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Covariant effective field theory (EFT!)
(or, can the dinosaur learn anything from the cockroach?)

Franz Gross

Outline

Part I: The Covariant Spectator approach for
two and three nucleon interactions at JLab
momentum transfers (aside)

Part II: Ideas for improvements -- toward a
Covariant Effective field theory (EFT!) for GeV
reactions
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Aside

 Typical JLab process: deuteron form factor at Q2 ≥ 1 GeV2.

 In relativistic physics momenta and energies are NOT
correlated!  We go off the mass-shell, but remain
on the energy-shell.   In this case (in the Breit system)

If p is large, we are far off-shell and probe the short range
structure (the important relative momenta are of order Q/4), but
still the rest energy of the deuteron is FIXED at its mass; the only
energy change is due to the Lorentz boost

 In nonrelativistic physics we go off the energy shell but remain on
the mass shell.  In this case
and energy and momentum are correlated

p

p1

D
p2 = m2

p1
2 = (D − p)2 = Md

2 + m2 − 2 Md
2 + 1

4Q
2 m2 + p2 +Q ⋅p ≤ (Md − m)

2

D2 = Md
2

E + E1 = m2 + p2 + m2 + 1
2Q − p( )2 ≥ 2m
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The true landscape #1

what does the
dinosaur see?

what does the
cockroach see?
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The true landscape #2

what do they
see together?
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Part I
Covariant Spectator theory - philosophy
Few body nuclear physics at JLab (GeV) energies (conventional EFT NOT
an option - aside).

What do we do?
• Preserve all symmetries

 Poincare invariance essential -- manifest covariance useful
 unitarity (conservation of flux)
 electromagnetic gauge invariance
 chiral invariance

• Microscopic dynamics
 OBE dynamics with point couplings, but form factors for the self

energies of each hadron
 Organizational principle -- include exchanges of all mesons and quantum

numbers up to about 1 GeV.  Cutoff at the nucleon mass scale.
 Mesons needed: π, 2π (σ0, σ1), η, ρ, ω plus short distance counter terms.

• Maintain consistency
 electromagnetic currents constrained by WT identities (but still not

unique)
 three-body forces constrained by two-body forces
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Covariant Spectator theory -- Definition

 The spectator theory starts from the n-body Bethe-Salpeter equation and
restricts  n-1 particles to their positive energy mass shells.  The propagator
for these particles is replaced by

Sαβ( p) =
m + / p ( )αβ

m2 − p2 − iε
⇒ 2π iδ+ (m

2 − p2 ) uα (p, s)
s
∑ u β(p, s)

M M
×× × × ×× ×

+=

 Integration over the n-1 internal energies (p0) places these particles on their
positive energy mass-shell.  All 4-d integrations reduce to 3-d integrations.

 Remark:  These on-shell particles do not  propagate in intermediate states.  The
spinors are absorbed into matrix elements, and the on-shell particles becomes part
of the “source” for the single propagating off-shell particle.

 The two body scattering equation is, diagrammatically,
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The Bethe-Salpeter amplitude is a well defined field theoretic
matrix element:

The Covariant Spectator amplitude is also a well defined field
theoretic amplitude:

 Equations for the Bethe-Salpeter and the Spectator* amplitudes can
be derived from field theory
• Both are manifestly covariant under all Poincaré transformations (advantage)

• Both incorporate negative energy (antiparticle) states (disadvantage?)

Both the BS and the CS theories have a close connection to field theory

� 

Ψ(x1) = N |ψ (x1) |d

Ψ(x1, x2 ) = 0 | T ψ (x1 )ψ (x1)( ) | d x

*O. W. Greenberg’s "n-quantum approximation"

x
x



Franz GrossETC* 6/22/05

Properties of the two-body Spectator amplitude

 from translational invariance:

 from rotational invariance

 from transformations under boosts

d 4xe− ip⋅x∫ n ψ (x) d = (2π )4δ 4 (p + n − d) n ψ (0) d

boost matrix for
off-shell particle in
Dirac space

� 

B(Λ) n,λ ψα (0) d,ξ = Bαα ' Λn,λ'ψα ' (0) Λd,Λξ Dλ 'λ
(1/2) (ω)

Wigner
rotation of the spin
of the on-shell particle

n,λ ψα (0) d,ξ = 1

2Md 2π( )3
S(p)Γµ (p)C⎡⎣ ⎤⎦αβ uβ

Τ (−p,λ)ξµ

= ψλ 'λ
+µ (p) uα (p,λ ') +ψλ 'λ

−µ (p) vα (−p,λ '){ } ξµ

positive
energy
spinor

negative
energy
spinorλ

α
ξ

× ×

exact
conservation of momentum
and energy at the vertex

exact
the most general form
possible for the coupling
of a spin 1 particle to two
spin 1/2 particles, one
off-shell

exact
obtained from Wigner
rotations and Dirac
boost matrix
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One boson exchange diagram:

Scalar:  σ0 NN (and σ1 NN) coupling

 Pseudoscalar: π NN (and η NN) coupling

Vector: ρ NN (and ω NN) coupling

  Dynamics: phenomenological OBE

Λ(p ', p) = g + ν
2m

2m − /p '− /p[ ]

p1

p2

p1'

p2'

Λ(p1 ', p1) Λ(p2 ', p2 )
mm
2 − (p1 '− p1)

2

Λ(p ', p) = g γ 5 −
1−ν
2m

m − p '( )γ 5 + γ 5 m − p( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

Λ(p ', p) = g γ µ +
κ
2m

iσ µν p '− p( )ν +
ν
2m

m − p '( )γ µ + γ µ m − p( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

zero on-shell
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Family of OBE models for NN  scattering based on 1993 calculations

 Kernel of the integral equation was represented by OBE

 13 Parameters

=

spin
parity

I-
spin

mass g 2/4π κ # of
Para

π 0− 1 134.98 13.34 -- 0
η 0− 0 548.8 3.0 ± 0.25 -- 1
σ 0+ 0 ≈ 500 5.0 ± 0.5 -- 2
δ 0+ 1 ≈ 500 0.6 ± 0.4* -- 2
ω 1− 0 782.8 15.0 ± 1.0 ≈ 0.2 2
ρ 1− 1 760.0 0.8 ± 0.2 7.0 ± 0.5 3

cutoffs

Λπ ≈ 2000

Λm  ≈ 1300

ΛN  ≈ 1800

ρ mixing

λρ = 1.55 ± 0.4

= + + + + +π η σ δ ω ρ

gπ gη gσ gδ gω gρ

νπ=1 νη=1 νσ νδ
λω=1 λρ

κω κρ

We fixed the ratio of the ν’s { νσ =  −0.75 ν
=  2.60 νν δ χ2/datum ~ 2.2

σ0 
σ1

=0 =0

g2/4π

g2/4π

λρ = 1−
νρ

κ ρ
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Define three-body vertex functions for each possibility

 then three body Faddeev-like equations emerge automatically.
For identical particles they are:

Spectator equations for three-body systems*

   

      

this amplitude already 
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

this particle is 
the “last” spectator

×
×

×
×
× ×

M
×
M

ΓM Γ
M

= 2Γ ΓM× ×
×
×

×
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3N binding energy is very sensitive to ν
(off shell coupling of the scalar mesons)*

ν=1.6                                          is strongly 
favored, both by the 3N binding energy 
and the 2N data!

νσ = −1.2, νδ = 4.16( )

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.50 1.0 1.5 2.0 2.5

χ2
data

ν

-10

-9.0

-8.0

-7.0

-6.0

ET

experimental value
 -8.48 MeV

ν=1.6

best fit to the 2N data (minimum χ  ) at ν=1.6! 2

experimental binding energy at ν=1.6! 

*three body calculations done with Alfred Stadler, Phys. Rev.
  Letters 78, 26 (1997)
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 Kernel of the integral equation is still represented by OBE

 Recent fit (still under development) with 21 Parameters

 χ2 /datum = 1.26 (for the 2001 data set) !

Recent results (in progress):  OBE model for NN  scattering

spin
parity

I-
spin

mass g 2/4π κ ν # of
Para

γ 1− -- 0.001 0

π ± 0− 1 139.57 13.93 -- -0.098 2

π 0 0− 1 134.98 13.93 -- -0.098 --

η 0− 0 548.8 4.899 -- 1.540 2

σ0 0+ 0 447 2.597 -- -7.872 3

σ1 0+ 1 534 1.165 -- 3.400 3

ω 1− 0 717 9.409 0.222 0.313 4

ρ 1− 1 912 2.270 5.383 -2.107 4

Cutoffs (3)

Λπ =1786

Λm  = 1192

ΛN  = 1861

Thanks to Mart Rentmeester and Rob Timmermans for helpful discussions about data

Thanks to
J. de Swart
for helpful
advice.
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Two body current operator in the spectator theory

×××× ××±1
2

=

× ×
+ +

× ×

 Interaction current

Γ
×
×

Γ×
M

×
×

RIA FSI
MEC

Γ××
×

Γ××M×
×+ + +

  Inelastic Scattering

××
Γ ΓΓ

×
Γ +

RIA MEC

  Elastic Scattering
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Three body current operator in the spectator theory*

The gauge invariant three-body breakup current in the spectator
theory (with on-shell particles labeled by an x) requires many
diagrams

where the FSI term is

x
xx

x

x x

x
x

x

x
x

x x
xx

x
x
x

x x x x
x

x x
x x

= 3 +3 +3

+6ζ +6ζ

+3 +12 +6ζ +6ζ

+6ζx
x

x x x
x
x

x xx

x
x

x x x

x
x

x
x

x xx
x

x x
xx

x

x x

+ x
x

x + xx
x

x +2ζ x
x

x x
+ x

x

x
x
x

x

RIA IAC FSI

*Kvinikhidze & Blankleider,
    PRC 56, 2973 (1997)
 Adam & Van Orden
    PRC 71: 034003 (2005)
 FG, A. Stadler, & T. Pena
   PRC 69: 034007 (2004)
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Conclusions to part I

 We have a covariant theory (CS theory) suitable for the calculation
of 2 and 3 body electromagnetic observables when the  excitations
are small but the momentum transfers are large.

 It has been (and is being) applied to NN (and 3N?) scattering,
deuteron form factors, electrodisintegration of the deuteron, 3He
form factors, and 2 and 3 body electrodisintegration of 3He.

 The goals are to

• explain these interactions in terms of a consistent dynamics
based on the CS theory using a covariant OBE model.

• determine the parameters of the OBE model and the OBE
interaction currents that emerge.

• compare these effective interactions with QCD predictions!
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Part II
Can the ideas of EFT improve the CS theory?

 At present, regularization and short range physics are both contained in the
form factors

 The most important of these is the nucleon form factor

� 

S( p) =
f (p)

m − / p 
; f ( p) =

2(Λ2 − m2 )2

(Λ2 − p2 )2 + (Λ2 − m2 )2

The fits are very sensitive to Λ

  Use the ideas of EFT to separate these two roles:

• Regularize using the PDS of Kaplan, Savage, and Wise
• Parameterize short range physics using constants

 Assume that the physics is “known” up to exchange masses of about 1 GeV.
Short range physics is above 1 GeV
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Overview -- Report on work in progress

Assumptions:

• Ignore the “known” physics corresponding to exchanges of
bosons with masses less than 1 GeV (add this later).

• Parameterize the short range physics with contact
interactions of the          type.

• Chose the mass scale M for the         interaction to be ≥ m
(the nucleon mass)

• Regularize using power divergence subtraction (PDS)

 Example: the 1S0 partial wave

ψψ
2

ψψ
2
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Lagrangian for a 1S0 state

 Introduce the NN ⇒ 1S0  vertex function

Then, the Lagrangian density for a 1S0  state is

 In d dimensions, λ has dimensions of    2-d, so the coupling is

where λ0 is dimensionless.

Γ0+ (x) = (Cγ 5 )abψ a (x)ψ b (x) =ψ
T(x)Cγ 5ψ (x)

L(x) =ψ (x) i ∂
↔

− m⎛
⎝⎜

⎞
⎠⎟
ψ (x) − λ Γ0+ (x)⎡⎣ ⎤⎦

†
Γ0+ (x)

 

λ =
λ0
M 2−d
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Power counting (naive)

 Scales: there are only three scales in the problem: p, m, and M.

First, assume p ~ m « M, so that

 Naive dimensional counting gives a superficial divergence D for any
NN scattering Feynman diagram equal to

where n is the number of vertices (or the order) of the diagram.
Hence we expect the size of any diagram V (n) to go like

 Conclusion: if λ0 ~ 1, and d >2,  perturbation theory applies.

 

δ ≈
p
M

m
M
1

D = (d-2) (n-1)

V (n) ≈
λ0
M d−2 λ0δ

d−2( )n−1
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Power counting (nonrelativistic domain)

 Assume, p << m.  Introduce a new scale

 Then the n th order diagram has the form:

 Assume that the term of order α is of order 1.  Then only the terms of
order α2 or smaller can be ignored.  All other terms must be summed to all
orders.  Hence:

• All diagrams contribute to the constant term.  This depends on the
scale, and will be fixed phenomenologically.

• The task is to calculate the terms of order α, which are independent of
the scale.

 

α =
p
m
 δ 2 δ

V (n) ≈
λ0
M d−2 λ0

m
M

⎛
⎝⎜

⎞
⎠⎟

d−2

1+ c1α + cnα
n

1

∞

∑⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

n−1

~1large “constant” term small remainder term
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Example: the s-channel bubble

The s-channel bubble B(s) is

where εd=2-d/2, p2=m2-s/4, and

V (2) (s) = λ2B(s)(Cγ 5 )a 'b ' (Cγ
5 )ba

λB(s) = −i
λ0

2M d−2

ddk
(2π )d

tr Cγ 5 m + 1
2 P + k( )Cγ 5 m + 1

2 P − k( )T⎡
⎣

⎤
⎦

m2 − 1
2 P + k( )2 − iε⎡

⎣
⎤
⎦ m2 − 1

2 P − k( )2 − iε⎡
⎣

⎤
⎦

∫

=
λ0Γ(εd )M

2εd −2

(4π )2−εd
dz

− 12

1
2

∫
4m2

p2 + sz2( )εd
−

6 − 4εd
(1− εd ) p

2 + sz2( )εd −1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

d→4
lim λB(s) = λ0 µ −

p s
8πM 2 + R p

2( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

µ =
1
2π

+
m2

8π 2M 2 Γ '(1) − log 4πm2

M 2

⎛
⎝⎜

⎞
⎠⎟
+ 3− 10

9
log2

⎛

⎝⎜
⎞

⎠⎟
with the large constant 

R(p2 ) = p s
4π 2M 2 arctan

2p
s
−

p2

4π 2M 2 Γ '(1) − log 4πm2

M 2

⎛
⎝⎜

⎞
⎠⎟
+ 2 − 5

9
log2

⎛

⎝⎜
⎞

⎠⎟and the small remainder

1
2 P + k

1
2 P − k
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Summation of the leading bubble terms gives

 

M 0+ (s) = λ0
M 2 1+ λB(s) + λB(s)( )2 + i i i i⎡⎣ ⎤⎦

=
λ0

M 2 − λ0 µM 2 − p s
8π

⎛
⎝⎜

⎞
⎠⎟

=
1

M 2 1
λ0

− µ
⎛
⎝⎜

⎞
⎠⎟
+ p s
8π

=
8π

m0
2 + p s

where m0 is a parameter fixed by the effective
range expansion.

Hence, λ0 runs with M according to: λ0 =
1

µ + m0
2

8πM 2
and M has a pole (or resonance) at

s = 2m2 1± 1− m0
4

m4

⎛

⎝
⎜

⎞

⎠
⎟
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The u- and t-channel bubbles

New feature of relativistic theory is the presence of u- and t-
channel bubbles

We can show(?) that these are analytic in p2 near p2 ~ 0.
Hence they contribute only to the constant and p2 terms, and
their effect can be absorbed into adjustable parameters

 Conclusion: the presence of u- and t- channel bubbles does not
change the conclusions drawn from study of s-channel bubbles
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Conclusion:
Power counting for relativistic theory in a nonrelativistic domain

 Each diagram is of the form M = Constant + c1α + R(α2)

 All diagrams contribute a constant term, which sometimes violates
power counting.  This does not matter since the constant term is
simply a parameter describing the short range physics that must be
fit to the data.

 Only diagrams with an elastic cut contribute non-analytic terms of
order α, and these can be calculated and summed.

 The remainder terms R(α2) are analytic and can be absorbed into
derivative terms in the Lagrangian.   These are then fit to the data.

 Not much predictive power, but divergences are handled without
form factors.  (Is this really an advantage?)
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Connection with the Covariant Spectator theory

 If

the CS theory gives the following bubble contribution

BCS (s) = −
i
4

ddk
(2π )d

N
1

(A− − A+ − iε)(A+ − iε)
+

1
(A+ − A− − iε)(A− − iε)

⎧
⎨
⎩

⎫
⎬
⎭

∫

 
A± − iε = m

2 − 1
2 P ± k( )2 − iε = Ek − 1

2 P0  k0 − iε( ) Ek + 1
2 P0 ± k0 − iε( )

           a                                   b
one pole LHP                    one pole UHP

A+ − A− − iε = −2P ⋅ k − iε

= −
i
4

ddk
(2π )d

N dx
0

∞

∫
1

(1− x)A+ + xA− − i(1+ x)ε[ ]2
+

1
(1− x)A− + xA+ − i(1+ x)ε[ ]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫

= −
i
4

ddk
(2π )d

N dz
− 12

∞

∫
1

(12 − z)A+ + 1
2 + z( )A− − i( 32 + z)ε⎡⎣ ⎤⎦

2 + dz
−∞

1
2

∫
1

1
2 + z( )A− + ( 12 − z)A+ − i( 32 − z)ε⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫

x=1/2+z x=1/2-z



Franz GrossETC* 6/22/05

Connection with the Covariant Spectator theory (2)

Hence

 CS theory is equivalent (from an EFT! point of view) to the
full field theory.  (Is this useful?)

BCS (s) =
i
4

ddk
(2π )d

dz
−∞

∞

∫
N

( 12 − z)A+ + 1
2 + z( )A− − i( 32 + z)ε⎡⎣ ⎤⎦

2∫ +
1
2
B(s)

µ '− p s
8πM 2 +

1
2
R p2( )

Different constant and half the remainder term

THEREFORE, in an EFT sense, equivalent to the full bubble term
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Extensions and reinterpretation: EFT! in a relativistic domain

 Suppose we are in the relativistic domain (p ~ m).  Then either:

• power counting works, because λ0 << (M/m)2 and the physics is
perturbative, or

• λ0 ~ (M/m)2, power counting does not work, and all diagrams are of equal
size, and all must be summed

 Even if power counting does NOT work, we may

• separate the terms nonanalytic in p2 from those which are analytic, and
sum them using s-channel bubbles.  These terms are predicted by the
theory (up to the arbitrary constant!).  Is this important??

• adjust the size of the analytic terms by adding derivative terms to the
Lagrangian.  These cannot be predicted.  There is also no longer an
organizational principle for choosing derivatives -- all are of equal size.

 In either case, this relativistic effective theory has no content (i.e.) is
purely phenomenological (in common with its nonrelativistic counterpart).
But we have found a way to regularize and handle the short range physics.
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Where do we go from here?  One scenario:

Step 1: Start with a kernel of the form

 Fit data

Add the pion (and other meson exchanges?) in an attempt to
reduce the number of unknown short range parameters.  For
example, get c2 and c4 from meson exchange??

 Calculate meson exchange without form factors or cutoffs
using a “two potential” formalism and a Pade’ series.

V = µ −
p s
8πM 2 + c2p

2 + c4p
4 + ⋅ ⋅ ⋅ ⋅

adjustable parameters
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Where do we go from here?  One scenario (2)

 the “two potential” series is

 the Pade series is used to calculate Mm

M = Mm + (1+ Mm ) 0
λ

1+ λB(1+ Mm )
0 (1+ Mm )

Mm = cnx
n

n=1

2 p

∑ =
dn
1xn

n=1

p

∑

dn '
2 xn '

n '=1

p

∑
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Conclusions to Part II

 What has been learned from this exercise?

• A full power counting scheme, with accompaning organizational principle,
seems to exist only in nonrelativistic situations.

• BUT it can be done with either a relativistic, or nonrelativistic
formalism.

• From the EFT! point of view, CS theory is just as good as a full field
theory (to be thought about some more)

 Does this help justify our original approach and calculations?

 Why do relativistic calculations?

• justified if fewer parameters are needed to fit data and a greater
unity between dynamics and interaction currents can be achieved
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END


