Microscopic Approaches to Light-Nucleus Reactions

K. Nollett, ANL; J. Carlson, LANL S. Pieper & R. Wiringa, ANL; G. Hale, LANL V. R. Pandharipande, Ill; R. Schiavilla JLAB/ODU

- Microscopic Approaches
- Summary of Results to Date
- Scattering Tests of Nuclear Interactions : $n \alpha$ scattering
- Future: Interaction Tests Applications

Goals:

- Understand structure & reactions in few-nucleon systems
- Ties to:

Hadronic Physics (PV) Astrophysics

2- Nucleon System

PP & NP scattering yield very precise info on nuclear phase shifts:

Difficult to calculate from QCD,

OSU pion propagator

Deuteron Form Factors

How do we solve the Schroedinger Equation ?

Assume non-relativistic nucleons w/ 2- (and 3)-nucleon interactions:

$$|\Psi_{T}\rangle = \sum_{\sigma,\tau} \chi_{\sigma} \chi_{\tau} \phi(\mathbf{R})$$

$$\chi_{\sigma} = \downarrow_{1} \uparrow_{2} \dots \downarrow_{A} (2^{A} \text{ terms}) = 256 \text{ for } A=8$$

$$\chi_{\tau} = n_{1} n_{2} \dots p_{A} (\frac{A!}{N!Z!} \text{ terms}) = 70 \text{ for } {}^{8}\text{Be}$$

= 17,920 complex functions in 3A-3 = 21 dimensions

Size of nucleus ~ 10 fm, resolution ~ 0.5 fm \Rightarrow 10²⁷ grid points

Variational Monte Carlo (VMC)

$$E = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \text{ Minimize Energy}$$

$$\Psi_T = [S (\prod F_{ijk}) (\prod F_{ij})] \Psi_J$$

$$\Psi_J = \prod f(r_{ij}) | \Phi \rangle$$

Long Distance (~Shell Model) Structure Short-Distance Correlations

Spatial Integrals evaluated with Metropolis Monte Carlo

Results depend upon your knowledge (Intuition).

Green's Function Monte Carlo (GFMC)

$$|\Psi_{0}\rangle = \operatorname{Exp}[-H\tau]|\Psi_{T}\rangle$$

'cooling' algorithm
 $T= 0$: variational state
 $T\Rightarrow \infty$: ground state

 $Exp[-H \Delta \tau] = exp[-V \Delta \tau /2]$ $exp[-T \Delta \tau]$ $exp[-V \Delta \tau /2]$

Branching Random Walk

LANL Q computer

Green's function Monte Carlo

Advantages:

No explicit basis (coordinate space) Good approximate knowledge used

Disadvantages:

Explicit sum over all spin/isospin states (slow for large A) Use approximate momentum-dependence and correct perturbatively Constrained-path plus unconstrained propagation used for Fermions

Illinois Models of 3-Nucleon Interaction

3-Nucleon Interaction Required: Postulated 1st in 1950's Delta ~ 300 MeV Excited state of Nucleon

> 'Short'-range spin-independent TNI Mimics relativistic effects in NM

Additional Terms in Illinois TNI: adjusted to L.S splitting and neutron-rich nuclei (A<9) S-wave pi-N Can affect spin-orbit splitting

Comparatively larger effects in T=3/2

3-Nucleon Interaction Parameters

TABLE I. Three-body potential parameters used in this paper. Parameters that were not varied in fitting the data are marked with an asterisk.

Model	$c fm^{-2}$	$A_{2\pi}^{PW}$ MeV	$A_{2\pi}^{SW}$ MeV	$A_{3\pi}^{\Delta R}$ MeV	A_R MeV	A₩ MeV	A_R^* MeV
UIX	2.1*	-0.0293			0.00480	0*	0.002 91
IL1	2.1*	-0.0385	0.0*	0.0026*	0.00705*	0*	0.004 91
IL2	2.1*	-0.037	-1.0*	0.0026	0.00705	0*	0.004 93
IL3	1.5	-0.07*	-1.0*	0.0065	0.032	0*	0.025 62
IL4	2.1*	-0.028*	-1.0*	0.0021	0.0039	0*	0.001 96
IL5	2.1*	-0.03	-1.0*	0.0021*	0.002*	210	0.0

No unique fit, but:

Additional attraction in isospin-rich nuclei required Additional spin-orbit splitting required

Spectra

3-nucleon interaction required for accurate spectra Isospin-dependence information provided by 8He, ...

Comparison w/ NCSM

Figure 6. Comparison of NCSM and GFMC energies for the AV8' and AV8'+TM' Hamiltonians.

Elastic/Transition Form Factors of ⁶Li

⁶He charge radius ANL expt Jannsens & Lu

Phys.Rev.Lett. 93 (2004) 142501

Neutron-rich Nuclei

He Isotopes - Charge Radii: expt GFMC 4He 1.676(8) 1.660(10) 6He 2.054(14) 2.08(2) 8He 1.97(3)

6He charge radius

Neutron-rich Nuclei

Neutron Drops Mimic Oxygen isotopes BCS trial states S. Pieper,R. B. Wiringa, andV. R. Pandharipande

Variational Calculations Of Multiple Excited States

$$|\Psi_{J}\rangle = \mathcal{A}\left\{\left[\prod_{i < j < k} f_{ijk}^{c}\right]\left[\prod_{i < j \leq 4} f_{ss}(r_{ij})\right]\sum_{LS[n]} \left(\beta_{LS[n]}\left[\prod_{k \leq 4 < l \leq A} f_{sp}^{LS[n]}(r_{kl})\right]\left[\prod_{4 < l < m \leq A} f_{pp}^{LS[n]}(r_{lm})\right]\right|\Phi_{A}(LS[n]JMTT_{3})_{1234:5\cdots A}\rangle\right)\right\}$$

$$\begin{split} \left| \Phi_A(LS[n]JMTT_3)_{1234:5\cdots A} \right\rangle &= \left| \Phi_4(0000)_{1234} \left[\prod_{4 < l \le A} \phi_p^{LS[n]}(R_{\alpha l}) \right] \right. \\ & \left. \times \left\{ \left[\prod_{4 < l \le A} Y_{1m_l}(\Omega_{\alpha l}) \right]_{LM_L[n]} \left[\prod_{4 < l \le A} \chi_l \left(\frac{1}{2} m_s \right) \right]_{SM_s} \right\}_{JM} \left[\prod_{4 < l \le A} \nu_l \left(\frac{1}{2} t_3 \right) \right]_{TT_3} \right\rangle \end{split}$$

Diagonalize these states in a small (shell-model like) basis:

 $E_{T,ij} = \langle \Psi_T(\beta_i) | H | \Psi_T(\beta_j) \rangle,$ $N_{T,ij} = \langle \Psi_T(\beta_i) | \Psi_T(\beta_j) \rangle,$

QMC studies of Light Nuclei

Excited States w/ same quantum numbers

Required for multi-channel, higher energy scattering

Scattering: single channel case example: n-alpha scattering Variational Monte Carlo

Enforce a boundary condition:

Variational principle w/ wave functions that satisfy boundary condition:

$$|\Psi_T\rangle = \mathcal{A}\left\{ \left[1 + \sum_{i < j < k} U_{ijk} \right] \quad \mathcal{S}\left[\prod_{i < 5} F_{5i} \prod_{i < j < 5} F_{ij} \right] \sum_k \beta_k |\Phi_k\rangle
ight\}.$$

 $|\Phi\rangle = \mathcal{A}\phi_{s,p}(\hat{r}_{5,\alpha})\mathcal{Y}^{JT}(r_{5,\alpha},\chi_{\sigma}(5),\chi_{\tau}(5))[\uparrow n(1),\uparrow p(2),\downarrow n(3),\downarrow p(4)]$

GFMC approach to low-energy scattering

Do not have an explicit wavefunction, just paths sampling the wvfn. However, we can use the expression:

 $G(R,R') = G_{c1} G_{c2} G_{rel},$

When approaching the surface, at an image at r_e :

$$|\mathbf{r}||\mathbf{r}_{\mathbf{e}}| = R_0^2,$$

$$\Psi_{n+1}(R) = \int dR'_{c1} \int dR'_{c2} \int_{|r'| < R_0} d\mathbf{r}' \ G(R, R') \ \Psi_n(R') + \\ + \int dR'_{c1} \int dR'_{c2} \int_{|r'_e| > R_0} d\mathbf{r}'_e \ G(R, R') \ \Psi_n(R')$$

 $\Psi_{n+1}(R) = \int dR' G(R, R') \left[1 + \frac{G(R, R'_e)}{G(R, R')} \left[\frac{r_i}{r}\right]^3 \left[1 + \gamma(R'_e - R') \cdot \hat{n}\right] \left[\Psi_n(R')\right].$

Hadronic PV

Hadronic weak interaction involves PV mixings between s- and p-waves, etc.

DDH model has weak- and strong-couplings; encodes these mixings

Observables are mixing angles as a function of energy p-p longitudinal asymmetry (TRIUMF) neutron spin rotation on H and 4He $np \Rightarrow d \gamma at LANSCE/SNS$ (measures π NN weak coupling)

Neutron spin rotation

Neutron spin rotation in H, ⁴He

Phase builds up through coherent forward scattering amplitude.

Hydrogen	$d \phi / d z (10^{-9})$	⁹ /cm):	Pi-only	DDH	DDH-'best'
		AV18	5.21	5.00	7.20
		NijmI	5.35	4.85	7.64
		CDBonn	5.18	4.55	7.35

Note: sign opposite Born amplitude because of deuteron bound state

Future

• Higher Energy: information on three nucleon interaction up to ~20 MeV in alpha-N scattering

 Multiple channel scattering In principle clear for 2-body breakup Practical considerations: statistics, ...

Applications:

BBN reactions solar v reactions hadronic PV TN burn