21] of the “bar-phase” convention commonly used in NN scattering. One
writes (with the notation δ`J for the phase shift)

SJ = exp(iδ)
(

cos εJ i sin εJ

i sin εJ cos εJ

)

HJ

(

cos εJ i sin εJ

i sin εJ cos εJ

)

exp(iδ) , (9)

where δ = diag(δJ−1,J , δJ+1,J) and εJ is the mixing parameter. HJ is a three-parameter real
and symmetric matrix representing inelasticity. It can be diagonalized in Blatt-Biedenharn
fashion

HJ =
(

cos ωJ − sin ωJ

sin ωJ cos ωJ

) (

ηJ−1,J 0
0 ηJ+1,J

) (

cos ωJ sin ωJ

− sin ωJ cos ωJ

)

, (10)

where the diagonal matrix contains the “eigeninelasticities” ηJ−1,J and ηJ+1,J , and ωJ is
again a mixing parameter. We are presently in the process of doing a careful evaluation of
these phase-shift and inelasticity parameters and their errors. Unfortunately, this involves
a large amount of work. These and other issues will be the subject of future publications.
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