
Franz GrossETC* 6/22/05

Covariant effective field theory (EFT!)
(or, can the dinosaur learn anything from the cockroach?)
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Part I: The Covariant Spectator approach for
two and three nucleon interactions at JLab
momentum transfers (aside)

Part II: Ideas for improvements -- toward a
Covariant Effective field theory (EFT!) for GeV
reactions
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Aside

 Typical JLab process: deuteron form factor at Q2 ≥ 1 GeV2.

 In relativistic physics momenta and energies are NOT
correlated!  We go off the mass-shell, but remain
on the energy-shell.   In this case (in the Breit system)

If p is large, we are far off-shell and probe the short range
structure (the important relative momenta are of order Q/4), but
still the rest energy of the deuteron is FIXED at its mass; the only
energy change is due to the Lorentz boost

 In nonrelativistic physics we go off the energy shell but remain on
the mass shell.  In this case
and energy and momentum are correlated

p

p1

D
p2 = m2

p1
2 = (D − p)2 = Md

2 + m2 − 2 Md
2 + 1

4Q
2 m2 + p2 +Q ⋅p ≤ (Md − m)

2

D2 = Md
2

E + E1 = m2 + p2 + m2 + 1
2Q − p( )2 ≥ 2m
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The true landscape #1

what does the
dinosaur see?

what does the
cockroach see?
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The true landscape #2

what do they
see together?
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Part I
Covariant Spectator theory - philosophy
Few body nuclear physics at JLab (GeV) energies (conventional EFT NOT
an option - aside).

What do we do?
• Preserve all symmetries

 Poincare invariance essential -- manifest covariance useful
 unitarity (conservation of flux)
 electromagnetic gauge invariance
 chiral invariance

• Microscopic dynamics
 OBE dynamics with point couplings, but form factors for the self

energies of each hadron
 Organizational principle -- include exchanges of all mesons and quantum

numbers up to about 1 GeV.  Cutoff at the nucleon mass scale.
 Mesons needed: π, 2π (σ0, σ1), η, ρ, ω plus short distance counter terms.

• Maintain consistency
 electromagnetic currents constrained by WT identities (but still not

unique)
 three-body forces constrained by two-body forces
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Covariant Spectator theory -- Definition

 The spectator theory starts from the n-body Bethe-Salpeter equation and
restricts  n-1 particles to their positive energy mass shells.  The propagator
for these particles is replaced by

Sαβ( p) =
m + / p ( )αβ

m2 − p2 − iε
⇒ 2π iδ+ (m

2 − p2 ) uα (p, s)
s
∑ u β(p, s)

M M
×× × × ×× ×

+=

 Integration over the n-1 internal energies (p0) places these particles on their
positive energy mass-shell.  All 4-d integrations reduce to 3-d integrations.

 Remark:  These on-shell particles do not  propagate in intermediate states.  The
spinors are absorbed into matrix elements, and the on-shell particles becomes part
of the “source” for the single propagating off-shell particle.

 The two body scattering equation is, diagrammatically,
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The Bethe-Salpeter amplitude is a well defined field theoretic
matrix element:

The Covariant Spectator amplitude is also a well defined field
theoretic amplitude:

 Equations for the Bethe-Salpeter and the Spectator* amplitudes can
be derived from field theory
• Both are manifestly covariant under all Poincaré transformations (advantage)

• Both incorporate negative energy (antiparticle) states (disadvantage?)

Both the BS and the CS theories have a close connection to field theory

� 

Ψ(x1) = N |ψ (x1) |d

Ψ(x1, x2 ) = 0 | T ψ (x1 )ψ (x1)( ) | d x

*O. W. Greenberg’s "n-quantum approximation"

x
x
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Properties of the two-body Spectator amplitude

 from translational invariance:

 from rotational invariance

 from transformations under boosts

d 4xe− ip⋅x∫ n ψ (x) d = (2π )4δ 4 (p + n − d) n ψ (0) d

boost matrix for
off-shell particle in
Dirac space

� 

B(Λ) n,λ ψα (0) d,ξ = Bαα ' Λn,λ'ψα ' (0) Λd,Λξ Dλ 'λ
(1/2) (ω)

Wigner
rotation of the spin
of the on-shell particle

n,λ ψα (0) d,ξ = 1

2Md 2π( )3
S(p)Γµ (p)C⎡⎣ ⎤⎦αβ uβ

Τ (−p,λ)ξµ

= ψλ 'λ
+µ (p) uα (p,λ ') +ψλ 'λ

−µ (p) vα (−p,λ '){ } ξµ

positive
energy
spinor

negative
energy
spinorλ

α
ξ

× ×

exact
conservation of momentum
and energy at the vertex

exact
the most general form
possible for the coupling
of a spin 1 particle to two
spin 1/2 particles, one
off-shell

exact
obtained from Wigner
rotations and Dirac
boost matrix
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One boson exchange diagram:

Scalar:  σ0 NN (and σ1 NN) coupling

 Pseudoscalar: π NN (and η NN) coupling

Vector: ρ NN (and ω NN) coupling

  Dynamics: phenomenological OBE

Λ(p ', p) = g + ν
2m

2m − /p '− /p[ ]

p1

p2

p1'

p2'

Λ(p1 ', p1) Λ(p2 ', p2 )
mm
2 − (p1 '− p1)

2

Λ(p ', p) = g γ 5 −
1−ν
2m

m − p '( )γ 5 + γ 5 m − p( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

Λ(p ', p) = g γ µ +
κ
2m

iσ µν p '− p( )ν +
ν
2m

m − p '( )γ µ + γ µ m − p( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

zero on-shell
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Family of OBE models for NN  scattering based on 1993 calculations

 Kernel of the integral equation was represented by OBE

 13 Parameters

=

spin
parity

I-
spin

mass g 2/4π κ # of
Para

π 0− 1 134.98 13.34 -- 0
η 0− 0 548.8 3.0 ± 0.25 -- 1
σ 0+ 0 ≈ 500 5.0 ± 0.5 -- 2
δ 0+ 1 ≈ 500 0.6 ± 0.4* -- 2
ω 1− 0 782.8 15.0 ± 1.0 ≈ 0.2 2
ρ 1− 1 760.0 0.8 ± 0.2 7.0 ± 0.5 3

cutoffs

Λπ ≈ 2000

Λm  ≈ 1300

ΛN  ≈ 1800

ρ mixing

λρ = 1.55 ± 0.4

= + + + + +π η σ δ ω ρ

gπ gη gσ gδ gω gρ

νπ=1 νη=1 νσ νδ
λω=1 λρ

κω κρ

We fixed the ratio of the ν’s { νσ =  −0.75 ν
=  2.60 νν δ χ2/datum ~ 2.2

σ0 
σ1

=0 =0

g2/4π

g2/4π

λρ = 1−
νρ

κ ρ



Franz GrossETC* 6/22/05

Define three-body vertex functions for each possibility

 then three body Faddeev-like equations emerge automatically.
For identical particles they are:

Spectator equations for three-body systems*

   

      

this amplitude already 
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

this particle is 
the “last” spectator

×
×

×
×
× ×

M
×
M

ΓM Γ
M

= 2Γ ΓM× ×
×
×

×
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3N binding energy is very sensitive to ν
(off shell coupling of the scalar mesons)*

ν=1.6                                          is strongly 
favored, both by the 3N binding energy 
and the 2N data!

νσ = −1.2, νδ = 4.16( )

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.50 1.0 1.5 2.0 2.5

χ2
data

ν

-10

-9.0

-8.0

-7.0

-6.0

ET

experimental value
 -8.48 MeV

ν=1.6

best fit to the 2N data (minimum χ  ) at ν=1.6! 2

experimental binding energy at ν=1.6! 

*three body calculations done with Alfred Stadler, Phys. Rev.
  Letters 78, 26 (1997)
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 Kernel of the integral equation is still represented by OBE

 Recent fit (still under development) with 21 Parameters

 χ2 /datum = 1.26 (for the 2001 data set) !

Recent results (in progress):  OBE model for NN  scattering

spin
parity

I-
spin

mass g 2/4π κ ν # of
Para

γ 1− -- 0.001 0

π ± 0− 1 139.57 13.93 -- -0.098 2

π 0 0− 1 134.98 13.93 -- -0.098 --

η 0− 0 548.8 4.899 -- 1.540 2

σ0 0+ 0 447 2.597 -- -7.872 3

σ1 0+ 1 534 1.165 -- 3.400 3

ω 1− 0 717 9.409 0.222 0.313 4

ρ 1− 1 912 2.270 5.383 -2.107 4

Cutoffs (3)

Λπ =1786

Λm  = 1192

ΛN  = 1861

Thanks to Mart Rentmeester and Rob Timmermans for helpful discussions about data

Thanks to
J. de Swart
for helpful
advice.



Franz GrossETC* 6/22/05

Two body current operator in the spectator theory

×××× ××±1
2

=

× ×
+ +

× ×

 Interaction current

Γ
×
×

Γ×
M

×
×

RIA FSI
MEC

Γ××
×

Γ××M×
×+ + +

  Inelastic Scattering

××
Γ ΓΓ

×
Γ +

RIA MEC

  Elastic Scattering



Franz GrossETC* 6/22/05

Three body current operator in the spectator theory*

The gauge invariant three-body breakup current in the spectator
theory (with on-shell particles labeled by an x) requires many
diagrams

where the FSI term is

x
xx

x

x x

x
x

x

x
x

x x
xx

x
x
x

x x x x
x

x x
x x

= 3 +3 +3

+6ζ +6ζ

+3 +12 +6ζ +6ζ

+6ζx
x

x x x
x
x

x xx

x
x

x x x

x
x

x
x

x xx
x

x x
xx

x

x x

+ x
x

x + xx
x

x +2ζ x
x

x x
+ x

x

x
x
x

x

RIA IAC FSI

*Kvinikhidze & Blankleider,
    PRC 56, 2973 (1997)
 Adam & Van Orden
    PRC 71: 034003 (2005)
 FG, A. Stadler, & T. Pena
   PRC 69: 034007 (2004)
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Conclusions to part I

 We have a covariant theory (CS theory) suitable for the calculation
of 2 and 3 body electromagnetic observables when the  excitations
are small but the momentum transfers are large.

 It has been (and is being) applied to NN (and 3N?) scattering,
deuteron form factors, electrodisintegration of the deuteron, 3He
form factors, and 2 and 3 body electrodisintegration of 3He.

 The goals are to

• explain these interactions in terms of a consistent dynamics
based on the CS theory using a covariant OBE model.

• determine the parameters of the OBE model and the OBE
interaction currents that emerge.

• compare these effective interactions with QCD predictions!
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Part II
Can the ideas of EFT improve the CS theory?

 At present, regularization and short range physics are both contained in the
form factors

 The most important of these is the nucleon form factor

� 

S( p) =
f (p)

m − / p 
; f ( p) =

2(Λ2 − m2 )2

(Λ2 − p2 )2 + (Λ2 − m2 )2

The fits are very sensitive to Λ

  Use the ideas of EFT to separate these two roles:

• Regularize using the PDS of Kaplan, Savage, and Wise
• Parameterize short range physics using constants

 Assume that the physics is “known” up to exchange masses of about 1 GeV.
Short range physics is above 1 GeV
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Overview -- Report on work in progress

Assumptions:

• Ignore the “known” physics corresponding to exchanges of
bosons with masses less than 1 GeV (add this later).

• Parameterize the short range physics with contact
interactions of the          type.

• Chose the mass scale M for the         interaction to be ≥ m
(the nucleon mass)

• Regularize using power divergence subtraction (PDS)

 Example: the 1S0 partial wave

ψψ
2

ψψ
2
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Lagrangian for a 1S0 state

 Introduce the NN ⇒ 1S0  vertex function

Then, the Lagrangian density for a 1S0  state is

 In d dimensions, λ has dimensions of    2-d, so the coupling is

where λ0 is dimensionless.

Γ0+ (x) = (Cγ 5 )abψ a (x)ψ b (x) =ψ
T(x)Cγ 5ψ (x)

L(x) =ψ (x) i ∂
↔

− m⎛
⎝⎜

⎞
⎠⎟
ψ (x) − λ Γ0+ (x)⎡⎣ ⎤⎦

†
Γ0+ (x)

 

λ =
λ0
M 2−d
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Power counting (naive)

 Scales: there are only three scales in the problem: p, m, and M.

First, assume p ~ m « M, so that

 Naive dimensional counting gives a superficial divergence D for any
NN scattering Feynman diagram equal to

where n is the number of vertices (or the order) of the diagram.
Hence we expect the size of any diagram V (n) to go like

 Conclusion: if λ0 ~ 1, and d >2,  perturbation theory applies.

 

δ ≈
p
M

m
M
1

D = (d-2) (n-1)

V (n) ≈
λ0
M d−2 λ0δ

d−2( )n−1
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Power counting (nonrelativistic domain)

 Assume, p << m.  Introduce a new scale

 Then the n th order diagram has the form:

 Assume that the term of order α is of order 1.  Then only the terms of
order α2 or smaller can be ignored.  All other terms must be summed to all
orders.  Hence:

• All diagrams contribute to the constant term.  This depends on the
scale, and will be fixed phenomenologically.

• The task is to calculate the terms of order α, which are independent of
the scale.

 

α =
p
m
 δ 2 δ

V (n) ≈
λ0
M d−2 λ0

m
M

⎛
⎝⎜

⎞
⎠⎟

d−2

1+ c1α + cnα
n

1

∞

∑⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

n−1

~1large “constant” term small remainder term
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Example: the s-channel bubble

The s-channel bubble B(s) is

where εd=2-d/2, p2=m2-s/4, and

V (2) (s) = λ2B(s)(Cγ 5 )a 'b ' (Cγ
5 )ba

λB(s) = −i
λ0

2M d−2

ddk
(2π )d

tr Cγ 5 m + 1
2 P + k( )Cγ 5 m + 1

2 P − k( )T⎡
⎣

⎤
⎦

m2 − 1
2 P + k( )2 − iε⎡

⎣
⎤
⎦ m2 − 1

2 P − k( )2 − iε⎡
⎣

⎤
⎦

∫

=
λ0Γ(εd )M

2εd −2

(4π )2−εd
dz

− 12

1
2

∫
4m2

p2 + sz2( )εd
−

6 − 4εd
(1− εd ) p

2 + sz2( )εd −1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

d→4
lim λB(s) = λ0 µ −

p s
8πM 2 + R p

2( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

µ =
1
2π

+
m2

8π 2M 2 Γ '(1) − log 4πm2

M 2

⎛
⎝⎜

⎞
⎠⎟
+ 3− 10

9
log2

⎛

⎝⎜
⎞

⎠⎟
with the large constant 

R(p2 ) = p s
4π 2M 2 arctan

2p
s
−

p2

4π 2M 2 Γ '(1) − log 4πm2

M 2

⎛
⎝⎜

⎞
⎠⎟
+ 2 − 5

9
log2

⎛

⎝⎜
⎞

⎠⎟and the small remainder

1
2 P + k

1
2 P − k
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Summation of the leading bubble terms gives

 

M 0+ (s) = λ0
M 2 1+ λB(s) + λB(s)( )2 + i i i i⎡⎣ ⎤⎦

=
λ0

M 2 − λ0 µM 2 − p s
8π

⎛
⎝⎜

⎞
⎠⎟

=
1

M 2 1
λ0

− µ
⎛
⎝⎜

⎞
⎠⎟
+ p s
8π

=
8π

m0
2 + p s

where m0 is a parameter fixed by the effective
range expansion.

Hence, λ0 runs with M according to: λ0 =
1

µ + m0
2

8πM 2
and M has a pole (or resonance) at

s = 2m2 1± 1− m0
4

m4

⎛

⎝
⎜

⎞

⎠
⎟
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The u- and t-channel bubbles

New feature of relativistic theory is the presence of u- and t-
channel bubbles

We can show(?) that these are analytic in p2 near p2 ~ 0.
Hence they contribute only to the constant and p2 terms, and
their effect can be absorbed into adjustable parameters

 Conclusion: the presence of u- and t- channel bubbles does not
change the conclusions drawn from study of s-channel bubbles
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Conclusion:
Power counting for relativistic theory in a nonrelativistic domain

 Each diagram is of the form M = Constant + c1α + R(α2)

 All diagrams contribute a constant term, which sometimes violates
power counting.  This does not matter since the constant term is
simply a parameter describing the short range physics that must be
fit to the data.

 Only diagrams with an elastic cut contribute non-analytic terms of
order α, and these can be calculated and summed.

 The remainder terms R(α2) are analytic and can be absorbed into
derivative terms in the Lagrangian.   These are then fit to the data.

 Not much predictive power, but divergences are handled without
form factors.  (Is this really an advantage?)
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Connection with the Covariant Spectator theory

 If

the CS theory gives the following bubble contribution

BCS (s) = −
i
4

ddk
(2π )d

N
1

(A− − A+ − iε)(A+ − iε)
+

1
(A+ − A− − iε)(A− − iε)

⎧
⎨
⎩

⎫
⎬
⎭

∫

 
A± − iε = m

2 − 1
2 P ± k( )2 − iε = Ek − 1

2 P0  k0 − iε( ) Ek + 1
2 P0 ± k0 − iε( )

           a                                   b
one pole LHP                    one pole UHP

A+ − A− − iε = −2P ⋅ k − iε

= −
i
4

ddk
(2π )d

N dx
0

∞

∫
1

(1− x)A+ + xA− − i(1+ x)ε[ ]2
+

1
(1− x)A− + xA+ − i(1+ x)ε[ ]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫

= −
i
4

ddk
(2π )d

N dz
− 12

∞

∫
1

(12 − z)A+ + 1
2 + z( )A− − i( 32 + z)ε⎡⎣ ⎤⎦

2 + dz
−∞

1
2

∫
1

1
2 + z( )A− + ( 12 − z)A+ − i( 32 − z)ε⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫

x=1/2+z x=1/2-z
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Connection with the Covariant Spectator theory (2)

Hence

 CS theory is equivalent (from an EFT! point of view) to the
full field theory.  (Is this useful?)

BCS (s) =
i
4

ddk
(2π )d

dz
−∞

∞

∫
N

( 12 − z)A+ + 1
2 + z( )A− − i( 32 + z)ε⎡⎣ ⎤⎦

2∫ +
1
2
B(s)

µ '− p s
8πM 2 +

1
2
R p2( )

Different constant and half the remainder term

THEREFORE, in an EFT sense, equivalent to the full bubble term
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Extensions and reinterpretation: EFT! in a relativistic domain

 Suppose we are in the relativistic domain (p ~ m).  Then either:

• power counting works, because λ0 << (M/m)2 and the physics is
perturbative, or

• λ0 ~ (M/m)2, power counting does not work, and all diagrams are of equal
size, and all must be summed

 Even if power counting does NOT work, we may

• separate the terms nonanalytic in p2 from those which are analytic, and
sum them using s-channel bubbles.  These terms are predicted by the
theory (up to the arbitrary constant!).  Is this important??

• adjust the size of the analytic terms by adding derivative terms to the
Lagrangian.  These cannot be predicted.  There is also no longer an
organizational principle for choosing derivatives -- all are of equal size.

 In either case, this relativistic effective theory has no content (i.e.) is
purely phenomenological (in common with its nonrelativistic counterpart).
But we have found a way to regularize and handle the short range physics.
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Where do we go from here?  One scenario:

Step 1: Start with a kernel of the form

 Fit data

Add the pion (and other meson exchanges?) in an attempt to
reduce the number of unknown short range parameters.  For
example, get c2 and c4 from meson exchange??

 Calculate meson exchange without form factors or cutoffs
using a “two potential” formalism and a Pade’ series.

V = µ −
p s
8πM 2 + c2p

2 + c4p
4 + ⋅ ⋅ ⋅ ⋅

adjustable parameters
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Where do we go from here?  One scenario (2)

 the “two potential” series is

 the Pade series is used to calculate Mm

M = Mm + (1+ Mm ) 0
λ

1+ λB(1+ Mm )
0 (1+ Mm )

Mm = cnx
n

n=1

2 p

∑ =
dn
1xn

n=1

p

∑

dn '
2 xn '

n '=1

p

∑
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Conclusions to Part II

 What has been learned from this exercise?

• A full power counting scheme, with accompaning organizational principle,
seems to exist only in nonrelativistic situations.

• BUT it can be done with either a relativistic, or nonrelativistic
formalism.

• From the EFT! point of view, CS theory is just as good as a full field
theory (to be thought about some more)

 Does this help justify our original approach and calculations?

 Why do relativistic calculations?

• justified if fewer parameters are needed to fit data and a greater
unity between dynamics and interaction currents can be achieved
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END


