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I. INTRODUCTION

The experimental data on the hyperon-nucleon (ΛN, ΣN , and ΞN) and the hyperon-
hyperon (ΛΛ, ΛΣ, ΣΣ) interactions are very scarce and have moreover large errors. To give
a satisfactory description [1, 2, 3] of these data one needs a large theoretical input. This
input is then not allowed to have too many free parameters, because the scarce data do not
allow us to determine reliably too many parameters. The strategy is therefore to start with
a known description of the NN -data [4, 5, 6], then apply SU(3) flavor symmetry to this
NN -model in order to obtain this way an YN -model [7, 8, 6]. Such an approach can only
be successful, when the relevant NN -model is already consistent with SU(3). Many models
of the NN -interaction are not suitable for such an SU(3) generalization. An example of this
is the Paris model [9]. To calculate the two-pion-exchange potential for NN in this model
one needs phenomenological input from πN -scattering. For the Y N -interactions one needs
the analogous results from πΛ and πΣ scattering. Such results are not available.

The possibility of SU(3) generalization has in NN -models implications for the exchanged
mesons. In NN -potentials one needs not only the pion-exchange potential, but one needs also
the potentials due to the exchange of the other non-strange members η and η′ of the same
pseudoscalar octet. Next to the ρ and ω exchange potentials, one also needs to include the φ
exchange potential. An NN -potential model is not suitable for SU(3) generalization, when
it contains only 2π-exchange, because it should also contain from the outset πη, πη′, ηη,
etc. exchange potentials. It is clear that not every NN -model is suitable for generalization
to YN and Y Y . The Nijmegen potential models [4, 5, 6, 10] have always been constructed
with this generalization to YN and Y Y in mind.

II. THE EXPERIMENTAL DATA

It is interesting to compare the description of the YN -interaction directly with our de-
scription of the NN -interaction. In the Nijmegen partial wave analyses [11] Nijm PWA93 of
the NN -scattering data with Tlab < 350 MeV we have in pp-scattering 1787 datapoints and
we use 21 model parameters.

In np-scattering we have 2514 datapoints and for a good description of these data in our
PWA we use 19 extra model parameters. In the model we have roughly speaking about
100 datapoints per parameter. This allows for a good determination of these parameters in
NN .

In Figure 1 we show pp and np differential cross sections. Shown are the datapoints
with their error bars and the fit of the Nijm PWA93. We show this to indicate the quality
difference between these data sets and the YN -data sets.

For the YN -channels it has been customary to use a set of 35 selected datapoints [14].
This is essentially the only scattering information available about the low energy YN -
interaction. The data were obtained from an experiment of slopping K−-mesons in the
81 cm Saclay hydrogen bubble chanber at CERN. There are a few extra scattering data
available, but these extra data do not really carry extra information. Important to note is,
that these data stem from prior to 1971. Finally one has the hyperfragment data [15], which
supply some insight in the YN -interactions.

2



0 0.2 0.4 0.6 0.8 1

7

8

9

cos(θ)

σ(θ)

-1 -0.8 -0.6 -0.4 -0.2 0
0

2

4

6

8

10

12

cos(θ)

σ(θ)

FIG. 1. (a) pp differential cross section at 50.06 MeV [12]. The 24 datapoints contribute
χ2 = 12.8 in the Nijm PWA93.
(b) np backwards differential cross section at 344.3 MeV [13]. The 80 datapoints contribute
χ2 = 74.53 to the Nijm PWA93 and have the normalization 1.035 ± .005.

This selected data set of YN -scattering data is described below. The predictions in the
figures correspond to the unpublished Nijmegen SCW-model [16], which fits these 35 data
with the χ2 = 16.9.

For elastic Λp scattering (see Figure 2) there exist 12 datapoints in the momentum range
120 MeV/c < plab < 330 MeV/c, which corresponds to the kinetic energy in the laboratory
system 6.5 MeV < TL < 50 MeV. From these data 6 come from the Rehovoth-Heidelberg
group [17] and 6 come from the Maryland group [18].

For elastic Σ+p-scattering (see Figure 3) there exist 4 datapoints [21] in the momentum
range 145 MeV/c < pL < 175 MeV/c which corresponds to
9 MeV < Tlab < 13 MeV.

For elastic Σ−p-scattering, and the charge exchange reactions Σ−p → Σ0n and Σ−p →
Λn one has for each reaction 6 datapoints [21, 22] in the momentum interval 142 MeV/c
< pL < 168 MeV/c or 9 MeV < TL < 12 MeV (see Figure 4).

The restricted dataset contains finally also the ratio at rest rR from the production of
Σ0 and Σ0 and Λ0 hyperons, when stopped Σ− hyperons are captured by protons [23]. This
ratio rR = Σ0/(Σ0 + Λ) = 0.468(10) is one of the few numbers in these reactions with a
rather good accuracy.

It is clear from this dataset, that the data are really scarce and that they have large
errors. Because of the low energies these data contain mainly s-wave information. The
allowable number of parameters is of the order of 6, one for each of the 5 reactions and one
for the ratio at rest.

More recently there have come available beautiful data [24] for the strangeness exchange
reaction p̄p → Λ̄Λ. These data are taken at the laboratory momenta pL < 1.55 GeV/c,
which corresponds to the energy E in the center of mass,
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FIG. 2. Cross sections for elastic Λp scattering. The data are taken from [17, 18, 19, 20].

E =
√

s − 2mΛ ≤ 39.1 MeV .

Available at present are Nd = 157 datapoints corresponding to 99 differential cross sections,
38 polarizations, 20 spin-correlations. This part of the database is rapidly growing. There
are also already some measurements available [25] of the reactions

p̄p → ΛΣ̄, ΣΛ̄, ΣΣ̄, etc.

III. FLAVOR SU(2): ISOSPIN

Isopin symmetry is a good symmetry in the YN -interactions, when the Coulomb interac-
tions can be neglected and when there are no important mass differences between particles
of the same isomultiplet. So when no (n, p), and (Σ+, Σ0, Σ−) mass differences are taken
into account. The most important manifestation of this approximation is the coincidence
of the various ΣN -thresholds. Also the Coulomb interaction in the Σ+p and Σ−p channels
should be neglected.

However, it is important to take the breaking of the isospin symmetry of SU(2) flavor
into account. The Coulomb interaction in the Σ−p-channel is very important for the ratio
rR at rest, because the attractive Coulomb interaction enhances the strong reaction rates.
The Coulomb interaction manifests itself also in the differential cross sections dσ/dΩ for the
elastic scatterings Σ−p and Σ+p.

The mass differences between members of the same isomultiplet are another source of
breaking of the isospin symmetry. A first manifestation of this is the presence of the different
ΣN thresholds
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FIG. 3. The Σ+p elastic total cross section [21].
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FIG. 4. The total elastic cross sections Σ−p → Σ−p and the charge exchange reactions
Σ−p → Σ0n and Σ−p → Λ0n [21, 22].

Eth(Σ0p)− Eth(Σ+n) = 1.8 MeV and Eth(Σ−p)− Eth(Σ0n) = 3.6 MeV

The mass difference between the pions (π0, π±) gives rise to different interaction strength
and different ranges.

In the ΛN interaction there is a very interesting kind of isospin-breaking [26, 1]. The
isospin of the Λ hyperon is I = 0 and this forbids one-pion-exchange in the elastic ΛN -
scattering. OPE gives rise to the reaction ΛN → ΣN . However, the physical Λ is not a
pure I = 0 state. Due to the electromagnetic interaction the Λ has a small Σ0 component
mixed in, such that

Λphys = cos θ Λ + sin θ Σ0 and Σ0
phys = − sin θ Λ + cos θ Σ0

The pion π0, which does not couple to the bare Λ, couples to the physical Λphys, because it
couples to Σ0. Because the coupling constants of the π0 to the proton and to the neutron
have opposite sign, there is an isospin symmetry breaking due to this one-pion-exchange.
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The result is a rather weak, but noticeable, isospin breaking, OPE-potential in the ΛN
channel.

IV. FLAVOR SU(3)

An important manifestation of SU(3) flavor symmetry [27] and the quark model [28] is the
appearance of mesons in nonets. Important nonets are the JPC = 0−+ pseudoscalar meson
nonet, the JPC = 1−− vector meson nonet, and the JPC = 0++ scalar meson nonet. The
non-strange members of these nonets are (π, η, η′), (ρ, ω, φ), and (a0(980), f0(975), f0(760)).
The strange members in each nonet appear in two isodoublets with Y = ±1, (K+, K0) and
(K0, K−). They are the pseudoscalar K(495), the vector K∗(892), and the scalar κ(880).

The baryons appear mainly in octets {8}, decuplets {10} and singlets {1}. The most
important example being the JP = 1

2
+-baryon octet.

When one wants to place the deuteron in an SU(3) multiplet, then this [29] must be an
anti-decuplet {10∗}. This multiplet contains presumably also the state with Y = 1, I = 1

2
and mass M = 2129 MeV near the ΣN -threshold. The equal spacing rule predicts then
a ΞN , ΛΣ and ΣΣ resonance with Y = 0, I = 1 and mass M = 2382 MeV near the ΣΣ
threshold and a state with Y = −1, I = 3

2 around M = 2635 MeV.
The breaking of the SU(3) symmetry in the baryon masses has a noticeable effect.

For the description of the BB-interaction in general the SU(3) flavor symmetry is useful
as a limiting case [1, 30, 31, 32]. The JP = 1

2
+ baryons (N, Σ, Λ, Ξ) all belong to the 1

2
+-

baryon octet. The flavor wave function of the two-baryon states must belong to one of the
SU(3) irreps contained in the right-hand-side of the SU(3) Clebsch-Gordan series:

{8} × {8} = {27}+ {8}S + {1}
︸ ︷︷ ︸

symmetric

+ {10}+ {10∗}+ {8}A
︸ ︷︷ ︸

anti−symmetric

.

The symmetry of the flavor wave function under interchange of the two baryons is indicated.
The total wave function ψ can be written as the product of a space-, a spin-, and a flavor-
wave-function:

ψ = (space)(spin)(flavor) .

The generalized Pauli principle requires that the total wave function ψ is antisymmetric
under interchange of the two baryons. This implies for the flavor symmetric states {27},
{8}S and {1} the antisymmetric space-spin combinations 1S0, 3P1, 1D2, 3F , etc, and for the
flavor anti-symmetric states {10}, {10∗} and {8}A the symmetric space-spin combinations
3S1, 1P1, 3D, 1F3, 3G, etc.
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The NN -states have Y = 2 and I = 0 and 1:
the I = 1 states 1S0, 3P , 1D2, 3F , etc. belong to F = {27},
the I = 0 states 3S1, 1P1, 3D, 1F3, etc. belong to F = {10∗}.

The Y N -states have Y = 1 and I = 1
2 and 3

2 :
the I = 3

2 states 1S0, 3P , 1D2, 3F , etc. belong to F = {27},
the I = 3

2 states 3S1, 1P1, 3D, 1F3, etc. belong to F = {10}.
The situation for the I = 1

2 states is more complicated:
the I = 1

2 states 1S0, 3P , etc. belong to a mixture of F = {8} and {27},
the I = 1

2 states 3S1, 1P1, etc. belong to a mixture of F = {8} and {10∗}.

V. NN-MODELS

Let us give a quick review of some of the NN -models that appear in the literature. In
Nijmegen we have constructed various NN -potential models. They are

• hard core models A to F. The models A and B stem [14, 33] from 1973, the model
D [4, 7] from 1975–1977, and the model F [6] from 1979.

• soft core models. The Nijmegen soft-core model (Nijm78) based on Regge-trajectory
exchange [5] stems from 1978. The corresponding YN -model [8] was constructed in
1989. Recently the NN -model [5] has been updated [34]. This updated version Nijm93
has χ2/datapoint = 1.87 with respect to all the available NN -scattering data below
TL = 350 MeV.

• extended soft core (ESC) model. This 1993 soft core model [10], inspired by chiral-
symmetry, gives a fit to the available NN -data with χ2/datapoint = 1.16 (17 MeV
≤ Tlab ≤ 350 MeV). The corresponding YN -potentials have not been constructed yet.

• Reidlike models. In 1993 several Reidlike models, NijmI and NijmII, based on the
Nijm78 potential, have been constructed [34]. Also an update Reid93 of the old Reid
soft-core potential (RSC) was constructed [34]. These potentials have all excellent fits
with respect to the NN -data; they all have χ2/datapoint = 1.03.

The Paris NN -potential [9] Paris80 has a fit with the NN -data that is comparable with
the old Nijm78 potential.

Also in Bonn one has constructed various NN -potentials. This started with potentials
like HM1976 [35]. In 1987 various Bonn NN -potentials were published [36] with various
names. In 1989 the Bonn group constructed a special pp-potential [37] and again several
NN -potentials, like BonnA, B, C [38], and from each one several versions.

VI. MODELS FOR THE YN- AND YY -INTERACTION

Of the various models that exist for describing the YN - and the YY -interaction, there
are first of all the hard core models Nijmegen D and F. The main difference between these
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two models is the treatment of the scalar mesons. In D an SU(3) singlet is assumed and in
F an SU(3) nonet. This model F was extended [39] to the Y = 0 channels ΛΛ, ΞN , etc.

The Nijmegen soft-core model Nijm78 for the NN -interaction was extended [8] to the
YN -interaction in Nijm89.

Another generalization exists, called the SCW-model [16]. In this model, to the meson
theoretical interaction is added in every SU(3) channel either a repulsive soft-core or an
attractive soft well. The resulting potential has been generalized to the Y = 0 channels by
P. Maessen et al. With this model an excellent fit to the YN -data has been obtained with
only a few parameters (see figures 2 to 4).

Also a boundary condition model was constructed [16]. Here the meson-theoretic poten-
tial was used to describe the interaction for values of r > 1.4 fm. At the radius r = 1.4 fm
was specified the boundary condition

P = b(dψ/dx)/ψ .

VII. OBE-PART OF THE MESON-THEORETICAL POTENTIALS

It has already been stated that the mesons come in nonets [9], where [9] = {8} ⊕ {1}
and {8} and {1} are an SU(3) octet and singlet. In the NN -channels are exchanged from
each nonet:
(i) one meson with Y = 0, I = 1 like π, ρ, a0, and
(ii) two mesons with Y = 0, I = 0 like η, η′, ω, φ, and f0(760), f0(975).
When one wants to describe also the YN -channels, then one needs to consider also the
exchange of the Y = ±1 I = 1

2 strange mesons like (K+K0), (K0, K−).
The I = 0 mesons are mixed due to for example the SU(3) breaking of the quark masses.

The mixing angle θ is introduced to describe this mixing. For the pseudoscalar mesons one
writes

η = η8 cos θps − η1 sin θps

η′ = η8 sin θps + η1 cos θps

From the linear Gell-Mann-Okubo mass formula one predicts θps = −23 degrees. Using the
quadratic mass formula one gets θps = −10.1. Experimentally is seems to be that θps ∼ −20
degrees. This does not imply that the linear GMO mass formula is better, because the
mixing angle is very sensitive to small corrections.

VIII. PSEUDOSCALAR MESONS

The coupling of the pseudoscalar mesons JPC = 0−+ with the JP = 1
2
+ baryons can be

described by
either PS-coupling: LPS = g(ψγ5ψ)φ
or PV-coupling: LPV = f

ms
(ψγµγ5ψ)∂µφ.

In the PV-lagrangian a scaling mass ms is introduced in order to make the coupling
constant f dimensionless. We feel that one must always choose the same mass e.g. ms =
m(π+) = m+ for this scaling mass. The coupling constants we will denote by f in that case.
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Some people prefer to take the scaling mass equal to the mass of the exchanged meson
ms = mφ. The coupling constants we will denote in that case by f ′.

For the pseudo-scalar-meson-baryon-baryon vertex there exist an equivalence between
PS- and PV-coupling constants:

f2 =
( ms

M1 + M2

)2
g2 .

The coupling constant fp of the π0 with the proton [40] is f 2
p = 0.075. This corresponds

to g2 = 13.56. This same g2 = 13.56 corresponds for this π0pp vertex to f ′2 = 0.070. The
question arises now: “Which of these coupling constants f , f ′, or g is approximately SU(3)
symmetric?” It is clear that when the PV-coupling constants f are approximately SU(3)
symmetric, that then the PS-coupling constants g and the PV-coupling constants f ′ have a
sizeable SU(3) breaking.

When one assumes SU(3) for the PV-coupling constants f then the Cabibbo theory of
the weak interactions and the Goldberger-Treiman relation predict the value [41] αPV =
(F/(F + D))PV = 0.355(6). This value was also found in [8] while fitting the YN -data. In
a study [42] of the reaction p̄p → Λ̄Λ Timmermans et al. found either αPV = 0.34(4) or
αPS = 0.42(4). The agreement between the two values of αPV indicates a preference for
PV-coupling.

For a complete description of the coupling of the PS-mesons to the baryons we need to
know the mixing angle θ, the singlet coupling constant f1, the octet coupling constant f8

and the ratio αPS = F/(F + D). However, this is not all. There is still the question: What
is better, SU(3) symmetry for the PS or for the PV coupling constants?

These coupling constants are just phenomenological parameters. The spatial extension
of the baryons and the mesons introduces a form factor [43]. In first approximation it is
assumed that the coupling constants become dependent on the momentum transfer. Then
the question arises, where do we assume SU(3) for the coupling constants? At the pole or
at t = 0? When the values at the meson pole are assumed to be SU(3) symmetric, then the
values of the coupling constants at t = 0 will in general not be SU(3) symmetric anymore
and vice versa.

As far as the specific value of the coupling constant is concerned it is interesting to note
in 1993 that the value of the πNN coupling constant deduced for the model D in 1975 was
g2 = 13.4 or f 2 = 0.074 [4].

IX. THE VECTOR MESONS

The JPC = 1−− vector meson nonet contains the non-strange mesons ρ, ω, and φ. The
QQ-quark model SU(3) eigenstates are

ω8 = [uū + dd̄− 2ss̄]/
√

6
ω1 = [uū + dd̄ + ss̄]/

√
3

When these states are ideally mixed, then
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ω = cos θv ω1 + sin θv ω8 = [uū + dd̄]/
√

2
φ = − sin θv ω1 + cos θv ω8 = −ss̄

This ideal mixing angle has then

sin θv = 1/
√

3 , tan θv = 1/
√

2 , and θv = 35.26 .

The physical coupling constants are related to the coupling constants gω8 and g1 of the
unmixed states. Then

gφ = − sin θv g1 + cos θv gω8

gω = cos θv g1 + sin θv gω8

The OZI-rule [44] states that the φ-meson is in first approximation not coupled to the
nucleons. Thus gφ = 0. This implies then that

g1 =
√

2gω8 and gω =
√

3gω8 .

The coupling constants gω8 is related to the ρ-coupling constant gρ by

gω8 = [(4αv−1)/
√

3]gρ =
√

3gρ .

In the last step above we used Sakurai’s idea that the vector mesons are universally cou-
pled [45]. This requires αv = 1. The coupling constant gω is therefore related to the
ρ-coupling constant gρ by g2

ω = 9g2
ρ.

In treating the vector mesons there are still many uncertainties. The couplings to the
JP = 1

2
+ baryons are described either by the Dirac and the Pauli coupling constants or by

the electric and the magnetic coupling constants. For which of these holds SU(3)? Again
one comes up with the question whether one needs the coupling constants at the particle
poles or at t = 0.

The ratio (f/g)ρ is rather controversial. Vector meson dominance (VMD) predicts [46]
(f/g)ρ = 3.7. From analyses of the πN data the Karlsruhe people [47] determined long
ago that (f/g)ρ = 6.1, but also that g2 = 14.28 for the πNN -coupling constant. It appears
that the πN data available at the time of the Karlsruhe analyses were not so great. In
Nijmegen we made a fit to the NN -scattering data to determine (f/g)ρ. In Nijm78 we found
(f/g)ρ = 4.3. Recently this potential was refitted and now we find that (f/g)ρ = 4.1. We
see that the Nijmegen determination is close to the VMD value.
Popular values for the F/(F + D)-ratio’s αE and αM are

αE = 1 from universal coupling à la Sakurai [45], and
αM = 0.275 using relativistic SU(6) (Sakita and Wali [48]).

X. THE SCALAR MESONS

The scalar meson σ, the fictitious σ, with a mass of about M ∼ 550 MeV was introduced
in 1960–1962 by N. Hoshizaki et al. [49] and used in 1964 by Bryan and Scott [50]. This
scalar meson was required in OBE-models for NN in order to get
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(i) intermediate range attraction, and
(ii) sufficiently strong L · S-forces.

In ππ production experiments there often appeared a broad structure ε(760) under the
ρ0. Because the signal of the ρ0 is so strong, the existence of the broad structure was always
unsure.

The ππ interaction is traditionally studied in the reaction πN → ππN . When the
production of the pion goes via pion exchange, we have a ππ → ππ vertex and here ππ
scattering has been studied. In this scattering sometimes ε(760) appeared as an established
particle, sometimes its existence was denied. In a recent analysis [51] of this production
reaction also the exchange of other mesons, besides the pion, was assumed. In this recent
analysis the ε-meson has mass M = 750 MeV and width Γ ∼ 100− 150 MeV.

An important development in the treatment of the scalar mesons was the realization [52]
in 1971 that the exchange of a wide ε(760) simulates the exchange [43] of the fictitious,
low mass σ. The potential due to the exchange of a wide ε can be calculated [53], where
the 2π threshold is taken properly into account. For easy handling, necessary in the older
computers, the potential V (ε) of the wide epsilon was approximated as the sum of two
Yukawa’s. One of these Yukawa’s has a low mass and the other one a high mass. In the
Nijm93 potential these masses are mlow = 488 MeV and mhigh = 1021 MeV.

The QQ-mesons with JPC = 0++ must belong to the 3P0-states. The assignments of the
2++ and the 1++ mesons are generally accepted. The assignments of the scalar mesons are
more controversial. However, let us start with the masses 2++ and 1++ mesons.

3P2, JPC = 2++; a2(1320), f2(1270), f ′2(1525)
3P1, JPC = 1++; a1(1260), f1(1285), f ′1(1510) ,

and predict the masses of the 0++-mesons

3P0, JPC = 0++; a0(1300), f0(1300), f ′0(1500) .

The Particle Data Group [54] lists an a0(1320), which needs confirmation and various f0’s.
The predicted masses look reasonable. What about the scalar-mesons

δ(980), S(975), and ε(760) ?

One notices first of all the non-familiar mass relation

m(a0) ≈ m(f0) � m(f ′0) .

This mass relation is just contrary to the mass relation of the 3PJ −QQ-mesons, where

m(aJ) ' m(fJ) � m(f ′J) .

The latter mass relation (high f ′ mass) is easily understood from the quark content. The QQ-
mesons aJ and fJ contain only non-strange quarks and the heavier QQ-meson f ′J contains
the strange quarks (ss̄).

In a QQ-model in 1980 Aerts et al. [55] predicted for the mesons with the non-strange
quark content nn̄ a mass around 1285 MeV. The I = 0 and I = 1 mesons being almost
degenerate. The I = 0 meson with ss̄ content was predicted around M = 1475 MeV.
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A solution for this non-familiar problem in the quark model was given in 1977 by R.L.
Jaffe [56]. He calculated in the MIT-bagmodel the q2q̄2 states. The lowest states were a
nonet of scalar mesons. A heuristic treatment runs as follows. The lowest q2 states is
a diquark with F = 3∗, C = 3∗, and S = 0, where F is flavor, C is color and S is spin.
Because of the F = 3∗ assignment we will denote these states by Q. Thus

Q =
S

U D
=

[ud]

[sd] [su]

With [ud] we mean the antisymmetric flavor wave function ud−du. The lowest q2q̄2 states are
formed from Q, an antitriplet, and the antiparticles Q, a flavor triplet. The QQ combination
is a flavor nonet. The lowest mass state

SS = [ud][ūd̄]

is an I = 0 scalar meson containing only non-strange quarks with predicted [56] mass
M = 690 MeV. This is the f ′0 meson of this nonet.

There exist in this nonet also a degenerate pair of I = 0 and I = 1 mesons. The neutral
mesons (think of the ρ0 and ω0) are

(UU ±DD)/
√

2 = {[s̄d̄][sd] ± [s̄ū][su]}/
√

2 .

The predicted mass was M = 1150 MeV. It is obvious that these mesons are the f0(975)
and a0(980) at the KK-threshold. From the wave function we see that these mesons contain
an s̄s-pair. This explains for example why the f0(975) meson with a mass below the KK-
threshold can decay for about 22% into a KK-pair.

The strange partner, called κ, must have flavor wave functions like

[ud][s̄d̄] and [ud][s̄ū] , etc

These mesons contain only one s or one s̄. The expected mass is around 880 MeV, just
under the strong signal of the K∗(892). This explains why the scalar meson κ is so hard to
detect. This meson has been seen by Svec [57] in 1992 with mass M = 887 MeV.

How to describe the mixing of these scalar mesons? We write

f ′0 = cos θs ε1 + sin θs ε8

f0 = − sin θs ε1 + cos θs ε8

When we assume ideal mixing, then

f ′0 = ε = SS and f0 = S = (UU + DD)/
√

2 ,

which means tan θs = −
√

2 and θs = θv−90 = −54.75. However, this is not the only mixing
present. One expects also mixing with the qq̄ (3P0) states, with glueballs, etc.
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XI. THE POMERON

In the region above plab = 2 GeV/c boson exchange has to be replaced by Reggeon
exchange, because the total cross section becomes there approximately constant, see e.g. [2].
This feature of the total cross section can only be explained in the Regge pole model. It
was pointed out in [2] that in Regge pole models, see for example [58], the pomeron gives
a very significant contribution already at plab = 2 GeV/c. At this momentum σT ≈ 45 mb
and σel ≈ 20 mb. When the pomeron is omitted, the model of [58] would predict σel ≈ 2.3
mb.

In low energy pion-nucleon and kaon-nucleon scattering the presence of the pomeron
has been demonstrated using finite-energy sum rules [59]. There it appeared that, after
the subtraction of the baryon resonances, the remaining background amplitude is directly
related to pomeron-exchange. This background amplitude is important for the scattering
lengths.

Since the Regge-region, plab > 2 GeV/c, is not that remote from the N∆-region, plab ≈
1.32 GeV/c, or even the low-energy region, plab < 0.9 GeV/c, it is essentially the same
physics that governs the low-energy and the Regge-regions. A unified description of these
regions is therefore desirable.

A unification for the baryon-baryon channels, using the Khuri-Jones representation [60]
of the Regge poles, has been worked out [61] and applied by the Nijmegen group to baryon-
baryon scattering [5, 61]. Phenomenologically, the inclusion of the pomeron-exchange poten-
tial in these models serves to give reasonable values for the ω-coupling. More fundamentally,
in these OBE-models, where there are, of course, no NN -pair contributions to the potentials,
the strong εNN -coupling would be at variance with the small s-wave pion-nucleon scattering
lengths. The pomeron contribution helps out here by cancelling largely this ε-contribution.

The physical picture of the pomeron has changed over the years in accordance with
the progress of our understanding of the hadrons. In the sixties and early seventies, the
pomeron was associated with multiperipheral chains. This is natural in chiral theories,
where one envisions a cloud of soft pions around constituent quarks. With the advent of
QCD, ons tries to explain most of the pomeron features by considering it as a two-gluon (or
multigluon) system [62].

The repulsive character of the pomeron-potential appears often a little puzzling, because
at low energy it is very similar to scalar-exchange and one would therefore expect an at-
tractive potential. The repulsiveness comes from the Regge phenomenology. The pomeron
residue is positive, because pomeron-exchange is directly related to σT at high-energy. In
the Khuri-Jones procedure this then leads directly to a repulsive potential. To look for a
more detailed explanation we examine the two-gluon picture. First of all, we assume that
the pomeron couples primarily to the quarks, as indicated by high-energy experiments [63].
This has been related to the QCD-vacuum properties [64]. The pomeron quark-coupling
picture restores the “additive quark rules” for the pomeron [28]. This in contrast to the
so-called “subtracted” quark-picture, where in the two-gluon coupling to a hadron one sums
independently over the quark couplings of the individual gluons [65]. In this latter picture
the pomeron-exchange potential would be due to the effects of induced color-electric dipoles,
like van der Waals forces. These would then most likely be attractive.

Assuming that the Coulomb part of the two gluons in pomeron-exchange dominates
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the interaction, it is not unrealistic to consider for the pomeron quark-quark potential a
two-scalar exchange model. It is well-known [66] that then in the adiabatic approximation
all contributions cancel. The first non-vanishing contribution to the potential comes from
non-adiabatic corrections. This gives rise to a repulsive potential between the quarks of the
form

VPqq(r) ∼ g2
Pqq

(Λr)2 exp
[

−1
2
(Λr)2

]

.

The same VPqq(r) can be derived in the context of QCD, relating the strength of the poten-
tial to the vacuum expectation 〈0|Gµνa(x)Gµνa(y)|0〉 [67]. Folding the VPqq potential with
the baryon quark-model wave functions, one arrives at a repulsive pomeron-exchange BB-
potential. Using gaussian quark wave-functions gives a gaussian pomeron-exchange potential
as used in the Nijmegen models.

XII. THE INNER REGION

The treatment of the short range part of the interaction is very phenomenological. In
the older models, like NijmD or NijmF we used hard cores. In the NN -model Nijm78 and
the corresponding YN -model Nijm89 we used soft cores.

Soft cores are generally introduced in the meson theoretic potentials, when one uses form
factors F (k2), which cut down the high momentum components sufficiently, such that the
singularities at r = 0 are removed. In the Nijmegen soft core model we use exponential form
factors

F (k2) = e−(k2+m2)/Λ2
0 .

In the literature one uses mostly multipole form factors

F (k2) = {(Λ2
n −m2)/(Λ2

n + k2)}n with n = 1, 2, 3, . . .

The advantage of the exponential form factor is that the coordinate space potentials, ob-
tained when using this form factor, are much softer than when using the multipole form
factors.

Short-ranged are also the velocity dependent potentials of the form

− h̄2

2m
{∇2φ(r) + φ(r)∇2} .

Such potentials can be viewed as having introduced an r-dependent effective mass

meff =
m

1 + 2φ(r)
.
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Th.A. Rijken, P.M.M. Maessen, and J.J. de Swart, Nucl. Phys. A 547, 245c (1992)

[4] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 12, 744 (1975)
[5] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 17, 768 (1978)
[6] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 20, 1633 (1979)
[7] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. D 15, 2547 (1977)
[8] P.M.M. Maessen, Th.A. Rijken, and J.J. de Swart, Phys. Rev. C 40, 2226 (1989)
[9] M. Lacombe, B. Loiseau, J.-M. Richard, R. Vinh Mau, J. Côté, P. Pirès, and R. de
Tourreil, Phys. Rev. C 21, 861 (1980)

[10] Th.A. Rijken, Baryon-Baryon Interactions, Proceedings of the XIVth European Confer-
ence on Few-Body Problems in Physics, Amsterdam, The Netherlands (B.L.G. Bakker, R.
van Dantzig, eds, 1993)

[11] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart, Phys. Rev. C
48, 792 (1993)

[12] A. Berdoz, F. Foroughi, and C. Nussbaum, J. Phys. G 12, L133 (1986)
[13] B.E. Bonner et al., Phys. Rev. Lett. 41, 1200 (1978)
[14] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Ann. Phys. (NY) 79, 338 (1973)
[15] B.F. Gibson, Nuclear Aspects of Few-Baryon Systems, Proceedings of the XIVth Euro-
pean Conference on Few-Body Problems in Physics, Amsterdam, The Netherlands (B.L.G.
Bakker, R. van Dantzig, eds, 1993), see also these proceedings.

[16] P.M.M. Maessen, private communication
[17] G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth, and
W. Lughofer, Phys. Rev. 173, 1452 (1968)

[18] B. Sechi-Zorn, B. Kehoe, J. Twitty, and R.A. Burnstein, Phys. Rev. 175, 1735 (1968)
[19] J.A. Kadijk, G. Alexander, J.H. Chan, P. Gaposchkin, and G. Trilling, Nucl. Phys.
B27, 13 (1971)

[20] J.M. Hauptman, J.A. Kadijk, and G.H. Trilling, Nucl. Phys. B125, 29 (1977)
[21] F. Eisele, H. Filthuth, W. Fölisch, V. Hepp, E. Leitner, and G. Zech, Nucl. Phys. B37,
204 (1971)

[22] R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge, Phys. Lett. 21, 587 (1966)
[23] V. Hepp, and H. Schleich, Z. Phys. 21, 587 (1968)
[24] P.D. Barnes et al., Phys. Lett. B 189, 249 (1987); B 199, 147 (1987); B 229, 432
(1989); Nucl. Phys. A 526, 575 (1991)

[25] P.D. Barnes et al., Phys. Lett. B 246, 273 (1990)
[26] R.H. Dalitz, and F. Von Hippel, Phys. Lett. 10, 153 (1964)

15



[27] J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963)
[28] J.J.J. Kokkedee, The Quark Model, Frontiers in Physics, (W.A. Benjamin Inc., 1969)
[29] R.J. Oakes, Phys. Rev. 131, 2239 (1963)
[30] S. Iwao, Nuovo Cimento 34, 1167 (1964)
[31] P.O. deSouza, and G.A. Snow, Phys. Rev. 135 B, 565 (1964)
[32] C.B. Dover and H. Feshbach, Ann. Phys. (NY) 198, 321 (1990)
[33] M.M. Nagels, Th.A. Rijken, and J.J. de Swart, Phys. Rev. Lett. 31, 569 (1973)
[34] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart, Construction of
high-quality NN-potential models, Nijmegen-report THEF-NIJM 93.05, submitted for pub-
lication

[35] K. Holinde and R. Machleidt, Nucl. Phys. A 280, 429 (1977)
[36] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987)
[37] J. Haidenbauer and K. Holinde, Phys. Rev. C 40, 2465 (1989)
[38] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)
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