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Wilsonian renormalisation group

Tool for analysing scale dependence of physical systems
(as developed by Wilson for condensed matter problems)
e assumes well separated scales @) (physics of interest, long distance)

and Ag (underlying physics, short distance)
E

Q

e impose floating cut-off A (Q < A < Ap)
e readjust couplings to keep observables independent of A
e rescale: express all dimensioned quantities in units of A



Follow flow in “theory space” as A — 0O
(space of all possible couplings for given fields and symmetries)

Look for
e rescaled theories independent of A
e correspond to scale-free systems
e endpoints of RG “flow”

e stable fixed point e unstable fixed point



Expand around fixed point using perturbations that scale
with definite powers of A

e A" relevant or superrenormalisable (unstable)

e A" irrelevant or nonrenormalisable

e A9 marginal or renormalisable (— In A scale dependence)

Resulting description of low-energy physics can be represented
by an (EFT)
e marginal terms: dimensionless couplings (as in QED, QCD)
e irrelevant terms: couplings oc Ag™"
— effects suppressed by powers of /\% (as in ChPT)
e relevant terms: couplings oc Af (masses in QFT's)



RG for the nucleon-nucleon interaction

Consider scattering by short-range potential Vg (unresolved physics)
and known long-range potential V; (eg Coulomb or OPE)
— want systematic parametrisation— —for Vg

Start from Lippmann-Schwinger equation for 2-body T-matrix
— describes scattering by Vg between (DW's) of Vg,

T =Vs+ Vs GL(E)Ts
where G is the DW Green's function Gy (E) = [E — Hg — Vi, + ie] ™1

On-shell DW T-matrix elements are

WEWITs@Iv @) = - 377 200 o o 5

in terms of additional phase shift produced by Vg

§5(p) = 6(p) — 61,(p)
Here p = /2M,cqF is on-shell momentum




Impose q <A\ on Gy in DW basis:

Gy = Mr2ed //\ dqq2 |¢L(CIQ)><¢S(C])|
T 0 p< —q
Demand that fully off-shell T-(or K-)matrix be of A
(all observables independent of A)
— Vg must depend on A according to

(+bound states)

all dimensioned quantities in units of cutoff A
— energy, momenta: p = p/A, k=k/A
— crucial to identify all low-energy scales in Vy, generically &

examples: my for OPE, inverse Bohr radius aM,q for Coulomb
— rescale these: kK = k/A\



Also rescale short-range potential
— depends on behaviour of DW's near origin
— controlled by singularity of V; as r — 0O
— if no worse than r—1 then define
_ Maq/\
Vs(D---i ) = =5~ V5(AB,...i )

(covers V; = 0, Coulomb, spin-singlet OPE)

Look first at s-wave scattering by pure short-range interaction, V;, =0
(NN scattering at very low momenta, p < mr)

Take potential to be é-function plus derivatives

— with coefficients (more later)

— function of k2, k2, p2 in momentum space: Vg(p, k', k; \)
k, k' initial and final off-shell momenta (p on-shell)



RG equation
8V5 8V5

_, Vs
on P op ok’

8V5

+ 1 p! /\) 2‘75'(177%72/5; /\)

Boundary conditions:
Vg should be an analytic function of k2, k2 and energy (p?)

Fixed points: solutions of RG equation that are independent of A
— satisfy

_ Vs

o5

(assuming they depend on energy but not momentum)

1
P22 + Vso(P) + Vso (P) — 5 Vso(p) =0



Fixed points of short-range forces

Vso(p) =0
— system with no scattering (scale free)

Real systems with weak scattering at low energies

— describe using perturbations that scale with definite powers of A
— satisfy linearised version of RG equation

— solutions which are well-behaved at low momenta

with RG eigenvalues v =2(l+m+n) + 1 where I, m,n > 0
Eigenvalues just count powers of low-energy scales

— terms of order Q¢ with d=v — 1
— power counting (as in yPT)
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NN s-waves: strong scattering at low energies —
— 1/Vgq satisifes linear equation

0 1 1 1
P =|& TN ~ ~ =0
Op \Vso/ Vso(p) 1-p
— solution exactly cancels loop integral in LS equation

— infinite K-matrix: system with (scale free)

Perturbations around fixed point (energy-dependent only)
1 @)

1
Vs(B,\)  Vso(®) =5

— RG eigenvalues v =2n—-1=-1,1,3,... (r = —1 — unstable)
— power counting: order Q¥ withd=v —-1=2n—2
— one-to-one correspondance with terms in

1 Mred ( 1 1 2 > Mred — 2n
- = _ —7rT « o - — C
K(p) 27 a t > P t w2 nz::O 2n P
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Energy- or momentum-dependent potentials

Perturbations around nontrivial fixed point include

n—1 ~2m

b
m:OQn—Qm—I—l

SVs(E &, p) = N2 | B2 — 527 4 Vso(P) | Vso ()

and ones with similar factors involving &’
— RG eigenvalues v =2n =2,4,6...
— momentum-dependent terms than energy-dependent

Trivial fixed point: k2, k'2, p? all of same order
— can make transformation (“use equations of motion”)
— swap momentum for energy dependence — same power counting

Energy-dependent potential ~ (stepwise) Bloch-Horowitz reduction
of Hilbert space to smaller “model space”

Q(N)
E— QN)HoQ(A)
Q(N\) projects onto eliminated states A — AA < g < A

Vg(A — AN) = Vg(N) + Vs(N) Vg(N)
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Alternative: similarity transformation

— keeps potential energy-independent

— used by Kuo and coworkers to generate effective potential Viow—_k
Preserving half-off-shell T-matrix T'(p, k, p)

— evolution equation

o M
o n Viow—k(K' ki A) = = 5€ Viow—i (K, A A)

[Bogner et al, nucl-th/0108041, nucl-th/0305035]

R CYTNE T(A, k,N)

Could use field transformation or folded diagrams
— eliminate energy-dependence from Vg(p; A) = “Viery—tow—k(E', k; A)”
— only input: coefficients from effective-range expansion
— but unnatural coefficients for momentum-dependent perturbations
— power counting not obvious (more complicated evolution)
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Long-range forces

Vi(r) =a/r
— extra low-energy scale for small a: kK = aMeq
— potential of order Q—l (like fixed point) — resum to all orders

s-wave DW'’s at origin have form (Sommerfeld)

27K /p

vr(p, 0)|° = Cl/p) = 57—

— rescale Vg as above — RG equation (energy dependent)

o 1 0 1 0 1 1 C(r)
/\ - = — P —= = —I— R— = — = — —
ON Vg op Vg Ok Vg Vg 1—p?
Trivial fixed point — perturbative expansion in powers of p2, k
Nontrivial fixed point: 1/Vgg cancels analytic parts of LS loop integral
— terms in potential correspond to DW effective-range expansion

[Kong and Ravndal, hep-ph/9903523]
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— low-energy scale my = 140 MeV

167 f2
— also \x = W‘fg ~ 300 MeV — high-energy or low?

MNQA

Two choices:

Ar built out of QCD scales My, fr — high energy (xPT)
— potential of order Q° (like effective-range term)
— treat OPE perturbatively
[Kaplan, Savage and Wise, nucl-th/9802075]
— but expansion converges at best slowly
[Fleming, Mehen and Stewart, nucl-th/9911001]

Ar only ~ 2my, — low-energy

— treat Ar as new low-energy scale

— potential of order Q—1 — part of fixed point

— iterate OPE to all orders

[van Kolck, nucl-th/9902015]
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Spin-singlet channels: leading-order OPE just Yukawa

2 —MygT
m (&
p(r) = = MN7;\ r
T

RG analysis similar to Coulomb
— but with two low-energy scales: my; and kr = m2/2X\x (both O(Q))

Nontrivial fixed point — DW effective-range expansion

Cr(kn/p,mzx/p) COLds = 2kg (’Hﬁ(ﬁsﬁ/p, mz/p) + In "3%/#)
2
+ — Clmn m72rl "3? p2n
7Tl,m,n
— all nonanalytic behaviour contained in Cr, Hr and Inxx
(long-range parts of loop integral over DW's)

But connection to xPT lost if A treated as low-energy scale
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Centrifugal potential (L > 0 waves) and three-body systems

L(L+ 1)

Vi(r) = DM o2

DW'’s vanish asr — 0

2 m pr\2l _ 2 2L
v ~ ger e () = VP

— Vg either 2L-th derivative of é-function (integer L)
— or small but nonzero range, such as J-shell
5(r — R)

A7 R?

Vg(r) = Vg(p; N\)

R arbitrary ‘factorisation” scale
— separates off region of nonperturbative high-energy physics
(works for any real or complex L; for integers just numerical derivative)
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Rescaled potential

L M -
Vs(B; A) = =59 NPT R2E Ve (A, A)

7T
satisfies RG equation

8175 A8VS . |_/\/'|2 L 5
N2 = 2L + 1)V, Ve (5 A

A paﬁ—l-( + )s—l-l_ﬁQ s N)
Trivial fixed point Vg = 0 (nontrivial highly unstable)

— leading perturbation Vg = CA2L*1 5 order Q2L

(as expected for integer L: equivalent to k'L kL term)

Attractive 1/r2 potential in spin-doublet nd channel (triton)
e complex L — wave functions oscillate as r — 0
e origin of Efimov effect (tower of geometrically spaced bound states)
e need to fix self-adjoint extension of Hamiltonian
[Bawin and Coon, quant-ph/0302199]
e |leading three-body force: marginal perturbation around limit cycle
[Bedaque et al, nucl-th/9906032; nucl-th/0207034]
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Peripheral NN scattering

Use DW methods to remove effects of known pion-exchange potentials
— peripheral waves: test expansion of pion-exchange potential
— chiral OPE + TPE up to order Q3
[Kaiser et al, nucl-th/9706045; Rentmeester et al, nucl-th/9901054]
— OPE multiplied by M/E — order-Q? correction [Friar, nucl-th/9901082]

Weak scattering for large L — Weinberg power counting
— start from DW K-matrix (simpler than high-order perturbation theory)

2
©_ tan (5 (p) — 5(()OP)E(p)>
red P

d(p) empirical phase shift, taken from five Nijmegen analyses (1993)
— then subtract order-Q2 OPE and order-Q%3 TPE
— residual scattering starts at order Q%: §-shell at r = R with strength

RQL
[(2L + 1) ore(p, R)]?

Kg(p) = —

(2,3)

7 (4) (p) = X (f((p) — <¢OPE(Z9)|Vo,TPE|¢OPE(p)>>
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Results (strength of residual scattering)

| | ‘ e 0.17
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Tiab
Leading-order OPE removed Order-Q%3 OPE and TPE removed

Below about 80 MeV — significant differences between PWA's

After subtraction of order-Q23 terms ~ linearly dependent on energy
— energy dependence well-described by chiral TPE
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Leading-order OPE removed Order-Q23 OPE and TPE removed

—0.002 -

Large differences between PWA's even up to 200 MeV
— hard to draw definite conclusions
but residual scattering much smaller after order-Q2%:3 terms subtracted
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Similar picture to 1G4
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Order-Q2-3 OPE and TPE removed

Downward curvature at low energies for all PWA's (also in 1P;)
— possible hint of isospin-breaking in # N couplings

(isospin-singlet waves — fitted to np data)
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Substantial differences between the various PWA’s at low energies
— 1y and 1G4 waves: artefacts completely dominate
— but no correlation among deviations — no systematic bias in fits
(except possibly in isospin-singlet waves — CSB?)
— important to use same w/N coupling as assumed in PWA
and to include M/FE factor multiplying OPE

Momentum scales of residual interactions
7~ (LD2AGE miE2E k2L g(p/mar)

o 1D2 intercept corresponds to Ag ~ 200 MeV —
e 1D5 slope corresponds to Ag ~ 370 MeV
e 1F3 1@, scales in range 300 — 400 MeV

(but large systematic uncertainties in available PWA's)
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Summary

Combination of renormalisation-group and distorted-wave methods:
e powerful tool for analysing low-energy interactions between nucleons
e DW'’'s allow clean separation of known long-distance physics
from unknown short-distance
e RG then gives systematic classification of terms in effective potential
e Works for nonperturbative systems
(where simple Weinberg power counting does not apply)

Results not new
e effective-range expansion and DW versions

[Bethe, Schwinger, Blatt and Jackson, ..., ~ 1950]
e and extensions to three-body systems
[Phillips, Efimov, Brayshaw, Noyes, ..., ~ 1970]

e but EFT framework — effective couplings to EM and weak currents
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Challenges

Extension to tensor OPE (spin-triplet channels)
— 1/r3 form at short distances
— must be treated nonperturbatively above critical momentum

A
— 38,-3D1 channels: p > O.68§ ~ 66 MeV (chiral limit)

Direct determination of NN potential from empirical phase shifts
and chiral pion-exchange forces

— use DW Born and effective-range expansions

— transform to energy-independent form — direct derivation of Vigw—_k

(without going via model potentials)

Use DW expansions directly in PWA's of scattering data
— fit parameters with EFT interpretations
(unlike current Nijmegen fits)
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e apply effective potentials to nuclear structure

take effective two- and three-body potentials in vaccum
renormalised at high cutoff scale

use as starting point for “no-core” shell model calculations

initial model space: large number of oscillator shells for finite nuclei
then evolve down by eliminating oscillator shells

using either Bloch-Horowitz [Haxton and Song, nucl-th/9907097]

or Lee-Suzuki [Navratil et al, nucl-th/9907054]

related example: application of “exact” RG to fermionic matter
[Birse et al, hep-ph/0406249]
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