Calculating ab initio nuclear structure with coupled-cluster theroy

> David J. Dean ORNL

#### Outline

I. Motivations

**II.** Ab initio coupled-cluster theory

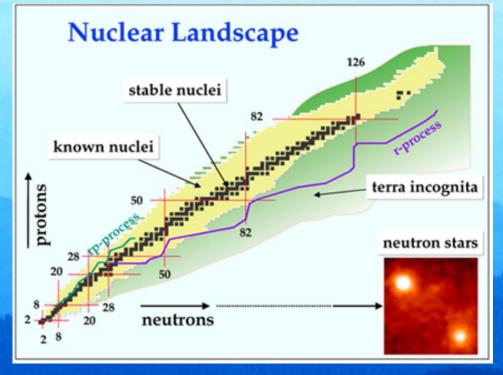
A. The CC method

**B.** The space and the Hamiltonian

C. Results in <sup>16</sup>O and neighbors

**III.** Future directions

#### The physics of nuclei

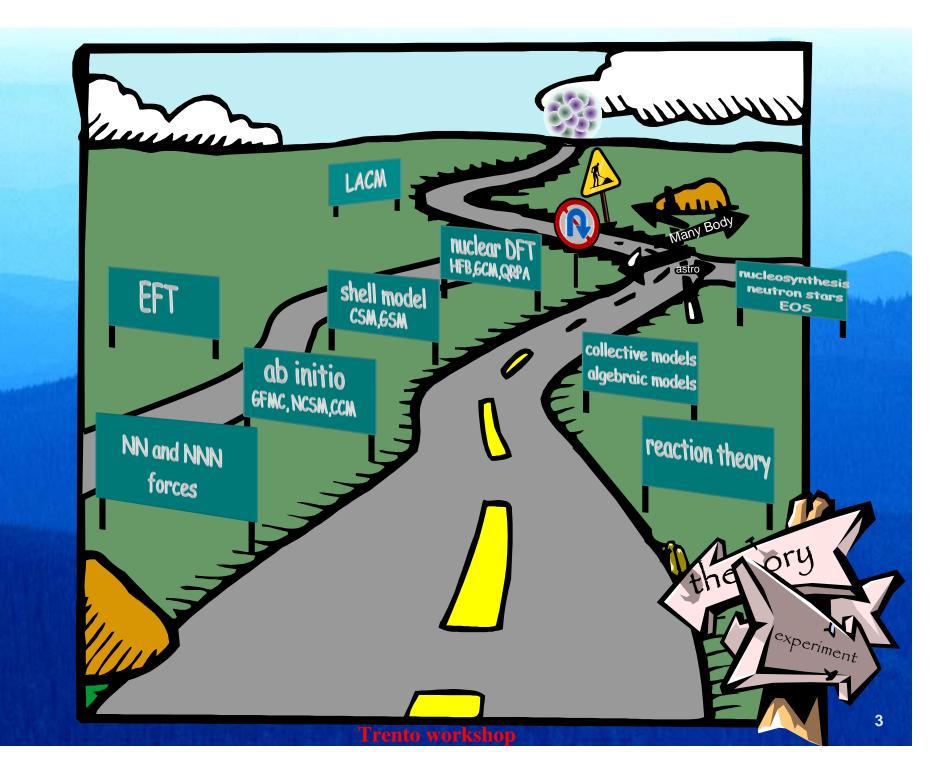


#### The big questions:

- How do nuclei bind?
- What are their limits of existence?
- What are their symmetries?
- How/where are they produced?
- How can they be used for societal benefit?

#### **Scientific Thrusts:**

- How do complex systems emerge from simple ingredients (interaction question)?
- What are the simplicities and regularities in complex systems (shell/symmetries question)?
- How are elements produced in the Universe (astrophysics question)? Broad impact of neutron-rich nuclei:
- Nuclei as laboratories for tests of 'standard model physics'.
- Nuclear reactions relevant to astrophysics.
- Nuclear reactions relevant to Science Based Stockpile Stewardship.
- Nuclear transportation, safety, and criticality issues.



#### **The ORNL-Oslo-MSU collaboration** on nuclear many-body problems

#### **OAK RIDGE NATIONAL LABORATORY**

#### David Dean (CC methods for nuclei and extensions to $V_{3N}$ ) **Thomas Papenbrock**

**David Bernholdt (Computer Science and Mathematics) Trey White, Kenneth Roche (Computational Science)** 

## MICHIGAN STATE UNIVERSITY Chemistry

**Piotr Piecuch (CC methods in chemistry and extensions)** Karol Kowalski (to PNNL) Marta Wloch **Jeff Gour** 

**Research Plan** 

- -- Excited states (!)
- -- Observables (!)
- -- Triples corrections (!)
- -- Open shells (start)
- -- V<sub>3N</sub> (start)
- -- 50<A<100
- -- Reactions
- -- TD-CCSD??



UNIVERSITY OF OSLO

**Morten Hjorth-Jensen (Effective interactions)** 

Maxim Kartamychev (3-body forces in nuclei)

Gaute Hagen (effective interactions for weakly bound systems, to ORNL)

#### **Steps toward solutions Begin with a bare NN (+3N) Hamiltonian Bare (GFMC)** $H = -\frac{\hbar}{2} \sum_{i=1}^{A} \frac{\nabla_{i}^{2}}{m_{i}} + \frac{1}{2} \sum_{i < i} V_{2N}(\vec{r}_{i}, \vec{r}_{j}) + \frac{1}{6} \sum_{i < j < k} V_{3N}(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k})$ **Basis expansion Basis expansions:** Choose the method of solution • Determine the appropriate basis • Generate H<sub>eff</sub> **Nucleus** 4 shells 7 shells method **Oscillator** single-particle **9E6** 4He **4E4** basis states H<sub>eff</sub> basis **8B 4E8 5E13 12C 6E11 4E19** Many-body basis states 160 **3E14** 9E24

### The Method: Coupled Cluster Theory

Fascinating Many-body approach: Coupled Cluster Theory

**Some interesting features of CCM:** 

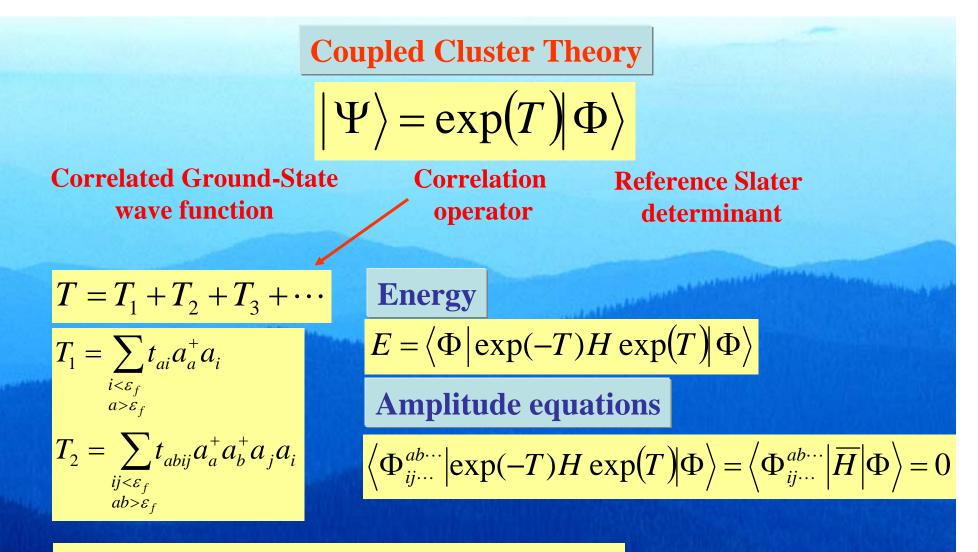
- Fully microscopic
- Size extensive: only linked diagrams enter
- Size consistent: the energy of two non-interacting fragments computed separately is the same as that computed for both fragments simultaneously
  - Capable of systematic improvement
  - Amenable to parallel computing

**Computational chemistry: 100's of publications in any year** (Science Citation Index) for applications and developments.

#### A short history

**Formal introduction: 1958:** Coester, Nucl. Phys. 7, 421 1960: Coester and Kummel, Nucl. Phys. 17, 477 **Introduction into Chemistry (late 60's):** 1971: Cizek and Paldus, Int. J. Quantum Chem. 5, 359 **Numerical implementations** 1978: Pople et al., Int. J. Quantum Chem Symp, 14, 545 1978: Bartlett and Purvis, Int. J. Quantum Chem 14, 561 **Initial nuclear calculations (1970's):** 1978: Kummel, Luhrmann, Zabolitzky, Phys. Rep. 36, 1 and refs. therein 1980-90s: Bishop's group. Coordinate space. Few applications in nuclei, explodes in chemistry and molecular sciences. Hard-core interactions; computer power; unclear interactions **Nuclear physics reintroduction:** (1/E<sub>ph</sub> expansion) 1999: Heisenberg and Mihiala, Phys. Rev. C59, 1440; PRL84, 1403 (2000) Three nuclei; JJ coupled scheme; bare interactions, approximate  $V_{3N}$ **Useful References** Crawford and Schaefer, Reviews in Computational Chemistry, 14, 336 (2000)

Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981)



• Nomenclature

- Coupled-clusters in singles and doubles (CCSD)
- ...with triples corrections CCSD(T);

Dean & Hjorth-Jensen, PRC69, 054320 (2004); Kowalski, Dean, Hjorth-Jensen, Papenbrock, Piecuch, PRL92, 132501 (2004); Wloch, Dean, Gour, Hjorth-Jensen, Papenbrock, Piecuch, PRL 94, 212501 (2005).

#### **Derivation of CC equations**

#### **Use Baker-Hausdorff**

$$\exp(-T)H\exp(T) = H + [H, T_1] + [H, T_2] + \frac{1}{2}[[H, T_1], T_1] + \frac{1}{2}[[H, T_1], T_1] + \frac{1}{2}[[H, T_2], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}[[H, T_2], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

$$\frac{1}{2}([H, T_1], T_2] + [[H, T_1], T_2] + \cdots$$

#### Normal order the Hamiltonian

$$H = \sum_{pq} f_{pq} \left\{ a_p^+ a_q \right\} + \frac{1}{4} \sum_{pqrs} \left\langle pq \parallel rs \right\rangle \left\{ a_p^+ a_q^+ a_s a_r \right\} + \sum_i \left\langle i | t_{osc} | i \right\rangle + \frac{1}{2} \sum_{ij} \left\langle ij \parallel ij \right\rangle$$

$$f_{pq} = \left\langle p \left| t_{osc} \right| q \right\rangle + \sum_{i} \left\langle pi \parallel qi \right\rangle$$

**Fock operator** 

$$\langle \Phi_0 | H | \Phi_0 
angle$$

#### **Derivation of CC equations**

**T<sub>1</sub> amplitudes from:** 
$$\langle \Phi_i^a | \exp(-T) H \exp(T) | \Phi \rangle = 0$$

$$0 = f_{ai} + \sum_{c} f_{ac} t_{i}^{c} - \sum_{k} f_{ki} t_{k}^{a} + \sum_{kc} \langle ka | |ci \rangle t_{k}^{c} + \sum_{kc} f_{kc} t_{ik}^{ac} + \frac{1}{2} \sum_{kcd} \langle ka | |cd \rangle t_{ki}^{cd} - \frac{1}{2} \sum_{klc} \langle kl | |ci \rangle t_{kl}^{a} - \sum_{kc} f_{kc} t_{i}^{c} t_{k}^{a} - \sum_{klc} \langle kl | |ci \rangle t_{k}^{c} t_{l}^{a} + \sum_{kcd} \langle ka | |cd \rangle t_{k}^{c} t_{i}^{d} - \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{k}^{c} t_{i}^{d} + \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{c} t_{i}^{d} + \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{c} t_{i}^{d} - \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{ki}^{cd} t_{i}^{a} - \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2} \sum_{klcd} \langle kl | |cd \rangle t_{kl}^{cd} t_{i}^{d} + \frac{1}{2$$

Note  $T_2$  amplitudes also come into the equation.

## **T<sub>2</sub> amplitudes from:** $\langle \Phi_{ij}^{ab} | \exp(-T) H \exp(T) | \Phi \rangle = 0$

$$0 = \langle ab ||ij \rangle + \sum_{c} \left( f_{bc} t_{ij}^{ac} - f_{ac} t_{ij}^{bc} \right) - \sum_{k} \left( f_{kj} t_{ik}^{ab} - f_{ki} t_{jk}^{ab} \right) +$$

$$\frac{1}{2} \sum_{kl} \langle kl ||ij \rangle t_{kl}^{ab} + \frac{1}{2} \sum_{cd} \langle ab ||cd \rangle t_{ij}^{cd} + P(ij)P(ab) \sum_{kc} \langle kb ||cj \rangle t_{ik}^{ac} +$$

$$P(ij) \sum_{c} \langle ab ||cj \rangle t_{i}^{c} - P(ab) \sum_{k} \langle kb ||ij \rangle t_{k}^{a} +$$

$$\frac{1}{2} P(ij)P(ab) \sum_{klcd} \langle kl ||cd \rangle t_{ik}^{ac} t_{lj}^{db} + \frac{1}{4} \sum_{klcd} \langle kl ||cd \rangle t_{ij}^{cd} t_{kl}^{ab} -$$

$$P(ab) \frac{1}{2} \sum_{klcd} \langle kl ||ij \rangle t_{k}^{a} t_{l}^{b} + P(ij) \frac{1}{2} \sum_{cd} \langle ab ||cd \rangle t_{ik}^{cd} t_{jl}^{cd} +$$

$$P(ab) \sum_{kc} f_{kc} t_{k}^{a} t_{ij}^{bc} + P(ij) \sum_{kc} \langle ab ||cd \rangle t_{i}^{cd} t_{jk}^{ab} -$$

$$P(ab) \sum_{kc} f_{kc} t_{k}^{a} t_{ij}^{bc} + P(ij) \sum_{kc} f_{kc} t_{i}^{c} t_{jk}^{ab} -$$

$$P(ij) \sum_{kc} \langle kl ||ci \rangle t_{k}^{c} t_{lj}^{ab} + P(ij) \sum_{kc} \langle ka ||cd \rangle t_{i}^{c} t_{jk}^{db} +$$

$$P(ij) P(ab) \sum_{kcd} \langle kl ||ci \rangle t_{k}^{c} t_{ij}^{ab} + P(ij) P(ab) \sum_{kcd} \langle kl ||cc \rangle t_{i}^{c} t_{jk}^{ab} +$$

$$P(ij) P(ab) \sum_{kcd} \langle kl ||ci \rangle t_{k}^{c} t_{ij}^{ab} -$$

$$P(ij) \frac{1}{2} \sum_{kcd} \langle kl ||ci \rangle t_{k}^{c} t_{ij}^{ab} + P(ij) P(ab) \sum_{kcd} \langle kl ||cc \rangle t_{i}^{a} t_{jk}^{bb} +$$

$$P(ij) P(ab) \sum_{kcd} \langle kl ||ci \rangle t_{i}^{c} t_{kl}^{ab} - P(ab) \frac{1}{2} \sum_{kcd} \langle kb ||cc \rangle t_{k}^{a} t_{ij}^{cd} - P(ij) P(ab) \frac{1}{2} \sum_{kcd} \langle kb ||cc \rangle t_{i}^{c} t_{jk}^{ab} +$$

$$P(ij) \frac{1}{2} \sum_{kcd} \langle kl ||ci \rangle t_{i}^{c} t_{kl}^{ab} - P(ab) \frac{1}{2} \sum_{kcd} \langle kb ||cc \rangle t_{k}^{a} t_{ij}^{cd} - P(ij) P(ab) \frac{1}{2} \sum_{kcd} \langle kb ||cc \rangle t_{i}^{c} t_{kl}^{ab} +$$

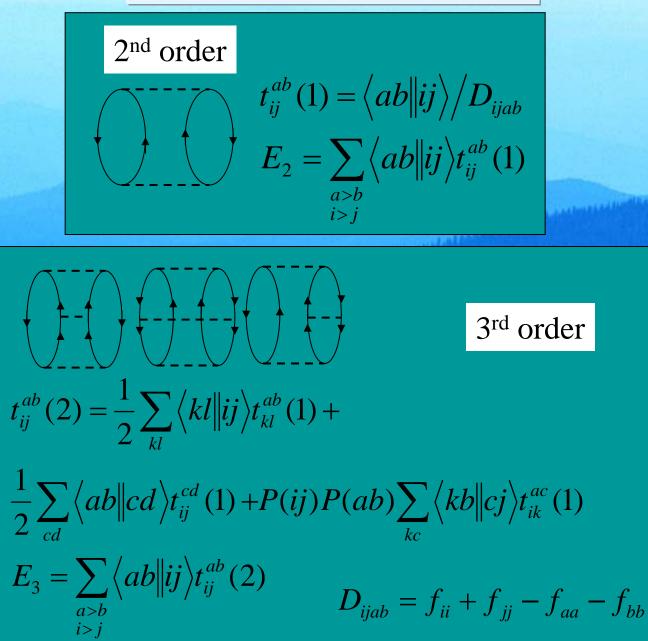
Nonlinear terms in t2 (4<sup>th</sup> order)

$$P(ij)f(ij) = f(ij) - f(ji)$$

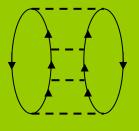
An interesting mess. But solvable....

$$= P(ij)P(ab)\frac{1}{2}\sum_{ked}\langle kb||cd\rangle t_i^c t_k^a t_j^d + P(ij)P(ab)\frac{1}{2}\sum_{klc}\langle kl||cj\rangle t_i^c t_k^a t_l^b - P(ij)\sum_{klcd}\langle kl||cd\rangle t_k^c t_i^d t_{lj}^{ab} - P(ab)\sum_{klcd}\langle kl||cd\rangle t_k^c t_l^a t_{lj}^{db} + P(ij)\frac{1}{4}\sum_{klcd}\langle kl||cd\rangle t_i^c t_j^d t_{kl}^{ab} + P(ab)\frac{1}{4}\sum_{klcd}\langle kl||cd\rangle t_k^a t_l^b t_{ij}^{cd} + P(ij)P(ab)\sum_{klcd}\langle kl||cd\rangle t_i^c t_l^c t_{kl}^c t_{lj}^{ad} + P(ij)P(ab)\frac{1}{4}\sum_{klcd}\langle kl||cd\rangle t_i^c t_k^a t_j^d t_{kj}^{b} + P(ij)P(ab)\frac{1}{4}\sum_{klcd}\langle kl||cd\rangle t_i^c t_k^a t_j^d t_{l}^b.$$

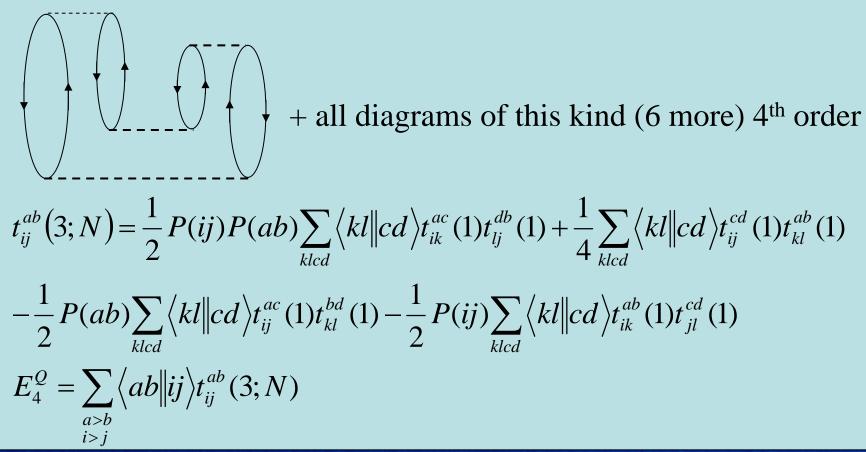
#### **Correspondence with MBPT**



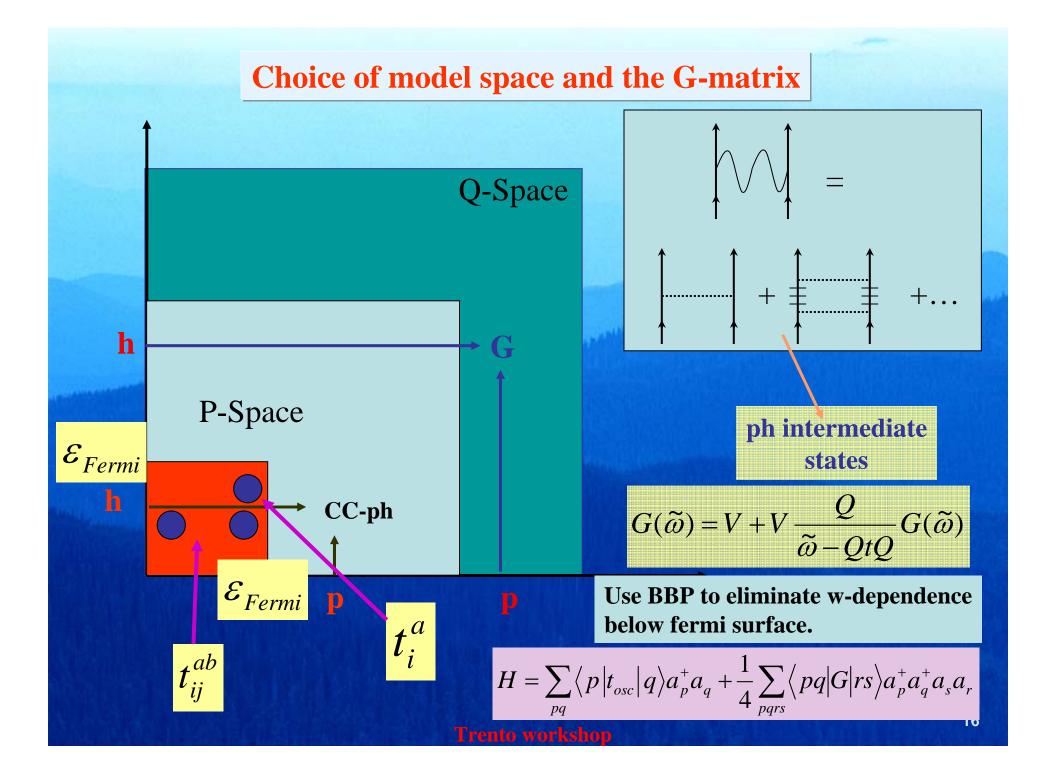
#### A few more diagrams



+ all diagrams of this kind (11 more) 4<sup>th</sup> order [replace t(2) and repeat above 3<sup>rd</sup> order calculation]



# The model space and the effective Hamiltonian



In the near future (now?): similarity transformed H

$$H|k\rangle = E_{k}|k\rangle; P + Q = 1$$

$$Qe^{-\omega}He^{\omega}P = 0 \implies \langle \alpha_{Q} | k \rangle = \sum_{\alpha_{P}} \langle \alpha_{Q} | \omega | \alpha_{P} \rangle \langle \alpha_{P} | k \rangle$$

$$\overline{H}_{eff} = \left[ P(1 + \omega^{+}\omega)P \right]^{1/2} PH(P + Q\omega P) \left[ P(1 + \omega^{+}\omega)P \right]^{-1/2}$$

K. Suzuki and S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980) P. Navratil, G.P. Kamuntavicius, and B.R. Barrett, Phys. Rev. C61, 044001 (2000) Zuker, Phys. Repts. (1981).

Advantage: no parameter dependence in the interaction Current status

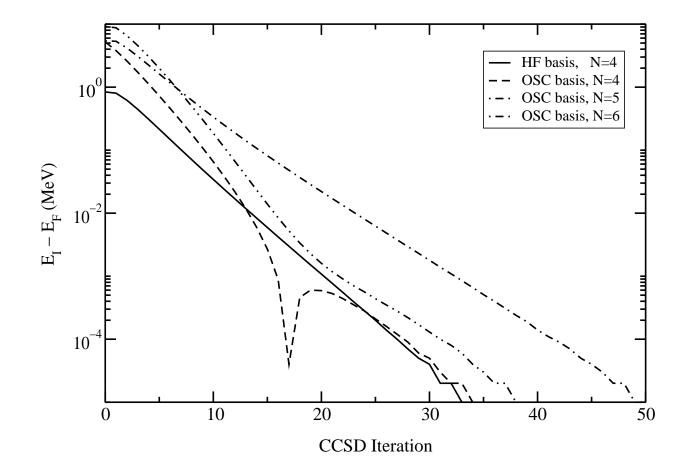
- Exact deuteron energy obtained in P space
- Working on full implementation in CC theory.
- G-matrix + all folded-diagrams+...
- Implemented, new results cooking....stay tuned.

#### Vlowk (see Achim's talk)

internation in such a designed

**Iterative solution** 

On the first iteration: use first and second-order many-body perturbation theory as a guide. This gives:



 $= f_{ai} / D_i^a$ =  $\langle ab \parallel ij \rangle / D_{ij}^{ab}$ ort into the RHS and an new amplitudes

vergence : HF vs OSC:

39.31 MeV (OSC) 38.47 MeV (HF) 1% difference

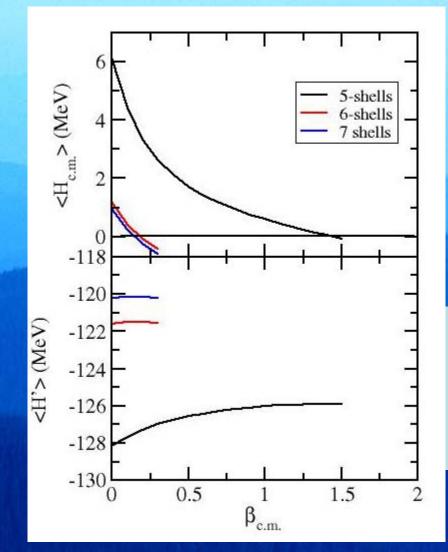
#### **Comparison of HF and OSC basis (Idaho-A)**

|     | E <sub>corr</sub> | Term 1 | Term 2  | Term 3  | E <sub>0</sub> | <h></h> |
|-----|-------------------|--------|---------|---------|----------------|---------|
| OSC | -29.865           | -9.669 | -1.757  | -18.439 | -109.45        | -139.31 |
| HF  | -16.498           | 7.0e-6 | -0.3e-3 | -16.498 | -121.98        | -138.47 |

$$E_{corr} = E_{ccsd} - E_0 = \sum_{ia} f_{ia} t_i^a + \frac{1}{2} \sum_{aibj} \left\langle ij \| ab \right\rangle t_i^a t_j^b + \frac{1}{4} \sum_{aibj} \left\langle ij \| ab \right\rangle t_{ij}^{ab}$$

Changing the basis hardly affects the solutions.

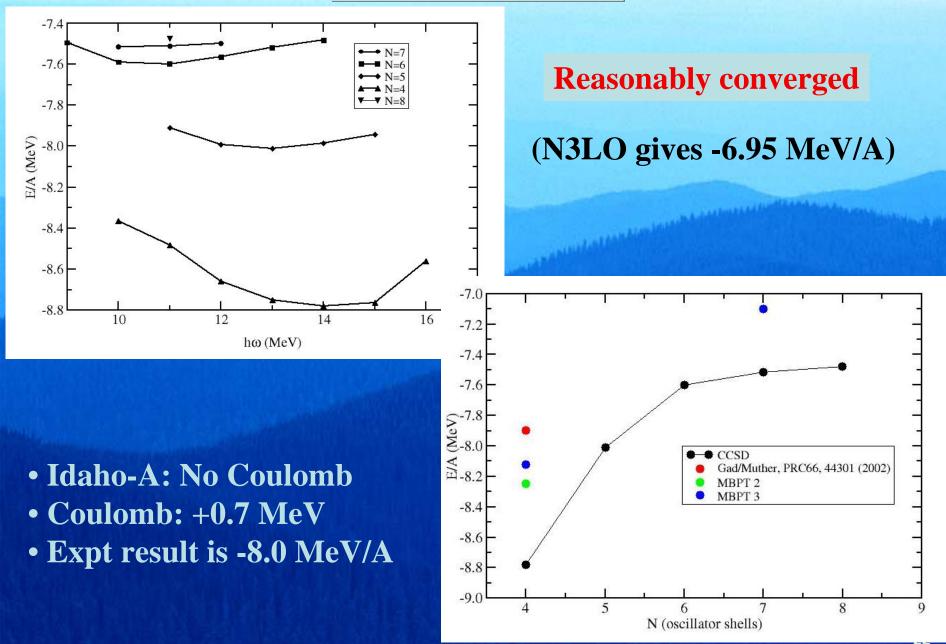
#### Another center of mass correction on <sup>16</sup>O



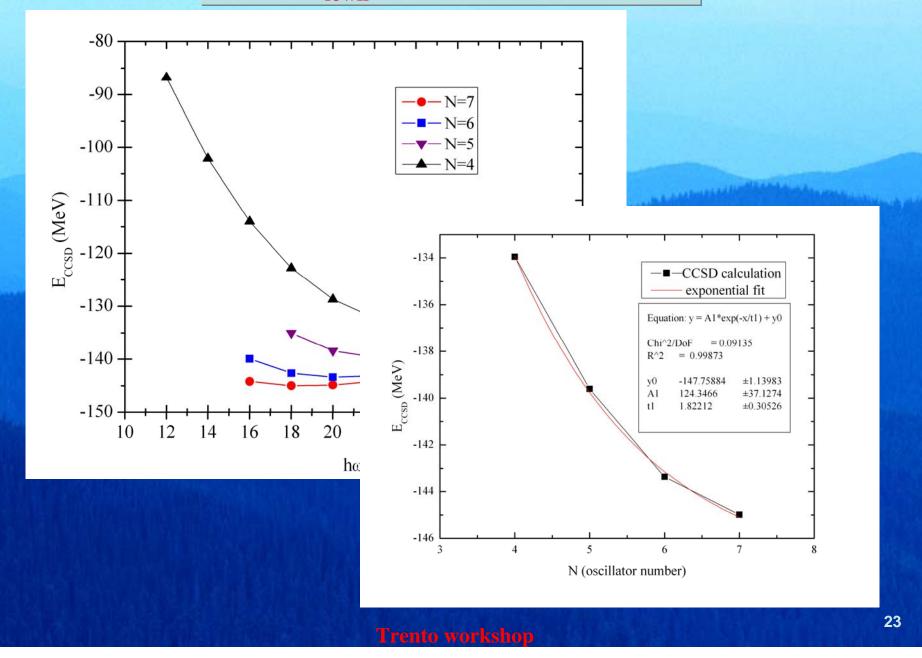
$$H' = H + \beta_{c.m.} H_{c.m.}$$



#### **Calculations for <sup>16</sup>O**



Initial V<sub>lowk</sub> results (w/A. Schwenk)



#### **Correcting the CCSD results by non-iterative methods**

**Goal: Find a method that will yield the complete diagonalization result in a given model space** 

How do we obtain the triples correction?

How do our results compare with 'exact' results in a given model space, for a given Hamiltonian?

"Completely Renormalized Coupled Cluster Theory" P. Piecuch, K. Kowalski, P.-D. Fan, I.S.O. Pimienta, and M.J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002)

#### **Completely renormalized CC in one slide**

#### **CC** generating functional

$$\Lambda_{CC} [\Psi] = \frac{\sum_{n=1}^{N} \left\langle \Psi | (H - E_0^{(A)}) e^{T(A)} | \Phi \right\rangle}{\left\langle \Psi | e^{T(A)} | \Phi \right\rangle}$$

$$\delta = \frac{1}{36} \sum_{ijk,abc} \left\langle \widetilde{\Psi} \right| \Phi^{ijk}_{abc} \right\rangle M^{abc}_{ijk} / \Delta$$

$$M_{abc}^{ijk} = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{CCSD} \middle| \Phi \right\rangle$$

 $\mathbf{T}(\mathbf{A}) = \mathbf{model \ correlation}$ if  $\Psi \to \Psi_0$ then  $\Lambda_{CC} = \delta = E_0 - E_0^{(A)}$  $\Delta = \left\langle \widetilde{\Psi} \middle| e^{T(CCSD)} \middle| \Phi \right\rangle$ 

$$\left|\widetilde{\Psi}\right\rangle = Pe^{\left(T^{(CCSD)}+\widetilde{T}_{3}\right)}$$

Different choices of  $\Psi$  will yield slightly different triples corrections

Leading order terms in the triples equation

#### **Triples correction to the ground state energy He-4 (4 major oscillator shells)**

| Method           | Energy (MeV) |
|------------------|--------------|
|                  |              |
| CCSD             | -21.978      |
| CR-CCSD[T],a     | -22.665      |
| CR-CCSD[T],a/D=1 | -23.214      |
| CR-CCSD[T],c     | -22.841      |
| CR-CCSD[T],c/D=1 | -23.524      |
| SM-SD            | -20.175      |
| SM-SDT           | -22.235      |
| FULL SM          | -23.484      |

Different many-body approaches to the energy denominator

Able to reproduce the 'exact' (full diag) result to within 0.08 MeV.

$$H' = H + \beta_{c.m.} H_{c.m.}$$

#### <sup>16</sup>O in four major oscillator shells

| Method           | Energy (MeV) |
|------------------|--------------|
| CCSD             | -139.310     |
| CR-CCSD(T),a     | -139.465     |
| CR-CCSD(T),a/D=1 | -139.621     |
| CR-CCSD(T),b     | -139.375     |
| CR-CCSD(T),b/D=1 | -139.440     |
| CR-CCSD(T),c     | -139.391     |
| CR-CCSD(T),c/D=1 | -139.467     |
| Shell model SD   | -131.887     |
| Shell model SDT  | -135.489     |
| Shell model SDTQ | -138.387     |

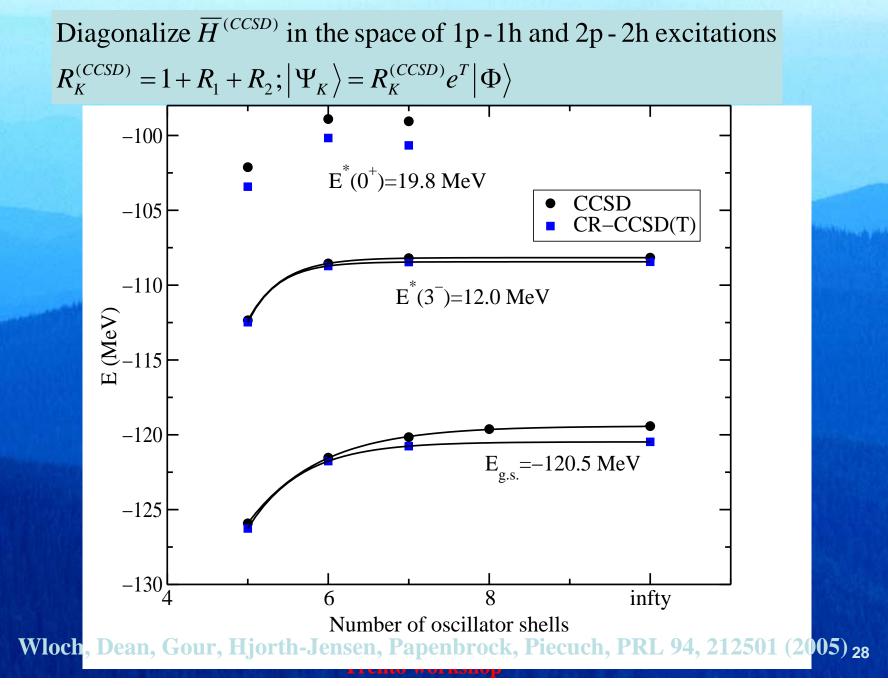
M. Horoi SM within 0.1 MeV of our CR-CCSD(T) results Relative size of terms:

 a) T<sub>1</sub> and T<sub>2</sub> of similar order
 b) T<sub>1</sub>T<sub>2</sub> disconnected
 > T<sub>3</sub> connected triples
 c) diff between SM-SD and CCSDT
 comes mainly from T<sub>1</sub>T<sub>2</sub>
 d) If T<sub>3</sub> were large CCSD(T)
 would be far below CCSD

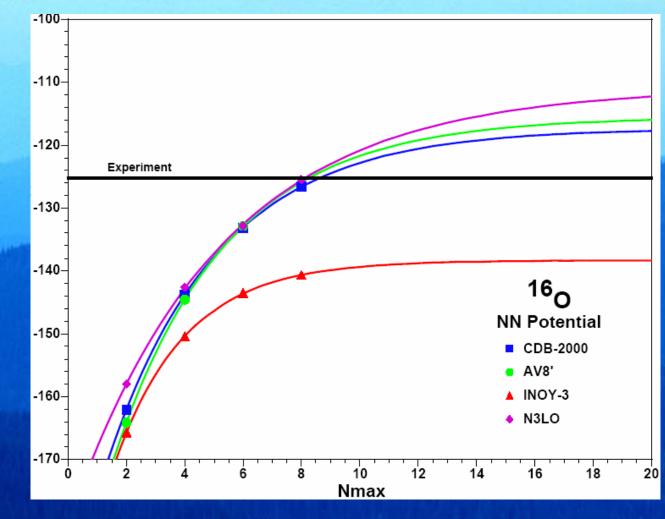
 Size extensive nature of CC
 CCSD + CR-CCSD(T) bring T<sub>1</sub><sup>3</sup>T<sub>2</sub>, T<sub>1</sub>T<sub>2</sub><sup>2</sup>, T<sub>2</sub><sup>3</sup> not in SM-SDTQ
 Scaling

CCSD :  $n_o^2 n_u^4$ CCSD(T):  $n_o^3 n_u^4$ SM-SDTQ :  $n_o^4 n_u^6$ 

#### **Extrapolations: EOMCCSD level**



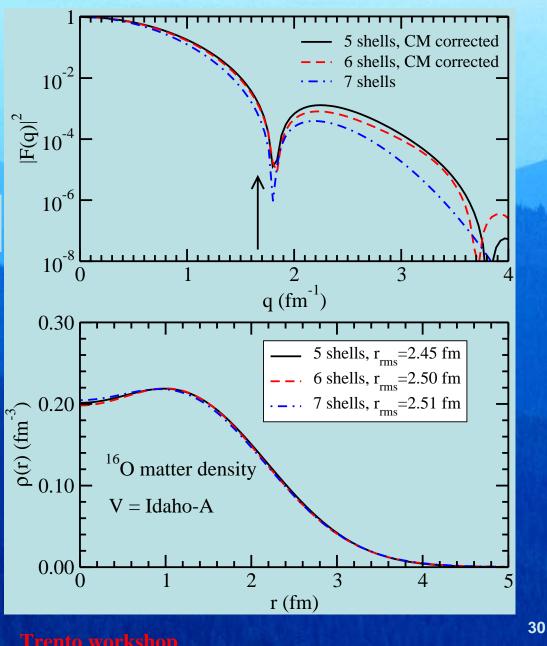
#### NCSM results for <sup>16</sup>O (Vary and Navratil, private communication)



#### **Nuclear Properties**

$$\rho_{\alpha\beta} = \left\langle \Phi \left| L^{(\mu)} \left[ e^{-T} a_{\alpha}^{+} a_{\beta} e^{T} \right] R^{(\mu)} \right| \Phi \right\rangle$$

Also includes second-order corrections from the two-body density.



#### N=8 results for <sup>15</sup>O, <sup>17</sup>O

#### Diagonalize $\overline{H}$ (T's solved for *n* nucleons) in the $n \pm 1$ Fock space.

| BE/A                   | Expt. | N <sup>3</sup> LO | CD-Bonn |
|------------------------|-------|-------------------|---------|
| <sup>15</sup> N        | 7.7   | 6.34              |         |
| <sup>15</sup> <b>O</b> | 7.46  | 6.16              | 6.64    |
| <sup>16</sup> <b>O</b> | 7.98  | 6.95              | 7.44    |
| 170                    | 7.75  | 6.72              | 7.20    |
| <sup>17</sup> F        | 7.54  | 6.56              |         |

| <sup>15</sup> O | Expt.       | N <sup>3</sup> LO                     | <b>CD-Bonn</b>         |
|-----------------|-------------|---------------------------------------|------------------------|
| 3/2-            | 6.176       | 6.26                                  | 7.35                   |
| 1/2-            | 0.0         | 0.0                                   | 0.0                    |
|                 | SUCTORIA    |                                       |                        |
| 170             | T           | NAC                                   |                        |
| 10              | Expt.       | N <sup>3</sup> LO                     | <b>CD-Bonn</b>         |
| 3/2+            | Expt. 5.085 | <b>N<sup>3</sup>LO</b><br><b>5.68</b> | <b>CD-Bonn</b><br>6.41 |
|                 | -           |                                       |                        |

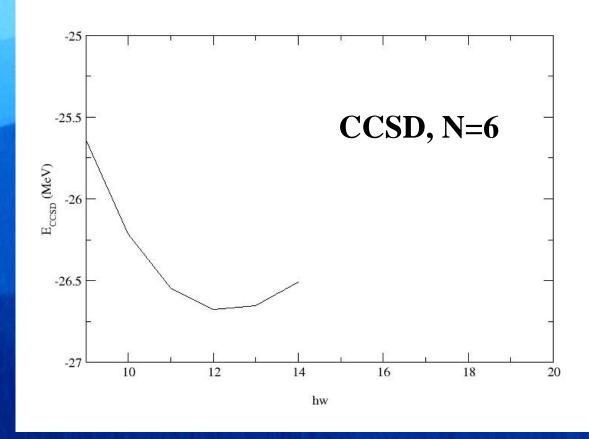
All N=8 O.1 MeV changes from N=7 to N=8 for excited states (relative).

On going calculations for CD-Bonn and AV18...

| 15 <sub>N</sub> | Expt. | N <sup>3</sup> LO |
|-----------------|-------|-------------------|
| 3/2-            | 6.323 | 6.318             |
| 1/2-            | 0.0   | 0.0               |

| 17 <b>F</b> | Expt. | N <sup>3</sup> LO | <b>CD-Bonn</b> |
|-------------|-------|-------------------|----------------|
| 3/2+        | 5.000 | 5.891             |                |
| 1/2+        | 0.495 | 0.428*            |                |
| 5/2+        | 0.0   | 0.0               | 0.0            |

#### First similarity-transform calculation <sup>4</sup>He Idaho-A (-27.4 MeV exact result)



Moving to larger model spaces always requires innovation

- CCSD code written for IBM using MPI.
- Performs at 0.18 Tflops on 100 processors on shared memory Ithaniam cluster.
- Requires further optimization for new science.
- Problem size increases by about a factor of 5 for each major oscillator shell
- Number of unknowns by a factor of 2 (for each step in N)
- Number of unknowns by a factor of 20 (for 4 times the particles)

| Ν | Single particle<br>basis states | <sup>4</sup> He<br>(unknowns) | <sup>16</sup> O<br>(unknowns) | Matrix element<br>memory (Gbyte) |
|---|---------------------------------|-------------------------------|-------------------------------|----------------------------------|
| 4 | 80                              | 1792                          | 24,960                        | 0.165                            |
| 5 | 140                             | 4000                          | 77,880                        | 1.5                              |
| 6 | 224                             | 7,976                         | 176k                          | 10.1                             |
| 7 | 336                             | 14,112                        | 345k                          | 51                               |
| 8 | 480                             |                               | 604k                          | 212                              |

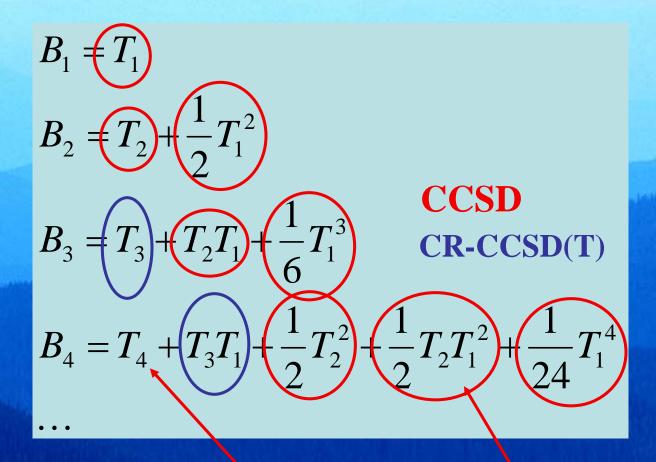
**Diagonalization: configuration-interaction, interacting shell model** 

Yields eigenfunctions which are linear combinations of particle-hole amplitudes

$$|\Psi_{\alpha}\rangle = (1 + b_i^a a_a^+ a_i + b_{ij}^{ab} a_a^+ a_b^+ a_i a_j + \cdots) |\Phi_0\rangle$$
1p-1h
2p-2h

How does this compare to CC theory?

#### **Relationship between shell model and CC amplitudes**



"Disconnected quadruples"

"Connected quadruples"

**Factorization of the equations: intermediates** 

 $t_2(ab,ij) = \sum \langle kl \| cd \rangle t_{ij}^{cd} t_{kl}^{ab}$  $kl < \varepsilon_f \\ cd > \varepsilon_f$ 

#### **Break summation**

 $=\sum_{kl<\varepsilon_{f}}\left\{\sum_{cd>\varepsilon_{f}}\left\langle kl \| cd \right\rangle t_{ij}^{cd}\right\} t_{kl}^{ab}$ 

#### **Intermediate vectors**

This leads to a very nice diagrammatic approach to the equations (a la Papenbrock), and to extensions to V3N inclusion in CC theory.

#### **Inclusion of three-body forces: Amplitude equation for t**<sub>1</sub>**:**

# **Results including three-body forces coming soon....**

#### **Conclusions and perspectives**

- Recall objective: development of robust many-body techniques for NN and NNN nuclear potentials....what is the nuclear Hamiltonian?
- Solution of the nuclear many-body problems requires extensive use of computational and mathematical tools. Numerical analysis becomes extremely important; methods from other fields (chemistry, CS) invaluable.
- Detailed investigation of triples corrections via CR-CCSD(T) indicates convergence at the triples level for <sup>16</sup>O calculation.
   <sup>16</sup>O (nearly) converged at 8 shells (not Nhω) using G-matrix and Vlowk.
- Excited states calculated for the first time (in huge space) using EOMCCSD and CR-EOMCCSD(T) in <sup>16</sup>O (3- high)
- Continuing work on the effective interaction; efforts to move to similarity transformed G are almost complete.
- Ca-40 underway; V<sub>3N</sub> beginning; Multi-reference CC theory beginning.